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ABSTRACT: Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware able to perform man-
ual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent 
on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows, 
notably specialized analytical equipment which is designed for human usage. Here we present AutonoMS, a platform for automati-
cally running, processing, and analyzing high-throughput mass spectrometry experiments. AutonoMS is currently written around an 
ion mobility-mass spectrometry (IM-MS) platform and can be adapted to additional analytical instruments and data processing flows. 
AutonoMS enables automated software agent-controlled end-to-end measurement and analysis runs from experimental specification 
files that can be produced by human users or upstream software processes. We demonstrate the use and abilities of AutonoMS in a 
high-throughput flow-injection ion mobility configuration with 5 second sample analysis time, processing robotically-prepared chem-
ical standards and cultured yeast samples in targeted and untargeted metabolomics applications. The platform exhibited consistency, 
reliability, and ease of use while eliminating the need for human intervention in the process of sample injection, data processing, and 
analysis. The platform paves the way towards a more fully automated mass spectrometry analysis and ultimately closed-loop labora-
tory workflows involving automated experimentation and analysis coupled to AI-driven experimentation utilizing cutting-edge ana-
lytical instrumentation. AutonoMS documentation is available at https://autonoms.readthedocs.io  

INTRODUCTION 
Compared to traditional benchtop experimentation, modern life 
science laboratories are high-throughput and data-centric dis-
covery platforms. This transformation is largely supported by 
two pillars (1) experimental hardware automation and (2) infor-
matic and control software integration. Automated robotic la-
boratory equipment can increasingly perform labor-intensive 
physical experimental processes including sample preparation, 
maintenance, and assay execution.1–3 In addition to increasing 
the quantity and quality of data produced, the use of automated 
labware also produces metadata audit trails at every step of the 
experimental process to increase data reusability.4 A shift is un-
derway from low-throughput manual laboratory operation to-
wards high-throughput screens generating large quantities of 
raw data which can only be understood through informatic anal-
ysis. This creates a new relationship between the scientist, the 
benchtop, and software. Experimental platforms that can be run 
through software calls without human supervision can generate 
large amounts of high-quality data at lower cost to the human 
scientist to greatly improve the rate of discovery, especially in 
screening applications in fields such as drug development and 
metabolic engineering in which combing through experimental 
space is often the rate-limiting factor. Such high-throughput 
screening platforms almost always rely on an analytical meas-
urement of samples of interest. These instrumental ‘omics’ 
measurements provide the crucial biochemical readout of the 
system of interest. Despite the promises of integrated hardware-
software automation for life science discovery, there remains a 
great need for further development of automated analytical plat-
forms at the granular end of the omics scale, namely proteomics 

and metabolomics. In these realms, analytical instrumentation 
often remains manually operated and therefore underutilized. 
As experimentation becomes increasingly automated and high-
throughput, analytical instrumentation must keep pace.  
Mass spectrometry (MS) is a valuable and broadly used analyt-
ical technique in the life sciences. The ability to sensitively and 
broadly detect the molecular components of biochemistry has 
made it an essential technique for biomarker discovery, drug 
development, bioprocess development, and basic discovery.5–8 
A key driver of the technique’s utility has been the continuous 
development and refinement of MS instrumentation providing 
increased sensitivity, resolution, reproducibility, and through-
put. However, with these benefits comes a high cost. The vast 
number of acquisition parameters, diverse instrumentation, and 
varied applications of MS make it a time-intensive technique 
requiring multiple iteration cycles and substantial hands-on in-
tervention.  
Ion mobility-mass spectrometry (IM-MS), an especially prom-
ising MS variant, couples a high-throughput separation dimen-
sion coupled with MS instrumentation offering analyte separa-
tion on the basis of ion structure (ion mobility) in addition to 
standard mass separation in complex samples.9,10 The drift tube 
implementation of ion mobility MS (DTIMS) involves usage of 
a linear ion mobility tube to separate ionized molecules before 
mass-to-charge measurement. Ions exhibit different transit 
times through the drift tube determined by their size, shape, 
charge, and instrument acquisition parameters. This measured 
drift time can then be converted to a collision cross section 
(CCS) value, which is a function the molecule’s structural 
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properties.11 One of the primary advantages of IM-MS separa-
tions is the resolution of isomers on the basis of structure, which 
in some cases can serve as a replacement to slower liquid 

