Modular Synthesis of Templated Bimetallic Sites in Metal-Organic
Framework Pores
Jackson Geary,? Jonathan P. Aalto,? and Dianne J. Xiao**

*Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States.
*Corresponding author: djxiao@uw.edu

ABSTRACT: Binuclear metal active sites are found throughout all subfields of catalysis, from homogeneous and heterogeneous
systems to enzymes. Here, we report a synthetic route to install well-defined bimetallic sites in metal-organic frameworks that offers
independent control over the ligand environment, metal identity, metal-metal distance, and pore environment. Our approach uses
thermolabile tertiary carbamate crosslinkers to template pairs of amine functional groups within framework pores. The templated
amine pairs can be quantitatively converted into diverse chelating sites, such as iminopyridine and bis(2-pyridylmethyl)amine ligands,
and metalated with a variety of metal cations (M = Mn(Il), Fe(Il), Co(II), Ni(Il), Cu(I), and Cu(Il)). A combination of density func-
tional theory, extended X-ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy is used to
confirm the local coordination environment and support the proximal nature of the templated bimetallic sites. The templating strategy
described here will enable the exploration of new bimetallic motifs in heterogeneous catalysis.

Introduction. Grafting bimetallic active sites to MOFs via covalent attach-

Enzymes often use two or more metal sites to catalyze diffi- ment to the ligand strut is a particularly appealing approach
cult oxidative, reductive, and redox-neutral transformations. (Fig. 1), as it not only provides a robust copnecthn to the fra}me-
For example, nature uses diiron and dicopper sites to activate work surface but can also be adapted to diverse ligand environ-
0, and oxygenate substrates,'* as well as diiron and [NiFe] cen- ments, metal precursors, and pore structures. For example,
ters to reversibly form and split H>.>* Two metal cations can :.clmlpe-funct.lor}ahzed‘fr.ameworks have beqn used to attach sal-
also work jointly to increase the electrophilicity and nucleo- icylidene, 1m1n0pyr%dlpe,16"7 and NNN-pincer'* complexes to
philicity of reaction partners, such as in the hydrolysis of phos- pore walls, as well afglmlnocatecholate-bound Ru(II) metathe.sm
phate ester and amide bonds.>® We have been interested in catalysts (Fig. 1a).” Furthermore, amine groups are readily
translating these bioinspired concepts to a heterogeneous plat- a _
form, to leverage the greater stability, recyclability, and unique covalent (Q (ENE
microenvironments found in porous materials. modification .,{NI 0 ‘L{NI“@II/

An ideal heterogeneous scaffold would, like enzymes, offer Mor | 2Nt & metalation - @'/ -
precise control over the active site nuclearity and metal-metal a O@j
distance, as well as the identity and flexibility of the primary 1 ‘rij (©:o
coordination sphere. These complex structural requirements /‘«-{N\@J‘KNR? P

represent an exciting opportunity for metal-organic frame-
works (MOFs), a class of porous materials characterized by
high structural and chemical tunability. Multiple strategies to b Challenge: Controlling active site nuclearity
install homo- and heterobinuclear metal active sites on MOF
surfaces have been reported, and these prior examples can be
roughly divided into two categories. In the first approach, mul-

tinuclear metal nodes are used directly as the catalytic centers. E
Coordinatively unsaturated binuclear metal nodes can be used
without further modification,” while larger nuclearity nodes, Elz ?

such as 1D chains, must be converted into site-isolated bimetal-
lic sites through the synthesis of mixed-metal variants.® In the

/

second approach, bimetallic active sites are postsynthetically Figure 1. (a) Previously reported strategies to graft metal com-
grafted onto the pore walls. Reactive surface hydroxyl sites,” ! plexes onto amine-functionalized metal-organic frameworks.
Lewis acidic metal cations,'? or organic functional groups on The free amine group can be covalently modified and con-
the ligand struts'>!* have all been used as the points of attach- verted into chelating ligands. (b) Adapting covalent grafting

