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AbstractÐ The fundamental mechanisms underlying the
brain’s ability to switch between dynamic (or physiological)
states in response to cognitive demands are elusive, and have
not been systematically correlated with the topology of neural
circuits, especially in underdeveloped brains. We used a sparsity
promoting closed-loop control framework, large datasets of
resting-state connectomes from early adolescents and synthetic
graphs, to investigate the role of graph topology on regional
(node) controllability and control action on the connectome.
Feedback costs were examined in ranges corresponding to nodes
becoming self-controlled, losing their control action, or remain-
ing self-controlled. Their associations with node connectedness
and strength, and network modularity, fragility and resilience
were assessed. Highly connected and central to the network
nodes became self-controlled and maintained their control
action on the network under high feedback cost, suggesting
that brain regions with such properties may play critical roles
in the connectome’s controllabity. In addition, nodes in more
modular, fragile and less resilient networks were self-controlled
under overall higher feedback costs.

I. INTRODUCTION

Anatomical and functional neural circuits (the connec-

tome) have topological characteristics that develop over the

first two decades of life, and play a critical role in cognitive

function across the lifespan [1], [2], [3], [4], [5], [6]. Their

relationship with mechanisms that control dynamic changes

in brain activity remain incompletely understood. However,

cognitive function critically depends on the brain’s ability

to switch between dynamic, physiological and connectomic

states. Thus, there is an unmet need to elucidate the rela-

tionships between the brain’s topological characteristics and

mechanisms underlying the controllability of its dynamics,

especially during development, when both the connectome

and neurodynamics undergo profound changes, as a result of

synaptic pruning and changes in the balance between low-

and high-frequency oscillatory activity [7], [8].

Prior work on brain controllability has used an open-

loop control framework applied primarily to structural net-

works [9], [10], has identified associations between structural

characteristics of anatomical networks and control energy

[9], [10], [11]. Studies on functional networks have corre-

lated connectivity of large networks, e.g. the Default Mode

Network (DMN), and/or highly connected regions (hubs),
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with controllability [12]. Most control studies on functional

networks have focused on populations with neurological

and/or neuropsychiatric disorders [12], [13], [14].

Only a few studies on the controllability of connectome

dynamics have used a closed-loop control framework, al-

though it has been used extensively in motor control, neu-

rofeedback and brain-machine interface contexts [15], [16],

[17], [18]. This framework is particularly well-suited for

elucidating control actions of brain regions on each other,

and assessing their relationships with key features of brain

networks. In contrast to the open-loop framework, the closed-

loop approach can also account for the cost associated with

the communication between regions. Studying controllability

using this framework can provide fundamental mechanistic

insights into the role of individual regions that are critical

to the organization of the connectome but also controlbrain

dynamics, and ultimately cognitive function. It can also iden-

tify potential regions that can be targeted by interventions,

e.g., neurostimulation, to improve functional outcomes.

In incompletely maturated connectomes that have not yet

attained their optimal topological configuration, controllabil-

ity of their dynamics is elusive. Prior work on structural net-

works has shown that the optimization of dynamic network

control is a developmental process [10]. Our recent work

has used a sparsity-promoting closed-loop control framework

to study the controllability of the early adolescent resting-

state connectome [23]. In a small cohort, it showed that

under high feedback cost, the connectome is controlled by

a small set of (driver) regions that exert their control action

on the rest of the brain. In this study, controllability of brain

regions and their control action on each other, reflected in

feedback control costs, and its relationships with regional

and network-wide topological properties were investigated

using resting-state fMRI data from early adolescents, and

data-driven simulations. Given the inherent heterogeneity

of developing brains and connectome variability, synthetic

datasets were generated in order to study this problem in

graphs with known topologies and constrained parameters.

II. MATERIALS AND METHODS

All analyses were conducted in the Harvard Medical

School High Performance Cluster, using the software MAT-

LAB (release R2023a, Mathworks, Inc) and publicly avail-

able python codes for synthetic graph generation. Topo-

logical analyses of all graphs used the custom-built Next-

Generation Neural Data Analysis (NGNDA) platform [20].



A. Real datasets

Resting-state functional MRI (rs-fMRI) data from n = 500

youth (median age = 121.0 months (Inter-Quartile Range

(IQR) = 13.0, 54.4% girls), randomly selected from the

Adolescent Brain Cognitive Development (ABCD) cohort

[19] were analyzed. The data were preprocessed to account

for motion and other artifacts, denoise and harmonize signals

across multiple 3T acquisition systems, and reduce their

dimension to 90 regions, to allow tractable control analyses.