chromatography separations.12,13 However, ion mobility intro-
duces further experimental complexity to already labor-inten-
sive MS workflows. 

 

Figure 1. AutonoMS offers walkaway automation of ion mobility mass spectrometry data collection and analysis. (A) AutonoMS integrates 
software control layers with the Agilent RapidFire - 6560 ion mobility mass spectrometry system to provide fully automated data acquisition, 
raw data handling, data processing, and metabolomic end-to-end analysis resulting in tabular metabolite reports and interactive Skyline 
documents. (B) The AutonoMS software stack is hosted on a shared drive between the 6560 and RapidFire control computers. Human 
laboratory users or an upstream software agent may trigger AutonoMS runs using a tabular experiment definition file. The AutonoMS work-
flow control is written using Prefect14 which coordinates the event-triggered actions of modules responsible for instrument file compilation, 
instrument control (pywinauto15), post-acquisition raw data handling including ion mobility demultiplexing and CCS calibration (PNNL 
PreProcessor16 and DEIMoS17), and metabolomic data analysis (Skyline18,19). Additional modules may be written and incorporated into the 
workflow to accommodate different instruments or analysis workflows.

Here we introduce AutonoMS, which offers end-to-end auto-
mated runs of MS instrumentation involving sample injection, 
raw data processing, and metabolomic analysis with little user 
intervention, and is currently written around the Agilent 
RapidFire20 and 656021 DTIMS-QTOF system (Figure 1A). 
AutonoMS coordinates instrument control, resource alloca-
tion, and data processing across the RapidFire and 6560 con-
trol computers using a collection of open-source software li-
braries (Figure 1B). Sample runs can be automatically trig-
gered from experiment plan files, so that either a human user 
or upstream software agent may design and run experiments. 
This means that the AutonoMS platform can be integrated into 
a larger automated laboratory setting in which software agents 
control and coordinate multiple experimental, analytical, and 
informatic modules. Runs may involve multiple acquisition 
modes, sequences, and variable run parameters. After sample 
acquisition, data is automatically prepared, processed, and 
then analyzed via Skyline,18,19 producing both interactive re-
sults and tabular metabolite summaries. To demonstrate the 
use of the AutonoMS platform, we analyzed a set of chemical 
standards chosen from the yeast metabolic network. These 
standards, serially diluted by an Agilent Bravo liquid handling 
robot, exhibited the expected dynamic measurement re-
sponses as autonomously collected and detected by Au-
tonoMS (Figure 2). We also processed extracted intracellular 
yeast samples through the platform, indicating its potential 
utility in automated untargeted and discovery applications 
(Figure 3 and Figure 4). 

EXPERIMENTAL SECTION 
Workflow Control. The AutonoMS control flow automation 
and workflow logic was implemented using Prefect (version 
2.10.12).14 Prefect is an open-source Python-native workflow 

