
CBMM Memo No. 138 March 8, 2023

How Deep Sparse Networks Avoid the Curse of
Dimensionality: Efficiently Computable Functions

are Compositionally Sparse
A Perspective on the Foundations of Deep Learning1

Tomaso Poggio
Center for Brains, Minds, and Machines, MIT, Cambridge, MA, USA

Abstract

The main claim of this perspective is that compositional sparsity of the target function, which corre-
sponds to the task to be learned, is the key principle underlying machine learning. Mhaskar and Poggio
(2016) proved that sparsity of the compositional target functions, naturally leads to sparse deep net-
works for approximation and thus for optimization. This is the case of most CNNs in current use, in
which the known compositional structure, described in terms of the function graph of the target function
is reflected in the sparse connectivity of the network. When the compositional sparsity of the target
function is unknow, I conjecture that transformers are able to implement a flexible version of com-
positional sparsity (selecting which input tokens interact in the MLP layer), through the self-attention
layers.

Surprisingly, the assumption of compositional sparsity of the target function is not restrictive in
practice, since I prove here that for computable functions compositional sparsity is equivalent to efficient
computability, that is Turing computability in polynomial time.

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

1The first version, published on October 11, 2022 is available under request. Several appendices have been deleted in this version which also differs
because of several edits in the main text and theorems.

1 Introduction
We still do not understand why deep networks work. Until recently this question could have been be
rephrased as a question about why CNNs work so well, since they, unlike dense networks, achieved
significantly superior performance in certain tasks, compared to classical techniques such as kernel
machines. In the meantime, however, other architectures, especially transformers, also show amazing
performance. Is there a common principle at the core of these successful neural network architectures?
In the following, I describe a framework built around a specific fundamental principle that, I conjecture,
must underlie most of deep learning.

This note is thus about foundations of ML. It shows how the curse of dimensionality in the ap-
proximations of functions can be avoided for the broad class of efficiently computable functions, thus
establishing a bridge between computability and approximation. The main result is that for smooth functions
on the reals – functions with Lipschitz continuity – compositional sparsity is equivalent to efficiently
computability, that is, they can be computed in polynomial time by a Turing Machine (the term efficient
is used here to mean non-exponential). The result implies that all "realistic" smooth functions are
compositionally sparse. The situation for Boolean functions is even simpler. It also implies that deep
sparse RELU networks are natural parametric and constructive approximators for these functions. In a
sense, compositionally sparse functions are in practice "all" functions and sparse RELU networks are
the associated class of their universal approximators.

2 Machine learning and approximation theory
In the theory of ML, the first conceptual step is to define parametric approximators of the class of
functions to be learned. Examples of approximators are generalized additive models, polynomials and
deep RELU network. In this first step of the theory, we want approximators to a class of functions,
ideally as large as possible. Furthermore, we want the parametric approximators to be efficiently
computable, to ensure that optimization on the training data is possible. In particular, this means that
the number of parameters in the approximators cannot be exponential in the effective dimensionality
d = d

s , where s is a measure of smoothness such as the number of bounded derivatives: in other words,
the approximators must avoid the curse of dimensionality. Recall that approximation of a generic
continuous function on the reals usingmultivariate polynomials of degree k has exponential complexity
O(k

d
s) in the number of parameters. Notice that evaluation at points of f and even continuity of f are

not enough to ensure a meaningful approximation, defined as a convergent sequence of approximating
fn that converges to f .

3 Compositionally sparse functions can be approximated by deep
networks without curse of dimensionality

Let me define a class of sparse functions, that is sparse compositional functions that are the composition of
sparse constituent functions. This class is interesting for approximation theory: in fact the assumption
of sparse target functions has appeared often in the recent approximation literature (see [1, 2, 3, 4, 5]).
It is important to notice that all functions have a compositional representation which is not unique, since, in
general, a function admits more than one compositional graph representation1.

Definition 1. A sparse compositional function on the reals of d variables with smoothness s, is a function
that can be represented as the composition of no more than poly(ds) sparse functions, that is functions
each depending on a small number ≤ d0 of variables, with d0 << d

s .

A similar definition applies to Boolean functions by replacing the effective dimensionality d with d.
An interesting, specific pair (function class, approximator) is the class of compositional smooth

functions and of deep RELU networks. In fact, the following theorem by Mhaskar and Poggio [6]
1In the following I often refer to "sparse function" meaning "a sparse representation of the function"

2

shows that functions with bounded first derivatives, that can be represented by a compositionally sparse
function graph, can be approximated arbitrarily well by deep, sparse RELU networks with poly(d)
parameters. The motivation for the result was the classical curse of dimensionality: an upper bound
on the number of parameters needed for approximation of a continuous function supported on a
compact domain of Rd is W = O(ϵ−

d
s), where ϵ is the approximation error and s – the number of

bounded derivatives – is a measure of smoothness of the function with s ≥ 1. The quantity d
s can be

called effective dimensionality. The curse can be avoided by shallow or deep networks if s is large and in
particular if s grows with d (as in The Barron class of functions). The curse can also be avoided by deep
networks, but not by shallow ones, if the representation of the smooth function is compositionally sparse,
that is if the function graph is such that each constituent function has small effective dimensionality2.
Theorem 1. [6] Let G be a DAG,n be the number of source nodes, and for each v ∈ V , let dv be the number of
in-edges of v. Let f : Rn 7→ R be a compositional G-function, where each of the constituent functions is in the
Sobolev space W dv

mv
. Consider shallow and deep networks with infinitely smooth activation function. Then deep

networks - with an associated graph that corresponds to the graph of f – avoid the curse of dimensionality in
approximating f for increasing n, whereas shallow networks cannot directly avoid the curse. In particular, the
complexity of the best approximating shallow network is exponential in n

Ns = O
(
ϵ−

n
m

)
,

wherem = minv∈V mv , while the complexity of the deep network is

Nd = O

∑
η∈V

ϵ−dv/mv

 .

Remark A slightly different definition can be given in which it is assumed that there exists a
parametrized sequence of constructive computable approximations (e.g. by RELU networks) fn
to f , each depending on n parameters, with desired errors ≤ ϵn in the sup norm. As emphasized by
H. Mhaskar, approximation theorems, such as Theorem 1 are too crude a tool to use - one has to add
that the approximation must be constructive, based on values of the target function. Otherwise, as
shown in [7], where for the first time both dimension independent as well as constructive bounds for
the same class of functions are proven), ReLU networks can achieve dimension independent bounds,
obviating the need to have deep networks from the point of view of degree of approximation alone.

4 Efficiently computable functions are compositionally sparse
Sparse compositional functions with bounded first derivatives can be approximated by a deep network
with the same graphwithout curse of dimensionality. But how broad is the class of sparse compositional
functions? In this section I show that it is quite broad since it is equivalent to the class of efficiently
computable functions.

I will first provide a specific version of the definition of a computable function. For Boolean functions,
computability is equivalent to computability by a Turing machine3. For functions on the reals there are
various notions of computability. The simplest is Borel-Turing computability. As shown very recently,
they all have some technical problems (see [8, 9]), in the sense that there exist functions on the reals
(such as the pseudoinverse) that are not are not computable. Here we bypass this issues and consider
the standard case, that is functions that are Borel-Turing computable. Our focus in this note is whether
such computable functions, are, or are not, computable in polynomial time.

2I use the term compositional sparsity following [1] instead of another equivalent term we used earlier: hierarchical composition-
ality.

3The Church-Turing thesis states that any real-world computation can be translated into an equivalent computation involving
a Turing machine, which is equivalent to using general recursive functions.

3

Definition 2. A function f : I → Rk
c , I ⊂ Rd

c , where Rc is the set of computable real numbers, is called
Borel-Turing computable, if there exists an algorithm (or Turing machine) that transforms each given
computable representation of a computable vector x ∈ I into a representation for f(x). The special case
of efficient computability requires computability in polynomial time/space in d.

The following observation, cast as a theorem here is natural.

Theorem 2. Efficiently computable functions on the reals with bounded first derivatives are composition-
ally sparse. Efficiently computable Boolean functions are compositionally sparse.