From each participant, their best-quality (with the lowest

number of frames censored for motion) rs-fMRI run was

used for analysis. Connectivity matrices were estimated

using peak cross-correlation as a measure of connection

strength. Corresponding adjacency matrices were estimated

via thresholding, using a cohort-wide threshold equal to

the boostrapped 75th percentile of edge weights [21]. This

eliminated weak and/or spurious edges. Topological proper-

ties were estimated from adjacency matrices, using tools in

the NGNDA, and included community structure (modular-

ity), network-wide median connectivity and region-specific

connectedness (degree), regional importance in the network

(eigenvector centrality), overall network strength (normalized

sum of all edge weights, natural connectivity - a proxy

for network resilience [25], and fragility [24]. Statistics for

median connectivity (median = 0.43 (0.02)) and node degree

(median = 5 (7), ∼6% of all nodes) were also used to inform

the parameter selection in synthetic graphs.

B. Synthetic graphs

1) Graphs with defined topologies: The Lancichinetti

Fortunato Radicchi (LFR) algorithm was used to generate

graphs with 200 nodes and data-derived properties [22].

Inputs to the model included node degree and community

size (described by power law distributions), average degree,

and parameter µ, which determines the proportion of edges

between communities. Thus, a low µ reflects higher within-

community edges and sparse connections between communi-

ties, a topological characteristic of developed brains. Figure

1 shows how µ influences the detectability of communities.

Fig. 1. Graph topology as a function of varying parameter µ (keeping
average node degree constant). Node color reflects community membership.

To improve similarity between synthetic and real graphs

(which were relatively sparse following thresholding), syn-

thetic graphs with nodes connected to >50% of all nodes,

and with other topological parameters far outside the range of

real graph parameters, were excluded from further analysis.

Furthermore, the LFR algorithm imposes a minimum node

degree for convergence, while there is no such minimum

in the real data. This leads to mismatch in their respective

degree distributions. To minimize this difference, synthetic

graphs with degrees >20, i.e., >10% of possible connec-

tions) were also excluded. In the remaining graphs, each edge

was assigned a weight, drawn from a normal distribution, in

the range [0, 1]. The final dataset included 803 graphs with

median degree = 19 (4), i.e., ∼10% of all nodes, density

<30% and median edge weight >0.4.

2) Graphs with random topologies: Random graphs with

200 nodes were generated using the Erdos-Renyi model. The

input to the model was the probability of an edge existing in

the graph, and was selected empirically in the range [0.1,

0.8], to avoid generating fully connected or disconnected

graphs. Edges were randomly assigned based this probability,

resulting in binary graphs with variable density. Edge weights

were drawn from a normal distribution and that of the real

data, in the range [0,1], and were randomly assigned to edges

in each graph. Density and weights were then constrained in

the same way as in the LFR graphs, to maximize the graphs’

statistical similarity to the real ones. A total of 469 random

graphs (median degree = 16 (13), 8% of all nodes) were

selected for further analysis.

C. Closed-Loop Control Framework

The sparsity-promoting controller used in this study is

described in detail in [23]. Briefly, for a linear dynamical

system with state x and input u , we consider a controller

u = −Kx, where K is the feedback gain matrix. The

controller is designed (i.e., K is chosen) so that we optimize

control performance, while at the same time penalizing its

nonzero entries to account for the cost of feedback through

a parameter p. In this study the control problem was solved

for p ∈ [10−4, 30], and the elements of K were examined as

a function of increasing feedback cost p.

III. RESULTS

Associations between feedback cost p and graph properties

were investigated at two spatial scales, node and graph, and

three ranges of p. The first range corresponds to values at

which each node in the networks become self-controlled,

i.e. K becomes diagonal. In the datasets, this range was

[0.01, 0.51] for real, [0.01, 0.64] for LFR, and [0.01, 0.21]

for random graphs. The second range corresponds to values

for which a node no longer exerts a control action on the

network, despite its connections to other nodes. The lower

limit of this range corresponds to the first p value at which

the diagonal K matrix becomes sub-diagonal (i.e., some of

its entries become 0). In theory, the upper limit is when K

becomes a zero matrix, but in this study it was restricted to

p = 30.0. The median lower limit was 8.58 (0.07) for real,

8.98 (0.15) for LFR, and 8.84 (0.11) for random graphs. The

third range corresponds to the 90th percentile of p, at which

a small subset of nodes remain self-controlled and exert a

control action under very high feedback cost. The median

of these values was 11.0 (0.96) for real, 11.3 (1.0) for LFR,

and 10.6 (0.59) for random graphs.