9.13 or strategies to the construction of binuclear metal active sites in-

ment. However, in the absence of pre-formed clusters ] ACLVE
troduces new challenges, such as controlling active site nucle-

highly constrained binding pockets,'' complex metal speciation ’
is often observed in both approaches. arity.
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Figure 2. (a) Overview of the templating strategy employed in this work, which leverages thermolabile crosslinkers to install pairwise
bimetallic active sites. (b) Structures and abbreviations of ligands and crosslinked ligand dimers used in this work. L1 and L2 contain N-
aryl and N-alkylcarbamate linkages, respectively. (c) Structure of Mg,dotpdc, a mesoporous MOF which possesses an interligand spacing

of ~7 A down the hexagonal pore channels.

incorporated into many common MOF structure types.”” How-
ever, while postsynthetic covalent grafting offers a large selec-
tion of possible ligand and pore environments, an unresolved
challenge is controlling the active site nuclearity. Grafting at
low surface coverages results in predominantly mononuclear
sites, while higher loadings risk the formation of larger nucle-
arity clusters (Fig. 1b).

Here, we describe a templating approach to circumvent these
challenges and install well-defined binuclear metal active sites
in framework pores, irrespective of the active site density (Fig.
2). Thermolabile tertiary carbamate crosslinkers are used to
tether pairs of amine functional groups during framework syn-
thesis. Postsynthetic crosslinker cleavage reveals templated
aryl- and alkylamines that can be used to graft atomically pre-
cise bimetallic iminopyridine and bis(2-pyridylmethyl)amine
complexes with a variety of metals (e.g., Mn(II), Fe(IT), Co(II),
Ni(II), Cu(I), and Cu(Il)). The structural integrity of the frame-
works is confirmed by powder X-ray diffraction and gas sorp-
tion measurements, while the local structure of the metal centers
is probed by density functional theory (DFT), extended X-ray
absorption fine structure (EXAFS) spectroscopy, and electron
paramagnetic resonance (EPR) spectroscopy.

Results and discussion.

Synthesis of templated amine-functionalized frameworks.
We recently showed that cleavable covalent crosslinkers can be
used to template functional group pairs in multicomponent
metal-organic frameworks.?' Specifically, thermolabile tertiary
ester crosslinkers can be used to install well-defined carboxylic
acid pairs within the terphenyl-expanded MOF-74 framework,
also known as Mg,dotpdc (dotpdc* = 4,4"-dioxido-[1,1":4',1"-
terphenyl]-3,3"-dicarboxylate). When short pentyl crosslinkers

are used, modeling studies showed that the carboxylic acids are
installed in a single configuration down the pore channels,
spaced ~7 A apart.

Given the thermal instability of tertiary carbamates,” we hy-
pothesized that a similar strategy could be used to template pairs
of amines within framework pores (Fig. 2a). Amines are ideal
entry points to more complex structures thanks to their rich
postsynthetic chemistry.?®> They have been shown to undergo a
multitude of reactions within MOF pores, including imine for-
mation,'® urea formation,”*? alkylation,”® and acylation.”’ In
principle, it should be possible to convert templated amine pairs
into diverse site-isolated bimetallic sites via established
postsynthetic ligand modification and metalation steps.

Towards this goal, we synthesized two distinct crosslinked
ligand dimers, each containing thermolabile tertiary carbamate
linkages (Fig. 2b). The lengths of both crosslinkers were de-
signed to span the short ~7 A interligand distance down the pore
channel of Mg,dotpdc (Fig. 2¢). The ligand dimer L1 is con-
structed from N-aryl carbamate linkages, which should produce
arylamines after thermolysis. In contrast, L2 contains N-alkyl-
carbamate linkages, which should template more nucleophilic
alkylamine pairs. Both ligand dimers were synthesized in 4-5
steps in good overall yield (42—-60%, see SI for experimental
details).