Proof sketch Assume that a function is efficiently computable by a Turing machine. This means that
the function can be represented by the composition of at most a polynomial number of functions, each
corresponding to the basic read-write step in a Turing machine, which is itself a sparse function. In fact,
a Turingmachine can be written as a compositional function y = f (t(x, s)where f : Zn×Sm 7→ Zh×sk,
S being parameters characterizing the state of the machine (this observation is due to S. Vempala). If
t is bounded we have a finite state machine, otherwise a Turing machine. Also notice that a Turing
machine computes recursive functions which are compositions of sparse functions.

5 Efficient computability, compositional sparsity and deep, sparse
RELU networks

Here are two obvious but interesting corollaries directly implied by the theorems above.

5.1 Efficient computability is equivalent to compositional sparsity
Consider smooth real-valued functions in d variables, that is functions with Lipschitz continuity, that
are compositionally sparse. Theorem 1 shows that such functions are computed by deep RELUnetworks
(assuming computability of the latter) with a number of parameters which is poly(d). The same is true
for Boolean functions. RELU networks can be simulated efficiently by a Turing machine, since each
layer in a deep network corresponds to a finite number of steps of a Turing machine. For the other
direction, Theorem 3 shows that efficiently computable functions are compositionally sparse.

Corollary 1. For computable functions (if the function is on the reals, bounded first derivatives are
required), compositional sparsity is equivalent to poly(d) computability.

Theorem 3. Functions on I ⊂ Rd with Lipschitz continuity which are efficiently computable are
compositionally sparse. Efficiently computable Boolean functions are compositionally sparse.

Proof (suggested by Eran Malach) a) The function on the reals can be approximated by a Boolean
function (obtained by discretizing the function which is Lipshitz continuous, see [10]). b) Assume that
the resulting boolean function is computable by a Turing machine in time poly(d). Then this function
can be computed by a poly(d) Boolean circuit (with AND/OR/NOT gates). d) Any such Boolean
circuit can be computed by a sparse Boolean circuit, where every gate has only 2 incoming edges, at the
cost of increasing depth by a factor of log(d) (by simply replacing AND/OR gates with many edges
with a binary tree with AND/OR gates). e) In the other direction, if a function is sparse compositional
then a sparse deep network can approximate it because of theorem 1. Then the network is efficiently
Turing computable.

4

Remarks

• There are other ways to prove the result. A Turing computable function can be represented by
the composition of at most a polynomial number of functions, each corresponding to the basic
read-write step in a Turing machine, which is itself a sparse function. In fact, a Turing machine
can be written as a compositional function y = f t(x, s) where f : Zn × Sm 7→ Zh × Sk, S being
parameters characterizing the state of the machine and Z Boolean variables (this observation is
due to S. Vempala). If t is bounded we have a finite state machine, otherwise a Turing machine.
Also notice that a Turing machine computes recursive functions which are compositions of sparse
functions.

• The restriction to computable functions in the theorem is to avoid the problem that several
functions on the reals are not computable according to standard definitions [9] .

• An alternative approach that avoids the issue of computability of functions on the reals is to
work with Boolean functions throughout, replacing the MP theorem with its Boolean version, as
sketched in section 9.4.1.

• Without the assumption of smooth target functions, which is equivalent to smooth constituent
functions for a compositional function, the equivalence between compositional sparsity and
computability does not hold. The Appendices discuss the situation.

5.2 Efficiently computable functions can be approximated by a deep network with
appropriate sparse architecture without curse of dimensionality

Corollary 2. All efficiently computable functions (if the function is on the reals, Lipschitz continuity is
required), can be approximated by a deep network with the appropriate sparse architecture matching the
graph of a sparse representation of the function.

Remark One of the main implications of theorem 2 is that in practice all functions may be approxi-
mated by an appropriately sparse neural network without curse of dimensionality. This, in turn, provides
theoretical foundations for

1. using deep sparse networks in general learning tasks where the parametric approximation is
optimized by training on a training set since our results show there for any realistic function there
exist a sparse representation that can be approximated well by a deep sparse network;

2. the assumption in several recent statistics papers (for instance [?]) that the regression function
is some form of a "generalized hierarchical interaction model" can be avoided;

3. the sparse tensor representations such as the Hierarchical Tucker format [11, 12] in representing
rather generic functions.

Notice that this implies that one of the main challenges in learning is hypothesizing or finding a
sparse compositional graph representing the class of functions to be learned (see later section on CNNs
and transformers).

6 Learning theory: compositional sparsity leads to orders-of-magnitude
better generalization

The theorems above imply that deep, sparse RELU networks can be used for training, that is for
optimization of the function class wrt given data and a chosen loss function. The optimized network
may or may not generalize well. The next question provides some light on this issue, independently of
whether the optimization is in the underparametrized or overparametrized case. The latter is more
relevant for current usage.

It is possible to prove that sparsity of a network approximating a (sparse) target function reduces
its complexity by orders of magnitude. In particular, the following result holds [13]

5

Theorem 4. (informal) The Rademacher complexity of a deep overparametrized network is much smaller
for convolutional layers with a local kernel than for a dense layers: if the kernel has dimensionality k and the
dimensionality of the layer is n, then the contribution of the layer to the Rademacher complexity of the network is√

k
n∥W∥ instead of ∥W∥, where ∥W∥ is the Frobenius norm of the layer weight matrixW .

In complete analogy with the approximation result the key property here is locality of the convolu-
tion kernel (k << n) and not weight sharing. Notice that an equivalent result for underparametrized
networks follows directly from considerations of VC dimension (see Appendix, section 8 in [14]). The
novelty here is to show that sparsity can lead to generalization in the overparametrized case, when
weight decay, that is regularization, is present4.

7 Optimization and open questions
7.1 The sparse graph is known: CNNs
In the underparametrized case, recent work (see for instance [2]) has shown that an optimal tradeoff
between approximation and generalization error can be achieved, assuming that optimization finds
a good minimum. In the much more interesting overparametrized square loss case, generalization
depends on solving a sort of regularized ERM, that consists of finding minimizers of the empirical risk
with zero loss, and then select the one with lowest complexity [16]. Recent work [13] has provided
theoretical and empirical evidence that this can be accomplished by SGD provided that the following
conditions are satisfied:

1. the sparse function graph of the underlying regression function is assumed to be known and to
be reflected in the architecture of the approximating network;

2. the network is overparametrized allowing zero empirical loss;
3. the loss function is the regularized (e.g. with weight decay) square loss (or an exponential loss)

function.
Thus the conjecture is that this optimization problem can be solved by SGD if the graph of the

underlying regression function is known and takes the form of a compositionally sparse graph, such as, for
instance, a convolutional network.

Empirical evidence suggests that for dense networks that do not reflect the sparse graph the same
problem cannot be solved using ℓ2 minimization. Sparsity must be explicit in the architecture of the
network for ℓ2 minimization to work. Theoretical and empirical evidence points in the same direction:
generalization bounds are several orders of magnitudes better for CNNs than for dense networks and
close to be non-vacuous for CNNs (and presumably for other sparse networks).

The performance of trained neural networks is robust to harsh levels of pruning5. This empirical fact
supports the hypothesis that the network should reflect the sparsity of the underlying target function.
However, ℓ2 optimization cannot attain sparsity by itself, since it preserves very small weights that
should in fact be zero. Appendix 9.6 is about pruning and related issues. Empirically it seems that the
graph of the target function needs to be known approximately. I conjecture that it is sufficient that the
sparse network contains as a subgraph the target function graph.

The conclusion is that if the sparse graph is known and approximately implemented in the architec-
ture of the network minimization in either ℓ2 or ℓ1 should work. A conjecture may be

Conjecture 1. If the sparse graph of the target function is reflected in the network and zero loss is attained
then both ℓ1 and ℓ2 minimization lead to solutions with good expected error.

In addition, it is likely that ℓ1 minimization – when successful – can lead to pruned networks wrt ℓ2
optimized networks.

4And even without weight decay under appropriate conditions that induce small ρ – which is the product of the Frobenius
norm of the weight matrices [15].

5Coupled with the ever-growing size of deep learning models, this observation has motivated extensive research on learning
sparse models.

