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Abstract— The fundamental mechanisms underlying the
brain’s ability to switch between dynamic (or physiological)
states in response to cognitive demands are elusive, and have
not been systematically correlated with the topology of neural
circuits, especially in underdeveloped brains. We used a sparsity
promoting closed-loop control framework, large datasets of
resting-state connectomes from early adolescents and synthetic
graphs, to investigate the role of graph topology on regional
(node) controllability and control action on the connectome.
Feedback costs were examined in ranges corresponding to nodes
becoming self-controlled, losing their control action, or remain-
ing self-controlled. Their associations with node connectedness
and strength, and network modularity, fragility and resilience
were assessed. Highly connected and central to the network
nodes became self-controlled and maintained their control
action on the network under high feedback cost, suggesting
that brain regions with such properties may play critical roles
in the connectome’s controllabity. In addition, nodes in more
modular, fragile and less resilient networks were self-controlled
under overall higher feedback costs.

I. INTRODUCTION

Anatomical and functional neural circuits (the connec-
tome) have topological characteristics that develop over the
first two decades of life, and play a critical role in cognitive
function across the lifespan [1], [2], [3], [4], [5], [6]. Their
relationship with mechanisms that control dynamic changes
in brain activity remain incompletely understood. However,
cognitive function critically depends on the brain’s ability
to switch between dynamic, physiological and connectomic
states. Thus, there is an unmet need to elucidate the rela-
tionships between the brain’s topological characteristics and
mechanisms underlying the controllability of its dynamics,
especially during development, when both the connectome
and neurodynamics undergo profound changes, as a result of
synaptic pruning and changes in the balance between low-
and high-frequency oscillatory activity [7], [8].

Prior work on brain controllability has used an open-
loop control framework applied primarily to structural net-
works [9], [10], has identified associations between structural
characteristics of anatomical networks and control energy
[9], [10], [11]. Studies on functional networks have corre-
lated connectivity of large networks, e.g. the Default Mode
Network (DMN), and/or highly connected regions (hubs),
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with controllability [12]. Most control studies on functional
networks have focused on populations with neurological
and/or neuropsychiatric disorders [12], [13], [14].

Only a few studies on the controllability of connectome
dynamics have used a closed-loop control framework, al-
though it has been used extensively in motor control, neu-
rofeedback and brain-machine interface contexts [15], [16],
[17], [18]. This framework is particularly well-suited for
elucidating control actions of brain regions on each other,
and assessing their relationships with key features of brain
networks. In contrast to the open-loop framework, the closed-
loop approach can also account for the cost associated with
the communication between regions. Studying controllability
using this framework can provide fundamental mechanistic
insights into the role of individual regions that are critical
to the organization of the connectome but also controlbrain
dynamics, and ultimately cognitive function. It can also iden-
tify potential regions that can be targeted by interventions,
e.g., neurostimulation, to improve functional outcomes.

In incompletely maturated connectomes that have not yet
attained their optimal topological configuration, controllabil-
ity of their dynamics is elusive. Prior work on structural net-
works has shown that the optimization of dynamic network
control is a developmental process [10]. Our recent work
has used a sparsity-promoting closed-loop control framework
to study the controllability of the early adolescent resting-
state connectome [23]. In a small cohort, it showed that
under high feedback cost, the connectome is controlled by
a small set of (driver) regions that exert their control action
on the rest of the brain. In this study, controllability of brain
regions and their control action on each other, reflected in
feedback control costs, and its relationships with regional
and network-wide topological properties were investigated
using resting-state fMRI data from early adolescents, and
data-driven simulations. Given the inherent heterogeneity
of developing brains and connectome variability, synthetic
datasets were generated in order to study this problem in
graphs with known topologies and constrained parameters.

II. MATERIALS AND METHODS

All analyses were conducted in the Harvard Medical
School High Performance Cluster, using the software MAT-
LAB (release R2023a, Mathworks, Inc) and publicly avail-
able python codes for synthetic graph generation. Topo-
logical analyses of all graphs used the custom-built Next-
Generation Neural Data Analysis (NGNDA) platform [20].



