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ABSTRACT: Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware able to perform man-
ual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent
on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows,
notably specialized analytical equipment which is designed for human usage. Here we present AutonoMS, a platform for automati-
cally running, processing, and analyzing high-throughput mass spectrometry experiments. AutonoMS is currently written around an
ion mobility-mass spectrometry (IM-MS) platform and can be adapted to additional analytical instruments and data processing flows.
AutonoMS enables automated software agent-controlled end-to-end measurement and analysis runs from experimental specification
files that can be produced by human users or upstream software processes. We demonstrate the use and abilities of AutonoMS in a
high-throughput flow-injection ion mobility configuration with 5 second sample analysis time, processing robotically-prepared chem-
ical standards and cultured yeast samples in targeted and untargeted metabolomics applications. The platform exhibited consistency,
reliability, and ease of use while eliminating the need for human intervention in the process of sample injection, data processing, and
analysis. The platform paves the way towards a more fully automated mass spectrometry analysis and ultimately closed-loop labora-
tory workflows involving automated experimentation and analysis coupled to Al-driven experimentation utilizing cutting-edge ana-

lytical instrumentation. AutonoMS documentation is available at https://autonoms.readthedocs.io

INTRODUCTION

Compared to traditional benchtop experimentation, modern life
science laboratories are high-throughput and data-centric dis-
covery platforms. This transformation is largely supported by
two pillars (1) experimental hardware automation and (2) infor-
matic and control software integration. Automated robotic la-
boratory equipment can increasingly perform labor-intensive
physical experimental processes including sample preparation,
maintenance, and assay execution.'” In addition to increasing
the quantity and quality of data produced, the use of automated
labware also produces metadata audit trails at every step of the
experimental process to increase data reusability.* A shift is un-
derway from low-throughput manual laboratory operation to-
wards high-throughput screens generating large quantities of
raw data which can only be understood through informatic anal-
ysis. This creates a new relationship between the scientist, the
benchtop, and software. Experimental platforms that can be run
through software calls without human supervision can generate
large amounts of high-quality data at lower cost to the human
scientist to greatly improve the rate of discovery, especially in
screening applications in fields such as drug development and
metabolic engineering in which combing through experimental
space is often the rate-limiting factor. Such high-throughput
screening platforms almost always rely on an analytical meas-
urement of samples of interest. These instrumental ‘omics’
measurements provide the crucial biochemical readout of the
system of interest. Despite the promises of integrated hardware-
software automation for life science discovery, there remains a
great need for further development of automated analytical plat-
forms at the granular end of the omics scale, namely proteomics

and metabolomics. In these realms, analytical instrumentation
often remains manually operated and therefore underutilized.
As experimentation becomes increasingly automated and high-
throughput, analytical instrumentation must keep pace.

Mass spectrometry (MS) is a valuable and broadly used analyt-
ical technique in the life sciences. The ability to sensitively and
broadly detect the molecular components of biochemistry has
made it an essential technique for biomarker discovery, drug
development, bioprocess development, and basic discovery.’
A key driver of the technique’s utility has been the continuous
development and refinement of MS instrumentation providing
increased sensitivity, resolution, reproducibility, and through-
put. However, with these benefits comes a high cost. The vast
number of acquisition parameters, diverse instrumentation, and
varied applications of MS make it a time-intensive technique
requiring multiple iteration cycles and substantial hands-on in-
tervention.

Ion mobility-mass spectrometry (IM-MS), an especially prom-
ising MS variant, couples a high-throughput separation dimen-
sion coupled with MS instrumentation offering analyte separa-
tion on the basis of ion structure (ion mobility) in addition to
standard mass separation in complex samples.”'® The drift tube
implementation of ion mobility MS (DTIMS) involves usage of
a linear ion mobility tube to separate ionized molecules before
mass-to-charge measurement. lons exhibit different transit
times through the drift tube determined by their size, shape,
charge, and instrument acquisition parameters. This measured
drift time can then be converted to a collision cross section
(CCS) value, which is a function the molecule’s structural
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chromatography separations.'>!> However, ion mobility intro-
duces further experimental complexity to already labor-inten-
sive MS workflows.