With spatially separated, site-isolated bimetallic pairs in
mind, we targeted the synthesis of carbamate-crosslinked
Mgdotpdc at relatively low crosslinker loadings (<20 mol%).
Heating a mixture of crosslinked ligand dimer (0.100 equiv),
Hadotpdc (0.900 equiv), and Mg(NO3),*6H,0 (2.75 equiv) in a
solution of DMF and MeOH produced microcrystalline pow-
ders with the desired Mg»dotpdc structure. Keeping in mind that



each equivalent of L1 or L2 contains two ligand monomers, this
reaction mixture should theoretically lead to ~18% functional
group loading. The exact composition of the framework was
quantified by digestion 'H NMR (Table S1). Consistent with
previous work,?' the experimentally observed incorporation of
L1 or L2 varied slightly, but was typically slightly higher than
the value expected based on the initial ratio of starting materi-
als. Using the ligand dimer L1, we obtained a framework con-
taining 18% crosslinked (i.e., functionalized) ligand, which we
have abbreviated as 1-XL-18% (Fig. S3). Similarly, using the
ligand dimer L2 under these conditions produced a material
containing 23% crosslinked ligand, which we have abbreviated
2-XL-23% (Fig. S4). Both chemically crosslinked frameworks
are permanently porous, displaying high Brunauer—-Emmett—
Teller (BET) surface areas of 2370 m?/g and 2400 m?/g for 1-
XL-18% and 2-XL-23%, respectively (Fig. S5).

Due to the short length of the crosslinking tether, the ligand
monomers in L1 and L2 should lie directly adjacent down the
pore channels (Fig. 2a). DFT modeling studies suggest that the
conformation shown in Fig. 3a, where the amine groups are ori-
ented in the same direction rather than offset, is most favorable
for both dimers (Fig. S6 and Table S2, see SI for additional
modeling details).

With the desired crosslinked frameworks in hand, we next
sought to cleave the carbamate linkage and reveal exposed
amine pairs. The thermal cleavage of tertiary carbamates has
been successfully demonstrated not only in simple organic com-
pounds® but also in solid-state porous materials including sil-
ica®®? and metal-organic frameworks.***> Thermogravimetric
analyses confirmed the thermal lability of the crosslinkers (Fig.
S7-S8). Excitingly, subjecting 1-XL-18% to microwave heat-
ing at 230 °C in a mixture of 2-ethyl-1-hexanol and ethylene
glycol for 10 minutes resulted in quantitative carbamate cleav-
age and formation of 1-NH,-18%, a framework containing tem-
plated arylamines (Fig. 3a). No loss in crystallinity was de-
tected by powder X-ray diffraction (PXRD) (Fig. 3b), and a
large increase in the BET surface area from 2370 m?%/g to 2650
m?/g was observed (Fig. S9). This value is very close to the re-
ported surface area for unfunctionalized Mg,dotpdc (~2700
m?%/g).*! Full crosslinker removal was further confirmed by di-
gestion '"H NMR. No peaks associated with the crosslinker
could be detected, and the amount of Hydotpde-NH, found was
consistent with the starting amount of L1 (Fig. S8).

The carbamates in 2-XL-23% could be cleaved using either
microwave heating under air-free conditions, or conventional
heating in the solid state under flowing N,. Similar conditions
have been previously used to remove tert-butoxycarbonyl (Boc)
protecting groups in MOFs.*? Heating samples of 2-XL-23% at
250 °C for two days under flowing N, resulted in clean conver-
sion to 2-CH,;NH,-23%. Like 1-NH,-18%, no loss in crystal-
linity was observed (Fig. 3b), and the BET surface area in-
creased from 2400 m*/g to 2610 m*/g (Fig. S11). Digestion 'H
NMR analysis confirmed quantitative crosslinker removal and
the clean conversion of L2 to two equivalents of Hidotpdc-
CH,NH; (Fig. S12).

