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Fig. 1: The proposed pipeline for an autonomous drone to perform active human pose estimation follows a specific loop. Initially, the
drone captures an input image, which is processed to perform 2D human pose estimation, yielding an imperfect 2D skeleton. Utilizing this
skeleton, our designed PoseErrNet predicts the pose estimation error across a hemispherical space of camera viewing angles and suggests
candidate camera viewing angles for the best next view. These candidate views are subsequently integrated into a planner focusing on

perception-aware planning and navigation goal planning.

Abstract— One of the core activities of an active observer
involves moving to secure a “better” view of the scene,
where the definition of “’better” is task-dependent. This
paper focuses on the task of human pose estimation from
videos capturing a person’s activity. Self-occlusions within
the scene can complicate or even prevent accurate human
pose estimation. To address this, relocating the camera to a
new vantage point is necessary to clarify the view, thereby
improving 2D human pose estimation. This paper formalizes
the process of achieving an improved viewpoint. Qur proposed
solution to this challenge comprises three main components:
a NeRF-based Drone-View Data Generation Framework, an
On-Drone Network for Camera View Error Estimation, and
a Combined Planner for devising a feasible motion plan to
reposition the camera based on the predicted errors for camera
views. The Data Generation Framework utilizes NeRF-based
methods to generate a comprehensive dataset of human poses
and activities, enhancing the drone’s adaptability in various
scenarios. The Camera View Error Estimation Network is
designed to evaluate the current human pose and identify the
most promising next viewing angles for the drone, ensuring
a reliable and precise pose estimation from those angles.
Finally, the combined planner incorporates these angles while
considering the drone’s physical and environmental limitations,
employing efficient algorithms to navigate safe and effective
flight paths. This system represents a significant advancement
in active 2D human pose estimation for an autonomous UAV
agent, offering substantial potential for applications in aerial
cinematography by improving the performance of autonomous
human pose estimation and maintaining the operational safety
and efficiency of UAVs.

I. INTRODUCTION

Recent advances in aerial robotic technologies have
significantly improved the use and abilities of aerial

robots in many industries. [1]-[3]. A key aspect of
modern aerial robots is their ability to be equipped with
video cameras, transforming them into dynamic platforms
for aerial videography [4]. The mobility and agility
of aerial robots make them highly effective for aerial
cinematography, allowing for versatile footage capture from
optimal angles with minimal equipment. The growing
demand in entertainment, industrial, and military sectors has
shifted aerial cinematography’s focus from static objects to
dynamic human subjects, and the technical challenge is how
to autonomously adjust a drone’s viewing direction to best
view human subjects during navigation.

The challenges associated with autonomously adjusting
the viewing direction for UAV-based human pose estimation
include determining the criteria for modifying the UAV’s
viewing direction during human inspection, and navigating
the UAV in a way that balances perceptual guidance with
navigation objectives, such as feasible motion plans and
collision avoidance.

To address the challenges posed by dynamic videography
using UAVs, we propose a sophisticated, integrated
autonomous UAV videography system, as illustrated in Fig.
2. This system is engineered to intelligently interpret human
poses and proactively reposition itself to capture optimal
visual content. The architecture of this system can be divided
into three primary components: 1) Drone-View Human
Subject Data Generation Framework. This framework is
designed to capture a wide range of human poses and actions
under varying environmental perspectives. By utilizing
advanced vision techniques (HumanNerf) [5], this framework
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Fig. 2: Our proposed approach features an integrated system with three key components: 1) Drone-View Data Synthesis, which generates
realistic drone perspectives of human subjects from various camera angles and human poses, alongside calculating the associated human
pose estimation error for these views to serve as training data pairs. 2) PoseErrNet, a network trained on the generated drone-view
data pairs, is capable of predicting a 3D perception guidance field for the selection of candidate viewing angles. 3) A comprehensive
planner that integrates traditional navigation cost maps with the 3D perception guidance field derived from PoseErrNet. This integration
enables effective motion planning, collision avoidance, and the execution of the next-best viewing angle selection for accurate human pose

estimation.