6560 Computer RapidFire Computer

properties.'' One of the primary advantages of IM-MS separa-
tions is the resolution of isomers on the basis of structure, which
in some cases can serve as a replacement to slower liquid
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Figure 1. AutonoMS offers walkaway automation of ion mobility mass spectrometry data collection and analysis. (A) AutonoMS integrates
software control layers with the Agilent RapidFire - 6560 ion mobility mass spectrometry system to provide fully automated data acquisition,
raw data handling, data processing, and metabolomic end-to-end analysis resulting in tabular metabolite reports and interactive Skyline
documents. (B) The AutonoMS software stack is hosted on a shared drive between the 6560 and RapidFire control computers. Human
laboratory users or an upstream software agent may trigger AutonoMS runs using a tabular experiment definition file. The AutonoMS work-
flow control is written using Prefect!* which coordinates the event-triggered actions of modules responsible for instrument file compilation,
instrument control (pywinauto'3), post-acquisition raw data handling including ion mobility demultiplexing and CCS calibration (PNNL
PreProcessor!® and DEIMoS!7), and metabolomic data analysis (Skyline'®!®). Additional modules may be written and incorporated into the
workflow to accommodate different instruments or analysis workflows.

Here we introduce AutonoMS, which offers end-to-end auto-
mated runs of MS instrumentation involving sample injection,
raw data processing, and metabolomic analysis with little user
intervention, and is currently written around the Agilent
RapidFire?® and 6560?' DTIMS-QTOF system (Figure 1A).
AutonoMS coordinates instrument control, resource alloca-
tion, and data processing across the RapidFire and 6560 con-
trol computers using a collection of open-source software li-
braries (Figure 1B). Sample runs can be automatically trig-
gered from experiment plan files, so that either a human user
or upstream software agent may design and run experiments.
This means that the AutonoMS platform can be integrated into
a larger automated laboratory setting in which software agents
control and coordinate multiple experimental, analytical, and
informatic modules. Runs may involve multiple acquisition
modes, sequences, and variable run parameters. After sample
acquisition, data is automatically prepared, processed, and
then analyzed via Skyline,'®!" producing both interactive re-
sults and tabular metabolite summaries. To demonstrate the
use of the AutonoMS platform, we analyzed a set of chemical
standards chosen from the yeast metabolic network. These
standards, serially diluted by an Agilent Bravo liquid handling
robot, exhibited the expected dynamic measurement re-
sponses as autonomously collected and detected by Au-
tonoMS (Figure 2). We also processed extracted intracellular
yeast samples through the platform, indicating its potential
utility in automated untargeted and discovery applications
(Figure 3 and Figure 4).

EXPERIMENTAL SECTION

Workflow Control. The AutonoMS control flow automation
and workflow logic was implemented using Prefect (version
2.10.12)."* Prefect is an open-source Python-native workflow

manager for orchestrating complex code workflows from
modularly-defined tasks, smoothly turning Python functions
into workflow steps. We chose Prefect because of its open-
source nature, active developer community (currently over
200 GitHub contributors), and increasing adoption across in-
dustrial data science teams. Its native Python implementation
obviates the need to learn a separate workflow domain spe-
cific language. The workflow begins by compiling an input
tabular experiment definition file into RapidFire XML files.
AutonoMS then sequentially triggers an IM-MS acquisition
run for each sequence in the experiment definition using the
instrument control utilities described below. In our configura-
tion, the workflow currently runs only one sequence at a time
in order of appearance in the experiment file. However, the
workflow parameters may be modified for laboratories with
capabilities of running parallel data acquisition on multiple in-
struments. A sample experiment file is available in the Au-
tonoMS GitHub repository (https://github.com/gkreder/au-
tonoms).

Upon completion of data acquisition for all sequences, the
workflow then automatically performs post-run data pro-
cessing. The RapidFire 365 - 6560 creates a single Agilent .D
raw data file that must be split into .D files corresponding to
injections from the individual microplate wells. Currently for
RapidFire instruments configured in BLAZE (direct injec-
tion) mode, the RapidFire software can detect injection
boundaries but does not correctly split data into the corre-
sponding well files. AutonoMS automatically shifts the file
split times according to the detected injection boundaries and
assigns them to the correct well plate. A description of con-
figuration of the RapidFire for BLAZE mode is provided be-
low.