Postsynthetic imine formation and metalation. The ability
to template amine pairs in MOF pores provides the opportunity
to create bimetallic active sites where all structural parameters,
from the ligand environment and metal identity to the metal—
metal distances and pore environment, can be carefully con-
trolled (Fig. 2a). Motivated by the widespread use of imino-

pyridine ligands in organometallic chemistry,”*>° we
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Figure 3. (a) Overview of thermolysis conditions to generate
templated arylamine and alkylamine pairs. Powder X-ray dif-
fraction data (b) and 77 K nitrogen adsorption data (c) for the
crosslinked materials 1-XL-18% and 2-XL-23%, and the
thermolyzed frameworks 1-NH;-18% and 2-CH,;NH,-23%.

envisioned that the templated arylamines in 1-NH»-18% could
be converted into bimetallic iminopyridine complexes (Fig.
4a).

Iminopyridine formation and metalation in MOFs has been
previously demonstrated by several groups,'®!’%3" and both
stepwise and one-pot synthetic approaches have been explored.
In the stepwise approach, excess 2-pyridinecarboxaldehyde
(PyCHO) is first added to the amine-functionalized framework
to form discrete MOF-supported iminopyridine sites, which are
subsequently metalated in a second step.'®"’ In the one-pot ap-
proach, excess PyCHO and metal halide salt (e.g., NiCly) are
combined together to form a molecular (PyCHO)MX, complex,
which is then combined with the framework to form the desired
metalated iminopyridine species.'”

We first tested the one-pot condensation and metalation of 1-
NH; with 10 equiv of 2-pyridinecarboxaldehyde and metal salt
(NiCl, or CuCl) in methanol. Excitingly, we observed near-
quantitative conversion of 1-NH, to 1-(IP)M (M = NiCl,,
CuCl), a framework containing surface-supported bimetallic
metal iminopyridine complexes (90% yield for NiCl, and 100%
for CuCl) (Table S3, Table 1). Successful iminopyridine for-
mation and metalation were quantified by 'H NMR and ICP
analysis of digested frameworks, respectively (Table S3). Both
crystallinity and surface area were maintained in the metalated
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Figure 4. (a) Overview of the stepwise route to generate 1-(IP)M from 1-NH,-18%. Powder X-ray diffraction data (b) and 77 K nitrogen
adsorption data (c) for postsynthetically modified 1-IP-18%, and metalated 1-(IP)M. (d) Optimized structure for the metal sites in 1-
(IP)NiCl,-MeOH obtained via DFT using a split B3LYP/6-31+G(d), BALYP/LANL2DZ basis set. Additional ligand layers omitted for

clarity.

frameworks (Fig. 4b), and a BET surface area of 1700 m%/g was
observed for 1-(IP)CuCl (Fig. 4c¢).

While the one-pot approach worked well for Ni(II) and Cu(I),
generalizing this strategy to other metal cations was challenging
due to the precipitation of insoluble PyCHO-containing metal
species.*®* In an effort to expand our metalation catalogue, we
returned to the stepwise route. Initial attempts to form imino-
pyridine species in the absence of Lewis acidic transition metal
salts yielded poor conversion to the imine (e.g., <50% yield af-
ter 7 days).'® Surprisingly, simply switching from the nonpolar
solvents commonly used in the MOF literature (e.g., DCM, tol-
uene) to a more polar solvent such as methanol greatly im-
proved the yield. Heating 1-NH,»-18% in methanol with a large
excess of 2-pyridinecarboxaldehyde (50 equiv) resulted in the
clean formation of 1-IP-18%, with a BET surface area of 2450
m*/g (Fig. 4¢). The reaction could be tracked by digestion 'H
NMR. Though the digestion conditions hydrolyze the imine, the
observed 1:1 ratio of 2-pyridinecarboxaldehyde to Hidotpdc-
NHa is consistent with quantitative imine formation (Fig. S13).
The loss of the broad amine N—H stretch is clearly observed in
the ATR-FTIR spectra, further supporting the conversion of the
amine to the imine (Fig. S14).