will enable the UAV to have a profound understanding of
human subjects in different scenarios, enhancing its ability
to adapt to real-world videography tasks. 2) Robust and
Efficient On-Drone Network for Viewing Angle Estimation.
This network is tailored to analyze the current human
pose and compute the best subset of the next viewing
angles. It aims to process complex visual inputs in real-time,
ensuring the UAV can react promptly and accurately to
dynamic subjects. The efficiency of this network is crucial,
as it directly impacts the UAV’s ability to operate under
computational and power constraints typically associated
with autonomous drones. 3) Combined Planner for Feasible
Motion Plan. Our proposed system is a sophisticated
planning module that combines the network’s viewing
angle recommendations with the UAV’s dynamic and
environmental constraints. The planner employs advanced
algorithms to chart a feasible motion plan that not only
adheres to the suggested viewing angles but also respects
the physical limitations of the UAV and the navigational
challenges posed by the environment. Using this planner,
the UAV can maneuver in complex environments with
agility and precision, ensuring high-quality videography
while maintaining safety and operational efficiency.

In Sec. III, we will delve into the specifics of generating
human subject data from drone views. Following that, in
Sec. 1V, we explain our approach using PoseErrNet to
transform an imperfect detection of 2D human keypoints,
into an error vector for 2D human pose estimation (HPE)
across all predefined hemispherical camera viewing angles.
This process creates what we refer to as the 3D perception
guidance field. Our goal was to design a lightweight network
capable of learning the correlation between the optimal

subset of next viewing angles and the current human pose
estimation, utilizing a dataset we generated for this purpose.
The robust estimation of the 3D perception guidance field is
crucial as it provides candidate camera viewing angles for the
ensuing motion planning phase. For the motion planning part,
based on [6] and [7], we crafted a perception-aware motion
planning framework. This framework not only incorporates
the 3D perception guidance field but also is capable of
generating a smooth flight trajectory, avoiding occlusions
between the target and the UAV, and ensuring the safety of
the flight.

Our contributions can be summarized as:

¢ A drone-view data generation framework for different
human poses.

o A robust and efficient network running on the drone for
estimating the best subset of the next viewing angles
based on the current human pose estimation.

e A combined planner that combines the
perspective-aware guidance from the network and
traditional navigation constraints into a feasible motion
plan for improving 2D HPE, a computer vision task.

These three interconnected components are seamlessly

integrated into a system designed for application in
real-world scenarios.

II. RELATED WORKS

1) Autonomous Aerial Human Inspection: Existing
research on autonomous aerial inspection of human subjects
primarily aims at achieving planning autonomy but often
lacks objective guidance on subsequent movements. As
a result, high-level guidance for the inspection tasks is
typically expected to come from human operators, as seen
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Fig. 3: The process for generating NeRF-based drone-view images
of human subjects and 3D perception guidance field data involves
using 2D annotations to conduct batch triangulation, resulting
in a 3D skeleton for a given human pose. We then render the
synthesized image for “drone views”, reproject the ground truth
3D skeleton onto NeRF poses to obtain ground truth 2D keypoints,
and employ an arbitrary HPE network to predict these keypoints for
computing the per camera view HPE error. Through this method,
we successfully acquire paired data comprising 2D observations and
the corresponding 3D perception guidance field.

in various studies [8]-[14]. While the autonomous planning
for UAVs to follow and robustly track mobile objects along
optimized trajectories is well-documented [15]-[18], these
works generally do not address the capability of UAVs to
autonomously execute perception-aware objectives, such as
human pose estimation, without human operator inputs.

2) 2D Human Pose Estimation: Human Pose Estimation,
both in 2D and 3D, has received attention for two
decades because of its many applications, including activity
understanding, healthcare, AR/VR, and robotics [19]-[21].
Advancements in deep learning techniques have significantly
enhanced the performance of 2D Human Pose Estimation
(HPE), leading to robust and efficient solutions for both
single and multiple individuals. [22]-[27]. However, the
near-perfect performance of 2D Human Pose Estimation
(HPE) often relies on ideal input images of humans without
any occlusion of body parts. This assumption becomes
challenging in the context of autonomous UAV inspections
of humans. As the UAV moves, the camera’s view of human
subjects can easily be obstructed by environmental elements
or self-occlusion of human body parts.

