Learning to Maximize Network Bandwidth
Utilization with Deep Reinforcement Learning

Hasibul Jamil, Elvis Rodrigues, Jacob Goldverg, Tevfik Kosar
Department of Computer Science and Engineering
University at Buffalo (SUNY), Amherst, NY 14260, USA
Email:{mdhasibu, elvisdav, jacobgol, tkosar} @buffalo.edu

Abstract—Efficiently transferring data over long-distance,
high-speed networks requires optimal utilization of available
network bandwidth. One effective method to achieve this is
through the use of parallel TCP streams. This approach allows
applications to leverage network parallelism, thereby enhancing
transfer throughput. However, determining the ideal number of
parallel TCP streams can be challenging due to non-deterministic
background traffic sharing the network, as well as non-stationary
and partially observable network signals. We present a novel
learning-based approach that utilizes deep reinforcement learning
(DRL) to determine the optimal number of parallel TCP streams.
Our DRL-based algorithm is designed to intelligently utilize
available network bandwidth while adapting to different network
conditions. Unlike rule-based heuristics, which lack generaliza-
tion in unknown network scenarios, our DRL-based solution
can dynamically adjust the parallel TCP stream numbers to
optimize network bandwidth utilization without causing network
congestion and ensuring fairness among competing transfers.
We conducted extensive experiments to evaluate our DRL-based
algorithm’s performance and compared it with several state-of-
the-art online optimization algorithms. The results demonstrate
that our algorithm can identify nearly optimal solutions 40%
faster while achieving up to 15% higher throughput. Further-
more, we show that our solution can prevent network congestion
and distribute the available network resources fairly among
competing transfers, unlike a discriminatory algorithm.

Index Terms—Efficient network bandwidth utilization, parallel
TCP streams, deep reinforcement learning, online optimization.

I. INTRODUCTION

With the scientific and commercial application domains
generating an unprecedented amount of data, geographically
distant sites need to transfer large volumes of data as part
of complex analytics workflows to gain insights from the
data [1]. For instance, the National Energy Research Scientific
Computing Center (NERSC) generates about 1 Exabyte of data
per year, which needs to be moved to Oak Ridge Leader-
ship Computing Facility for petascale simulations [2]. How-
ever, despite high-speed networks, most data transfers cannot
achieve more than a few Gbps due to inadequate network
bandwidth utilization. It has been observed that single-stream
TCP throughput achieved by data transfer applications is a
small portion of the available end-to-end network bandwidth,
and this deficiency is due to the TCP’s additive increase and
multiplicative decrease (AIMD) window control procedure, as
reported in several studies [3]-[7].

There are two primary congestion control mechanisms:
loss-based algorithms and delay-based algorithms. Loss-based

algorithms, such as CUBIC [8] and NewReno [9], can achieve
higher throughput, but they are prone to higher round trip
time (RTT). On the other hand, delay-based algorithms, such
as Copa [10] and FastTCP [11], are usually subject to ac-
knowledgment (ACK) delay and network jitter, resulting in un-
derutilization of network capacity. For loss-based algorithms,
the deficiency in a single TCP stream’s throughput is due to
the window control mechanism in TCP congestion avoidance
in response to packet loss. The TCP bandwidth estimation
equations proposed by Mathis [12] illustrate that TCP through-
put is inversely proportional to the square root of the packet
losoverles rate. To achieve near-full network capacity usage
on high bandwidth-delay-product (BDP) networks, a minimal
packet loss rate is required for a single TCP stream. However,
achieving such a low packet loss rate is impractical as different
factors, like network congestion, congestion control procedure,
or hardware failures, can be the underlying reason [13], [14].

The use of multiple parallel TCP streams is a common
method to enhance data transfer throughput by efficiently
utilizing network bandwidth. However, increasing the number
of TCP streams beyond a certain point does not enhance
performance but instead leads to congestion and greater packet
loss. The optimal number of parallel TCP streams varies
depending on dynamic conditions such as network background
traffic, network route, endpoints, and network configuration.
Given the non-stationary nature of the problem, it is necessary
to adapt the number of parallel TCP streams dynamically.
Previous work has explored different approaches to finding
the optimum number of TCP streams, including real-time
probing [6], heuristics [15], [16], and historical analysis mod-
els [3], [17]. However, heuristics models have been found to
suffer from poor robustness, as they are designed to work with
specific network conditions, which may not be present in other
networks. Similarly, real-time probing can create unnecessary
traffic that may overburden the network resources and cause
unfairness among other contending background traffic.