Data multiplexing is a powerful ion mobility technique for in-
creasing sensitivity.”> Our configuration utilizes 4-bit IM de-
multiplexing, but this requires post-acquisition data demulti-
plexing. AutonoMS performs ion mobility data demultiplex-
ing on the individual well files using the PNNL PreProcessor
utility.'® Before conversion to collision cross section (CCS)
values, raw measurements in DTIMS files from the Agilent
6560 must have their drift time values calibrated according to
standard measurements with known CCS values. AutonoMS
automatically performs this CCS calibration for each injection
within a given sequence using nearest prior injection occur-
ring in the same sequence with sample type “TUNE”. The de-
multiplexed tune file is converted to mzML?* format using the
msconvert utility.?** CCS correction coefficients are then
calculated from the mzML tune file using the DEIMoS library
for ion mobility data processing'” and user-specified reference
CCS values. A CCS calibration XML file is generated and
copied to each injection .D file in the given sequence. For the
experiments outlined in this work, the Agilent ESI tuning mix
was used for CCS calibration. A sample sheet containing the
Agilent tune ions and their CCS values is available in the Au-
tonoMS GitHub repository. We note that the workflow can be
configured to perform this CCS calibration on manually cal-
culated calibration coefficients from separate runs; however,
it is recommended to include a tune injection in each sequence
for the sake of automation simplicity and data robustness. Au-
tonoMS then performs peak detection and quantification on
the demultiplexed CCS calibrated injection files using the
Skyline method (described below) via the Skyline Command-
Line interface.

Instrument Control. The pywinauto library (version 0.6.8)"
was used to write automation control wrappers around the Ag-
ilent MassHunter Workstation Data Acquisition (version
11.0) and RapidFire UI (version 6.1.1.2114) software used to
control the 6560 mass spectrometer and RapidFire sampler.
Functionalities necessary for automatically running plates ac-
cording to user-supplied acquisition method and experimental
parameters were implemented. These include reading instru-
ment state, loading files and methods, starting and stopping
runs, running the calibrant line, checking RapidFire vacuum
pump pressure, setting run mode, and data file splitting. Of
special note is the standard Agilent hardware configuration of
separate control desktops for the 6560 and RapidFire con-
nected via ethernet (Figure 1B). To work in this configuration,
the codebase is hosted on the network drive shared between
the two computers, and the AutonoMS workflow is run from
the 6560 control computer. A Remote Procedure Call server
using the RPyC library (version 5.3.1)*® is hosted on the
RapidFire computer to execute RapidFire control functions
from the 6560 computer. The codebase for RapidFire - 6560
instrument control is available in the agilent methods mod-
ules of AutonoMS.

Data Processing. Peak detection and area quantification were
performed using Skyline (version 22.2.0.351).'%!° Skyline
was chosen because of its open-source nature, ability to han-
dle ion mobility data, and its combination of command-line
and GUI functionality. Skyline natively supports RapidFire
ion mobility data and has previously been used for acquisition
workflows such as those described below.'? Its command line
utilities can be integrated into a fully automated workflow as
in AutonoMS and results can later be loaded into the GUI to
be verified by the end user. Peak detection was run using the
TOF mass analyzer settings at a resolving power of 30,000,

an ion mobility resolving power window of 30, and a maxi-
mum m/z of 1700. The full set of Skyline processing parame-
ters in Skyline document format is available in the AutonoMS
repository.

Metabolite CCS Library. Yeast metabolites were taken from
the Yeast Metabolome Database (YMDB)*"?® and compared
against the Cross Collision Section Database (CCSDB) hosted
by the Erin Baker Lab and available at https:/brcwebpor-
tal.cos.ncsu.edu/baker/. These CCS values were of particular
interest since they were also measured on an Agilent 6560
mass spectrometer for comparison purposes. Metabolites ap-
pearing in both YMDB and CCSDB were compiled together
with their experimentally observed CCS values for their
[M+H]" and [M-H] adducts. The compiled list of YMDB
CCS metabolites in Skyline transition list format is available
in the AutonoMS repository.