6

Figure 1: The network here – similar to a CNN – reflects in a "hardwired" way the sparse compositional function
graph of the target function. The function graph is supposed to be known.

7.2 The sparse graph is unknown
The second part of the argument is about the case of unknown function graph and sparsity constraints
in optimization. I propose the conjecture that when the sparse graph structure of the underlying
regression function is not known, optimization with sparsity constraints is needed. In particular, two
situations should be considered. The first main one is focused on dense networks under sparsity
constraints, the second on transformers.

7.2.1 Dense networks optimized under sparsity constraints

For dense networks it is known that a CNN-like inductive bias can be learned from data and through
training by using a modified ℓ1 regularization. Consistent with this empirical finding, pruning of a
dense network by using iterative magnitude pruning (IMP) also seems to work.

7.2.2 Self-attention as flexible sparsity

For transformers a key question is: how does self-attention find the sparse set of tokens that are input
to a processing node (that is are the variables of a constituent function)? I propose the conjecture that
self-attention selects, for each token, the relevant other tokens in the sequence, that is a flexible node of
a hardwired CNN network. An equivalent formulation is

Conjecture 2. Self-attention in a transformer selects a sparse subset of variables (e.g. tokens) for each
RELU unit, trying to mimic the compositional sparsity of the underlying target function.

This conjecture leaves open the interesting question of whether self-attention can deal with all
compositionally sparse functions. A more likely possibility is that not all sparse functions are easy to
learn by transformers.

The matrices WQ and WK that are set during the training time in such a way that A = QKT –
with Q = xWQ, K = xWK – may be together somewhat similar to a learned Malanhobis distance.
In Appendix 9.7 the normalized softmax HD(x) = xH(x) (with H being a threshold on x) induces
sparsity in the selection of "active" connections, preferring only a small number of very similar token
– where the similarity is tuned via the learned WH ,WQ matrices. After the attention step, there is a
one-layer dense network on the linear combination of a few tokens – this is very similar to the node of
a convolutional network, but with soft-wired connections instead of hard-wired.

7

Figure 2: Here attention (followed by a one-layer RELU network) selects for each input token its connections
to other tokens, efficiently instantiating a network that reflects a compositionally sparse function graph. Each
input here is a token, that is a vector, such as a patch of an image. The "A" box is the self-attention algorithm; the
RELU circle represents a one-layer NN.

8 Summary and open problems
8.1 Summary
This paper introduces a theoretical framework to explain why deep networks work and what are the
properties of different architectures.

The key claim is about the world, that is about the tasks that networks could try to learn. The claim
is that all functions that in practice can be approximated/computed must have a representation with
the property of compositional sparsity, that is they can be represented as compositional functions
with a function graph comprising sparse constituent functions, each of which has a bounded, "small"
dimensionality d

s . The connection with deep networks depends on theorem 2, which claims that for
functions with bounded first order derivatives computable approximation is equivalent to compositional
sparsity.

Consider now sparse networks: if each unit in a certain layer of a deep network receives inputs
from only a small subset of the units below, the corresponding weight matrix is sparse, with several
zero components in each row. Somewhat surprisingly, sparsity of the network is a key property for
good generalization. An interesting case of this sparsity is represented by standard convolutional layers
with a local kernel (where the sparsity comes from locality of the kernel; convolution does not help
here). The following property then holds: the Rademacher complexity of a deep network is much smaller
for convolutional deep networks with local kernels, relative to dense networks. In complete analogy with the

8

approximation result the key property here is locality of the convolution kernel and not weight sharing.
From the point of view of optimization, two main cases should be considered: 1) the sparse graph of

the underlying target functions is known, 2) the sparse graph is unknown.

1. In the overparametrized square loss case, generalization depends on solving a sort of regularized
ERM, that consists of finding minimizers of the empirical risk with zero loss, while selecting the
one with lowest complexity. Recent work has provided theoretical and empirical evidence that
this can be accomplished by SGD (with norm regularization under the square loss or without
regularization under an exponential loss) with weight decay in the overparametrized case when
the network architecture reflects the sparse graph of the target function. This implies that this
optimization problem can be solved if the graph of the underlying regression function is known
and takes the form of a compositionally sparse graph, such as, for instance, a convolutional network.
Empirical (and perhaps theoretical) evidence shows that for dense networks the same problem
cannot be solved using ℓ2 minimization. Sparsity must be explicit in the architecture of the
network for ℓ2 minimization to work.

2. The second case is about optimization of an unknown function graph with sparsity constraints.
In particular, two situations should be considered. The main one is focused on transformers, the
second on dense networks under sparsity constraints.

• For transformers a reasonable conjecture is that the self-attention layer finds the sparse
graph structure of the underlying regression function. From this point of view, the stages
of self-attention can be seen as a sparsification step followed by a one-layer MLP with
normalization and residual connections.

• For dense networks it is known that a CNN-like inductive bias can be learned from data
and through training by using a modified ℓ1 regularization. Consistent with this empirical
finding, pruning of a dense network by using iterative magnitude pruning (IMP) after ℓ2
optimization also seems to work.

8.2 Future directions
• Computable functions as defined here are "in practice all" functions in the same sense that the

Church-Turing thesis is accepted.
• The results outlined here imply that any efficiently computable function is efficiently computable

by a compositionally sparse deep network and that any such function is compositionally sparse.
• They suggest the conjecture that when the sparse graph of the compositional target function is

known, optimization and generalization are possible in many cases (but certainly not always)!
• They also suggest the conjecture that, under conditions to be characterized, self-attention may be

capable of finding the sparse graph of the target function (for some functions classes) without a
priori knowledge of it.

• Suppose the first two points above are correct. Then the key problem in learning is to generate a
good hypothesis of the sparse compositional graph underlying the specific task or class of tasks
(such as deep convolutional graphs for vision tasks).

• Consider the third point. It is very likely that the self-attention mechanism does not work for all
computable functions but only for a subset of them. Which one? Furthermore it is very likely that
there exist better, more general algorithms able to identify an unknown graph than self-attention
(in the way it is currently implemented). What are these algorithms?

• This paper suggests that every computable function has at least one sparse compositional repre-
sentation (as composition of sparse functions). The key task for learning would then be finding
this sparse compositional representation.

9

SummaryWhy do deep networks work as well as they do? The answer I propose here is that
certain deep architectures – such as CNNs and transformers – exploit a general property of all
efficiently computable (smooth) functions: their compositional sparsity.

Acknowledgments I thanks Fabio Anselmi, Sophie Langer, Tomer Galanti, Akshay Rangamani, Shimon
Ullman, Yaim Cooper, Gitta Kutyniok, Lorenzo Rosasco and the Compositional Sparsity (CoSp) Collaboration
(Santosh Vempala, Hrushikesh Mhaskar, Eran Malach, Seth Lloyd) for illuminating discussions. This material is
based upon work supported by the Center for Minds, Brains and Machines (CBMM), funded by NSF STC award
CCF-1231216. This research was also sponsored by grants from the National Science Foundation (NSF-0640097,
NSF-0827427), AFSOR-THRL (FA8650-05-C-7262) and Lockeed-Martin.

10

References
[1] Wolfgang Dahmen. Compositional sparsity, approximation classes, and parametric transport

equations, 2022.
[2] Michael Kohler and Sophie Langer. Discussion of: “Nonparametric regression using deep neural

networks with ReLU activation function”. The Annals of Statistics, 48(4):1906 – 1910, 2020.
[3] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU

activation function. The Annals of Statistics, 48(4):1875 – 1897, 2020.
[4] Markus Bachmayr, Anthony Nouy, and Reinhold Schneider. Approximation by tree tensor

networks in high dimensions: Sobolev and compositional functions, 2021.
[5] Gitta Kutyniok. Discussion of: “Nonparametric regression using deep neural networks with

ReLU activation function”. The Annals of Statistics, 48(4):1902 – 1905, 2020.
[6] H.N. Mhaskar and T. Poggio. Deep vs. shallow networks: An approximation theory perspective.

Analysis and Applications, pages 829– 848, 2016.
[7] H. Mhaskar. Dimension independent bounds for general shallow networks. Neural Networks,

2020.
[8] Alexander Bastounis, Anders C Hansen, and Verner Vlačić. The extended smale’s 9th problem –

on computational barriers and paradoxes in estimation, regularisation, computer-assisted proofs
and learning, 2021.

