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COMPUTER VISION
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Neuromorphic vision sensors or event cameras have made the visual perception of extremely low reaction time

possible, opening new avenues for high-dynamic robotics applications. These event cameras’ output is depen-

dent on both motion and texture. However, the event camera fails to capture object edges that are parallel to the

camera motion. This is a problem intrinsic to the sensor and therefore challenging to solve algorithmically. Human

vision deals with perceptual fading using the active mechanism of small involuntary eye movements, the most

prominent ones called microsaccades. By moving the eyes constantly and slightly during fixation, microsaccades

can substantially maintain texture stability and persistence. Inspired by microsaccades, we designed an event-

based perception system capable of simultaneously maintaining low reaction time and stable texture. In this de-

sign, a rotating wedge prism was mounted in front of the aperture of an event camera to redirect light and trigger

events. The geometrical optics of the rotating wedge prism allows for algorithmic compensation of the additional

rotational motion, resulting in a stable texture appearance and high informational output independent of exter-

nal motion.The hardware device and software solution are integrated into a system, which we call artificial micro-

saccade-enhanced event camera (AMI-EV). Benchmark comparisons validated the superior data quality of AMI-EV

recordings in scenarios where both standard cameras and event cameras fail to deliver. Various real-world experi-

ments demonstrated the potential of the system to facilitate robotics perception both for low-level and high-level

vision tasks.

INTRODUCTION

Humans still outperform the most advanced robots in visual per-
ception. Our visual systems have evolved over millions of years to
help us efficiently obtain the information necessary to act in our en-
vironments. A characteristic of human vision is fixational eye move-
ments, which are small, involuntary displacements of the eyeball.
The largest of these eye movements are called microsaccades (I).
They ensure that vision does not fade during fixations (2) by gener-
ating movement and stimuli in visual neurons and enhancing per-
ception of spatial detail (3). Without microsaccades, humans cannot
maintain the perception of static objects. For a demonstration, see
Fig. 1 and Movie 1. The question we ask here is: Can we adopt this
active perception mechanism in robot vision?

A bioinspired visual motion sensor, known as the silicon retina,
dynamic vision sensor (4), or event camera, has recently gained in-
creasing attention in robotics. Using analog microcircuits at every
pixel, it can achieve a temporal resolution of several microseconds
and has much higher dynamic range than standard cameras. Event
cameras have shown great potential in many visual navigation tasks,
including dynamic obstacle sensing (5-8), localization in challenging
lighting conditions (9-12), and specific applications such as autono-
mous inspection (13) or space situational awareness (14). However,
along with these functional advantages, some of their natural proper-
ties also present unique challenges.
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Event cameras only respond to motion. An event at a pixel is trig-
gered when the logarithm of the intensity changes by a certain
threshold. Thus, the readings occur at image edges but depend on
both the motion and the scene texture. No events are recorded at
edges parallel to the camera motion, and thus an event camera mov-
ing horizontally does not “see” horizontal scene edges. As a result,
event cameras do not produce a stable and persistent texture, and
they cannot maintain high informational output all the time, which
makes accurate and long-term data association very difficult. How-
ever, data association is essential for most algorithms used in robot
visual perception systems, such as optical flow estimation or feature
tracking. The challenge of maintaining it has become a bottleneck
for event-based vision in real-world applications.

In the past decade, many works attempted to eliminate this prob-
lem using software approaches. Most event-based data association
methods rely on features like corner points (15-17) and optical flow
(18-20). However, because of the varying texture appearance, feature
detection and tracking are not accurate or stable, and so far, there are
very few robotics applications. In recent years, some works (12, 17, 21,
22) associated events with previous data maintained either in the
form of two- or three-dimensional (2D/3D) event maps or recon-
structed intensity images and optimized the correspondence between
new and maintained data. The maintained maps or images contain
more information and have enhanced texture stability, thus resulting
in more robust performance. However, these methods suffer from
noise when the event camera moves slowly or is static, resulting in
severe robustness issues when such conditions persist over extended
time intervals. Some works combined event sensors with regular
cameras for optical flow estimation (23) and stable feature tracking
(24-26). By fusing events with absolute brightness information, fea-
tures can be detected in the intensity images and tracked with events.
However, the introduction of regular cameras limits the system’s dy-
namic range, thus hindering its application in challenging lighting
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environments. All of the above methods attempt to maintain a stable
texture appearance using software solutions. Although they offer
some mitigation, they fall short of providing a complete solution. We
observed that the issues of texture instability and information loss are
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Fig. 1. Demonstration of how microsaccades counteract visual fading. A sim-
ple yet intuitive example demonstrating visual fading and how microsaccades
counteract it. We recommend enlarging the image to at least 15 cm by 15 cm and
keeping one's eyes 40 cm away from the screen. After a few seconds of fixation on
the red spot, the bluish annulus and the background will fade. This is because mic-
rosaccades are suppressed during this time, and, therefore, the eye cannot provide
effective visual stimulation to prevent peripheral fading. On the other hand, when
saccading between the purple spots, the annulus is always experienced, possibly
fading slower even though the saccades are small, typically 0.5° to 1.0° depending
on the viewer's distance from the figure.
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fundamentally introduced by sensor characteristics instead of algo-
rithm imperfections.