With the iminopyridine-functionalized framework in hand,
metalation proceeded smoothly with a variety of M(I) and M(II)
salts (e.g., MnCl,, FeCl,, Col, NiCl,, NiBr,, CuCl) to generate
1-(IP)M-18% (Table 1). The crystallinity of the metalated ma-
terials was confirmed by PXRD (Fig. 4b), and metalation was
quantified by ICP analysis (Table S3). While nearly all transi-
tion metals tested led to >90% metalation, a notable exception
was Cu(Il), which leached in acetonitrile and formed side prod-
ucts in methanol. Overall, this work establishes a remarkably
general route to achieve bimetallic iminopyridine species with
diverse metal cations.

Postsynthetic alkylation and metalation. Given the in-

creased nucleophilicity and flexibility of alkylamines, we hy-
pothesized that new MOF-supported multidentate ligand

scaffolds could be accessed through S\2 alkylation of 2-
CH,NH,-23% (Fig. 5). In particular, alkylation is a common
way to achieve polypyridyl ligand scaffolds. For example, dou-
ble alkylation of the amine sites in 2-CH,NH;-23% with 2-
(bromomethyl)pyridine should generate tridentate bis(2-pyri-
dylmethyl)amine ligands, also commonly known as di-(2-
picolyl)amine (DPA) (Fig. Sa). While polypyridylamine lig-
ands are found throughout inorganic chemistry, particularly in
the study of biomimetic dicopper and diiron—oxo and dioxygen
chemistry,***' to our knowledge no polypyridylamine com-
plexes have been previously grafted in a metal-organic frame-
work.

Table 1. Metalations summary as determined by ICP-OES.

Framework Metal Identity Metalation Yield (%)
1-1P-18% MnCL® 100
FeCl,° 100
Col® 89
NiBr," 89
CuCl* 100
2-DPA-23% FeCl 100
Col, 100
NiBr; 83
CuBr; 100
2-DPA-5% CuCl, 100
Cu(OT1), 100

2 Synthesized using the one-pot method.
b Synthesized using the stepwise method.

Gratifyingly, double alkylation of the alkylamine sites in 2-
CH,NH,-23% with 2-(bromomethyl)pyridine hydrobromide
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proceeded smoothly in the presence of diisopropylethylamine
in acetonitrile. The '"H NMR spectrum of the digested frame-
work shows the appearance of diagnostic pyridyl and methylene
peaks, along with the complete disappearance of signals corre-
sponding to the unalkylated benzylamine ligand, Hidotpdc-
CHoNH: (Fig. S15). The resultant material, abbreviated 2-
DPA-23%, is readily metalated with a number of first row tran-
sition metals (M = Fe(II), Co(II), Ni(I), and Cu(II), see Table
1) in 90-100% yield. Both 2-DPA-23% and the metalated ma-
terials retain crystallinity and porosity (Fig. Sb), with 2-DPA-
23% possessing a BET surface area of 2540 m*g and 2-
(DPA)FeCl, possessing a BET surface area of 1760 m*/g (Fig.
5¢).

Spectroscopic characterization of bimetallic sites. We next
carried out a combination of extended X-ray absorption fine
structure (EXAFS), density functional theory (DFT), and elec-
tron paramagnetic resonance (EPR) studies to structurally inter-
rogate the metal sites in 1-(IP)M and 2-(DPA)M. Two air-sta-
ble materials, 1-(IP)NiCl, and 2-(DPA)CuX, (X =Br,
OSO,CF3), were selected as representative frameworks for
these studies.

Excitingly, EXAFS studies on both frameworks confirm that
the MOF-supported metal sites reside in well-defined ligand en-
vironments that closely resemble their molecular counterparts.
The Ni K-edge EXAFS spectrum of 1-(IP)NiCl, is shown in
Fig. S16. The EXAFS data was best fit with three N/O atoms at
a distance of 2.03(6) A and two Cl atoms at 2.29(7) A (Table
S4). The presence of an additional ligand is expected, as coor-
dinating methanol is used in the metalation and washing proce-
dure. These bond distances are consistent with the DFT opti-
mized structure for 1-(IP)NiCl, (Fig. 4d, Table S5), as well as
with previously reported five-coordinate nickel(Il) imino-
pyridine complexes, which show average Ni-N/O and Ni—Cl
distances of ~2.0-2.1 A and ~2.3 A, respectively (see Table S6
for a tabulation of reference compounds).