[9] Holger Boche, Adalbert Fono, and Gitta Kutyniok. Limitations of deep learning for inverse
problems on digital hardware, 2022.

[10] T. Galanti and T. Poggio. Sgd noise and implicit low-rank bias in deep neural networks. Center for
Brains, Minds and Machines (CBMM) Memo No. 134, 2022.

[11] Wolfgang Hackbusch and Stephan Kühn. A new scheme for the tensor representation. Journal of
Fourier Analysis and Applications, 15:706–722, 2009.

[12] Lars Grasedyck. Hierarchical Singular Value Decomposition of Tensors. SIAM J. Matrix Anal.
Appl., (31,4):2029–2054, 2010.

[13] M. Xu, A. Rangamani, A.and Banburski, Q.and Galanti Liao, T., and T. Poggio. Dynamics and
neural collapse in deep classifiers trained with the square loss. CBMM Memo 117, CBMM, MIT,
2022.

[14] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. Theory I: Why and when can deep -
but not shallow - networks avoid the curse of dimensionality. Technical report, CBMM Memo No.
058, MIT Center for Brains, Minds and Machines, 2016.

[15] Mengjia Xu, Akshay Rangamani, Qianli Liao, Tomer Galanti, and Tomaso Poggio. Dynamics
in deep classifiers trained with the square loss: normalization, low rank, neural collapse and
generalization bounds. Research, 2023.

[16] Eran Malach and Tomaso Poggio. Compositional locality and optimization. CBMM Memo, 2023.
[17] A. N. Kolmogorov. On the representation of continuous functions of several variables by superpo-

sition of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR, 114:953–956,
1957.

[18] V.I. Arnol’d. On functions of three variables. Dokl. Akad. Nauk SSSR, 114:679–681, 1957.
[19] J.P. Kahane. Sur le theoreme de superposition de Kolmogorov. Journal of Approximation Theory,

13:229–234, 1975.
[20] Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica,

8:143–195, 1999.

11

[21] GG Lorentz. Approximation of functions, athena series. Selected Topics in Mathematics, 1966.
[22] A. G. Vitushkin and G.M. Henkin. Linear superposition of functions. Russian Math. Surveys,

22:77–125, 1967.
[23] A. G. Vitushkin. On Hilbert’s thirteenth problem. Dokl. Akad. Nauk SSSR, 95:701–704, 1954.
[24] Johannes Schmidt-Hieber. The kolmogorov-arnold representation theorem revisited. CoRR,

abs/2007.15884, 2020.
[25] Hrushikesh Narhar Mhaskar. Approximation properties of a multilayered feedforward artificial

neural network. Advances in Computational Mathematics, 1(1):61–80, 1993.
[26] Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: a

tensor analysis. CoRR, abs/1509.0500, 2015.
[27] Behnam Neyshabur. Towards learning convolutions from scratch. CoRR, abs/2007.13657, 2020.
[28] Franco Pellegrini andGiulio Biroli. Sifting out the features by pruning: Are convolutional networks

the winning lottery ticket of fully connected ones? CoRR, abs/2104.13343, 2021.
[29] Stéphane d’Ascoli, Levent Sagun, Joan Bruna, and Giulio Biroli. Finding the needle in the haystack

with convolutions: on the benefits of architectural bias, 2019.
[30] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-

terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey
Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021.

[31] Tomaso Poggio and Federico Girosi. Networks for approximation and learning. Proceedings of the
IEEE, 78(9):1481–1497, September 1990.

[32] R. Brunelli and T. Poggio. HyperBF Networks for Gender Classification. In Proceedings of the Image
Understanding Workshop, pages 311–314, San Mateo, CA, 1992. Morgan Kaufmann.

[33] T. Poggio. A theory of how the brain might work. In Cold Spring Harbor Symposia on Quantitative
Biology, pages 899–910. Cold Spring Harbor Laboratory Press, 1990.

[34] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. CoRR, abs/1712.06541, 2017.

[35] Patrick Rebeschini. Algorithmic foundations of learning lecture 3: Rademacher complexity, 2020.

12

9 Appendices
9.1 Compositionality and sparsity
9.1.1 All continuous function are compositionally (non-smooth) sparse

An obvious question is how "big" is the class of compositionally sparse functions wrt the class of all
continuous functions (all functions are trivially compositional, since every function can be composed
with the identity function). An answer for continuous functions was given by the solution of Hilbert’s
thirteen problem due to Kolmogorov and Arnold [17, 18, 19]: every continuous functions can be
represented exactly as a compositions of poly(d) functions of one variable, that is as the composition of
sparse functions.
Theorem 5. All continuous functions are compositionally sparse, that is they have an exact representation in
terms of sparse non-smooth constituent functions.

In this representation, the constituent functions are very non-smooth, that is s = 0. Appendix 9.3
has more information. This fact implies that the Kolmogorov-Arnold representation is not efficiently
computable in the sense that continuous functions cannot be approximated with non-exponential rates.

9.1.2 Compositional S-sparsity implies computable approximation

Let us first define smooth sparse functions.

Definition 3. A S-sparse (e.g. smoothly sparse) compositional function of d variables is a sparse
compositional function with constituent functions that have bounded first derivatives.

With this definition, we can then reformulate the MP theorem (see Appendix) as

Theorem 6. Compositionally S-sparse functions are efficiently computable.

9.1.3 Computable approximation is not equivalent to S-sparsity

Networks with non-smooth RELU can approximate arbitrarily well S-sparse functions. They are
compositionally sparse but not smooth. Thus one can imagine, in a theorem such as d’Arzela’-Ascoli,
that there is a sequence of sparse compositional fn – provided by RELU networks – converging to a
smooth compositionally sparse f without the fn being smooth themselves! CAN THIS BE TRUE?

9.2 Are computable functions compositionally sparse?
Let us state an obvious conjecture.

Conjecture 3. Functions with an efficiently computable approximation are compositionally sparse.

If the above were true, the story would take the following form

Conjecture 4. Compositional S-sparse functions have an efficiently computable approximation; functions
with an efficiently computable approximation are compositionally sparse.

13

This would mean that the class of computable functions is larger than the class of functions for
which we can guarantee efficient approximation.

9.2.1 Remarks

• The curse of dimensionality bound is an upper bound but a similar lower bound holds for a set
of functions that has large measure, see Pinkus [20] comments about Maiorov’s results.

• A definition of sparse compositional functions must include an implicit or explicit constraint on
the number of nodes in the associated DAG, that is on the number of constituent functions. In
the specific example of a binary tree graph the depth of the graph increases only logarithmically
as the dimensionality d increases.

• As emphasized by H. Mhaskar, just the degree of approximation theorem is too crude a tool to
use - one has to add that the approximation must be constructive, based on values of the target
function. Otherwise, as shown in [7] where for the first time both dimension independent as well
as constructive bounds for the same class of functions are proven), ReLU networks can achieve
dimension independent bounds, obviating the need to have deep networks from the point of
view of degree of approximation alone.

• The curse of dimensionality holds not only for real-valued continuous functions but also for
Boolean functions. A specific constructions of relevant Boolean functions is discussed in the
Appendix (see 9.5.1 and [14]).

• Because of theorem 9 (see also [14]) all compositionally S-sparse, continuous, real-valued func-
tions can be approximated by a Boolean compositionally sparse function.

• Computable by a Turing machine usually doesn’t assume polynomial time/space complexity, but
the term efficiently computable used in this paper implies polynomial time/space requirements.

• All compositionally S-sparse functions are efficiently computable by a Turing machine and admit
an efficient approximator in terms of a deep RELU network with an architecture reflecting the
sparse function graph.

• Efficient approximation can be thought of as the computation by a Turing machine of a Boolean
function. Such a Boolean function is the composition of the Boolean functions that approximate
the constituent functions. The complexity of the resulting function is at most O(poly(d)).

• Observe that a non-sparse continuous function f : R1000 → N requires a memory of up to
> 101000 bits, larger than the number of protons in the Universe, which is in the order of 1080. A
classical example is a dense polynomial in d dimensions of arbitrarily high degree.