In recent years, people have tried to address this problem via ac-
tive vision approaches. Several studies have integrated event cameras
with other active sensors, such as structured light or lasers (27-31),
to facilitate motion-independent event sensing. These studies intro-
duce specialized sensor configurations that demonstrate impressive
results in tasks like depth estimation, 3D reconstruction, and surface
normal estimation, but the unique setups limit their adaptability to
diverse applications. Moreover, these configurations tend to be more
susceptible to specific illumination conditions and material types,
constraining their broader utility. Some previous works emulated
the human microsaccade mechanism by introducing additional mo-
tion into the event camera system (32, 33). By shaking the event
camera and introducing movements in different directions using a
pan-tilt mechanism, saccade-like motions were introduced, and
more information (events) could be recorded from multiple sac-
cades. However, discrete sensor movements are difficult to imple-
ment in robotics systems. This is because of the substantial inertia of
the electronic perception system; achieving high-frequency vibra-
tions necessitates considerable torque, which is challenging to ac-
complish using currently available lightweight actuators. Therefore,
to effectively address the issue of fading, alternative approaches in-
spired by nature, rather than strictly mimicking it, are required.

Our aim is to develop a similar artificial microsaccade (AMI)
mechanism that varies the direction between the scene texture and
the image motion. Although this can be done with saccades, it can
also be achieved by manipulating the direction of the incoming
light. Moreover, if the direction of the incoming light can be steered
continuously rather than in discrete steps, the efficiency will also be
improved. This is the basic idea that we use to design our system that
will “see” events at all edges of the scene and will not miss any be-
cause of its motion.

Proposed solution

This paper identifies and resolves fundamental challenges to achieving
accurate and stable event-driven data association from the perspective
of hardware-software joint design. Instead of simply replicating na-
ture, we propose a nature-inspired but
more effective solution that uses an AMI
mechanism to manipulate the direction
of the incoming light, named AMI-
enhanced event camera (AMI-EV). The
AMI-EV actively senses visual informa-
tion using a rotating wedge prism in front
of an event camera. By actively triggering
events in areas of high spatial frequency,

(Standard EVent camera)

(Artificial Microsaccade-enhanced EVent camera)

/ such as edges, AMI-EV maintains the ap-
pearance of texture and high informa-
tional output, even when the sensor does
not move. Figure 2A illustrates the hard-
ware, Fig. 2B the refraction of the wedge

K = oy * mechanism, and Fig. 2C the imaging. De-
) __' tails of the rotating wedge-prism mecha-
= = _—| nism and the compensation algorithm are
= described in Materials and Methods and
S-EV AMI-EV

in movie S1. The compensation algorithm

Movie 1. Demonstration of microsaccades and overview of the proposed system.
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makes our system a plug-in-and-use solu-
tion with existing event-based perception
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Fig. 2. Overview of our entire system, including both hardware and software. (A) Real-world hardware and computer-aided design (CAD) model. (B) lllustration of the
incoming light refraction as the wedge prism rotates. (C) Event generation and compensation process, with the images on the left resulting from accumulating the event

streams shown on the right. (D) System overview.

algorithms. We validated the potential of the system by applying it to
many different low- and high-level vision tasks as detailed in Results.
To facilitate future research, we also released the hardware design, the
software for AMI generation, calibration and compensation, a simula-
tion platform, and a translator for interfacing with public event cam-
era datasets. With these tools (34), developers can generate their own
AMI-EV datasets for their specific tasks from simulation, existing
event-based vision datasets, and real-world environments.

RESULTS

In this section, we present the design of our AMI mechanism and
then demonstrate its advantages due to its capability of maintaining
stable and high informational output. To demonstrate the system’s
potential in facilitating robotics perception research, we evaluated it

He et al,, Sci. Robot. 9, eadj8124 (2024) 29 May 2024

on various state-of-the-art event-based algorithms in several typical
applications. The results verify that the proposed system is highly
effective in improving performance across the board.

AMI generation and compensation

To generate events on all edges, we used the working principle of the
wedge-prism deflector (35). When the prism rotates, it actively ad-
justs the direction of the incoming light, as illustrated in Fig. 2B. At
the beginning of the procedure, the wedge prism has a certain orien-
tation and deflects the incoming light at a fixed angle, as shown in
Fig. 2B(1). Then, the actuator module drives the optical deflector
module to rotate along the 2 axis of the camera, z, to make the in-
coming light constantly change its deflection, as shown in Fig. 2B(2).
This enables the incoming light to continually generate events as it
creates motion on the image plane with a circle-like trajectory, as
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shown in Fig. 2B(3). As a result, continuously changing rotational
motion is induced in the camera. Because the AMI is in all direc-
tions in the image plane, the output event stream contains all bound-
ary information of the scene, as shown in Fig. 2 (C and D). Compared
with previous works (32, 33) that move the camera instead of the
prism, the moving parts of our system do not contain fragile com-
ponents such as the camera, thus rendering it more robust for high-
speed rotation. Moreover, our system operates under constant-speed
rotation, which is a smoother motion than the vibrational motion
considered in (32, 33). A discussion of the optimal refraction angle
and frequency of the rotations for different tasks is available in Ma-
terials and Methods.