3) Neural Radiance Field: NeRF [28] and its extensions
[29]-[35] enable high-quality and continuous rendering of
static 3D scenes. A natural progression is to expand the
neural radiance field approach to encompass dynamic scene
representation. [36]-[41]. In the context of dynamic scene
representations, our work is most closely related to the neural
representation of dynamic human subjects [5], [42], [43].

III. DRONE-VIEW DATA ACQUISITION

As illustrated in Fig. 2, the drone views of a human
subject can be represented in a hemispherical space. This
type of data can be acquired through one of three methods:
1) Drone Capture, which involves using UAVs to obtain

images of human subjects in specific poses from multiple
angles. 2) Camera Array, which entails setting up an array
of cameras to cover the hemispherical space, with a focus
on achieving time synchronization among the cameras. 3)
Utilization of simulation software like Blender [44] or
Unity [45] to create projected image views from human
models. Each method comes with its own set of challenges
and practical considerations. The pros and cons of these
methods for generating drone-view data are detailed in
Table I, highlighting economic and engineering costs. For
instance, deploying multiple drones for data capture or
creating a camera array incurs significant economic costs
due to the hardware required and demands considerable
engineering effort for calibration and synchronization.
Conversely, simulation software offers a low economic
cost option, though achieving a high-quality simulation
presents substantial engineering challenges. The table also
compares the accuracy of the desired viewing angles, the
resolution, or the detail level at which capture angles are
set, and the realism of capturing human subjects and poses.
Drone capture and camera arrays provide realism in both
appearance and pose since they employ real-world methods.
In contrast, achieving realistic captures of both appearance
and human poses proves difficult with simulation software.
Our research leverages the innovative free-viewpoint
rendering method, HumanNeRF [5], which is designed for
rendering images with complex human poses, perfectly
meeting our data acquisition needs. This technique allows
for the free-view synthesis of a human image in a specific
pose. We configure the camera poses and viewing angles
to match the desired hemispherical drone camera pose for
the captured image and then render drone-view images for
various human poses in ZJU-MoCap Dataset [46], [47].
After rendering the drone-view images, we follow the
approach depicted in Fig. 3 to compute the human pose
estimation error for each camera view. This process enables
us to gather the desired training data pairs, linking each 2D
human skeleton estimation to a 3D perception guidance field.

IV. MAPPING 2D OBSERVATIONS TO 3D PERCEPTION
GUIDANCE FIELDS

After acquiring our training data pairs for drone-view
human images and 3D perception guidance field. A
simplified auto-encoder network is employed for visual
guidance, as depicted in Fig. 4. This network architecture is
characterized by a minimal number of weights, enhancing
its efficiency. For dealing with the sim-to-real gap, we
proposed a process to normalize the input drone-view data,
this normalization process includes first converting the input
image into the HPE resulting keypoints and then normalizing
the detected keypoints to account for translation, rotation,
and scale variance in the input keypoint due to different
human, drone-to-human distance or instability during the
flight of the drone.

The proposed normalization process for input HPE
keypoints is straightforward yet effective. We begin by
identifying the human spine, typically the line between
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Method Cost Viewing Angle Realistic Capture
Ecnomoic  Engineering Accuracy Resolution Appearance Human Pose
Drone Capture Medium High Low Low v v
Camera Array High High High High v v
Simulation Software Low High High High - -
Ours Low Low High High v v

TABLE I: Comparison of different drone-view data acquisition methods. Cost, related to economic and engineering cost of the capture
method (Density). Viewing Angle, consists of viewing angle accuracy and resolution of the capture method (Viewing Angle). Realistic
Capture, is related to whether the capture method can capture realistic appearance and human pose (Realistic Caprure).
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Fig. 5: Ilustration for the calculating P-ESDF.

the neck and the midpoint of the hips. Once the spine
is determined, we translate all keypoints to align the
spine’s midpoint to a consistent coordinate, addressing the
translation variance of the input keypoints. Furthermore, we
rotate all keypoints to orient the spine’s direction upwards
and to the right, countering the rotation variance of the input
keypoints. Finally, we scale all keypoints to ensure the spine
length remains constant. An example of normalized human
keypoints is illustrated in Fig. 4.