This paper presents a novel methodology that leverages
deep reinforcement learning (DRL) to devise a policy function
approximator for optimizing TCP streams based on host node
network signals. Beyond the conventional methods, this study
introduces a utility function with an incorporated punishment
term, based on observed packet loss. This novel intervention
ensures that while optimizing for maximum throughput, fair-
ness is also maintained among competing data transfers.

The major contributions of this paper include:

« Establishing a Novel Perspective: We present compelling
evidence that maximizing aggregated TCP throughput can
be modeled as a DRL problem. To address this, we devise
a policy gradient method that aims for optimal network
bandwidth utilization.

o Innovative Reward Mechanism: Our reward function
uniquely ensures both maximum throughput and fairness
amidst competing background traffic. This dual-objective
approach differentiates our work, tackling two pivotal
concerns with a unified model.

o Comprehensive Evaluation Insights: After rigorous com-
parisons with various online optimization techniques,
our DRL-based algorithm emerges superior. Notably, it
achieves convergence 40% faster on average and delivers
up to 15% enhanced aggregated throughput.

The rest of the paper is organized as follows: Section
Il presents the background and related works; Section III
discusses our proposed method; Section IV presents the eval-
uation of our method; and Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

This section delves into the benefits of using multiple TCP
streams to maximize network bandwidth utilization while also
exploring the associated congestion and fairness issues that
can arise when sharing network resources with background
traffic. Additionally, it examines existing studies in this field
and highlights the unique advantages of our model.

A single stream TCP throughput is modeled with the
following Equation 1 in case the packet loss rate is less than
1/100 as shown by Mathis [12]:

MSS C 0
RTT \/p

Here, TCP,,, represents TCP throughput, MSS is the
maximum segment size, RTT is the round trip time, C' is a
constant, and p is the packet loss ratio - calculated by dividing
the number of retransmitted packets by the total number of
transmitted packets. While MSS and RTT are static and
depend on network characteristics, p is a dynamic signal that
has a significant impact on the loss based TCP congestion
avoidance algorithm. The TCP congestion avoidance algorithm
treats all packet losses as a signal for network congestion
and reduces the TCP sending rate (i.e., decreases the TCP
window size), regardless of the reason for packet loss, whether
it is due to network congestion or traffic insensitive reasons
(such as hardware or link failure, TCP random early detection).
We can extend the single stream TCP throughput model for
multiple TCP streams by aggregating individual throughput of
each stream to derive the application’s aggregated T'C' P, 4, as
shown in Equation 2 [7]:

TOPthr S

c [MSS MSS
TCP,, < —— 2
o 2w m e ?

where p; is the packet loss rate of TCP connection i, M S.S
is the same as above and fixed for all TCP streams and R1"T is

the converged round trip time value of all the TCP connections.
Equation 2 shows that multiple streams can achieve higher
aggregated throughput than a single stream because they create
a virtual combined M SS that is n times larger. However, this
is only true if the proportion of packet loss is evenly distributed
across all streams and there is no congestion.

The benefits of adding additional TCP streams diminish
when the network gets congested due to an increase in
packet loss rate and bottleneck links reaching full capacity. To
achieve optimal network bandwidth utilization, it is necessary
to identify the ideal number of TCP streams that do not
cause congestion. However, this number is not static and
varies throughout the transfer session due to fluctuations in
background traffic. To address this issue, we propose a DRL-
based algorithm that can learn a policy to intelligently avoid
network congestion and select an optimal number of parallel
TCP streams based on the network signals at the end hosts.

Several previous studies have explored the proposal of a
new transport layer to enhance bandwidth utilization, such as
data center congestion control [18], qtcp [19], BBR [20], and
PCC-Vivace [21]. However, the widespread implementation
of a new transport layer protocol is often challenging since it
requires system and kernel modifications. Dong et al. [6] have
suggested probing techniques to estimate available bandwidth.
While this method can be effective, network probing can add
to the existing traffic burden and excessive probing may result
in network congestion. Several ad-hoc heuristics methods [15],
[22] have utilized observation-based rules to select the number
of parallel streams. However, these approaches are often not
robust enough for new or previously unseen network scenar-
i0s. Other methods, such as Falcon [23] and Balaprakash et
al. [24], tackle the transfer throughput maximization problem
as an online convex optimization. However, these methods are
stateless and do not optimize for the entire transfer, focusing
instead on immediate performance improvement.