A. Real datasets

Resting-state functional MRI (rs-fMRI) data from n = 500
youth (median age = 121.0 months (Inter-Quartile Range
(IQR) = 13.0, 54.4% girls), randomly selected from the
Adolescent Brain Cognitive Development (ABCD) cohort
[19] were analyzed. The data were preprocessed to account
for motion and other artifacts, denoise and harmonize signals
across multiple 3T acquisition systems, and reduce their
dimension to 90 regions, to allow tractable control analyses.
From each participant, their best-quality (with the lowest
number of frames censored for motion) rs-fMRI run was
used for analysis. Connectivity matrices were estimated
using peak cross-correlation as a measure of connection
strength. Corresponding adjacency matrices were estimated
via thresholding, using a cohort-wide threshold equal to
the boostrapped 75! percentile of edge weights [21]. This
eliminated weak and/or spurious edges. Topological proper-
ties were estimated from adjacency matrices, using tools in
the NGNDA, and included community structure (modular-
ity), network-wide median connectivity and region-specific
connectedness (degree), regional importance in the network
(eigenvector centrality), overall network strength (normalized
sum of all edge weights, natural connectivity - a proxy
for network resilience [25], and fragility [24]. Statistics for
median connectivity (median = 0.43 (0.02)) and node degree
(median = 5 (7), ~6% of all nodes) were also used to inform
the parameter selection in synthetic graphs.

B. Synthetic graphs

1) Graphs with defined topologies: The Lancichinetti
Fortunato Radicchi (LFR) algorithm was used to generate
graphs with 200 nodes and data-derived properties [22].
Inputs to the model included node degree and community
size (described by power law distributions), average degree,
and parameter p, which determines the proportion of edges
between communities. Thus, a low p reflects higher within-
community edges and sparse connections between communi-
ties, a topological characteristic of developed brains. Figure
1 shows how p influences the detectability of communities.
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Fig. 1. Graph topology as a function of varying parameter p (keeping
average node degree constant). Node color reflects community membership.

To improve similarity between synthetic and real graphs
(which were relatively sparse following thresholding), syn-
thetic graphs with nodes connected to >50% of all nodes,
and with other topological parameters far outside the range of
real graph parameters, were excluded from further analysis.
Furthermore, the LFR algorithm imposes a minimum node
degree for convergence, while there is no such minimum
in the real data. This leads to mismatch in their respective

degree distributions. To minimize this difference, synthetic
graphs with degrees >20, i.e., >10% of possible connec-
tions) were also excluded. In the remaining graphs, each edge
was assigned a weight, drawn from a normal distribution, in
the range [0, 1]. The final dataset included 803 graphs with
median degree = 19 (4), i.e., ~10% of all nodes, density
<30% and median edge weight >0.4.

2) Graphs with random topologies: Random graphs with
200 nodes were generated using the Erdos-Renyi model. The
input to the model was the probability of an edge existing in
the graph, and was selected empirically in the range [0.1,
0.8], to avoid generating fully connected or disconnected
graphs. Edges were randomly assigned based this probability,
resulting in binary graphs with variable density. Edge weights
were drawn from a normal distribution and that of the real
data, in the range [0,1], and were randomly assigned to edges
in each graph. Density and weights were then constrained in
the same way as in the LFR graphs, to maximize the graphs’
statistical similarity to the real ones. A total of 469 random
graphs (median degree = 16 (13), 8% of all nodes) were
selected for further analysis.

C. Closed-Loop Control Framework

The sparsity-promoting controller used in this study is
described in detail in [23]. Briefly, for a linear dynamical
system with state x and input u , we consider a controller
u = —Kuz, where K is the feedback gain matrix. The
controller is designed (i.e., K is chosen) so that we optimize
control performance, while at the same time penalizing its
nonzero entries to account for the cost of feedback through
a parameter p. In this study the control problem was solved
for p € [1074, 30], and the elements of K were examined as
a function of increasing feedback cost p.

III. RESULTS

Associations between feedback cost p and graph properties
were investigated at two spatial scales, node and graph, and
three ranges of p. The first range corresponds to values at
which each node in the networks become self-controlled,
i.e. K becomes diagonal. In the datasets, this range was
[0.01, 0.51] for real, [0.01, 0.64] for LFR, and [0.01, 0.21]
for random graphs. The second range corresponds to values
for which a node no longer exerts a control action on the
network, despite its connections to other nodes. The lower
limit of this range corresponds to the first p value at which
the diagonal K matrix becomes sub-diagonal (i.e., some of
its entries become 0). In theory, the upper limit is when K
becomes a zero matrix, but in this study it was restricted to
p = 30.0. The median lower limit was 8.58 (0.07) for real,
8.98 (0.15) for LFR, and 8.84 (0.11) for random graphs. The
third range corresponds to the 90" percentile of p, at which
a small subset of nodes remain self-controlled and exert a
control action under very high feedback cost. The median
of these values was 11.0 (0.96) for real, 11.3 (1.0) for LFR,
and 10.6 (0.59) for random graphs.