Another important part of the proposed software framework is
the AMI compensation. This is one of the major advantages of our
approach compared with previous works (32, 33), which inevitably
suffer from motion blur and decreased accuracy. Looking at an im-
age created by binning the events over a small time interval, which
we call an accumulated event image (see Fig. 2C), blurred boundar-
ies are observed in the absence of motion compensation. To obtain
sharp edges, events triggered by the same incoming light ray direc-
tion must be moved to the same pixel. This requires calibrating the
wedge orientation and compensating for the spatial displacement of
the events introduced by the wedge motion. Given that our actuator
system is equipped with an absolute position sensor (rotary encoder),
the compensation parameters only need to be calibrated once and
can be used directly for subsequent recordings. The technical de-
tails of the calibration and compensation algorithms are provided
in Materials and Methods. The compensation is illustrated in the
second row of Fig. 2 (C and D), and movie S1 shows the procedure.

Quantitative evaluation of texture enhancement

Experiment setup

To verify the effectiveness of the proposed system in texture en-
hancement, we conducted experiments on three representations:
event stream, accumulated event images, and reconstructed inten-
sity images. In each experiment, the performance of our system was
tested against a standard event camera (S-EV). For all cases, two
motion scenarios were considered: (i) no motion and (ii) motion
with six degrees of freedom. All data were collected using the cus-
tomized platform shown in fig. S1. The platform was equipped with
an S-EV, an AMI-EV, and an Intel Realsense D435 camera (36) that
provides red-green-blue, grayscale, and depth images. The hardware
framework refers to the design of (37). Further configuration details
can be found in Supplementary Methods.

Event stream

The event stream is a fundamental representation of event data from
which all other event representations are derived. Therefore, en-
hancing the quality of the event stream can substantially improve the
performance of a robotic perception system. In this experiment, we
aimed to demonstrate that our system can generate an event stream
of higher quality, containing more environmental information, than
the S-EV. The quality was evaluated using the point distribution, a
common metric for evaluating the quality of 3D point clouds. Previ-
ous works on spatial point cloud processing (38, 39) have shown that
a uniform distribution of points across the environment surface is
preferable, because it indicates that the point cloud has captured all
the necessary data. In the case of a spatial-temporal point cloud or
an event stream, the point distribution is determined by both the
scene structure and the motion. However, the same metric can still
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be used if we apply constraints on the scene. If the scene is static and
all edges have the same illumination change, the point distribution is
determined only by camera motion. In this scenario, a narrower dis-
tribution means that there is a higher proportion of events that share
similar density. This results in a more uniform event density across
the event stream, thus leading to a more stable representation of
scene features that is less affected by camera motion. Therefore, the
uniformity of the event stream can measure the influence of camera
motion on the output.

In our experiment, we used kernel density estimation (KDE) to
compute the density of events at their locations. The variance of the
KDE distribution serves as an indicator of the uniformity of the
event density at the location of the events. A lower variance sug-
gests that a greater number of events share similar density, leading
to a more stable representation of scene features. The experiment
environment contained edges oriented in various directions, with
an even spatial distribution throughout. Figure 3D illustrates that
AMI-EV produced a more uniform point distribution than S-EV,
with a variance of 0.196 compared with 0.425 for S-EV. This indi-
cated that the output event stream of AMI-EV was more stable. In
addition, as detailed in Supplementary Methods, the AMI-EV data
had a lower ratio of low-density components, which are more like-
ly due to noise and provide little useful structural information
(fig. S10).

Accumulated event image

The accumulated event image is the most commonly used visualiza-
tion in event-based vision tasks. Thus, enhancing its quality will
substantially improve subsequent applications that process event
data in a manner akin to image processing. In this study, we showed
that the accumulated event images produced by our system ex-
hibited superior stability and displayed less dependence on cam-
era motion.

For this experiment, we first extracted the edges in the grayscale
images using the Canny edge detector (40). Because the motion was
small and the illumination was stable, we used them as ground truth
for the edges in the environment. Next, image registration was ap-
plied to align the images among the S-EV, AMI-EV, and ground
truth. Last, we measured the performance of capturing edges using
two metrics: optimal dataset scale F1 (ODS-F) score and entropy, as
shown in Fig. 3 (A, B, and E). ODS-F score is a commonly used
metric for edge detection tasks (41, 42), whereas entropy is a widely
used parameter to quantify the amount of information present in an
image. Both metrics were positively correlated with texture com-
pleteness in our experiments. Referring to the figure, AMI-EV
showed stable and complete recordings of edges when the camera
was in motion. Furthermore, we see that the output from the AMI-
EV showed less dependence on camera motion than that of the S-EV.