A. Impact of regional (node) topology on feedback cost

Feedback cost associated with each node becoming self-

controlled was examined as a function of its degree, strength

and centrality. Real and synthetic graphs had a different

number of nodes. Thus, degree and strength were normalized

by node number and maximum strength, for the graphs to be

comparable. Scatter plots in Figure 2 show this feedback cost

as a function of these properties. Higher feedback costs were

associated with higher node degree and centrality, in both real

and LFR graphs. Similar positive associations were estimated

for node strength, but only in real graphs. In random graphs,

centrality was positively associated with feedback cost, but

inversely associated with degree.

Fig. 2. Feedback costs at which nodes become self-controlled as a function
of their topological properties.

These relationships were then examined for feedback costs

when nodes lose their control action, and are shown in

Figure 3. Higher costs correlated with higher node degree,

centrality and strength across types of graphs, although the

relationships were less clear (and nonlinear) for centrality.

For both ranges of feedback costs, and across graphs, there

was significant variability in the relationships between feed-

back cost at which transitions occur and node properties.

B. Impact of graph topology on feedback cost

Median (over all nodes) feedback cost p̃ was examined

as a function of graph modularity, natural connectivity, and

fragility. To control for confounding effects of node strength,

all properties were normalized by median graph strength.

Relationships between costs p̃ at which nodes becoming

self-controlled and graph properties are shown in Figure

4. Higher graph modularity was associated with higher p̃,

although this relationship was not clear in real graphs. Sim-

ilar associations were estimated for fragility. Lower natural

connectivity was associated with lower p̃ across graphs.

Associations between costs p̃ at which nodes lose their

control action and graph properties are shown in Figure 5.

Across graphs, p̃ was associated with lower modularity, natu-

ral connectivity and fragility across all graph types (although

there was no clear relationship between modularity and p̃ in

Fig. 3. Feedback costs at which nodes lose their control action as a function
of their topological properties.

random graphs). Similar relationships were estimated for p̃

at the 90th percentile, and are shown in Figure 6.

Fig. 4. Association between graph properties and median feedback cost at
which nodes become self-controlled.

IV. CONCLUSIONS

We have investigated relationships between network con-

trollability (within the lens of sparsity promoting con-

trol), a fundamental mechanism of neurodynamic regulation,

and connectome topology. Identified positive associations

between feedback costs and node degree, centrality and

strength, suggest that topologically important and highly

and strongly connected regions, such as hubs, become self-

controlled and maintain their control action under high

feedback cost. Functional hubs in the developing brain

emerge over time, but our results suggest that some may

play important roles in the brain’s controllability even in

underdeveloped connectomes. At the network level, our

results suggest that nodes in more modular and topologically

fragile networks are self-controlled under higher feedback

costs, whereas those in more resilient networks are self-

controlled under lower feedback. Although modularity is a



Fig. 5. Association between graph properties and median feedback cost at
which nodes lose their control action.

Fig. 6. Association between graph properties and 90th percentile of
feedback costs where nodes lose their control action.

key aspect of optimally organized networks, a high number

of partitions could increase fragility. Self-control of nodes in

suboptimally modular and fragile networks may then require

higher feedback costs, whereas the opposite occurs in more

resilient networks. This difference could be attributed to

the tradeoff between control performance and cost, which

is considered in the controller design problem. Thus, for a

fragile network, a high feedback cost may be necessary to

balance the controller’s performance. At high feedback cost

regimes, i.e., when nodes start losing their control action

over the network, higher costs associated with this transition

were correlated with lower modularity and fragility, i.e., were

in the opposite direction than correlations associated with

self-control, and low resilience. Some of these relationships

were nonlinear, with feedback costs decreasing rapidly at

low modularity, resilience, and fragility and changing very

slowly thereafter. It is possible that when only a few nodes

maintain their control action the associated feedback costs

are invariant to at least some network properties. Our find-

ings, suggest that the connectome’s controllability at different

ranges of feedback costs may depend on regional topological

properties, but less on the overall network topology, at least

under very high feedback costs.
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