A. Impact of regional (node) topology on feedback cost

Feedback cost associated with each node becoming self-
controlled was examined as a function of its degree, strength
and centrality. Real and synthetic graphs had a different
number of nodes. Thus, degree and strength were normalized
by node number and maximum strength, for the graphs to be
comparable. Scatter plots in Figure 2 show this feedback cost
as a function of these properties. Higher feedback costs were
associated with higher node degree and centrality, in both real
and LFR graphs. Similar positive associations were estimated
for node strength, but only in real graphs. In random graphs,
centrality was positively associated with feedback cost, but
inversely associated with degree.
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Fig. 2. Feedback costs at which nodes become self-controlled as a function
of their topological properties.

These relationships were then examined for feedback costs
when nodes lose their control action, and are shown in
Figure 3. Higher costs correlated with higher node degree,
centrality and strength across types of graphs, although the
relationships were less clear (and nonlinear) for centrality.
For both ranges of feedback costs, and across graphs, there
was significant variability in the relationships between feed-
back cost at which transitions occur and node properties.

B. Impact of graph topology on feedback cost

Median (over all nodes) feedback cost p was examined
as a function of graph modularity, natural connectivity, and
fragility. To control for confounding effects of node strength,
all properties were normalized by median graph strength.

Relationships between costs p at which nodes becoming
self-controlled and graph properties are shown in Figure
4. Higher graph modularity was associated with higher p,
although this relationship was not clear in real graphs. Sim-
ilar associations were estimated for fragility. Lower natural
connectivity was associated with lower p across graphs.

Associations between costs p at which nodes lose their
control action and graph properties are shown in Figure 5.
Across graphs, p was associated with lower modularity, natu-
ral connectivity and fragility across all graph types (although
there was no clear relationship between modularity and p in
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Fig. 3. Feedback costs at which nodes lose their control action as a function
of their topological properties.

random graphs). Similar relationships were estimated for p
at the 90" percentile, and are shown in Figure 6.
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Fig. 4. Association between graph properties and median feedback cost at
which nodes become self-controlled.

IV. CONCLUSIONS

We have investigated relationships between network con-
trollability (within the lens of sparsity promoting con-
trol), a fundamental mechanism of neurodynamic regulation,
and connectome topology. Identified positive associations
between feedback costs and node degree, centrality and
strength, suggest that topologically important and highly
and strongly connected regions, such as hubs, become self-
controlled and maintain their control action under high
feedback cost. Functional hubs in the developing brain
emerge over time, but our results suggest that some may
play important roles in the brain’s controllability even in
underdeveloped connectomes. At the network level, our
results suggest that nodes in more modular and topologically
fragile networks are self-controlled under higher feedback
costs, whereas those in more resilient networks are self-
controlled under lower feedback. Although modularity is a
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Fig. 5. Association between graph properties and median feedback cost at
which nodes lose their control action.
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Fig. 6.  Association between graph properties and 90t percentile of
feedback costs where nodes lose their control action.

key aspect of optimally organized networks, a high number
of partitions could increase fragility. Self-control of nodes in
suboptimally modular and fragile networks may then require
higher feedback costs, whereas the opposite occurs in more
resilient networks. This difference could be attributed to
the tradeoff between control performance and cost, which
is considered in the controller design problem. Thus, for a
fragile network, a high feedback cost may be necessary to
balance the controller’s performance. At high feedback cost
regimes, i.e., when nodes start losing their control action
over the network, higher costs associated with this transition
were correlated with lower modularity and fragility, i.e., were
in the opposite direction than correlations associated with
self-control, and low resilience. Some of these relationships
were nonlinear, with feedback costs decreasing rapidly at
low modularity, resilience, and fragility and changing very
slowly thereafter. It is possible that when only a few nodes
maintain their control action the associated feedback costs
are invariant to at least some network properties. Our find-
ings, suggest that the connectome’s controllability at different

ranges of feedback costs may depend on regional topological
properties, but less on the overall network topology, at least
under very high feedback costs.

REFERENCES

[1]1 O. Sporns, DR. Chialvo, M. Kaiser, et al., Organization, Development
and Function of Complex Brain Networks. Trends Cogn Sci., 2004,
8(9): 418-425.

[2] C.J. Honey, R. Kotter, M. Breakspear, et al., Network Structure of
Cerebral Cortex Shapes Functional Connectivity on Multiple Time
Scales. Proc. Natl. Acad. Sci., 2007, 104 (24): 10240-45.