In Fig. 3 (A and B), our system demonstrated higher and more
consistent ODS-F scores, which can be attributed to the AMI mech-
anism. In certain motion patterns, such as the second snapshot in
Fig. 3B, where the movement is parallel to most of the edges in the
environment, the recordings from the S-EV can be greatly affected,
whereas our system remains stable. Moreover, as shown in Fig. 3B,
our system produced substantial improvements in the image entropy
metrics compared with S-EV, indicating that it more effectively
recorded complete edge information. The entropy was calculated on
the binarized event map, and only the most representative part of
the result is displayed here. For more detailed results, the reader is
referred to fig. S8 in Supplementary Methods.
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Fig. 3. lllustration of our approach’s improvement on texture enhancement. (A) The ODS-F (higher is better) is used to measure the structural completeness of the
accumulated event images. (B) Temporal snapshots of (A). (C) Comparison of the reconstructed grayscale images. (C) is the snapshots of (F), the color red for the box is
used to indicate that the system is static, and purple denotes that the system is moving upward (along y axis). (D) Histogram of event density distribution for the original
event stream and our enhanced event stream. More detailed illustrations can be found in fig. S10. (E) Entropy comparison of accumulated event images. In (A) and (E),
solid curves indicate the median value over a time window of 10 data points. In contrast, the top and bottom bounds of the transparent regions indicate their maximum
and minimum values. (F) Quantitative comparison of the reconstructed image quality using the NIQE (lower is better) (47).

Reconstructed intensity image

The enhancement of reconstructed intensity image quality is
critical for event-based robot vision because such representation
is essential in tasks like high—frame rate video generation (43,
44). In the experiment, we first reconstructed videos using the
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event cameras at 1000 frames per second (fps), which is a typical
frame rate used in high-speed imaging (45, 46). Then, we used
the natural image quality evaluator (NIQE) (47), which intuitively
assesses how natural an image is to quantitatively evaluate the im-

age quality.
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The results are shown in Fig. 3 (C and F). Figure 3F shows the
NIQE metric computed over a time interval with two time instances
(T, and T>) highlighted, as shown in the two snapshots in Fig. 3C. At
T), the system is static, and at T, it is moving. We see that both cam-
eras show satisfying image reconstruction performance when the ro-
bot is moving (right side of Fig. 3C). The proposed method achieved
better performance because it can provide more information in re-
gions that lack camera motion, such as horizontal edges when the ro-
bot is turning. When the robot is static, the performance of the S-EV
decreases because of perceptual fading, as shown in the left side of
Fig. 3C. More details about perceptual fading can be found in the per-
ceptual fading effect in event cameras section in Supplementary
Methods. On the other hand, the AMI mechanism effectively ad-
dresses the perceptual fading problem by actively providing more en-
vironmental information. Readers can refer to movie S2 for a more
detailed illustration. In rare scenarios, the motion of the prism ne-
gates the optical flow induced by the motion of the camera, resulting
in few events. In such scenarios, AMI-EV’s performance degrades by
a small margin. For example, at the 48th second in movie S2, there is
a frame where the phenomenon of perceptual fading occurs, espe-
cially noticeable at the location of the “FAST Lab” logo on the image.

Feature detection and matching

The following experiments demonstrate the performance of the pro-
posed system for feature detection and matching. These are the most
representative tasks in low-level vision and the basic building blocks
for various robotics applications. Event-based feature detection and
matching are attracting increasing interest (15, 16, 48) because of
the sensor’s advantages of high dynamic range (HDR) and high tem-
poral resolution. However, the performance of existing methods
depends on the camera motion. The proposed system delivers high-
quality features independent of camera motion and retains the be-
nefits of event cameras. Movie S3 shows the experiments.

The environments used in the experiments are shown in Fig. 4A. We
used four typical scenarios: a structured environment, an unstruc-
tured environment, a challenging illumination environment, and a
dynamic environment. The first three scenarios were used for corner
feature detection and tracking, and the last was used for motion fea-
ture detection and matching, also known as motion segmentation. For
all experiments, we compared the proposed system with grayscale
cameras and S-EV. We directly extracted features from the asynchro-
nous event stream without any accumulation, preserving the high
temporal resolution (in the order of microseconds) of the data. In
these experiments, the wedge angle was set to 1.0°, and the rotating
frequency was 12 Hz, which was sufficient to allow for motion com-
pensation at the speed used, as shown in movie S3 (see the analysis in
Materials and Methods).