• There are (compositional) functions with constituent functions that are not smooth and are
efficiently computable. An example of such functions are the Boolean functions that are ultimately
used in a Turing machine to represent (and approximate) a continuous smooth function. Another
example of (compositional) functions with constituent functions that are not smooth are some
of the functions in the Takagi class (see Appendix). Furthermore, deep RELU networks are
compositionally sparse but non smooth functions.

• Stability of the approximation in probability wrt perturbations of the inputs seems an important
requirement for any function and its approximation. This seems to imply smoothness of the
constituent functions when they are continuous.

9.3 Kolmogorov’s theorem[17]
Theorem 7. (Kolmogorov, 1957; see also [21]). There exist fixed (universal) increasing continuous functions
hpq(x), on I = [0, 1] so that each continuous function f on Id can be written in the form

f (x1, . . . , xd) =
2d+1∑
q=1

gq

(
d∑

p=1

hpq (xp)

)
,

where gq are properly chosen continuous functions of one variable.

14

This result asserts that every multivariate continuous function can be represented by the superposi-
tion of a small number of univariate continuous functions. In terms of networks this means that every
continuous function of many variables can be computed by a network with two hidden layers, whose
hidden units compute continuous functions (the functions gq and hpq).

The interpretation of Kolmogorov’s theorem in term of networks is very appealing: the representa-
tion of a function requires a fixed number of nodes, polynomially increasing with the dimension of the
input space. Unfortunately, these results are somewhat pathological and their practical implications
are very limited. The problem lies in the inner functions of Kolmogorov’s formula: although they are
continuous, theorems of Vitushkin and Henkin [22] prove that they must be highly non-smooth. One
could ask if it is possible to find a superposition scheme in which the functions involved are smooth.
The answer is negative, even for two variable functions, and was given by [23] with the following
theorem:
Theorem 8. (Vitushkin 1954). There are r(r = 1, 2, . . .) times continuously differentiable functions of n ≥ 2
variables, not representable by superposition of r times continuously differentiable functions of less than n
variables; there are r times continuously differentiable functions of two variables that are not representable by
sums and continuously differentiable functions of one variable.

Recent interesting extensions of Kolomogorov’s theorem are due to [24].

9.4 Boolean functions
One of themost important tools for theoretical computer scientists for the study of computable functions
is the study of Boolean functions, that is functions of n Boolean variables. A key tool here is the Fourier
transform over the Abelian group Zn

2 . This is known as Fourier analysis over the Boolean cube
{−1, 1}n. The Fourier expansion of a Boolean function f : {−1, 1}n → {−1, 1} or even a real-valued
Boolean function f : {−1, 1}n → [−1, 1] is its representation as a real polynomial, which is multilinear
because of the Boolean nature of its variables. Thus for Boolean functions their Fourier representation
is identical to their polynomial representation. Unlike functions of real variables, the full finite Fourier
expansion is exact, instead of an approximation. There is no need to distingush between trigonometric
and real polynomials. Most of the properties of standard harmonic analysis are otherwise preserved,
including Parseval theorem. The terms in the expansion correspond to the various monomials; the low
order ones are parity functions over small subsets of the variables and correspond to low degrees and
low frequencies in the case of polynomial and Fourier approximations, respectively, for functions of
real variables.

9.4.1 Boolean Functions and Sparsity

The curse of dimensionality holds not only for real-valued continuous functions but also for Boolean
functions (see discussion in [14]). The following theorem states that compositionally sparse Boolean
functions avoid the curse.
Theorem 9. Let G be a DAG,n be the number of source nodes, and for each v ∈ V , let dv be the number of
in-edges of v. Let f : {1,−1}n 7→ R be a compositional G-function, where each of the constituent functions
is a function g in dv Boolean variables, g : {1,−1}d 7→ {1,−1}. Consider shallow and deep networks with a
RELU activation functions or a hard threshold. Then deep networks - with an associated graph that corresponds
to the graph of f - can avoid the curse of dimensionality in approximating f for increasing d, since the number of
required parameters is ∝ O(poly(d))(maxvdv).

The converse results from the observation that the Fourier representation of a Boolean function
in d variables can have up to N non-zero monomials where N =

(
2d
d

)
= 2d!

d!d! . Thus N > 2d. Clearly
a Boolean functions with all non-zero monomials is not efficiently computable. In fact the following
holds
Theorem 10. All efficiently computable Boolean functions are compositionally sparse, that is they can be repre-
sented as the composition of a≤ poly(d) number of constituent functions with a bounded "small" dimensionality.

Combining the previous two theorems we obtain the following
Theorem 11. For Boolean functions, efficiently computable is equivalent to compositionally sparse.

15

9.5 Spline approximations, Boolean functions and tensors
Consider the case of a multivariate smooth function f : [0, 1]d → R. Suppose to discretize it by a set
of piecewise constant splines and their tensor products6. Each coordinate is efficiently replaced by n
boolean variables. This results in a d-dimensional table with N = nd entries. This in turn corresponds
to a Boolean function f : {0, 1}N → R.

• Every smooth function f can be approximated by an epsilon-close binary function fB . Binarization
of f : Rn → R is done by using k partitions for each variable xi and indicator functions. Thus
f 7→ fB : {0, 1}kn → R and sup|f − fB | ≤ ϵ, with ϵ depending on k and bounded Df .

• fB can be written as a polynomial (a Walsh decomposition) fB ≈ pB . It is always possible to
associate a pb to any f , given ϵ.

• One can think about tensors in terms of d-dimensional tables. The framework of hierarchical
decompositions of tensors – in particular the Hierarchical Tucker format – is closely connected
to our notion of compositionality. Interestingly, the hierarchical Tucker decomposition has
been the subject of recent papers on Deep Learning (for instance see [26]). This work, as well
more classical papers [12], does not characterize directly the class of functions for which these
decompositions are effective approximations. Notice that tensor decompositions assume that the
sum of polynomial functions of order d is sparse (see eq. at top of page 2030 of [12]). Our results
provide a rigorous grounding in terms of approximation theory for papers on tensors related to
deep learning. There is obviously a wealth of interesting connections with approximation theory
that should be explored.

9.5.1 On multivariate function approximation

Consider a smooth multivariate continuous function f : [0, 1]d → R discretized by tensor basis
functions:

ϕ(i1,...,id)(x1, ..., xd) :=

d∏
µ=1

ϕiµ(xµ), (1)

with ϕiµ : [0, 1] → R, 1 ≤ iµ ≤ nµ, 1 ≤ µ ≤ d
to provide

f(x1, ..., xd) =

n1∑
i1=1

· · ·
nd∑

id=1

c(i1, ..., id)ϕ(i1, ..., id)(x1, ..., xd). (2)

The one-dimensional basis functions could be polynomials (as above), indicator functions, poly-
nomials, wavelets, or other sets of basis functions. The total number N of basis functions scales
exponentially in d as N =

∏d
µ=1 nµ for a fixed smoothness classm (it scales as d

m).
We can regard neural networks as implementing some form of this general approximation scheme.

The problem is that the type of operations available in the networks are limited. In particular, most
of the networks do not include the product operation (apart from “sum-product” networks also
called “algebraic circuits”) which is needed for the straightforward implementation of the tensor
product approximation described above. Equivalent implementations can be achieved however. We
describe nest how networks with a univariate ReLU nonlinearity may perform multivariate function
approximation with a polynomial basis and with a spline basis respectively. The first result is known
and we give it for completeness. The second is simple but new.

Neural Networks: polynomial viewpoint One of the choices listed above leads to polynomial basis
functions. The standard approach to prove degree of approximations uses polynomials. It can be
summarized in three steps:

6An argument similar to the one below for polynomials was used by Mhaskar[25] to show that a multivariate tensor product
spline can be synthesized exactly using a deep network with activation function (x+)2; with Yarotsky’s theorem, this can be
translated into deep networks with ReLU functions without incurring in saturation phenomena.

16

1. Let us denote with Hk the linear space of homogeneous polynomials of degree k in Rn and
with Pk =

⋃k
s=0 Hs the linear space of polynomials of degree at most k in n variables. Set

r =
(
n−1+k

k

)
= dimHk and denote by πk the space of univariate polynomials of degree at most k.