To address these limitations, our work presents a novel
learning-based approach that utilizes deep reinforcement learn-
ing. We propose a policy function approximator to generalize
the relationship between observed network signals in the end
host and the network congestion state. Our approach discovers
the optimal number of parallel TCP streams to operate on the
sweet spot, maximizing available network bandwidth while
avoiding network congestion.

III. METHODOLOGY

Our design principles are as follows: (1) no prior knowledge
of the network or end hosts is required; (2) only observations
obtainable at the end host are used; (3) a DRL approach is used
to learn the relationship between observed network signals and
network congestion state; and (4) the problem is formulated as
a partially observable Markov decision process (POMDP). The
first principle ensures that the proposed method is applicable to
a wide range of networks and end hosts. The second principle
allows the method to be implemented without requiring any
changes to the network or end hosts. The third principle
allows the method to learn the optimal number of parallel TCP

streams to utilize available network bandwidth. The fourth
principle allows the method to handle the fact that the network
condition is only partially observable.

Our introduced DRL agent employs a policy gradient
method, specifically proximal policy optimization (PPO) [25].
The POMDP framework enables the DRL agent to utilize
observed network signals as the state of the environment,
adjusting the number of parallel TCP streams to optimize
network bandwidth. Feedback in the form of performance
metrics is used with a utility function to derive a reward for
the chosen action, allowing the DRL agent to optimize its
decisions over time. The environment consists of the end hosts,
data transfer application, and network links. The DRL policy
agent uses a fully connected deep neural network (DNN)
model to select an action based on present and previous n
steps of network signals (i.e., state space). The feedback (i.e.,
achieved throughput, packet loss rate (plr), and round trip time
(rtt)) from the environment are used with a utility function
to derive a reward for the chosen action of DRL agent. The
cycle repeats until the transfer process concludes, with each
step considered a monitoring interval (MIs) [21]. Our model’s
DNN and PPO hyperparameters are described in table I.

TABLE I: DNN and PPO Hyper-parameters

Hyperparameter Value Hyperparameter Value
Model type fully-connected PPO entropy coefficient 0.01
Model nonlinearity tanh PPO clip param 0.3
Model hidden layers [512, 512] PPO VF clip param 10
Weight sharing between 6, 0,, true PPO KL target 0.01
Learning rate 0.00005 SGD iterations per batch 30
Discount factor y 1 SGD minibatch size 1000

A. DRL Architecture

1) State Space: Minimizing the number of state variables
or attributes that are included in the environment is desirable
to reduce the size of the exploration space, and only those
attributes that are closely related to the DRL agent’s goal
should be included. Since network link characteristics such
as loss rate, available bandwidth, and latency vary across
different networks, state variables in terms of network signals
should avoid signals with high variability (e.g., selecting the
change in RT'T over time rather than the current RT"T value).
The sender selects an action a; at a particular measurement
interval (MI) ¢ and receives observation feedback consisting of
performance metrics after a preset time. From this feedback,
a signal vector z; is computed, which includes state variables
such as the RT'T gradient, RT'T ratio [26], packet loss rate
(plr), and average throughput of the current MI. The DRL
agent’s next action is determined by a fixed-length history of
these signal vectors. So, at time ¢, if the state is s; for our
agent, s; could be defined as: s; = (xt_(n), .. ,xt). Using
a bounded-length history of signal vectors rather than the
most recent one helps the agent effectively detect patterns in
network conditions changes, allowing more accurate reactions.

2) Actions: The DRL agent’s action space is limited to
five actions to accommodate network condition changes. The
actions include adding five, one, or no TCP streams, and
removing one or five TCP streams. The chosen actions encour-
age the agent to increase the number of streams quickly to use

available bandwidth, while allowing reducing the number of
TCP streams when necessary, such as in a congested network.