RapidFire Sample Injection. The RapidFire was operated in
BLAZE flow injection mode to achieve rapid sample injection
and analysis times.” This involves configuring the RapidFire
valve tubing such that the sample loop feeds directly into to
the mass spectrometer outlet rather than through the solid
phase extraction (SPE) cartridges. The RapidFire configura-
tion files must also be modified for the valve positions to cor-
rectly correspond to sample sipping with this connection con-
figuration. We note that the RapidFire is capable of some au-
tomated in-line sample preparation, for example desalting, via
its built-in SPE functionality. This functionality was not uti-
lized for our demonstration experiments since our sample
preparation was performed prior to injection. RapidFire
BLAZE mode configuration instructions are provided in the
supplementary information. Operating the RapidFire using
the SPE functionality via AutonoMS can be done by simply
reverting the instrument back to its standard configuration and
changing the cartridge and sipper parameters in the input ex-
perimental file.

The RapidFire method used involved a sample sipping time
of 600ms followed by 4400ms of sample elution into the MS.
As seen previously'?, sipping (aspiration) time is reported ra-
ther than injection volume as this is the instrument’s control-
lable parameter given its mechanism of sample aspiration
driven by a vacuum pump. The RapidFire’s sample loop holds
roughly 30 pL. This elution time was chosen to ensure base-
line peak separation at higher sample concentrations, and we
note that this can be reduced for faster cycle times. The mobile
phase (pump 1) consisted of 50/50 water/ methanol with 0.1%
formic acid at a flow rate of 1.25 mL/min. The full RapidFire
parameter set are provided in the supplementary information.

6560 Mass Spec Data Acquisition. Mass spectrometry data
was collected in IM-QTOF mode with 4-bit multiplexed in-
troduction of the ion packets into the drift tube. Multiplexing
has been shown to improve ion utilization and resolving
power in IMS;'? however, it creates the requirement for addi-
tional data post-processing as described in the workflow man-
agement section. The Agilent 6560 was operated in the 100-
1700 m/z range at a frame rate of 1.1 frames/sec, and a gas
temperature of 325°C. A full description of the QTOF and IM
acquisition parameters are available in the supplementary in-
formation.

Standards Preparation. Dry chemical stocks of glutathione,
L-histidine, L-valine, and L-arginine were mixed at room tem-
perature with a stock solution of 50/50 water/methanol to a
concentration of 10 mg/mL. These stocks were dispensed into
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standard 384 well microplates using a Thermo Fisher Combi
Multidrop reagent dispenser and 10-fold serial dilutions were
robotically performed using an Agilent Bravo liquid handling
robot controlled with the VWorks Automation Control soft-
ware (version 8.0.0.335, Agilent Technologies).

Yeast Culturing. S. cerevisiae wildtype strain BY4741 (Ac-
cession number: Y00000) from the EUROSCARF deletant li-
brary was revived from -80 °C glycerol stocks by overnight
cultivation in YPD media (10 g/L yeast extract, 20 g/L pep-
tone from meat, 20 g/L dextrose) at 30 °C, 220 rpm. The strain
was then streaked out on a YPD agar plate and incubated at
30 °C for 3 days. A YPD preculture was inoculated using mul-
tiple colonies from the agar plate and then incubated at 30 °C,
220 rpm for 14 hours. The cells from the YPD preculture were
washed twice (centrifugation at 5,000 xg, 5 minutes) with
YNB media (6.7 g/L YNB without amino acids and with am-
monium sulfate, 1x Amino acid mix, 20 g/L dextrose). Cells
were resuspended in 1 mL YNB media and used as inoculum
for the main culture with an initial OD600 of 0.05. The main
cultivations were performed in 4x250 mL wide-necked baf-
fled shake flasks sealed with cotton stoppers, each with a
working volume of 40 mL. YNB media. The shake flasks were
incubated at 30 °C, 220 rpm. Cultivations were stopped after
24 hours post-inoculation and the flasks were pooled. Final
0OD600 was measured to be 3.56 and was used to adjust the 2-
propanol alcohol volume in the ensuing extraction method.