manager for orchestrating complex code workflows from 
modularly-defined tasks, smoothly turning Python functions 
into workflow steps. We chose Prefect because of its open-
source nature, active developer community (currently over 
200 GitHub contributors), and increasing adoption across in-
dustrial data science teams. Its native Python implementation 
obviates the need to learn a separate workflow domain spe-
cific language. The workflow begins by compiling an input 
tabular experiment definition file into RapidFire XML files. 
AutonoMS then sequentially triggers an IM-MS acquisition 
run for each sequence in the experiment definition using the 
instrument control utilities described below. In our configura-
tion, the workflow currently runs only one sequence at a time 
in order of appearance in the experiment file. However, the 
workflow parameters may be modified for laboratories with 
capabilities of running parallel data acquisition on multiple in-
struments. A sample experiment file is available in the Au-
tonoMS GitHub repository (https://github.com/gkreder/au-
tonoms). 
Upon completion of data acquisition for all sequences, the 
workflow then automatically performs post-run data pro-
cessing. The RapidFire 365 - 6560 creates a single Agilent .D 
raw data file that must be split into .D files corresponding to 
injections from the individual microplate wells. Currently for 
RapidFire instruments configured in BLAZE (direct injec-
tion) mode, the RapidFire software can detect injection 
boundaries but does not correctly split data into the corre-
sponding well files. AutonoMS automatically shifts the file 
split times according to the detected injection boundaries and 
assigns them to the correct well plate. A description of con-
figuration of the RapidFire for BLAZE mode is provided be-
low.   
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Data multiplexing is a powerful ion mobility technique for in-
creasing sensitivity.22 Our configuration utilizes 4-bit IM de-
multiplexing, but this requires post-acquisition data demulti-
plexing. AutonoMS performs ion mobility data demultiplex-
ing on the individual well files using the PNNL PreProcessor 
utility.16 Before conversion to collision cross section (CCS) 
values, raw measurements in DTIMS files from the Agilent 
6560 must have their drift time values calibrated according to 
standard measurements with known CCS values. AutonoMS 
automatically performs this CCS calibration for each injection 
within a given sequence using nearest prior injection occur-
ring in the same sequence with sample type “TUNE”. The de-
multiplexed tune file is converted to mzML23 format using the 
msconvert utility.24,25 CCS correction coefficients are then 
calculated from the mzML tune file using the DEIMoS library 
for ion mobility data processing17 and user-specified reference 
CCS values. A CCS calibration XML file is generated and 
copied to each injection .D file in the given sequence. For the 
experiments outlined in this work, the Agilent ESI tuning mix 
was used for CCS calibration. A sample sheet containing the 
Agilent tune ions and their CCS values is available in the Au-
tonoMS GitHub repository. We note that the workflow can be 
configured to perform this CCS calibration on manually cal-
culated calibration coefficients from separate runs; however, 
it is recommended to include a tune injection in each sequence 
for the sake of automation simplicity and data robustness. Au-
tonoMS then performs peak detection and quantification on 
the demultiplexed CCS calibrated injection files using the 
Skyline method (described below) via the Skyline Command-
Line interface.  
Instrument Control. The pywinauto library (version 0.6.8)15 
was used to write automation control wrappers around the Ag-
ilent MassHunter Workstation Data Acquisition (version 
11.0) and RapidFire UI (version 6.1.1.2114) software used to 
control the 6560 mass spectrometer and RapidFire sampler. 
Functionalities necessary for automatically running plates ac-
cording to user-supplied acquisition method and experimental 
parameters were implemented. These include reading instru-
ment state, loading files and methods, starting and stopping 
runs, running the calibrant line, checking RapidFire vacuum 
pump pressure, setting run mode, and data file splitting. Of 
special note is the standard Agilent hardware configuration of 
separate control desktops for the 6560 and RapidFire con-
nected via ethernet (Figure 1B). To work in this configuration, 
the codebase is hosted on the network drive shared between 
the two computers, and the AutonoMS workflow is run from 
the 6560 control computer. A Remote Procedure Call server 
using the RPyC library (version 5.3.1)26 is hosted on the 
RapidFire computer to execute RapidFire control functions 
from the 6560 computer. The codebase for RapidFire - 6560 
instrument control is available in the agilent_methods mod-
ules of AutonoMS.  
Data Processing. Peak detection and area quantification were 
performed using Skyline (version 22.2.0.351).18,19 Skyline 
was chosen because of its open-source nature, ability to han-
dle ion mobility data, and its combination of command-line 
and GUI functionality. Skyline natively supports RapidFire 
ion mobility data and has previously been used for acquisition 
workflows such as those described below.12 Its command line 
utilities can be integrated into a fully automated workflow as 
in AutonoMS and results can later be loaded into the GUI to 
be verified by the end user. Peak detection was run using the 
TOF mass analyzer settings at a resolving power of 30,000, 