3) Utility Function and Reward: In this study, a utility
function is introduced to guide the DRL agent in maximizing
its cumulative value during a transfer session. The objective of
achieving optimal utilization of network bandwidth is divided
into two parts: maximizing throughput and minimizing packet
loss. The latter is chosen because it is a strong signal of
network congestion. Additionally, incorporating packet loss in
the utility function promotes fairness among concurrent flows,
as detecting an increase in packet loss rate allows the agent
to take action to decrease the number of TCP streams. Our
utility function has the following non-linear form:

T;
K 4

The variables in the utility function are n; for the number
of parallel TCP streams, T; for average throughput, and L;
for the aggregate packet loss rate. The constants K and B
can be adjusted to control the cost-benefit, performance, and
punishment terms. It is important to note that the improvement
in throughput is not linearly related to the increase in the
number of parallel TCP streams, and the value of K can
be tuned to ensure that the utility function will increase as
long as there is a noticeable (e.g., 1%) throughput gain for
a number of parallel TCP streams. As a result, this non-
linear utility function guarantees that the transfer throughput
will converge and bandwidth resources will be allocated fairly
among transfers originating from multiple users. We utilize the
difference between the utility values of two consecutive MIs
to formulate the reward signal. The utility function specified
earlier establishes the linkage between the state space and the
reward. We choose to employ the difference between the utility
values of successive MIs rather than the precise value of the
utility function. This decision is rooted in the DRL agent’s
goal, which mandates that a rise in the utility value indicates
an increase in the throughput and decrese in packet loss rate;
therefore, the corresponding action should be incentivized.
Consequently, we define the reward as follows [19]:

U (nivTia L’L) =

—T,L; x B 3)

o X, ifUt—Ut,1 > €
o v, if U — U1 < —¢
¢ 0, otherwise

The variables x and y indicate positive and negative reward
values correspondingly. Tunable thresholds € set the sensitivity
of the DRL agent’s selected action to choose the appropriate
action after finding the current optimal point. However, setting
a low value for € may cause oscillation in the agent’s action,
and a high value for ¢ may cause the agent to learn slowly.

B. Training Algorithm

PPO [25] uses a clipped surrogate objective and actor-critic
loss to enhance exploration and sample efficiency. Algorithm 1
outlines the training process for our agent, which learns a
policy function 7(als; @) for the actor. The algorithm runs for
N episodes, during which the agent chooses actions based

Algorithm 1: Actor-critic (PPO) algorithm for learn-
ing a policy to optimize the available network band-

width utilization

: Receiver I P and PORT, file directory DIR,
transfer Environment,e

¢ A stochastic policy function denoted as 7(a | s; 6) that
determines the number of TCP streams to use based on the
state of the system s and a value function denoted as
V ('s;0,) that estimates the value of a particular state s.
The stochastic policy function outputs the action a from the
set of possible actions A, given the state s, and policy
function’s parameters are denoted by 6. On the other hand,
the value function’s parameters are denoted by 6,

Input

Output

#Initialization

Randomly initialize the model parameters 6, 6.,

Maximum number of episodes NV

#Training

n < 0

while n < N do

s < Reset (transfer Environment)

done < False

while done # True do

s < State(transfer Environment)

a < m(als; 0)

S, R < Transfer(s, a)

#added state, action and reward until the
episode finishes S = (s,a, R) with
s C Statespace,a C actionspace and r is
reward. done is True once episode ends

® N U AW R =

-
@ R= 3

14 Reset the gradients to zero for the policy function and value function:

df + 0 and df, + O

15 for (s, a, R) € Statelterator (S) do

16 #Compute the ratio of new to old policy:
. 7(a|s;0

17 ratio <— #;901‘)1)

18 #Compute the PPO surrogate objective:

19 L(0) < min(ratio - A, clip(ratio, 1 — €,1 4+ €) - Ay)

20 #Compute the gradients of the policy

function:

21 df < df + Vo L(0)

22 #Compute the gradients of the value

function:

23 df, + db, + O(R — V(s;6,))?/80,

24 Perform update of 0 using df and 60, using df,, and store old values.
5 | n<n+l

Subroutines: Reset (transfer Environment): Return the
trans ferenvironment to its original state
Subroutines: State (transfer Environment): Get the
transfer Environment’s current state
Subroutines: Transfer(s, a): Apply action a to State s, and return the
reward achieved
Subroutines: Statelteratoor (S): Iterate over all the
(state, action, reward) tuple stored in S after an
episode

on the current policy and receives feedback performance
signals to calculate rewards (lines 7-13). It then stores the
(state, action, reward) tuple for each episode in object S.
After each rollout, the algorithm aggregates gradients to update
the actor and critic network parameters. Lines (17-19) calcu-
late the policy ratio and the PPO objective, which constrains
policy updates within a specified boundary to ensure stability.
The policy gradient loss in line 21 directs the modification
of 6 to enhance the expected reward, while in line 23, the
difference between the rollout reward R and the state value
V(s;0,) is subtracted to reduce gradient variance [27]. The
value V' is concurrently trained to decrease its prediction error.
PPO’s computational demands primarily arise from processing
episode data and subsequent optimization steps. The time
complexity of the algorithm is O(N), where N is the number
of episodes as during training, the average length of each
episode is constant.