Corner detection and tracking

We used the three experimental environments shown in Fig. 4A. After
AMI generation, the corner events were extracted using a widely used
event-based corner detector (15). Next, the extracted features are
compensated to eliminate the effect of the wedge rotation. Figure 4B
shows that our system detected and tracked more corner features and
provided more information than S-EV in all three scenarios. The tex-
ture in S-EV became unstable because of changing motion, resulting
in incomplete corner detection and unstable tracking. Furthermore,
our system, along with S-EV, outperformed the standard camera in
challenging illumination scenarios because of the event sensor’s
HDR, as shown in Fig. 4B(3). The quantitative results presented in
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Fig. 4B(4) demonstrated that our system achieved a substantially lon-
ger tracking lifetime than S-EV, although at the cost of slightly re-
duced accuracy (~1.5 pixels). The error in accuracy is primarily due
to numerical computations and imperfect clock synchronization in-
troduced during AMI compensation. Therefore, the error is indepen-
dent of the camera’s motion. For a more detailed analysis of this error,
refer to the choice of deflector angle and rotating speed section.
Moreover, our system and the S-EV had a notably higher update
rate than standard cameras, which is crucial in high-dynamic sce-
narios, as shown in Fig. 4B(5). In conclusion, our system was the only
camera system that robustly detected and tracked corner features in
all three typical scenarios. The results demonstrated that it effective-
ly solved the corner detection and tracking tasks, especially in chal-
lenging illumination scenarios.
Motion segmentation
The event camera is well suited for segmenting fast-moving objects, and
there is already a wide range of applications, including dynamic obsta-
cle avoidance (5, 6, 49) and high-speed counting (50, 51). This experi-
ment aimed to demonstrate that our system and S-EV have a better
performance than standard cameras for this task and that the addition-
ally introduced motion in our system does not affect the performance.
The goal of the experiment was to segment independently mov-
ing objects from the background. In the experiment, the camera in-
troduced motion in the background while a separately thrown ball
moved independently. For motion segmentation on S-EV and AMI-
EV, we adapted the methods from (52) and (5), which can provide
per-event segmentation. Specifically, we used the idea of camera-
motion compensation (12, 53) by maximizing the sharpness of
motion-compensated images and detecting moving objects as non-
sharp regions using clustering techniques. For the standard camera,
we applied one of the state-of-the-art methods (54) as our bench-
mark, which detects fast-moving objects as a truncated distance
function to the trajectory by learning from synthetic data.
Comparing results from S-EV and AMI-EV in Fig. 4C, we see that
the introduced motion did not influence the accuracy and robustness
of the proposed system in motion segmentation tasks. However, the
standard camera suffered from motion blur and low temporal resolu-
tion and could effectively capture the motion information, thus re-
sulting in poor performance. More details can be seen in movie S3.

Human detection and pose estimation
This experiment demonstrated the potential of applying the pro-
posed system in a popular high-level vision problem, human detec-
tion, and pose estimation. Event cameras are particularly well suited
for detection tasks that involve fast motion and have attracted inter-
est in recent years (55-57). However, previous methods need either
the assistance of grayscale images to update the detection (55) or the
initialization of the pose estimation (56). Moreover, they do not ap-
ply to dynamic environments where the camera moves. In this ex-
periment, we demonstrated the potential of the proposed AMI
mechanism in achieving robust high-speed human motion estima-
tion. To obtain better texture and intensity information, we used im-
ages reconstructed from events as the event representation, which
have been proven to be robust in different scenarios, including the
dynamic one (43, 58, 59). We used one of the most popular human
pose estimation algorithms, called OpenPifPaf (60), to conduct hu-
man detection and pose estimation.

We evaluated accuracy and robustness using intersection over
union (IoU) and percentage of detected joints (PDJ). These evaluations
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Fig. 4. Evaluation of feature detection and matching. (A) Environment setups of four experiments. (B) Results of the corner detection and tracking experiments. The
left column of (i) to (iii) provides a comparison of the number of trackable corners, and the three right columns show snapshots. (iv) and (v) are metric comparisons visual-
ized using box and bar graphs. (iv) indicates the lifetime of all trackable corners, and (v) shows the response time. (C) Results of the motion segmentation experiment. Blue

parts indicate the background, and red parts indicate independently moving objects.

were made in relation to the video frame rate, which denotes the fps
that the stand event-to-video algorithm, E2VID (43), can generate. As
shown in Fig. 5, the AMI-EV demonstrated better performance at dif-
ferent frame rates. When using our system, the frame rate can be con-
figured to be substantially higher than S-EV while maintaining image
quality. More details can be found in movie S4.

AMI-EV simulator and translator

AMI-EV simulator

To facilitate future research, we also developed a simulator. The code
was released in (34). The simulator was based on our previous work,
WorldGen (61), which allows the generation of 3D photorealistic
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scenes with the user having control of features, like the scene texture
and the camera and lens properties. The simulator allows the user to
generate a task-specific synthetic AMI-EV. Figure 6A illustrates an
example of a scene created for human pose estimation. The simula-
tor provided the synthetic AMI-EV data along with a list of visual
representations of the scene. See Supplementary Methods for more
details on the simulator.