We recall that the number of monomials in a polynomial in d variables with total degree ≤ N

is (d+N
d

) and can be written as a linear combination of the same number of terms of the form
((w, x) + b)N .
We first prove that

Pk(x) = span(((wi, x))s : i = 1, · · · , r, s = 1, · · · , k (3)

and thus, with, pi ∈ πk,

Pk(x) =
r∑

i=1

pi((wi, x)). (4)

Notice that the effective r, as compared with the theoretical r which is of the order r ≈ kn, is
closely related to the separation rank of a tensor. Also notice that a polynomial of degree k in n
variables can be represented exactly by a network with r = kn units.

2. Second, we prove that each univariate polynomial can be approximated on any finite interval
from

N (σ) = span{σ(λt− θ)}, λ, θ ∈ R (5)

in an appropriate norm.
3. The last step is to use classical results about approximation by polynomials of functions in a

Sobolev space:
E(Bm

p ;Pk;Lp) ≤ Ck−m (6)

where Bm
p is the Sobolev space of functions supported on the unit ball inRn.

The key step from the point of view of possible implementations by a deep neural network with
ReLU units is step number 2. A univariate polynomial can be synthesized – in principle – via the
linear combination of ReLUs units as follows. The limit of the linear combination σ((a+h)x+b)−σ(ax+b)

h
contains the monomial x (assuming the derivative of σ is nonzero). In a similar way one shows that
the set of shifted and dilated ridge functions has the following property. Consider for ci, bi, λi ∈ R the
space of univariate functions

Nr(σ) =

{
r∑

i=1

ciσ(λix− bi)

}
. (7)

The following (see Propositions 3.6 and 3.8 in [20]) holds
Lemma 1. If σ ∈ C() is not a polynomial and σ ∈ C∞, the closure of N contains the linear space of algebraic
polynomial of degree at most r − 1.

Since r ≈ kn and thus k ≈ r1/n equation 6 gives

E(Bm
p ;Pk;Lp) ≤ Cr−

m
n . (8)

17

Neural Networks: splines viewpoint Another choice of basis functions for discretization consists
of splines. In particular, we focus for simplicity on indicator functions on partitions of [0, 1], that is
piecewise constant splines. Another attractive choice are Haar basis functions. If we focus on the binary
case, section 9.5.1 tells the full story that does not need to be repeated here. We just add a note on
establishing a partition.

Suppose that a = x1 < x2 · · · < xm = b are given points, and set ∆x the maximum separation
between any two points.

• If f ∈ C[a, b] then for every ϵ > 0 there is a δ > 0 such that if ∆x < δ, then |f(x)− Sf(x)| < ϵ for
all x ∈ [a, b], where Sf is the spline interpolant of f .

• if f ∈2 [a, b] then for all x ∈ [a, b]

|f(x)− Sf(x)| ≤ 1

8
(∆x)2maxa≤z≤b|f ′′(z)|

The first part of the Proposition states that piecewise linear interpolation of a continuous function
converges to the function when the distance between the data points goes to zero. More specifically,
given a tolerance, we can make the error less than the tolerance by choosing ∆x sufficiently small. The
second part gives an upper bound for the error in case the function is smooth, which in this case means
that f and its first two derivatives are continuous.

Boolean functions and curse of dimensionality The classical curse of dimensionality result is based on
polynomial approximation. Because of the n-width result other approaches to approximation cannot
yield better rates than polynomial approximation. It is, however, interesting to consider other kinds of
approximation that may better capture what deep neural network with the ReLU activation functions
implement in practice.

A network with non-smooth ReLU activation functions can approximate any continuous function.
A weakness of this results wrt to other ones is that it is valid in the L2 norm but not in the sup norm.
This weakness does not matter in practice since a discretization of real number, say, by using 64 bits
floating point representation, will make the class of functions a finite class for which the result is valid
also in the L∞ norm. The logic of the argument is simple:

• Consider the constituent functions of a compositional function with a function graph given by a
binary tree, that is functions of two variables such as g(x1, x2). Assume that g is Lipschitz with
Lipschitz constant L. Then for any ϵ it is possible to set a partition of x1, x2 on the unit square
that allows piecewise constant approximation of g with accuracy at least ϵ in the sup norm.

• We show then that a multilayer network of ReLU units can compute the required partitions in
the L2 norm and perform piecewise constant approximation of g.

Notice that partitions of two variables x and y can in principle be chosen in advance yielding a
finite set of points 0 =: x0 < x1 < · · · < xk := 1 and an identical set 0 =: y0 < y1 < · · · < yk := 1. In
the extreme, there may be as little as one partition – the binary case. In practice, the partitions can
be assumed to be set by the architecture of the network and optimized during learning. The simple
way to choose partitions is to choose an interval on a regular grid. The other way is an irregular grid
optimized to the local smoothness of the function. This is the difference between fixed-knots splines
and free-knots splines.

I describe next a specific construction.
Here is how a linear combination of ReLUs creates a unit that is active if x1 ≤ x ≤ x2 and y0 ≤ y ≤ y1.

Since the ReLU activation t+ is a basis for piecewise linear splines, an approximation to an indicator
function (taking the value 1 or 0, with knots at x1, x1 + η, x2 x2 + η,) for the interval between x1 and
x2 can be synthesized using at most 4 units in one layer. A similar set of units creates an approximate
indicator function for the second input y. A set of 3 ReLU’s can then perform amin operations between
the x and the y indicator functions, thus creating an indicator function in two dimensions.

In greater detail, the argument is as follows: For any ϵ > 0, 0 ≤ x0 < x1 < 1, it is easy to construct
an ReLU network Rx0,x1

with 4 units as described above so that

∥χ[x0,x1) −R∥L2[0,1] ≤ ϵ.

18

We define another ReLU network with two inputs and 3 units by
ϕ(x1, x2) := (x1)+ − (−x1)+ − (x1 − x2)+ = min(x1, x2)

=
x1 + x2

2
+

|x1 − x2|
2

.

Then, with I = [x0, x1)× [y0, y1), we define a two layered network with 11 units total by
ΦI(x, y) = ϕ(Rx0,x1

(x), Ry0,y1
(y)).

Then it is not difficult to deduce that

∥χI − ΦI∥2L2([0,1]2) =

∫ 1

0

∫ 1

0

|min(χ[x0,x1)(x), χ[y0,y1)(y))−
min(Rx0,x1

(x), Ry0,y1
(y))|2dxdy ≤ cϵ2.

Notice that in this case dimensionality is n = 2; notice that in general the number of units is propor-
tional to kn which is of the same order as (n+k

k

) which is the number of parameters in a polynomial in
n variables of degree k. The layers we described compute the entries in the 2D table corresponding to
the bivariate function g. One node in the graph (there are n− 1 nodes in a binary tree with n inputs)
contains O(k2) units; the total number of units in the network is (n− 1)O(k2). This construction leads
to the following result (for the special case of a compositionally sparse function with a binary tree
function graph):
Lemma 2. Compositional functions on the unit cube with an associated binary tree graph structure and
constituent functions that are Lipschitz can be approximated by a deep network of ReLU units within accuracy
ϵ in the L2 norm with a number of units in the order of O((n− 1)Lϵ−2), where L is the max of the Lipschitz
constants among the constituent functions.

Of course, in the case of machine numbers – the integers – we can think of zero as a very small
positive number. In this case, the symmetric difference ratio ((x + ϵ)+ − (x − ϵ)+)/(2ϵ) is the hard
threshold sigmoidal function if ϵ is less than this smallest positive number. So, we have the indicator
function exactly as long as we stay away from 0. From here, one can construct a deep network as usual.

Notice that the number of partitions in each of two variables that are input to each node in the
graph is k = L

ϵ where L is the Lipschitz constant associated with the function g approximated by the
node. Here the role of smoothness is clear: the smaller L is, the smaller is the number of variables
in the approximating Boolean function. Notice that if g ∈ W 2

1 , that is g has bounded first derivatives,
then g is Lipschitz. However, higher order smoothness beyond the bound on the first derivative cannot be
exploited by the network because of the non-smooth activation function7.