an ion mobility resolving power window of 30, and a maxi-
mum m/z of 1700. The full set of Skyline processing parame-
ters in Skyline document format is available in the AutonoMS 
repository. 
Metabolite CCS Library. Yeast metabolites were taken from 
the Yeast Metabolome Database (YMDB)27,28 and compared 
against the Cross Collision Section Database (CCSDB) hosted 
by the Erin Baker Lab and available at https://brcwebpor-
tal.cos.ncsu.edu/baker/. These CCS values were of particular 
interest since they were also measured on an Agilent 6560 
mass spectrometer for comparison purposes. Metabolites ap-
pearing in both YMDB and CCSDB were compiled together 
with their experimentally observed CCS values for their 
[M+H]+ and [M-H]- adducts. The compiled list of YMDB 
CCS metabolites in Skyline transition list format is available 
in the AutonoMS repository. 
RapidFire Sample Injection. The RapidFire was operated in 
BLAZE flow injection mode to achieve rapid sample injection 
and analysis times.29 This involves configuring the RapidFire 
valve tubing such that the sample loop feeds directly into to 
the mass spectrometer outlet rather than through the solid 
phase extraction (SPE) cartridges. The RapidFire configura-
tion files must also be modified for the valve positions to cor-
rectly correspond to sample sipping with this connection con-
figuration. We note that the RapidFire is capable of some au-
tomated in-line sample preparation, for example desalting, via 
its built-in SPE functionality. This functionality was not uti-
lized for our demonstration experiments since our sample 
preparation was performed prior to injection. RapidFire 
BLAZE mode configuration instructions are provided in the 
supplementary information. Operating the RapidFire using 
the SPE functionality via AutonoMS can be done by simply 
reverting the instrument back to its standard configuration and 
changing the cartridge and sipper parameters in the input ex-
perimental file. 
The RapidFire method used involved a sample sipping time 
of 600ms followed by 4400ms of sample elution into the MS. 
As seen previously12, sipping (aspiration) time is reported ra-
ther than injection volume as this is the instrument’s control-
lable parameter given its mechanism of sample aspiration 
driven by a vacuum pump. The RapidFire’s sample loop holds 
roughly 30 µL. This elution time was chosen to ensure base-
line peak separation at higher sample concentrations, and we 
note that this can be reduced for faster cycle times. The mobile 
phase (pump 1) consisted of 50/50 water/ methanol with 0.1% 
formic acid at a flow rate of 1.25 mL/min. The full RapidFire 
parameter set are provided in the supplementary information. 
6560 Mass Spec Data Acquisition. Mass spectrometry data 
was collected in IM-QTOF mode with 4-bit multiplexed in-
troduction of the ion packets into the drift tube. Multiplexing 
has been shown to improve ion utilization and resolving 
power in IMS;12 however, it creates the requirement for addi-
tional data post-processing as described in the workflow man-
agement section. The Agilent 6560 was operated in the 100-
1700 m/z range at a frame rate of 1.1 frames/sec, and a gas 
temperature of 325°C. A full description of the QTOF and IM 
acquisition parameters are available in the supplementary in-
formation.  
Standards Preparation. Dry chemical stocks of glutathione, 
L-histidine, L-valine, and L-arginine were mixed at room tem-
perature with a stock solution of 50/50 water/methanol to a 
concentration of 10 mg/mL. These stocks were dispensed into 