AMI-EV translator

In addition to the simulator, we also provided a translator to create
a synthetic AMI-EV from standard datasets. The proposed transla-
tor supports three types of inputs: grayscale images, grayscale im-
ages combined with events, or events only. With appropriate video
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Fig. 5. Evaluation of human detection and pose estimation. (A to C) Results of human pose estimation for S-EV (A), AMI-EV (B), and a standard camera (C) on four ac-
tions: waving the hand, shaking arms, baseball batting action, and ping-pong batting. The former two actions are slow, and the latter two are fast, which caused motion
blur in RGB frames. (D) Metric comparisons. The frame rate denotes the fps that E2VID (43) is configured to generate. loU provides a measure of human detection perfor-
mance, and PDJ is a measure of the detected joints'localization precision and completeness. Because the sampling frame rate varies greatly from different sensors, we use

the semilog plot (x axis has log scale) to visualize the data.

interpolation algorithms, high—frame rate videos can be generated.
Subsequently, these high—frame rate videos are fed into a specially
designed AMI module to produce the output AMI event stream. To
understand the working principle of the AMI-EV translator in de-
tail, refer to Supplementary Methods and fig. S5. Figure 6B shows
translation examples from two typical event-based datasets, called
Neuromorphic-Caltech101 (32) and Multi Vehicle Stereo Event
Camera Dataset (62), which are both widely used for evaluating
event-based 3D perception and recognition tasks. Further results
can be found in Supplementary Methods.

DISCUSSION

By emulating the biological microsaccade mechanism, a texture-
enhancing event vision system that enables high-quality data asso-
ciation has been proposed and evaluated. Stable texture appearance
and high informational output are maintained with our system con-
sisting of a rotating wedge filter in front of an event camera. We also
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provided a compensation algorithm to account for the motion from
the wedge filter. Our results show that the output of the compen-
sation is compatible with most representative event-based data—
processing methods with minimal loss of accuracy and latency. For
low-level tasks, there is a margin of error introduced by this com-
pensation, in particular in specialized tasks like optical flow estima-
tion over short time intervals. As shown in fig. 811, the performance
of optical flow estimation to static objects degrades by 0.19 pixel of
end point error. However, the benefits of preserving stable texture
generally outweigh this drawback. For high-level tasks, the effect of
this loss is negligible given that it does not compromise the perfor-
mance of advanced recognition or detection tasks.

We demonstrated experimentally that our device can acquire
more environmental information than traditional S-EVs. It can
maintain a high-informational output while preserving the advan-
tages of event cameras, such as HDR and high temporal resolution.
Extensive validation experiments demonstrated that our system has
potential for use in various field robotics applications ranging from
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low-level to high-level vision tasks. It can achieve better feature ex-
traction in low-level vision tasks and help the robot recognize and
understand the environment better in high-level vision tasks.

In summary, our proposed system fundamentally eliminates the
motion dependency problem in event-based vision using a bioin-
spired mechanism. This hardware improvement enables our system
to easily achieve high-quality data output compared with S-EVs.
Furthermore, the proposed software allows our system to be used
for elaborate mission-specific requirements.

Future work

As shown before, the proposed hardware device and software solu-
tion allow better data association for event-based vision. However,
the system is less energy efficient than an S-EV because of the addi-
tional mechanical structure. In addition, the different data format
also calls for additional data-processing methods.

To make the hardware more energy efficient, future research will
need to improve the AMI-generating mechanism both in the hard-
ware and software. Most actuators of this size consume energy from
watts to a few tens of watts, which is higher than the S-EV. To achieve
less power consumption, one could replace the mechanical structure
with electro-optic materials and control the incoming light direction
by optic phase array (63) technology. Specifically, by dynamically
controlling the optical properties of electro-optic materials like liquid

A

Fig. 6. Pictures generated by the released software package. (A) (Left) 3D-rendered scene with multiple moving
objects; (right) golf scene. (B) Output of the released translator. (Left) Image from the Neuromorphic-Caltech 101
dataset and two event count images generated from an 5-EV and an AMI-EV, respectively; (right) scene from Multi

Vehicle Stereo Event Camera Dataset (75).
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crystal display (64), the direction of the incoming light can be steered.
Such approaches can achieve a control frequency of more than 5 kHz
by micro-electromechanical system (65) while maintaining low pow-
er consumption, which has been validated and applied in the compu-
tational imaging field (65, 66). Another possible solution is to
optimize the rotation speed and adapt it to the specific scenario. The
effect of the added AMI motion decreases with faster scene motion.
High-speed rotation is more effective for low-dynamic scenarios;
thus, its use could be adapted to the speed. For certain tasks, the sys-
tem could operate at low speed or even stop once an adequate amount
of data has been collected for analysis or increase its rotational speed
in response to diminishing texture. However, designing specific ac-
tion strategies for different application scenarios remains a challenge.
The proposed device also creates an event data format where a pe-
riodic motion is encoded into the event stream. This raises a question:
Is there a more efficient and effective way to process the new data than
compensating for it? In this work, the compensation algorithm re-
moves the added motion from the output stream to make it compatible
with existing event-based algorithms. However, this method also in-
troduces some discretization errors and adds computational costs. Al-
though the error (around 1.5 to 2.0 pixels) is acceptable for most
robotics applications and the system can still work in real time on on-
board computers, the additional error and computation may be prob-
lematic in applications where precise measurements are needed or for
small robots with limited computation
resources. Moreover, the current compen-
sation procedure amalgamates the events
of both polarities and thus loses the polar-
ity features. Future work can consider a
more complex fitting model, such as an
oriented ellipse, instead of a circular mo-
tion to further decrease the compensation
error. To eliminate the compensation er-
ror fundamentally, we may need a method
that can work directly on the generated
event stream and use the motion informa-
tion without moving the pixel locations.
We will also investigate training a neural
network to regress the accurate pixel-wise
compensations function. In the spirit of
event-based work, we could train a spik-
ing neural network (SNN). We believe
that the best way would be to train the
network as a regressor using the method
of conversion; for example, we first trained
an artificial neural network and then con-
verted this network into an SNN (67, 68).