The Cu K-edge EXAFS spectrum of 2-(DPA)CuBr;, shown
in Fig. 6a, was best fit with two pyridyl N atoms at 2.01(1) A,
one alkyl N atom at 2.14(1) A, one Br atom at 2.40(1) A, and a
second Br atom at 2.79(1) A (Table S7). This is consistent with
previously reported bis(2-pyridylmethyl)amine-ligated Cu(II)
molecular complexes, which often adopt distorted square py-
ramidal geometries featuring one shorter basal Cu—Br bond
(~2.40 A) and one significantly longer apical Cu-Br bond
(~2.70 A) (see Table S8 for tabulation of reference com-
pounds). The bond lengths observed by EXAFS are also con-
sistent with DFT-optimized structural models (Fig. 5d and Ta-
ble S9).

Notably, no evidence of strong M—M scattering was observed
in any of the EXAFS spectra. Indeed, the EXAFS spectra of
templated frameworks and their non-templated analogues are
nearly identical (Fig. S17, S18). Given the ~7 A distance be-
tween ligand struts and the lack of strong bridging ligands be-
tween the two metal centers, the M—M distances are likely be-
yond the ~4-5 A distance detectable by EXAFS. Therefore, we
turned to EPR spectroscopy as a more sensitive probe of proxi-
mal paramagnetic centers.

Electron paramagnetic resonance spectroscopy is highly sen-
sitive to the interactions between unpaired electrons, and is
widely used to probe interspin distances.**** These interactions
may be either exchange (through orbital overlap) or dipolar
(through space) interactions. Given the expected ~7 A distance
between our metal centers by DFT, the lack of short M—M dis-
tances observed in our EXAFS data, and the absence of strong
bridging ligands, we only expect spin-spin interactions through
dipolar coupling. Because our templated frameworks have
shorter average M—M distances than non-templated controls,
this should lead to two distinct differences: 1) the EPR features
for the templated samples should show greater homogeneous
line broadening, and 2) the relative intensity of the forbidden
Am = 2 half-field transition should increase.***



To simplify the analysis, all EPR studies were carried out on
2-(DPA)Cu(OTf),, an S =" system. Due to the high sensitivity
of EPR towards dipolar interactions, low amine loadings of 5%
were targeted. Two frameworks were synthesized, the tem-
plated framework 2-(DPA)Cu(OTf),-5% and the non-tem-
plated control, Mg,dotpdc-(DPA)Cu(OTf),-5%. Briefly, the
non-templated framework was synthesized using Hidotpdc-
CH>NHBoc, a non-crosslinked ligand containing Boc-protected
benzylamine groups. The protected framework was then sub-
jected to thermolysis, post-synthetic alkylation, and metalation
to yield randomly distributed mononuclear (DPA)Cu(OTf),
sites throughout the framework (see SI for more experimental
details).

Unexpectedly, a sharp isotropic feature at g =2.002 was ob-
served in all thermolyzed samples. We assign this feature to a
ligand-based organic radical generated during the thermal
deprotection step, as it is observed even in the unfunctionalized
Mg,dotpdc after thermal treatment (Fig. S19). We note that
careful air-free thermolysis under microwave conditions mini-
mizes, but does not fully eliminate, the presence of this radical
species, suggesting it arises due to oxidation of the framework
backbone at high temperatures.
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Figure 6. (a) Fit (red dashed lines) to EXAFs spectrum of 2-
(DPA)CuBr; (solid black line). (Inset) Corresponding k-
weighted oscillations. See SI for fit parameters. (b) 100K X-
band EPR spectra for 2-(DPA)Cu(OTf), and the non-tem-
plated control framework, Mg,dotpdc-DPA-Cu(OTf),. The
forbidden Ams = 2 transition at 100x magnification is shown in
the inset. The framework organic radical that appears after ther-
molysis is marked with an asterisk.