https://brcwebportal.cos.ncsu.edu/baker/
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standard 384 well microplates using a Thermo Fisher Combi 
Multidrop reagent dispenser and 10-fold serial dilutions were 
robotically performed using an Agilent Bravo liquid handling 
robot controlled with the VWorks Automation Control soft-
ware (version 8.0.0.335, Agilent Technologies). 
Yeast Culturing. S. cerevisiae wildtype strain BY4741 (Ac-
cession number: Y00000) from the EUROSCARF deletant li-
brary was revived from -80 °C glycerol stocks by overnight 
cultivation in YPD media (10 g/L yeast extract, 20 g/L pep-
tone from meat, 20 g/L dextrose) at 30 °C, 220 rpm. The strain 
was then streaked out on a YPD agar plate and incubated at 
30 °C for 3 days. A YPD preculture was inoculated using mul-
tiple colonies from the agar plate and then incubated at 30 °C, 
220 rpm for 14 hours. The cells from the YPD preculture were 
washed twice (centrifugation at 5,000 xg, 5 minutes) with 
YNB media (6.7 g/L YNB without amino acids and with am-
monium sulfate, 1x Amino acid mix, 20 g/L dextrose). Cells 
were resuspended in 1 mL YNB media and used as inoculum 
for the main culture with an initial OD600 of 0.05. The main 
cultivations were performed in 4x250 mL wide-necked baf-
fled shake flasks sealed with cotton stoppers, each with a 
working volume of 40 mL YNB media. The shake flasks were 
incubated at 30 °C, 220 rpm. Cultivations were stopped after 
24 hours post-inoculation and the flasks were pooled. Final 
OD600 was measured to be 3.56 and was used to adjust the 2-
propanol alcohol volume in the ensuing extraction method.  
Yeast Quenching and Extraction. Sample preparation and 
intracellular metabolite extraction followed a previously es-
tablished protocol.30,31 Samples were quickly transferred to 
15 mL centrifuge tubes (5mL per tube) containing absolute 
methanol (99% purity) prechilled to -80 °C. The ratio between 
sample and methanol was kept at 1:1 v/v. Tubes were kept in 
dry ice during the process and were transferred to a centrifuge 
and spun for 5 min at 3000g and -9 °C. The supernatant was 
then discarded, and the pellet was transferred and stored at 
−80 °C. Samples were lyophilized (-40 °C, 0.1 mbar) over-
night and kept at −80 °C pending extraction. Metabolite ex-
traction was performed by adding 75% 2-propanol (preheated 
to boiling temperatures, with a ratio of 1 mL 2-propanol per 
1 mg of sample) to the lyophilized yeast biomass in 15mL 
centrifuge tubes. Sample weight was estimated from optical 
density (0.34mgDCW/mL per 1 OD600). Samples were 
placed on a heating block for 1 minute at 100 °C, then shaken 
and vortexed for 2 minutes, followed by an additional 3 
minutes on the heat block. Samples were then cooled for 
15 min at 4 °C before centrifuging for 20 min at 3200 g and 
4 °C. The supernatant was filtered through a 0.45 µm nylon-
filter and transferred to 50 mL centrifuge tubes and stored at 
−20 °C until analysis. Samples were transferred to a standard 
384 well microplate for AutonoMS injection using a Thermo 
Fisher Combi Multidrop reagent dispenser.  

 

Figure 2. Automated targeted data analysis of standards with Au-
tonoMS. (A) Detected glutathione [M+H]+ ion intensity from an 
automated AutonoMS analysis of glutathione in 50/50 metha-
nol/water at 0.1 mg/mL injected from separate wells in a robot-
ically dispensed 384 well microplate. (B) Detected peak areas 
from AutonoMS analysis of robotically-prepared triplicate serial 
dilutions of 5 chemical standards in positive and negative ioniza-
tion modes robotically dispensed into a 384 well microplate.  