Our normalization process for the HPE keypoints enhances
robustness against variances in translation, rotation, and scale
in the inputs. By using the normalized coordinates of the
keypoints, represented as a vector, as input to our network,
we simplify the design of the network architecture. The
proposed PoseErrNet is an autoencoder with a minimal
number of layers, benefiting greatly from the simplicity and
normalization of its inputs.

V. PERCEPTION-AWARE MOTION PLANNING

We introduce our proposed perception-aware motion
planning framework to bridge the gap between perception
and motion planning. In the proposed framework, the
perception loss is added to the motion planning cost function

deal with the sim-to-real gap and with scale,
rk to map from normalized 2D observations

as one of the costs. To achieve that, we built a differentiable
distance field called Pose-enhanced Euclidean Distance Field
(P-ESDF), noted as P, each of its element is then represented
as {p;, € P|i € Z*}. The construction of the field is
described below.

The output of the PoseErrNet is a 2-D map £ : R™*™" —
R, where m and n are dimensions of the proposed Perception
Guidance Field. The first step is to transform £ to the subject
frame in R® with the subject in the center, as shown in
the bottom sub-figure of Fig. 5(b). Then, we project the
transformed map £5“® from the subject frame to the drone
frame to get the £97°"¢, as shown in the upper sub-figure of
Fig. 5(b). To simutanrously perform obstacle avoidance and
viewpoint targeting, the £97°"¢ need to be merged with the
standard ESDF E to get the final P, as illustrated in Fig. 5.
The merge process can be expressed as:

P = A+ (1= NE;. (1)

Then, to guide the drone with the proposed P-ESDF, we
design pose penalty J,,sc as the function of p. Assume the
path is constructed by a series of waypoints {px C R3|k €
Z*}, and define Z(px) as the value of P at the position of
Px. The J,,se can be expressed as

M
Jpose = )\p Z C(Pi)Pk/ (2)
1=0

where p;, = a%i}i’“) can be efficiently acquired from

P-ESDF, and c(py) can be expressed as:
1 2

— (E(pr) — p)% Epr) <
5p (=(Pr) = )% Elpk) < p
0 E(pr) > p

The result is shown in Fig. 5.

c(pr) = 3)
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Fig. 6: The testing environment for the proposed motion planning
framework.

VI. EXPERIMENTS

To demonstrate the effectiveness of our system from
different dimensions, we conduct 3 tasks in simulated
environments with varied scales and complexity, as shown
in Fig. 6. The first task is to estimate a static challenging
pose, as shown in Fig. 6 (a). The later two tasks are to
estimate the human pose online during walking in the forests,
as shown in Fig. 6 (b-c). The drone needs to simutaneously
track the person, choose the best view-point, avoid occlusion
and ensure the safety.

A. Implementation Details

The implementation of PoseErrNet is an autoencoder
with 4 layers in the encoder layers and 4 layers in the
decoder layers, with total 0.011M parameters. It runs on
NVIDIA RTX 3070Ti GPU with 5000 HZ inference rate.
The TRT-Pose is utilized for 2-D human pose estimation.
It runs on NVIDIA RTX 3070Ti GPU with 15 HZ update
rate. The simulated vehicle is equipped with an Intel D435
depth camera, which is used both as the range sensor for
navigation planning and camera sensor for RGB images.
The onboard autonomy system of the UAV integrates several
key navigation modules from the development environment
of [48]. These include kinodynamic path search, mapping
module and GUIL. These components serve as fundamental
navigation modules. The proposed perception-aware planner
is on the top of the navigation system. The framework
runs on a laptop with i7-12700H CPU. We configure the
navigation system to update at 15Hz and perform trajectory
optimization at each sensor update. The spatial resolution is
set as 0.2m. The P-ESDF is set a 10 x 10m area with the
vehicle in the center.

B. Evaluation of 3D Perception Guidance Field Generation

To demonstrate the performance of the proposed 3D
perception guidance field generation, we showcase an
example in challenging scenarios as shown in Fig. 7.