The X-band EPR spectra of the templated 2-
(DPA)Cu(OTf),-5% and the non-templated Mgrdotpdc-
(DPA)Cu(OTf),-5% control were collected at 100 K and ana-
lyzed (Fig. 6b). The Cu(Il) features in both spectra are best fit
using two distinct g-values (2.06 and 2.24, see Fig. S20-S21).
Similar values have been observed in molecular
(DPA)Cu(OTf), complexes.***” To control for slight variations
in copper loading between the samples, both spectra were nor-
malized to the double integral of the allowed Am, =1 transition.

Excitingly, both greater line broadening as well as an increase
in the intensity of the forbidden transition at g ~ 4 is observed
in 2-(DPA)Cu(OTH),-5% relative to the non-templated ana-
logue (Fig. 6b and Table S10). While subtle, this data provides
evidence that the templated framework has shorter average M—
M distances. Greater differences in both the EPR and EXAFS
data and more quantitative analysis should be possible with the
addition of bridging ligands to tether the two metal sites closer
together (<4 A), and work along this vein is underway.

Conclusion.

In summary, we have developed a strategy to precisely tem-
plate pairs of aryl- and alkylamines in a mesoporous metal—or-
ganic framework. The templated amines can be further elabo-
rated to achieve atomically precise bimetallic active sites with
tunable ligand environments. The iminopyridine and bis(2-pyri-
dylmethyl)amine ligand scaffolds illustrated here have a rich
history in organometallic and bioinorganic chemistry, as well
as the potential to support unusual bimetallic reactivity. For ex-
ample, dinucleating iminopyridine ligands have been previ-
ously explored in the context of olefin polymerization,*® while
dinucleating polypyridyl scaffolds have been studied for bime-
tallic O, activation,'>*#! anion sensing,* and nucleotide hy-
drolysis.*

Finally, we note that previous routes to achieve well-defined
bimetallic sites in metal-organic frameworks have focused on
active sites with highly constrained metal-metal distances.”'""'?
Our templated sites, which are conformationally flexible, rep-
resent a distinct and complementary alternative to the more
rigid, static ligand environments described in earlier reports.
Opverall, the synthetic precision and flexibility of the templating
approach described here will allow researchers to re-examine
molecular and enzymatic bimetallic motifs in a heterogeneous
context, as well uncover new modes of reactivity.

Experimental Methods.

All the ligand syntheses, framework syntheses, and post-syn-
thetic chemistry are described in detail in the Supplementary
Information. Powder X-ray diffraction patterns were collected
on either a Bruker D8 Discover diffractometer or a Bruker D2
PHASER benchtop diffractometer. Solution phase NMR data
were collected on Bruker AV300, AV301, GG500 or NEO500
instruments. FT-IR spectra were collected using a Perkin Elmer
Frontier spectrometer equipped with an ATR crystal. N, adsorp-
tion measurements were performed at 77 K on a Micromeritics
3Flex instrument. Thermogravimetric analysis data were col-
lected using a TA Instruments Q Series analyzer. ICP-OES
measurements were performed using a Perkin Elmer Optima
8300 Inductively Coupled Plasma Optical Emission Spectro-
photometer. EPR spectra were collected on a Bruker EMXNano
at 100 K. The EPR spectra were fit using the EasySpin software
package for MATLAB.”!

XAS measurements were conducted at the Advanced Photon
Source at Argonne National Laboratory on beamline 12-BM



(4.5—20.0 keV) using a Si(111) monochromator. Powder sam-
ples were prepared as wafers without any additional grinding
and sealed with Kapton tape. Transmission and fluorescence
data were collected at room temperature. Specific details re-
garding data calibration, normalization, and fitting are dis-
cussed in the Supplementary Information.
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