RESULTS AND DISCUSSION 
Walkaway Automation. Over the course of our experimen-
tation, we found that AutonoMS enabled reliable automated 
runs and analysis of data from simple experiment definition 
files without any need for human intervention (Figure 1). The 
AutonoMS platform integrated smoothly into our automated 
laboratory workflows and provides an event-triggered soft-
ware-compatible interface to a larger automated environment. 
Resources can be scaled automatically through the control 
workflow in which specific tasks are granted user-defined re-
source usage and concurrency rights. We found this was cru-
cial for automating this combination of data acquisition, data 
preprocessing, and data analysis tasks with varying degrees of 
interdependencies and resource demands. Through the control 
workflow, the informatic steps of the platform can be run on 
remote or distributed resources to cut down on computation 
time. Instrument data acquisition for a given experiment defi-
nition runs in its entirety before initiating the informatic por-
tions of the pipeline. As such, multiple sequences can be run 
from the same microwell plate while minimizing sample 
evaporation time. The targeted data and untargeted assays de-
scribed below involved laboratory robotics and multiple data 
sequences and acquisition modes per experiment. We found 
that aside from hardware maintenance and physical sample 
transfer, usage of the AutonoMS platform eliminated the need 
for human intervention or even presence during the process of 
metabolomic data acquisition and analysis. 
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Figure 3. Automated analysis of extracted intracellular yeast 
samples with AutonoMS. (A) Detected peak areas in extracted 
yeast samples across plate injections (368 over 38 minutes per 
mode) of the 5 ions used in the chemical standards analysis. Ions 
correspond to the [M+H]+ and [M-H]- adducts in positive and 
negative modes, respectively. Peak areas shown as the 6-injection 
moving average (solid lines) together with 6-injection standard 
deviation (shaded areas). (B) Untargeted metabolite features 
found across all extracted yeast samples across positive (blue) 
and negative (orange) ionization modes. Displayed features were 
present in at least 2/3 of samples in a given mode and had Agilent 
quality scores greater than 70. 812 total features were found of 
which 404 involved multiple ions in various ionization states. 
Single ionization state (z = 1) ion features are shown in grey, 
marker size is scaled according to log10(abundance).   

Targeted Data Analysis of Standards. We tested the use of 
AutonoMS in a targeted data analysis metabolomics applica-
tion by automated sampling and analysis of a chemical stand-
ard, glutathione, at a set concentration of 10-1 mg/mL in a 
stock solution of 50/50 methanol/water (Figure 2A). Au-
tonoMS, running the direct injection ion mobility method de-
scribed in the experimental section, enabled the automated 
analysis of the known standard with an injection time of five 
seconds per sample with consistent performance. The plat-
form autonomously injected, processed, and detected the 
[M+H]+ adduct in a positive mode run without human inter-
vention. We also tested the AutonoMS platform on robot-
ically-prepared triplicate 10-fold serial dilutions of five stand-
ards: glutathione, L-histidine, L-valine, L-arginine, and aden-
osine monophosphate, from a starting concentration of 10 
mg/mL (Figure 2B). Peaks areas were filtered to include only 
detections at levels 5x higher than those in 50/50 water/meth-
anol blanks. The platform similarly autonomously collected 
data and reproducibly detected the standards with a linear 