Camera Capture

3D Perception Guidance Field
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Fig. 7: The result for 3D perception guidance field prediction on
the example real-world data. Each arrow within the 3D perception
guidance field represents a camera viewing angle. Colors are
utilized to denote the error of HPE at a camera viewing angle.

In Fig. 7, the algorithm begins by normalizing the
detected imperfect 2D human keypoints, as outlined in
the methodology section (Sec. IV). The robustness of our
PoseErrNet’s output against variations in scale, translation,
and rotation of the input keypoint detection is enhanced
by this normalization process. We captured a real-world
video with a hand-held camera following a human subject
and selected 146 representative frames. To these frames, we
applied three levels of perturbation: T1 involves uniform
random translation ranging from O to 5 pixels, uniform
random rotation from O to 5 degrees, and uniform random
scaling from 1.0 to 1.05; T2 includes uniform random
translation from 0 to 10 pixels, uniform random rotation
from 0 to 10 degrees, and uniform random scaling from
1.0 to 1.10; T3 consists of uniform random translation from
0 to 20 pixels, uniform random rotation from 0 to 20
degrees, and uniform random scaling from 1.0 to 1.15. As
illustrated in Table II, we quantized the camera viewing
angle error into 21 bins within its range and reported
the percentage of bin changes from the results without
perturbation for all camera viewing angle error predictions
from PoseErrNet. Due to the input normalization, our
PoseErrNet’s output demonstrates robustness under various
levels of input keypoint perturbations.

This normalized keypoints detection data is then input
into PoseErrNet to predict the 3D perception guidance field.
As an example in Fig. 7 from our real-world collected
video frames, where a person moves forward while raising
their right arm, obstructing their face. Viewpoints directly in
front of the individual are assigned lower costs due to their
superior visibility. In contrast, viewpoints from behind are
usually associated with higher costs, as they are more prone
to occluding important features like the face and arms. The
error increases on the right-hand side due to occlusion caused
by the raised arm. The left to the front side also with high
error because the person’s left leg moving forward creates
self-occlusion of the right leg. Meanwhile, the area from the
left to the back side exhibits the lowest error, indicating the
best candidate camera viewing angles for this scenario.
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Perturbation Translation (%) Rotation (%) Scale (%) All (%)
Tl 5 8 12 17
T2 11 12 16 25
T3 19 18 21 34

TABLE II: Evaluation of Robustness of Pose Normalization for 3 perturbation levels T1, T2, and T3. The translation-only results
(Translation), the rotation-only results (Roataion), the scale-only results (Scale) and combing all translation, rotation, scale results (All).
Here we show after input keypoint normalization how many percentages of PoseErrNet output change due to input keypoint perturbation.

C. Perception-aware Motion Planning Experiment

To evaluate the efficacy of the On-drone Perception-aware
Motion Planning method, we conducted an experimental
implementation in complex, cluttered environments
characterized by numerous obstacles, as depicted in Fig. 6.

As shown in Fig. 9 and Fig. 8, in obstacle-free
environments, the UAV consistently adheres to the optimal
viewpoint. However, upon encountering obstacles, the
UAV demonstrates the capability to maintain this optimal
viewpoint while simultaneously navigating around the
obstructions. In scenarios where obstacles are proximate or
densely situated, the planning framework proactively shifts
to the second-best viewpoint. This adjustment is crucial
for mitigating occlusion issues between the target and the
UAY, and for maintaining safety by avoiding obstacles. Upon
successful navigation past obstacles, and making sure that
occlusions do not obstruct the view of the target, the UAV
seamlessly plans and executes a trajectory to return to the
primary, most advantageous viewpoint.

(b) (c)

Ye ‘e

(d) (e) (f)

Fig. 8: Perception-aware motion planning experiment. (a): The UAV
follows the best viewpoint (green arrow). (b): The UAV can still
follow the best viewpoint and while avoiding the obstacle. (c-d):
To avoid the occlusion between the target and the UAV, and also
to avoid the obstacles for safety, the proposed planning framework
automatically switches to the second best viewpoint. (e-f): After
avoiding the obstacle, and if there is no occlusion between the
target and the UAV, the UAV plans a smooth trajectory to return to
the best viewpoint.