Yeast Quenching and Extraction. Sample preparation and
intracellular metabolite extraction followed a previously es-
tablished protocol.’**! Samples were quickly transferred to
15 mL centrifuge tubes (SmL per tube) containing absolute
methanol (99% purity) prechilled to -80 °C. The ratio between
sample and methanol was kept at 1:1 v/v. Tubes were kept in
dry ice during the process and were transferred to a centrifuge
and spun for 5 min at 3000g and -9 °C. The supernatant was
then discarded, and the pellet was transferred and stored at
—80 °C. Samples were lyophilized (-40 °C, 0.1 mbar) over-
night and kept at —80 °C pending extraction. Metabolite ex-
traction was performed by adding 75% 2-propanol (preheated
to boiling temperatures, with a ratio of 1 mL 2-propanol per
1 mg of sample) to the lyophilized yeast biomass in 15mL
centrifuge tubes. Sample weight was estimated from optical
density (0.34mgDCW/mL per 1 OD600). Samples were
placed on a heating block for 1 minute at 100 °C, then shaken
and vortexed for 2 minutes, followed by an additional 3
minutes on the heat block. Samples were then cooled for
15 min at 4 °C before centrifuging for 20 min at 3200 g and
4 °C. The supernatant was filtered through a 0.45 um nylon-
filter and transferred to 50 mL centrifuge tubes and stored at
—20 °C until analysis. Samples were transferred to a standard
384 well microplate for AutonoMS injection using a Thermo
Fisher Combi Multidrop reagent dispenser.
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Figure 2. Automated targeted data analysis of standards with Au-
tonoMS. (A) Detected glutathione [M+H]+ ion intensity from an
automated AutonoMS analysis of glutathione in 50/50 metha-
nol/water at 0.1 mg/mL injected from separate wells in a robot-
ically dispensed 384 well microplate. (B) Detected peak areas
from AutonoMS analysis of robotically-prepared triplicate serial
dilutions of 5 chemical standards in positive and negative ioniza-
tion modes robotically dispensed into a 384 well microplate.

RESULTS AND DISCUSSION

Walkaway Automation. Over the course of our experimen-
tation, we found that AutonoMS enabled reliable automated
runs and analysis of data from simple experiment definition
files without any need for human intervention (Figure 1). The
AutonoMS platform integrated smoothly into our automated
laboratory workflows and provides an event-triggered soft-
ware-compatible interface to a larger automated environment.
Resources can be scaled automatically through the control
workflow in which specific tasks are granted user-defined re-
source usage and concurrency rights. We found this was cru-
cial for automating this combination of data acquisition, data
preprocessing, and data analysis tasks with varying degrees of
interdependencies and resource demands. Through the control
workflow, the informatic steps of the platform can be run on
remote or distributed resources to cut down on computation
time. Instrument data acquisition for a given experiment defi-
nition runs in its entirety before initiating the informatic por-
tions of the pipeline. As such, multiple sequences can be run
from the same microwell plate while minimizing sample
evaporation time. The targeted data and untargeted assays de-
scribed below involved laboratory robotics and multiple data
sequences and acquisition modes per experiment. We found
that aside from hardware maintenance and physical sample
transfer, usage of the AutonoMS platform eliminated the need
for human intervention or even presence during the process of
metabolomic data acquisition and analysis.
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Figure 3. Automated analysis of extracted intracellular yeast
samples with AutonoMS. (A) Detected peak areas in extracted
yeast samples across plate injections (368 over 38 minutes per
mode) of the 5 ions used in the chemical standards analysis. lons
correspond to the [M+H]+ and [M-H]- adducts in positive and
negative modes, respectively. Peak areas shown as the 6-injection
moving average (solid lines) together with 6-injection standard
deviation (shaded areas). (B) Untargeted metabolite features
found across all extracted yeast samples across positive (blue)
and negative (orange) ionization modes. Displayed features were
present in at least 2/3 of samples in a given mode and had Agilent
quality scores greater than 70. 812 total features were found of
which 404 involved multiple ions in various ionization states.
Single ionization state (z = 1) ion features are shown in grey,
marker size is scaled according to log10(abundance).