peak area response range in the 10-4-10-1 mg/mL range. In both 
cases, no human intervention was required other than cleaning 
of the instruments and transfer of the prepared sample micro-
plates to the RapidFire. These panels lead us to conclude that 
(1) the AutonoMS platform automates existing targeted data 
analytical workflows and (2) using the automated workflow 
produces robust and consistent results useful to downstream 
human users or software processes.  
Metabolomic Fingerprinting of Yeast. To investigate the 
utility of the AutonoMS platform in systems biology discov-
ery applications, we cultured and prepared yeast samples to 
study their intercellular metabolomic content via untargeted 
metabolomic fingerprinting (Figure 3 and Figure 4). Extracted 
intracellular yeast samples were pooled and dispensed into a 
standard 384 well microplate after which AutonoMS was used 
to automatically run whole-plate sequences of injections in 
both positive and negative ionization modes. 368 consecutive 
injections were run in each mode (leaving the first plate col-
umn reserved for tune ions) for a total injection time of 38 
minutes per mode. Ion behavior in this complex sample matrix 
largely agreed with exhibited behavior in the targeted data 
analysis standards test (Figure 3A). Ions with higher intensi-
ties had relatively consistent peak areas across the plate injec-
tions, with peak area consistency decaying dramatically 
around the 104 mark due to poor counting statistics.  
The pre-processed data produced by AutonoMS was also run 
through untargeted feature finding with Mass Profiler (version 
10.0.195, Agilent Technologies), yielding 812 metabolite fea-
tures across positive and negative mode with (1) a Q-Score 
greater than 70 and (2) occurrence in at least 2/3 of a given 
ionization mode’s injections (Figure 3B). Of these features, 
404 were higher-quality features involving multiple ions in 
various ionization states. This Mass Profiler analysis was per-
formed manually but could be automated and integrated into 
AutonoMS using DEIMoS17 if it suits the end-user’s needs. 
AutonoMS automatically ran this yeast injection data through 
the Skyline pipeline using the YMDB CCS library (described 
in the experimental section). The reports generated from the 
AutonoMS runs facilitated compilation of a panel of 35 de-
tectable YMDB intracellular metabolites with publicly avail-
able CCS values filtered according to the earlier tests (display-
ing an average peak area greater than 104 across injections) 
using the ion mobility direct injection method described in the 
experimental section. These metabolites are shown in   
Figure 4 grouped by their ClassyFire/ChemOnt32 superclass 
labels together with their mean TIC-normalized peak areas 
across injections. We note that further automated data collec-
tion and analysis modules can be incorporated via AutonoMS 
to improve the application-specific detection performance of 
such a workflow. Usage of the AutonoMS platform enabled 
hands-off automated metabolomic profiling in the context of 
existing background knowledge of yeast metabolism. In this 
case, usage of the platform dramatically lowered the time and 
effort required to characterize yeast samples and produce in-
terpretable results in the context of this background 
knowledge. This opens the door towards incorporation of a 
cutting-edge analytical platform into more fully autonomous 
discovery applications in which AI software agents control 
experimentation, interpret results, and run further rounds of 
experimentation as has been proposed and demonstrated pre-
viously.33–35 Metabolomics-based biological discovery, espe-
cially in yeast, is a rich field. Previous work has demonstrated 
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the utility of applying rigorous mass spectrometry methods 
towards measurements of yeast metabolites.36,37 Integrating 
these with automated culturing, sampling, additional data mo-
dalities, and modeling techniques has yielded powerful ap-
proaches.38,39 Existing approaches have demonstrated the po-
tential of in-line SPE-IM-MS exometabolome analysis in live 
cultures.40 AutonoMS should facilitate such multifaceted ap-
proaches, allowing for granular control logic and flexibility to 
new techniques. We also note that in addition to downstream 
discovery, the automated characterization of well-behaved 
metabolites for a given instrument acquisition method imme-
diately opens the door to closed-loop automated MS acquisi-
tion methods development.  