IV. EVALUATION

This section presents evaluation results for our DRL agent’s
instantaneous throughput dynamics, throughput performance,
fairness metrics, and convergence® dynamics of multiple trans-
fers. We compare the performance of our solution with two
other online optimization algorithms: Gradient Descent (GD)
and Bayesian Optimizer (BO). For an in-depth discussion of
the GD and BO configurations, please refer to [23].

A. Experimental Setup

Our learning-based model was trained and tested in two
wide-area network testbeds: (1) Chameleon Cloud [28] with
the server at the University of Chicago and the client at
the Texas Advanced Computing Center ; and (2) CloudLab
[29], with the server at the University of Wisconsin and the
client at the University of Utah. Chameleon nodes operate on
Dell PowerEdge R740 with Intel Xeon Skylake CPUs, 192
GiB RAM and 10 Gbps network interface card(NIC). The
CloudLab client uses an HPE ProLiant XL170r server with
an Intel E5-2640v4 processor and 64 GiB RAM with 1 Gbps
NIC. Transfers were conducted using 500 x 1G'B memory-to-
memory files.

B. Instantaneous Throughput Dynamic of Single Transfer

To assess the optimization algorithms’ performance in find-
ing the optimal point and their behavior afterward, we limited
the achievable throughput of each TCP stream to 50 Mbps
(i.e., throttling), and restricted the network to have only the
sender and receiver nodes (i.e., no-background traffic). In a
1000 Mbps network, twenty parallel TCP streams (i.e., CC)
are required to fully utilize the link. Running more than twenty
streams will result in a lower utility value due to an increase in
packet loss rate and the divisor term in equation 3 (i.e., K™).
The algorithms were run for 200 seconds each. It’s noteworthy
that we initially experimented with the deep Q-network (DQN)
algorithm. However, due to the network’s inherent stochas-
ticity, partial observability, and extensive state space, DQN
struggled to adapt and learn effectively. Contrarily, the PPO
algorithm learned well under these conditions, proving more
adept at managing the environment’s complexities, hence it
became our algorithm of choice.

Gradient Descent (GD) peaks in 50 seconds from CC=2
(Figure 1a), constantly probing for network condition changes.
Bayesian Optimizer (BO) attains the optimum at 30 seconds
(Figure 1b), quickly zoning into a concurrency of 20 after
some random samplings. It occasionally revisits the search
space, constrained by its surrogate model’s past observations.
The DRL agent, trained over 5,000 episodes in-total 28
hours, pinpoints the optimal point in 12 seconds (Figure 1a),
adjusting CC around 20 to account for potential network shifts.
Figure 1d shows the DRL agent achieving a peak throughput
of 837 Mbps during the 500 x 1G B transfer, surpassing BO’s
807 Mbps and GD’s 780 Mbps, while also maintaining the
lowest packet loss.

*Convergence refers to the point where each transfer’s throughput stabi-
lizes and becomes relatively constant. This happens when the transfers find a
fair allocation of the available bandwidth and share it equally.

%

- " <
21000 e oS E 21000 e Jooest
g= 5000 0255 2= ﬁ—ﬁmughpm Py
£ 7~ Throughput TEgEE 0.000
- —— aggrplr = —— aggrplr
i 25
o o
cc cc
0% 0 130 200 %% 10 10 200

Time in Seconds Time in Seconds

(a) Gradient Descent (b) Bayesian optimizer

Egiooor 5 — s =

23 s00{ [T 2 £1000 g

E=) —— Throughput | ; = 5
= . =}

aggr plr = & Throughput 0.5~

2 500 W B Aggregated PLR E

20 o) 5

o] H o

0 e £ o K 0%

0 50 100 150 200 = GD BO DRL(PP(?) <

Time in Seconds Algorithms

(c) DRL(PPO) (d) PLR and Throughput

Fig. 1: Performance (i.e., throughput and aggregated packet loss
rate) comparison of Gradient Descent, Bayesian Optimization, and
Reinforcement Learning (PPO) where the optimal number of the
parallel stream (i.e., CC) is 20.