Targeted Data Analysis of Standards. We tested the use of
AutonoMS in a targeted data analysis metabolomics applica-
tion by automated sampling and analysis of a chemical stand-
ard, glutathione, at a set concentration of 10! mg/mL in a
stock solution of 50/50 methanol/water (Figure 2A). Au-
tonoMS, running the direct injection ion mobility method de-
scribed in the experimental section, enabled the automated
analysis of the known standard with an injection time of five
seconds per sample with consistent performance. The plat-
form autonomously injected, processed, and detected the
[M+H]" adduct in a positive mode run without human inter-
vention. We also tested the AutonoMS platform on robot-
ically-prepared triplicate 10-fold serial dilutions of five stand-
ards: glutathione, L-histidine, L-valine, L-arginine, and aden-
osine monophosphate, from a starting concentration of 10
mg/mL (Figure 2B). Peaks areas were filtered to include only
detections at levels 5x higher than those in 50/50 water/meth-
anol blanks. The platform similarly autonomously collected
data and reproducibly detected the standards with a linear

peak area response range in the 10*-10"" mg/mL range. In both
cases, no human intervention was required other than cleaning
of the instruments and transfer of the prepared sample micro-
plates to the RapidFire. These panels lead us to conclude that
(1) the AutonoMS platform automates existing targeted data
analytical workflows and (2) using the automated workflow
produces robust and consistent results useful to downstream
human users or software processes.

Metabolomic Fingerprinting of Yeast. To investigate the
utility of the AutonoMS platform in systems biology discov-
ery applications, we cultured and prepared yeast samples to
study their intercellular metabolomic content via untargeted
metabolomic fingerprinting (Figure 3 and Figure 4). Extracted
intracellular yeast samples were pooled and dispensed into a
standard 384 well microplate after which AutonoMS was used
to automatically run whole-plate sequences of injections in
both positive and negative ionization modes. 368 consecutive
injections were run in each mode (leaving the first plate col-
umn reserved for tune ions) for a total injection time of 38
minutes per mode. lon behavior in this complex sample matrix
largely agreed with exhibited behavior in the targeted data
analysis standards test (Figure 3A). Ions with higher intensi-
ties had relatively consistent peak areas across the plate injec-
tions, with peak area consistency decaying dramatically
around the 10* mark due to poor counting statistics.

The pre-processed data produced by AutonoMS was also run
through untargeted feature finding with Mass Profiler (version
10.0.195, Agilent Technologies), yielding 812 metabolite fea-
tures across positive and negative mode with (1) a Q-Score
greater than 70 and (2) occurrence in at least 2/3 of a given
ionization mode’s injections (Figure 3B). Of these features,
404 were higher-quality features involving multiple ions in
various ionization states. This Mass Profiler analysis was per-
formed manually but could be automated and integrated into
AutonoMS using DEIMoS'"” if it suits the end-user’s needs.
AutonoMS automatically ran this yeast injection data through
the Skyline pipeline using the YMDB CCS library (described
in the experimental section). The reports generated from the
AutonoMS runs facilitated compilation of a panel of 35 de-
tectable YMDB intracellular metabolites with publicly avail-
able CCS values filtered according to the earlier tests (display-
ing an average peak area greater than 10* across injections)
using the ion mobility direct injection method described in the
experimental section. These metabolites are shown in

Figure 4 grouped by their ClassyFire/ChemOnt*> superclass
labels together with their mean TIC-normalized peak areas
across injections. We note that further automated data collec-
tion and analysis modules can be incorporated via AutonoMS
to improve the application-specific detection performance of
such a workflow. Usage of the AutonoMS platform enabled
hands-off automated metabolomic profiling in the context of
existing background knowledge of yeast metabolism. In this
case, usage of the platform dramatically lowered the time and
effort required to characterize yeast samples and produce in-
terpretable results in the context of this background
knowledge. This opens the door towards incorporation of a
cutting-edge analytical platform into more fully autonomous
discovery applications in which Al software agents control
experimentation, interpret results, and run further rounds of
experimentation as has been proposed and demonstrated pre-
viously.**** Metabolomics-based biological discovery, espe-
cially in yeast, is a rich field. Previous work has demonstrated
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the utility of applying rigorous mass spectrometry methods
towards measurements of yeast metabolites.’®*? Integrating
these with automated culturing, sampling, additional data mo-
dalities, and modeling techniques has yielded powerful ap-
proaches.*®** Existing approaches have demonstrated the po-
tential of in-line SPE-IM-MS exometabolome analysis in live
cultures.* AutonoMS should facilitate such multifaceted ap-
proaches, allowing for granular control logic and flexibility to
new techniques. We also note that in addition to downstream
discovery, the automated characterization of well-behaved
metabolites for a given instrument acquisition method imme-
diately opens the door to closed-loop automated MS acquisi-
tion methods development.