MATERIALS AND METHODS

Hardware architecture

The proposed hardware platform is 82 mm
by 54 mm by 62 mm. Its total weight is
322 g, including a 131-g event camera
(with lens) and a 41-g external micro-
computing unit (MCU) for actuator con-
trol. Our system comprises four modules:
the optical deflector module, the actua-
tor module, the event camera module,
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and the MCU, as shown in Fig. 2A. The blueprints have been released
(34) to benefit future research.

For the optical deflector module, a wedge prism was mounted in
front of the camera lens to deflect the incoming light at a fixed angle
from x,,, the x axis in a coordinate frame w attached to the wedge
prism (shown in Fig. 2B). The actuator module drove the optical
deflector module rotating around z, the z axis of the coordinate
frame attached to the camera frame ¢, also shown in Fig. 2B. Our
platform uses a DJI M2006 Brushless DC Motor (69) with a custom-
ized reduction gear and an absolute position encoder. With the
modified gear module, the actuator weighted 57 g (including the
electronic speed controller) and provided 0.11-N-m torque at 1500 rpm,
which satisfied our rotation speed and torque requirements. More-
over, by adding a photoelectric sensor to sense the prism’s orien-
tation, the motor’s incremental encoder signal could be transformed
to get an absolute orientation measurement as needed for the AMI
calibration. For the camera module, we adopted the DVXplorer event
camera (70). It has a spatial resolution of 640 pixels by 480 pixels and
supports time synchronization with external sensors. The microcon-
troller unit was used to control the actuator’s motion, receive position
feedback, and synchronize the event camera with the actuator. We
used the DJI Robomaster Development Board (71), whose weight is
40 g, to simplify the development.

Choice of deflector angle and rotation speed

In this section, we experimentally evaluate the influence of the rota-
tion speed and prism angle on the data volume and compensation
accuracy, and subsequently, we discuss good choices for different
tasks. As demonstrated in Fig. 7, increasing the degree of tilted angle
of the wedge prism and rotation speed led to a larger number of
events but also higher motion compensation errors.

Two factors governed the selection of rotational speed: the dura-
tion of the maintained time window and the compensation error.
Considering the former, the data must originate from at least a quarter
of the rotation period, because this is the smallest unit containing a
pair of orthogonal motions necessary for activating edges in all direc-
tions and thereby ensuring texture stability. For instance, an event

count image typically comprises data spanning a 33-ms duration.
Consequently, one rotation period should last 33 x 4 = 132 ms
(455 rpm) to guarantee the inclusion of all environmental information
within a single frame. In practice, the rotational speed must surpass
this minimum requirement to counteract the influence of sensor noise.

The second issue was the compensation error. As illustrated in
the left subfigure of Fig. 7B, the error, represented by the SD of the
event distribution, surged markedly beyond 720 rpm for 0.5° and
1.0° prisms. This escalating influence can be attributed to small syn-
chronization errors among the sensors, which amplify as the rota-
tional speed increases. Furthermore, this effect bears a connection
to the deflector angles. In light of the above analysis, the rotational
speed was set to 720 rpm for all real-world experiments to achieve a
balance between texture stability and compensation accuracy.

The selection of the deflector angle was task specific. As shown in
Fig. 7A, the geometric structure was similar across the output of all
three tested prisms, with the primary differences being data volume
and compensation accuracy. For tasks that prioritize data intensity,
such as corner detection and tracking, a larger tilt angle was prefer-
able, provided that accuracy was maintained. This is because a prism
with a larger tilt angle can generate more events in a given time, as
shown in Fig. 7B, and these events are mostly found in areas with
rich texture features, such as corner points. This leads to increased
robustness in such tasks. Conversely, a smaller tilt angle was more
suitable for tasks emphasizing contour completeness and compen-
sation accuracy as long as data sufficiency was ensured. For instance,
in tasks like human pose estimation or semantic segmentation, the
completeness and sharpness of object boundaries are more critical
than the data intensity. According to the left subfigure of Fig. 7B,
both the 0.5° and 1.0° prisms exhibited satisfactory compensation
accuracy at a rotational speed of 720 rpm. In the right subfigure, the
1.0° prism displayed higher data intensity than the 0.5° one. The 2.0°
prism, although it had the highest data intensity, had a compensa-
tion error too high to be practical. Therefore, in this work, we chose
a 1.0° prism with a rotation speed of 720 rpm for the feature detec-
tion and matching experiments and a 0.5° prism with 720 rpm in all
other experiments, as well as in the simulator and translator.
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Fig. 7. Compensation error and data volume for different combinations of deflector angles and rotational speeds. (A) A snapshot of compensation performance
with the rotational speed at 720 rpm. The colors on the image boundaries indicate the deflector angles. (B) Quantitative results. Details about how to calculate the com-
pensation error can be found in Supplementary Methods. The event volume is measured by bandwidth analysis, as detailed in fig. S9.
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2D wedge-prism camera model