1000 8000
= 04_ = 0075 _
Z 3 = 7000 i 2
2z 800 || 5 2z 0050 5,
Eug o W= PR 0.2 E;d °=u§ B Throughput Eﬁ
£ T® £ 6000 =T 00252
E 600- - E
- =
0.000
BO DRL(PPO) 0 3000 GD BO DRL(PPO)
Algorithms Algorithms

(a) Cloudlab (b) Chameleon

Fig. 2: The aggregated packet loss rate and throughput for various
algorithms in two different testbeds - Cloudlab with 1Gbps link
capacity and Chameleon with 10Gbps link capacity. Each algorithm
was tested for 10 runs, transferring a total of 500 x 1GB files. The
results indicate that the DRL agent outperformed other algorithms,
achieving approximately 15% higher mean throughput while main-
taining a lower aggregated packet loss rate in both testbeds.

The reported results favor the DRL agent since it has
the capability to learn and generalize patterns in network
conditions based on the network signal vectors and adjust the
number of CC effectively. The non-linear form of the utility
function enables the DRL agent to learn how to maximize
the use of the available network bandwidth while avoiding
actions that can lead to network congestion. We retrained
the same DRL agent for an additional 1000 episodes for
cloudlab and chameleon testbeds, respectively, while removing
the TCP stream’s bandwidth limitation (i.e., throttling). This
retraining fine-tuned the DRL agent’s policy to adapt to the
new testbed environment and changes in bandwidth capacity
(e.g., cloudlab has a 1Gbps link capacity, while Chameleon
has 10 Gbps). Figure 2 displays the cloudlab and chameleon
testbed performance for ten runs for each algorithm, where
each run transfers a total of 500 x 1G'B files. As shown in the
box plots, the DRL agent achieved around 15% more mean
throughput while maintaining a lower aggregated packet loss
rate in both testbeds.

While the PPO agent requires retraining for each environ-
ment, indicating limited generalization, it exhibits improved
data efficiency. Specifically, adaptation to a new environment
necessitates only 1000 training episodes, a marked reduction

—— Aggregated Link Utilization

VN\ ‘,«A‘www ’w«w\w«»wr—-q~ e

EE |

Link Bandwidth
Utilization
in

— Transfer-2
2 10007
8001 |

Transfer3 —— Transfer-1

in Mbps
&

= % 1a“~v

Throughput
in Mbps
Throughput

0 0 120 180 40 00 30 90 1350 210 470 130
Time in seconds Time in seconds

(a) Gradient Descent Optimizer

—— Aggregated Link Utlization

(b) Bayesian Optimizer

]
]
3

Utilization
in Mbps

=)

Link Bandwidth

-Bagss

o

/'/ e
|V

fairness index

Instantaneous Jain

Throughput
in Mbps

0 10 20 20 a0 30 O 10
Time in seconds

0 120 180 240 A0
Time in seconds

(c) DRL (PPO)

(d) Instantaneous JFI for GD,BO
and DRL

Fig. 3: Dynamic throughput while multiple transfers share the same
network resource. In Figure 3d, the instantaneous Jain fairness index
is depicted for all three algorithms when all three transfers for each
algorithm occur simultaneously on the shared network.

from the initial 5000 episodes. The balance between data
efficiency and generalization capability of our DRL agent is a
point of ongoing exploration for our group.

C. Fairness and Convergence of Multiple Transfer

The three algorithms’ fair resource sharing and convergence
dynamics were evaluated in the cloudlab testbed while multi-
ple transfers were initiated over a single bottleneck link, with
each transfer controlled by a separate instance of a different
optimizer, namely, GD, BO, or DRL. Jain’s fairness index(JFI)
[30] quantifies fairness among competing transfers, measuring
resource allocation (e.g., bandwidth). Calculated as the ratio
of squared total resource allocation to the sum of squared
individual allocations, its value ranges from 0 (indicating
inequality) to 1 (representing perfect fairness where each user
receives an equal resource share). Additionally, each TCP
stream’s achievable throughput was limited to 50 Mbps.