We conjecture that the construction above that performs piecewise constant approximation is qualitatively
similar to what deep networks may represent after training. Notice that the partitions we used correspond to
a uniform grid, set a priori, depending on global properties of the function, such as a Lipschitz bound.

9.6 Pruning
Empirically it seems that dense networks cannot learn convolution under L2 minimization but can
under L1 minimization. In particular, the possibility of learning CNN-like inductive bias from data and
through training was investigated in [27]. It was shown that training using amodifiedL1 regularization
is a way to induce local masks for visual tasks. Consistent with this finding, pruning of a dense network
by using iterative magnitude pruning (IMP) on FCNs trained on a low resolution version of ImageNet
uncovers (see [28]) sub-networks characterized by local connectivity, especially in the first hidden
layer, and masks leading to local features with patterns very reminiscent of the ones of trained CNNs8.

7In the case of univariate approximation on the interval [−1, 1], piecewise linear functions with inter-knot spacing h gives an
accuracy of (h2/2)M , where M is the max absolute value of f ′′. So, a higher derivative does lead to better approximation : we
need

√
2M/ϵ units to give an approximation of ϵ. This is a saturation though. Even higher smoothness does not help.

8Deeper layers are made up of these local features with larger receptive fields hinting at the hierarchical structure found in
CNNs. Pruning induces locality also beyond the first hidden layer. Their remark "These results highlight the role of the task in
shaping the properties of the network obtained by pruning: only for the task that the network can efficiently learn, and not just
memorize, local features emerge..." is consistent with our hypothesis of compositional sparsity of the underlying task, in this
case a visual task.

19

This is similar to the following empirical result: enforcing sparsity during training leads to structures
characterized by locality. [29] studies the role of CNN-like inductive biases by embedding convolutional
architectures within the general FCN class. It shows that enforcing CNN-like features in an FCN can
improve performance even beyond that of its CNN counterpart. Finally, [30] show that by considering
a particular multilayer perceptron architecture, called MLP-mixer, some of the CNN features can be
learned from scratch using a large training dataset.

9.7 Transformers
X ∈ RT,din ; Q = XWQ with WQ ∈ Rdin,dk ; K = XWK with WK ∈ Rdin,dk ; V = XWV with
WV ∈ Rdin,dout

Notice that the standard formulation of the transformer layers can be written as

y = x+MLP (LayerNorm(x+Attention(LayerNorm(x)))

.

9.7.1 Transformers as associative memories

Consider AX = Y . The best A is given by

A = Y XT (XXT)−1. (9)

If (XXT)−1 ≈ I – which happens for noiselike X – then A = Y XT implying Ax = Y XTx. Typically
the dimensionality of the columns of X is large to allow for the noiselike property (and sparsity).

Transformers transform input matrices into output matrices of the same dimensionality for instance
a German sentence into a French one. In other words, functions implemented by self-attention map
from RT,d to itself, so that instances from this function class can be composed. This is important for
compositionality in compositional sparsity. It is also important in the use of transformers a sequence of
associations from an input x′ to an output x” which is then used for another association. x′ could be a
sentence with a missing word and x” its completion.

The idea of associative memory is consistent with the interpretation of the self-attention layer as a
learned, differentiable lookup table. The Q, K, and V are described as “queries,” “keys,” and “values”
respectively, which seem to invoke such an interpretation. Consider only one attentional head. Each
object or token xi has a query Q(xi) that it will use to test “compatibility” with the keyK(xj) of each
object xj . Compatibility of xi with xj is defined by the inner productQ(xi),K(xj); if this inner product
is high, then xi ’s query matches xj key and so we look up xjs value V (xj). We construct then a soft
lookup of values compatible with xi’s key: we sum up the value of each object xj proportional to the
compatibility of xi with xj .

9.7.2 Self-attention: similarity with HyperBF

The attention mechanism has been widely used in many sequence modeling tasks. Its dot-product
variant is the key building block for the state-of-the-art transformer architectures [?]. Let qt denote a
query vector, that attends to sequences of L pairs ki,vi of key and value vectors (see Figure 2). At each
timestep, the attention linearly combines the values weighted by the outputs of a softmax:

attn (qt, {ki} , {vi}) =
∑
i

exp
(
qt · ki/σ

2
)∑

j exp (qt · kj/σ2)
v⊤
i . (10)

σ2 is the hyperparameter determining how "flat" the softmax is. Calculating attention for a single query
takes O(L) time and space; complexity for a whole attention layer has complexity O(L2).

Interestingly, such an attention layer is equivalent to a set of HyperBF networks[31, 32]. Assume
that qt and ki are normalized that is ∥qt∥ = 1 and ∥ki∥ = 1. Then 1− ∥qt−ki∥2

2 = qt · ki and

attn (qt, {ki} , {vi}) =
∑
i

exp(−∥qt−ki∥2

2σ2)∑
j exp(−

∥qt−kj∥2

2σ2)
v⊤
i . (11)

20

Furthermore, define qt = WQx and ki = WKy, where the matricesWQ and WK that are learned
during training have the same dimensions (in the case of self-attention). Then qt ·ki = xTWT

QWKy and
∥qt − ki∥2 = 2− xTWT

QWKy− yTWT
KWQx assuming ∥WQ∥ = 1, ∥WK∥ = 1. The matrixM = WT

QWK

is symmetric and ∥qt −ki∥2 is a Mahalanobis distance. As an example, a diagonalM , with some 0’s on
the diagonal, effectively "switches off" specific components of the vectors from the similarity estimation.
This extension of Radial Basis Functions with a trainable M was called HyperBF in [31] and described
as one of the ways the brain may learn and compute in [33]. The fact that a HyperBF network can be
used to implement self-attention is consistent with architectures such as the MLPmixer[?]. Sparseness
in a RELU network such as depicted in Figure ?? is encoded in sparse weight matrices. The equivalent
HyperBF formulation has a sparse diagonalM matrix.

The equivalence with normalized RBF or Hyperbf implies that the coefficients ci in the expansion
f(x) =

∑
i ciK(x, xi) (assuming M = I for simplicity) are such that ci = yi where yi are the target

values at the examples xi – assuming that the width parameter of the kernel is small enough. This
implies that normalized RBF could be trained to predict the next word without any optimization. This
may be the explanation for the remarkable property of "in-context" learning by transformers.

The attention layer satisfies an additional sparsity requirement since a transformer can be thought as
a set of RELU networks each operating on a token provided by a selfattention gate. Thus a transformer
operates on a large sequence of token vectors. The softmax can induce sparsity in the selection of
"active" connections by an attention head, selecting only a small number of very similar tokens – where
the similarity is tuned via the learnedWK ,WQ matrices or equivalently by theM matrix. This sparsity
corresponds to effectively switching-off the tokens that are not close enough in Mahalanobis distance
to the center of the HyperBF corresponding to each unit of the attention layer. After the attention
step, there is a two-layers dense RELU network (see Figure 2) acting on the output of the attention
unit which is a vector with the same dimensionality as the selected input tokens of which it is a linear
combination. This is similar to the node of a convolutional network, but with soft-wired connections
instead of hard-wired.

9.8 Generalization bounds for Sparse Networks
The classical bounds are for generic deep networks. In such a general case, ρ in those bounds is the
product of the Frobenius norms of all the weight matrices. For convolutional networks the weight
matrices are Toeplitz matrices. This gives large bounds.

Here we show that the bound on the Rademacher complexity can be reduced by exploiting two
typical properties of CNNs: a) the locality of the convolutional kernels and b) shared weights. They
allow us to use only the norm of the kernels in the calculation of ρk instead of the norm of the
corresponding Toeplitz matrix. In this section we give an outline of the results with more precise
statements and proofs to be published later.

We start by considering the simple situation of non-overlapping convolutional patches. In other
words, the stride of the convolution is equal to the size of the kernel in each layer. This means that in
the associated Toeplitz matrix the non-zero components in each row do not overlap with the non-zero
components of the row above or the one below. In other words, if K is the number of patches, ℓ is
the size of each patch and x ∈ Rd, then d = Kℓ. Notice that the standard bounds give a Rademacher
complexity proportional to the product of the Frobenius norms of each weight matrix ∥W∥ time the
norm of ∥x∥, where ∥W∥ ∝

√
kM , whereM is the norm of the kernel.