D. System-level Comparison

This experiment was designed to validate the robustness
and overall performance of our integrated system. The
perception aspects were simulated within Unity, while the
control and motion planning components were simulated
in ROS [49] using Rviz [50] for visual representation.
We benchmark our method with Auto-Filmer [48] with

different pre-setted view-angles. Auto-Filmer is a planner
for autonomous tracking and videogrphy in unknown
circumstance, it can track human with given viewpoint
while keeping the drone safe. In this experiment, we set
front, side and back views for Auto-Filmer to track. Two
standard metrics are introduced to evaluate the performance:
Percentage of Correct Key-points (PCK) and Mean Squared
Error.

As indicated in Fig. 9 and Table. III, the optimal viewpoint
(represented by a green arrow) dynamically adjusts in
response to changes in the human subject’s pose. The UAV
is programmed to track and align with this best viewpoint
in real-time, showcasing its responsiveness to the target’s
movements. In scenarios where both the target and obstacles
are present within the UAV’s operational environment, the
system intelligently opts for the second-best viewpoint. This
strategic choice is critical for avoiding visual occlusion
between the UAV and the target, and for ensuring safety
by steering clear of obstacles. This approach effectively
demonstrates the system’s capability to adapt to varying
environmental conditions while maintaining high-quality
perception and safe navigation.

VII. FUTURE WORK

In our work, the computation of the 3D perception
guidance field is based solely on the current frame, without
accounting for changes in human poses over time due to
motion. This can result in latency in perception guidance and
viewing-angle adjustment planning. In future work, we plan
to address this limitation by incorporating a sequence-based
network that considers past human poses and predicts future
changes in the 3D perception guidance field, accommodating
motion-induced pose changes.

VIII. CONCLUSION

The innovative approach detailed in this paper signifies
a considerable leap forward in the domain of active 2D
human pose estimation through the use of autonomous
Unmanned Aerial Vehicles (UAVs). By weaving together
a NeRF-based Drone-View Data Generation Framework, an
On-Drone Network for Camera View Error Estimation, and
a Combined Planner for strategic camera repositioning, our
methodology effectively tackles the issue of self-occlusions
in videos capturing human activities. This integrated
system not only enhances the accuracy and reliability of
human pose estimation from optimized camera viewing
angles but also guarantees the adaptability and operational
safety of drones across varied environments. The proposed
method highlights the critical role of dynamic viewpoint
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(a) (b) (c)

(d) (e) (f)

Fig. 9: Demonstration of the perception-aware motion planning. The upper row in each figure is an image captured using the onboard
camera, and the bottom row illustrates the third-person view of the experiment. The 3D perception guidance field is represented as a
hemispherical field around the drone with different colors indicating the quality of the view point (from green to red indicating good to
poor). The green arrow means the best viewpoint evaluated altogether from the pose estimation accuracy, occlusion, and flight safety. (a -
b): The best viewpoint (green arrow) changes with the human pose, and the UAV follows the best view point in real-time. (¢ - f): When
both target and obstacles are observed in the environment, the UAV automatically chooses the second best viewpoint to avoid occlusions
and ensure safety.

Method Challenging Pose Large-Scale Dense All
PCK MSE PCK MSE PCK MSE PCK MSE
Auto-Filmer - Front | 0.87 31.46 091 2410 0.60 4241 0.79 32.66
Auto-Filmer - Side | 0.93 30.73 0.78 2559 080 37.89 0.84 3140
Auto-Filmer - Back | 0.80 29.20 0.67 3431 0.67 37.51 0.71 33.67
Ours 1.0 22.60 0.86 2447 092 23.61 092 2356

TABLE III: PCK and MSE Evaluation for System-level Experiments

optimization in elevating the quality of pose estimation,
thereby paving new pathways for applications in sectors
like aerial cinematography and surveillance. Experimental
results from both simulation and real-world-captured data
prove the efficacy of each component within our system
and, more importantly, demonstrate the enhanced task-level
performance of the integrated system.
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