In Figure 3a, three transfers employing the GD optimizer
were initiated approximately 50 seconds apart. The start of
each subsequent transfer affected the throughput of the pre-
vious ones, but they never stabilized. Specifically, over 200
seconds, transfers 1, 2, and 3 achieved average throughput of
471 Mbps, 465 Mbps, and 479 Mbps respectively. The overall
link bandwidth usage averaged 866 Mbps, with a fairness
(JFI) value of 0.90." In contrast, Figure 3b reveals that BO
is optimized for better fairness and convergence compared to
GD. When subsequent transfers were introduced, they nearly
matched the previous transfer’s throughput with occasional
fluctuations. Their 200-second averages were 492 Mbps, 369
Mbps, and 566 Mbps for transfers 1, 2, and 3, respectively.
The link’s average bandwidth usage was 921 Mbps, with a
JFI value of 0.99. Notably, at timestamp 150, BO’s aggressive
approach caused noticeable network congestion.

TIdeally, transfer 2, always sharing the link, should have the lowest
average throughput. Transfers 1 and 3, having sole link access for roughly 50
seconds each, should have similar and higher throughput.

Meanwhile, as depicted in Figure 3c, when three inde-
pendent DRL agents shared the link, they converged to the
fair share of the available link bandwidth. Their respective
throughputs over 200 seconds were 554 Mbps, 364 Mbps,
and 524 Mbps, resulting in a link usage of 893 Mbps and
a JFI of 0.97. The reason DRL achieved better convergence
and fair share is due to the incorporation of the bounded
historical network signal vectors in the DRL agent’s state.
This allowed the DRL agent to quickly detect patterns in
network changes and adjust the number of TCP streams to
avoid network congestion. In Figure 3d, the instantaneous JFI
is depicted for all three algorithms during the period when all
three transfers are competing for the available network link.
This specific event takes place after roughly at 150-second, as
shown in Figures 3a, 3b, and 3c. A noteworthy observation is
that the DRL agent demonstrates a more stable and consistent
instantaneous JFI in comparison to the GD and BO algorithms.

V. CONCLUSION

Parallel TCP streams can significantly increase application
throughput by leveraging a larger virtual message segment size
(MSS). However, using too many TCP streams without proper
consideration can lead to network congestion and unfairness.
Moreover, the optimal number of parallel TCP streams varies
dynamically and depends on unpredictable background traffic
conditions. In this study, we demonstrate how deep rein-
forcement learning (DRL) can determine the ideal number of
parallel TCP streams for any transfer, without relying on rule-
based heuristics. Our approach leverages historical network
signal vectors to adapt to various network conditions and opti-
mize network bandwidth utilization. Our DRL policy-gradient
method outperforms other online optimization algorithms,
achieving near-optimal points 40% faster and up to 15% better
throughput. Additionally, we introduce a punishment term in
the utility function to prevent network congestion and promote
fairness among concurrent transfers. As a future direction, we
aim to reduce the DRL agent’s initial training time and explore
the possibility of multi-parameter optimization. Our goal is
to extend the DRL agent’s capabilities beyond parallel TCP
streams to support other file transfer performance parameters
such as the level of pipelining, the number of CPU cores
involved, and the CPU frequency level.

ACKNOWLEDGEMENTS

This project is in part sponsored by the National Science
Foundation (NSF) under award number CCF-2007829.

REFERENCES

[1] E. Deelman, T. Kosar, C. Kesselman, and M. Livny, “What makes
workflows work in an opportunistic environment?” Concurrency and
Computation: Practice and Experience, vol. 18, no. 10, pp. 1187-1199,
2006.

[2] Y. Kim, S. Atchley, G. R. Vallée, and G. M. Shipman, “{LADS}:
Optimizing data transfers using {Layout-Aware} data scheduling,” in
13th USENIX Conference on File and Storage Technologies (FAST 15),
2015, pp. 67-80.

[3] H. Jamil, L. Rodolph, J. Goldverg, and T. Kosar, “Energy-efficient data
transfer optimization via decision-tree based uncertainty reduction,” in
ICCCN, 2022, pp. 1-10.

[4]

[5]
[6]
[7]
[8]

[9]

[10]

(11]
[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

(30]

J. Kim, E. Yildirim, and T. Kosar, “A highly-accurate and low-overhead
prediction model for transfer throughput optimization,” Cluster Comput-
ing, vol. 18, pp. 41-59, 2015.