CONCLUSIONS

Analytical instrumentation must keep pace with the increasing
ability of life science laboratories to quickly produce large
quantities of experimental samples. Here we introduced Au-
tonoMS, a platform combining cutting-edge ion mobility-
mass spectrometry instrumentation with software layers capa-
ble of end-to-end instrument control, data processing, and
metabolomic analysis. From our findings, we conclude that
the resulting configuration can be immediately utilized in labs
already using the same instrumentation to dramatically im-
prove workload and improve results, especially as related to
human burden. Even when using human-compiled experiment
definition files, the streamlined AutonoMS workflow pro-
duced actionable results in about 1/4™ of the time compared
to the same tasks using the already-optimized conventional
Agilent RapidFire - 6560 vendor workflow (25 minutes com-
pared to an hour for the targeted data analysis standards work-
flow) with much less manual intervention. We also note the
extensibility of this platform, since the software workflow co-
ordinates the actions of modular instrument control and infor-
matic components, each of which can be replaced with a new
module fitting a given laboratory’s configuration. For exam-
ple, AutonoMS could be used for untargeted metabolomic
feature discovery or proteomic profiling by swapping out the
current Skyline metabolomics module. The current RapidFire
— 6560 instrumentation setup is already capable of a large

range of analysis including proteomics. A new instrument
could be controlled by AutonoMS by calling its instrument
control wrappers in the workflow. Multiple instruments can
be run in parallel simply by modifying the workflow control
configuration parameters. This process can be made easier
through instrument vendor cooperation, particularly with re-
gard to whether high-level users will have access to an appli-
cation programming interface (API) to allow direct command-
line control of all instrument functions, rather than requiring
all commands to be passed manually to the instrument through
a graphical user interface (GUI) by means of interactive
mouse-clicks and pull-down menus on a screen. As described
in the experimental section, instrument control for the Rapid-
Fire — 6560 required GUI automation. General laboratory au-
tomation outside of mass spectrometry remains a challenge.
For example, our yeast quenching and extraction protocol was
performed manually save for the final step of robotically dis-
pensing samples into the injection plate using the Multidrop
dispenser given logistical and resource constraints. With the
proper automated liquid handling equipment and laboratory
space, this protocol can be fully automated and the capabilities
of AutonoMS would allow for completely hands-off analysis
of samples from culture to output results. Looking further
ahead, we believe AutonoMS opens the door to closed-loop
automation utilizing cutting-edge analytical instrumentation
in which automated laboratories produce samples, transfer
them to the instrument, trigger AutonoMS runs, then use the
processed results to perform the next round of experimenta-
tion. For example, a setup combining automated software-
controlled chemostats, liquid handling robotics, centrifuges,
heat plates, shakers, freezers, and the RapidFire - 6560 could
be used to culture yeast samples in various conditions, prepare
them, then metabolically analyze them all via software calls
with AutonoMS handling the IM-MS portion of the workflow.
An Al system sitting on top of this configuration could take
produced results and compare with existing background
knowledge to find discrepancies between observed and ex-
pected output. Such systems could utilize database systems
under development*' designed for Al software agent unified
access to experimental data, protocol metadata, results, and
background knowledge.
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The file “supplementary-information” contains 6560 MS acqui-
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The file “autonoms-demo” is a video demonstration of Au-
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Synopsis: The authors introduce a software suite, AutonoMS, for automating mass spectrometry runs including sample run compi-
lation, instrument run control, and data analysis. Current functionality is written around the Agilent RapidFire — 6560 ion mobility
platform. Modules for these functionalities are integrated using workflow control software in a manner allowing users to add modules
for their own instruments and data workflows.
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