In [13] we describe generic bounds on the Rademacher complexity of deep neural networks. In
these cases, ρ measures the product of the Frobenius norms of the network’s weight matrices in each
layer. For convolutional networks, however, the operation in each layer is computed with a kernel,
described by the vector w, that acts on each patch of the input separately. Therefore, a convolutional
layer is represented by a Toeplitz matrixW , whose blocks are each given by w. In this section (from
[13]) we provide an informal analysis of the Rademacher complexity, showing that it can be reduced
by exploiting mainly the first one of the two properties of convolutional layers: (a) the locality of the
convolutional kernels that is the sparsity of the associated Toeplitz matrix and (b) weight sharing.
These properties allow us to bound the Rademacher complexity by taking the products of the norms of
the kernel w instead of the norm of the associated Toeplitz matrix W . Here we outline the results with
more precise statements and proofs to be published separately.

We consider the case of 1-dimensional convolutional networks with non-overlapping patches

21

and one channel per layer. For simplicity, we assume that the input of the network lies in Rd, with
d = 2L and the stride and the kernel of each layer are 2. The analysis can be easily extended to
kernels of different sizes. This means that the network h(x) can be represented as a binary tree,
where the output neuron is computed as WL · σ(vL1 (x), vL2 (x)), vL1 (x) = WL−1 · σ(vL−1

1 (x), vL−1
2 (x))

and vL2 (x) = WL−1 · σ(vL−1
3 (x), vL−1

4 (x)) and so on. This means that we can write the i’th row of
the Toeplitz matrix of the l’th layer (0, . . . , 0,−W l−, 0 . . . , 0), where W l appears on the 2i − 1 and 2i

coordinates. We define a setH of neural networks of this form, where each layer is followed by a ReLU
activation function and∏L

l=1 W
l ≤ ρ.

Theorem 12. Let H be the set of binary-tree structured neural networks over Rd, with d = 2L for some natural
number L. Let X = {x1, . . . , xm} ⊂ Rd be a set of samples. Then,

RX(H) ≤
2Lρ

√∑m
i=1 ∥xi∥2
m

(12)

Proof sketch. First we rewrite the Rademacher complexity in the following manner:

RX (H) = Eϵ sup
h∈H

| 1
m

m∑
i=1

ϵi · h(xi)|

= Eϵ sup
h∈H

1

m
|

m∑
i=1

ϵi ·WL · σ(v1(x), v2(x))|

= Eϵ sup
h∈H

1

m

√√√√|
m∑
i=1

ϵi ·WL · σ(v1(x), v2(x))|2

(13)

Next, by the proof of Lem. 1 in [34], we obtain that

RX (H) ≤ 2Eϵ sup
h∈H

1

m

√√√√∥WL∥2 · ∥
m∑
i=1

ϵi(v1(x), v2(x))∥2

= Eϵ sup
h∈H

1

m

√√√√∥WL∥2 ·
2∑

j=1

∥
m∑
i=1

ϵivj(xi)∥2

(14)

By applying this peeling process L times, we obtain the following inequality:

RX (H) ≤ 2L−1Eϵ sup
h∈H

1

m

√√√√ L∏
l=1

∥W l∥2 ·
d∑

j=1

∥
m∑
i=1

ϵixij∥2

= 2L−1Eϵ sup
h∈H

1

m

√√√√ L∏
l=1

∥W l∥2 · ∥
m∑
i=1

ϵixi∥2

≤
2L−1ρEϵ∥

∑m
i=1 ϵixi∥

m

≤
2L−1ρ

√∑m
i=1 ∥xi∥2

m

(15)

where the factor 2L−1 is obtained because the last layer is linear (see [35]). We note that a better bound
can achieved when using the reduction introduced in [34] which would give a factor of

√
2 log(2)L+ 1

instead of 2L−1.

One-layer convolutional classifier Consider a ReLU convolutional classifier with k patches. R̂m, in
the standard bounds would be

R̂m ≤ BX

where B is the Frobenius norm of the Toeplitz matrix with k rows, each row consisting of the kernel w.
Thus B =

√
K∥w∥ and X = ∥x∥.

22

Our calculation gives with x1 representing the first patch of x and xK the last one:

R̂m ≤
√

∥w∥2∥x1 + · · ·+ xK∥2 =
√
∥w∥2∥x∥2 = ∥w∥∥x∥.

instead of the general bound usually referred which is

R̂m ≤ ∥W∥∥x∥ =
√
k∥w∥∥x∥

Multi-layer convolutional classifier The Rademacher complexity of a feed-forward neural network
can be bounded recursively by considering each layer at a time. A bound that can be used for the recur-
sion is given by the following proposition (see [35, 34]), that expresses the Rademacher complexities
at the outputs of one layer in terms of the outputs at the previous layers.
Lemma 3. Let H be a class of functions from Rd to R. Let σ : R → R be the ReLU function which is 1-
Lipschitz and define H′ :=

{
x ∈ Rd → σ

(∑k
j=1 wjhj(x)

)
∈ R : ∥w∥2 ≤ M,h1, . . . , hk ∈ H

}
. Then, for

any x1, . . . , xm ∈ Rd

R (H′ ◦ {x1, . . . , xm}) ≤ 2MR (H ◦ {x1, . . . , xm}) .

We apply now the Lemma to the class of L-depth ReLU real-valued CNN, with each layer’s kernel
wd with norm at mostMd.
Theorem 13. (informal) The Rademacher complexity of a convolutional deep net with RELUs in all d layers
but the last linear one and with non-overlapping convolutional patches can be bounded as

ˆ

Rm(Hd) ≤ (
√

2 log(2)L+ 1)
L∏

j=1

Mj∥x∥ (16)

Proof sketch. Each hd
k ∈ H⌈ (k = 1, · · · , Q is a ReLU classifier inputs from patch j of the layer below.

Patch k in layer d− 1 can be written as a vector vk consisting of ℓ classifiers vk = hd−1
k·1 , hd−1

k·2 , · · · , hd−1
k·ℓ .

Then hd
k = σ(w · vk). Notice that because of our assumption of non-overlapping patches the number of

units in layer d− 1 is ℓ times the number of units in layer d. Then

R̂m (Hd) = Eϵ sup
hi∈Hd

1

m

m∑
i=1

ϵihi = Eϵ sup
hi∈Hd−1w:∥w∥≤M

1

m

m∑
i=1

ϵiw · (
∑
k

vk), (17)

can be upper bounded as follows

R̂m (Hd) ≤ 2MdEϵ sup
h∈Hd

∥ 1

m

m∑
i=1

ϵi(
∑
k

(vk)i)∥ ≤ 1

m

√
(w · (

∑
k

vk)2 =
1

m

√
(w · (

∑
k

vk)2 = 2MdR̂m (Hd−1) ,

(18)
because (∑k vk)

2 =
∑

k v
2
k since the various patches are zero-mean and uncorrelated.

Continuing the peeling we obtain
ˆRm(HL) ≤ 2L−1ML ·ML−1 · · ·M1∥x∥, (19)

As before, we can further apply the reduction used by [34] to finally obtain the result.
Thus one ends up with a bound scaling as the product of the norms of the kernel at each layer. The

constants may change depending on the architecture, the number of patches, the size of the patches
and their overlap.

This special non-overlapping case can be extended to the general convolutional case:
Conjecture 5. If a convolutional layer has overlaps among its patches then the bound

ˆRm(HL) ≤ 2L−1ML ·ML−1 · · ·M1∥x∥

holds with ∥x∥ replaced by

∥x∥
√

K

K −O
,

whereK is the size of the kernel (number of components) and O is the size of the overlap.

23

Sketch proof Call P the number of patches and O the overlap. With no overlap then PK = D where
D is the dimensionality of the input to the layer. In general P = D−O

K−O . It follows that a layer with the
most overlap can add at most < ∥x∥

√
K to the bound. Notice that we assume that each component of

xi averaged across i will have norm
√

1
d .

24