E. Altman, D. Barman, B. Tuffin, and M. Vojnovic, “Parallel tcp sockets:
Simple model, throughput and validation,” in INFOCOM 2006, 2006.
D. Lu, Y. Qiao, P. Dinda, and F. Bustamante, “Modeling and taming
parallel tcp on the wide area network,” in IPDPS, 2005.

T. Hacker, B. Athey, and B. Noble, “The end-to-end performance effects
of parallel tcp sockets on a lossy wide-area network,” in /PDPS, 2002.
S. Ha, 1. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed
tcp variant,” vol. 42, no. 5. New York, NY, USA: Association for
Computing Machinery, jul 2008, p. 64-74.

A. Gurtov, T. Henderson, and S. Floyd, “The NewReno Modification to
TCP’s Fast Recovery Algorithm,” ser. Request for Comments, no. 3782.
RFC Editor, Apr. 2004.

V. Arun and H. Balakrishnan, “Copa: Practical Delay-Based congestion
control for the internet,” in NSDI 18. Renton, WA: USENIX Associa-
tion, Apr. 2018, pp. 329-342.

D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “Fast tcp: Motivation,
architecture, algorithms, performance,” vol. 14, no. 6, 2006.

M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior
of the tcp congestion avoidance algorithm,” vol. 27, no. 3. New York,
NY, USA: Association for Computing Machinery, jul 1997, p. 67-82.
T. Lakshman and U. Madhow, “The performance of tcp/ip for networks
with high bandwidth-delay products and random loss,” 1997.

T. Kosar, Data placement in widely distributed systems. The University
of Wisconsin-Madison, 2005.

L. Di Tacchio, M. S. Q. Z. Nine, T. Kosar, M. F. Bulut, and J. Hwang,
“Cross-layer optimization of big data transfer throughput and energy
consumption,” in 2019 IEEE CLOUD, 2019.

M. Balman and T. Kosar, “Data scheduling for large scale distributed
applications,” in the 5th ICEIS Doctoral Consortium, In conjunction
with the International Conference on Enterprise Information Systems
(ICEIS’07). Funchal, Madeira-Portugal, 2007.

L. Rodolph, M. S. Q. Zulkar Nine, L. Di Tacchio, and T. Kosar, “Energy-
saving cross-layer optimization of big data transfer based on historical
log analysis,” in IEEE ICC 2021, 2021, pp. 1-7.

C. Tessler, Y. Shpigelman, G. Dalal, A. Mandelbaum, D. H. Kazakov,
B. Fuhrer, G. Chechik, and S. Mannor, “Reinforcement learning for
datacenter congestion control,” CoRR, vol. abs/2102.09337, 2021.

W. Li, E Zhou, K. R. Chowdhury, and W. Meleis, “Qtcp: Adaptive
congestion control with reinforcement learning,” IEEE Transactions on
Network Science and Engineering, vol. 6, no. 3, pp. 445458, 2019.
N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control: Measuring bottleneck band-
width and round-trip propagation time,” Queue, oct 2016.

M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “PCC vivace: Online-Learning congestion control,” in
NSDI 18, Renton, WA, 2018.

M. Balman and T. Kosar, “Dynamic adaptation of parallelism level in
data transfer scheduling,” in 2009 International Conference on Complex,
Intelligent and Software Intensive Systems. 1EEE, 2009, pp. 872-877.
M. Arifuzzaman and E. Arslan, “Online optimization of file transfers in
high-speed networks,” in Proceeding of Super. ACM, 2021.

P. Balaprakash, V. Morozov, R. Kettimuthu, K. Kumaran, and I. Foster,
“Improving data transfer throughput with direct search optimization,” in
ICPP, 2016.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms.” arXiv, 2017.

N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
Proceedings of ICML, vol. 97, 09-15 Jun 2019, pp. 3050-3059.

V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Advances in
Neural Information Processing Systems, S. Solla, T. Leen, and K. Miiller,
Eds., vol. 12. MIT Press, 1999.

K. Keahey, J. Anderson, Z. Zhen, and et al., “Lessons learned from the
chameleon testbed,” in Proceedings of USENIX ATC 20, July 2020.

D. Duplyakin, R. Ricci, A. Maricq, and et al., “The design and operation
of CloudLab,” in Proceedings of the USENIX ATC, Jul. 2019.

R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
1998.