CONCLUSIONS 
Analytical instrumentation must keep pace with the increasing 
ability of life science laboratories to quickly produce large 
quantities of experimental samples. Here we introduced Au-
tonoMS, a platform combining cutting-edge ion mobility- 
mass spectrometry instrumentation with software layers capa-
ble of end-to-end instrument control, data processing, and 
metabolomic analysis. From our findings, we conclude that 
the resulting configuration can be immediately utilized in labs 
already using the same instrumentation to dramatically im-
prove workload and improve results, especially as related to 
human burden. Even when using human-compiled experiment 
definition files, the streamlined AutonoMS workflow pro-
duced actionable results in about 1/4th of the time compared 
to the same tasks using the already-optimized conventional 
Agilent RapidFire - 6560 vendor workflow (25 minutes com-
pared to an hour for the targeted data analysis standards work-
flow) with much less manual intervention. We also note the 
extensibility of this platform, since the software workflow co-
ordinates the actions of modular instrument control and infor-
matic components, each of which can be replaced with a new 
module fitting a given laboratory’s configuration. For exam-
ple, AutonoMS could be used for untargeted metabolomic 
feature discovery or proteomic profiling by swapping out the 
current Skyline metabolomics module. The current RapidFire 
– 6560 instrumentation setup is already capable of a large 

range of analysis including proteomics. A new instrument 
could be controlled by AutonoMS by calling its instrument 
control wrappers in the workflow. Multiple instruments can 
be run in parallel simply by modifying the workflow control 
configuration parameters. This process can be made easier 
through instrument vendor cooperation, particularly with re-
gard to whether high-level users will have access to an appli-
cation programming interface (API) to allow direct command-
line control of all instrument functions, rather than requiring 
all commands to be passed manually to the instrument through 
a graphical user interface (GUI) by means of interactive 
mouse-clicks and pull-down menus on a screen. As described 
in the experimental section, instrument control for the Rapid-
Fire – 6560 required GUI automation. General laboratory au-
tomation outside of mass spectrometry remains a challenge. 
For example, our yeast quenching and extraction protocol was 
performed manually save for the final step of robotically dis-
pensing samples into the injection plate using the Multidrop 
dispenser given logistical and resource constraints. With the 
proper automated liquid handling equipment and laboratory 
space, this protocol can be fully automated and the capabilities 
of AutonoMS would allow for completely hands-off analysis 
of samples from culture to output results. Looking further 
ahead, we believe AutonoMS opens the door to closed-loop 
automation utilizing cutting-edge analytical instrumentation 
in which automated laboratories produce samples, transfer 
them to the instrument, trigger AutonoMS runs, then use the 
processed results to perform the next round of experimenta-
tion. For example, a setup combining automated software-
controlled chemostats, liquid handling robotics, centrifuges, 
heat plates, shakers, freezers, and the RapidFire - 6560 could 
be used to culture yeast samples in various conditions, prepare 
them, then metabolically analyze them all via software calls 
with AutonoMS handling the IM-MS portion of the workflow. 
An AI system sitting on top of this configuration could take 
produced results and compare with existing background 
knowledge to find discrepancies between observed and ex-
pected output. Such systems could utilize database  systems 
under development41 designed for AI software agent unified 
access  to experimental data, protocol metadata, results, and  
background knowledge.
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Figure 4. Use of AutonoMS for automated data collection and integration with background knowledge. Panel of 35 metabolites from 
the Yeast Metabolome Database (YMDB27,28) with publicly available collision cross section (CCS) values from the Baker Lab Cross 
Collision Section Database (CCSDB). Chosen metabolites were detected by the acquisition method described in the experimental 
section and exhibited mean peak areas across extracted yeast injections greater than 104. Metabolites are grouped by their 
ClassyFire/ChemOnt 32 superclass labels and are plotted against their mean peak areas across extracted yeast injections per ionization 
mode. Error bars display the intensity standard deviations. 
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The file “autonoms-demo” is a video demonstration of Au-
tonoMS usage demonstrating a complete run through the Rapid-
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AutonoMS source code, example experimental, configuration, 
and data processing files are available via GitHub at 
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Synopsis: The authors introduce a software suite, AutonoMS, for automating mass spectrometry runs including sample run compi-
lation, instrument run control, and data analysis. Current functionality is written around the Agilent RapidFire – 6560 ion mobility 
platform. Modules for these functionalities are integrated using workflow control software in a manner allowing users to add modules 
for their own instruments and data workflows.  
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