[3] M.P. Van den Heuvel, O. Sporns, Network hubs in the human brain.
Trends Cogn. Sci., 2013, 17(12):683-96.

[4] K. Supekar, M. Musen, V. Menon, Development of large-scale func-
tional brain networks in children. PLOS Biol., 2009, 7(7):e1000157.

[5] D.A. Fair, A.L. Cohen, J.D. Power, et al., Functional brain networks
develop from a “local to distributed” organization. PLOS Comput.
Biol., 2009, 5(5):e1000381.

[6] J.D. Power, D.A. Fair, B.L. Schlaggar, et al., The Development of
Human Functional Brain Networks. Neuron, 2010, 67(5):735-748.

[7] T.J. Whitford, C.J. Rennie CJ, S.M. Grieve SM, et al., Brain maturation
in adolescence: concurrent changes in neuroanatomy and neurophysi-
ology. Hum. Brain Mapp., 2007, 28:228-237.

[8] Rempe MP, Ott LR, Picci G, et al., Spontaneous cortical dynamics
from the first years to the golden years. Proc. Natl. Acad. Sci. USA,
2023, 120:e2212776120.

[9] S. Gu, F. Pasqualetti, M. Cieslak, et al., Controllability of structural
brain networks. Nat. Commun., 2015, 6:8414.

[10] E.Tang, C. Giusti, G.L. Baum, et al., Developmental increases in white
matter network controllability support a growing diversity of brain
dynamics. Nat. Commun., 2017, 8:1252.

[11] E. Wu-Yan, R.F. Betzel, E. Tang, et al., Benchmarking Measures of
Network Controllability on Canonical Graph Models. J. Nonlinear
Sci., 2020, 30: 2195-2233.

[12] Q. Li, L. Yao, W. You, et al., Controllability of Functional Brain
Networks and Its Clinical Significance in First-Episode Schizophrenia.
Schizophr. Bull., 2023, 49(3):659-668.

[13] J. Jeganathan, A., Perry, D.S. Bassett et al., Fronto-limbic dysconnec-
tivity leads to impaired brain network controllability in young people
with bipolar disorder and those at high genetic risk. Neuroimage Clin.,
2018, 19:71-81.

[14] H.B. Scheid, A. Ashourvan, J. Stiso, et al., Time-evolving controlla-
bility of effective connectivity networks during seizure progression.
Proc. Natl. Acad. Sci. USA, 2021, 118(5):e2006436118.

[15] M.I. Jordan, Computational aspects of motor control and motor
learning. Handbook of Perception and Action, 1996, 2(2): 71-120.

[16] M.T. deBettencourt MT, J.D. Cohen R.F. Lee et al., Closed-loop
training of attention with real-time brain imaging. Nat. Neurosci.,
2015, 18(3):470-5.

[17] C. Zrenner, P. Belardinelli, F. Miiller-Dahlhaus et al., Closed-Loop
Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two
Loops. Front. Cell. Neurosci., 2016, 10:92.

[18] R. Sitaram, T. Ros, L. Stoeckel et al., Closed-loop brain training: the
science of neurofeedback. Nat. Rev. Neurosci., 2017, 18(2):86-100.

[19] B.J. Casey, T. Cannonier, M.I. Conley, et al., The Adolescent Brain
Cognitive Development (ABCD) study: Imaging acquisition across 21
sites. Developmental Cognitive Neuroscience, 2018, 32: 43-54.

[20] Next-Generation-Neural-Data-Analysis:
https://github.com/cstamoulis 1/Next-Generation-Neural-Data-
Analysis-NGNDA-

[21] S.J Brooks, S.M Parks, C. Stamoulis, Widespread Positive Direct
and Indirect Effects of Regular Physical Activity on the Developing
Functional Connectome in Early Adolescence. Cereb. Cortex, 2021,
31(10):4840-4852

[22] A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs
for testing community detection algorithms. Phys. Rev. E, 2008,
78(4):046110.

[23] I. Mitrai, V.O. Jones, H. Dewantoro, et al., Internal control of brain
networks via sparse feedback. AIChE J., 2023, 69(4):e18061.

[24] F. Pasqualetti, S. Zhao, C. Favaretto, et al., Fragility Limits Perfor-
mance in Complex Networks. Sci. Rep., 2020, 10:1774.

[25] J. Wu, M. Barahona, Y.-J. Tan, et al., Natural Connectivity of Complex
Networks. Chinese Phys. Lett., 2010, 27:078902