Figure 8A illustrates the optical model with a 2D cross section of the
wedge-prism camera model. The incoming light v,, € S! denoting a
unit vector on the left was transmitted and deflected twice (v’ and
Vout) through the wedge prism and then focused on the camera im-
age plane I at pixel p;. According to Snell’s law (72), the relationship
between ®@; and @, can be described as

sin®@;=n-sin®,

i ( sin®; )
<I>p =arcsin
n

(1)

where @; is the angle between v, and z. and @, is the angle be-
tween vp and zc , respectively. n is the refractive index of the prism
material, which was set to 1.55 in the experiments. The refractive
index of the air is regarded as 1.0. Therefore, vector v}, can be re-
presented as
vp = R(ViXZ, @ - @) -v; )

where R (a, b) denotes a rotation along axis a with an angle of b
(counterclockwise as the positive direction) and ¥ denotes the nor-
malized vector v.

Similarly, the relationship between @, (angle between v, and z,,)
and @, (angle between v, and zy) can be written as

D, = arcsin(n . sincbq) (3)
where @, can be expressed as
@, = arcsin( lvp Xz, Il ) (4)
Last, the output light vector v, can be represented as
Vo =R(VpX2,, @5 = @, ) -v, ©)

Summarizing, v, can be fully represented by v; and z,,. The transmis-
sion through the prism is described by a function g( Vis 2, ) € Slas

g( Vis Zyy ) = R( vazw,(Dq -, ) 'R( ViXZ, ®@; _q)f-’ ) (6)

oy T and
z,, Xz, are parallel to each other. According to the pinhole camera

model (73), the angles between v}, and zy, v;, and z are larger than

Because vy, Zy, Vj, and 7. are in the same plane, v

90°, which means that V; Xz, = Z_ Xz, and v, XZ, = Z, XZ,. There-
fore, g(vi, z.) can also be written as

g(vioz) =R(m’q’q_q’ﬂ)'R(m’¢i_¢P)
=R(m’¢q_¢o)‘R(m’¢P_q)f) (7)
=R

e

2, X2, @, — D, + D, — D;)

(
=R(2,X2,8(v;,2,))

where 6(vj, zy) = @5 — @, + @, — @; because these variables are
determined by v; and z,, according to Snell’s law (72).

Eventually, on the basis of the pinhole camera model (73), v, can
be projected to the image plane by the camera’s intrinsic matrix K,
and the wedge-prism camera model can be formulated as

He et al,, Sci. Robot. 9, eadj8124 (2024) 29 May 2024

pi=K-g(viz,)-v (8)

Rotating wedge-prism camera model

Building on the 2D wedge-prism camera model, we next explain the
3D rotating model. In Fig. 8B, the incoming light v; € S? is trans-
mitted and deflected twice (v, € S’and v, € S?) through the wedge
prism and lastly focused by the lens on the image plane, at I, ,,
where m and n are the indexes of the image pixel.

The rotating wedge-prism camera model introduces a time-
varying rotation, which adds avariable8, as shown in Fig. 8B. Therefore,
the transmission from v; to v, is defined as G(vj, ,,(8)) generalizing
8(vi, z) in Eq. 6 with a parameter for time f added because z,(0) is
time varying. The transmission function G(vj, z,(8)) can be ex-
pressed as

G(v;»z,©) =R(vpxzw(ﬂ),(ll'q—cll'a)R(vixzc,cbf—Qp) )

Thus, the transmission from v; to v, can be expressed as

Vo = G(vi’ zw(o)) Y (10)

Last, v, can be projected onto the image plane, and the camera’s in-
trinsic matrix is denoted as K. The proposed rotating wedge-prism
camera model can be formulated as

I(m, n) = K- G(v,2,/(9)) - v; (11)
Microsaccade model simplification
With the proposed optical model, the optical properties of our sys-
tem can be precisely described. However, its accuracy is highly de-
pendent on the spatial resolution of v; and 6. The resolution is
negatively related to the robustness of the calibration. For example,
for a 640 pixel-by-480 pixel-resolution event camera, if the resolu-
tion O is set as 1°, it needs 640 by 480 by 360 parameters to fully de-
scribe the model. If so, the calibration process needs a long time to
collect enough data for each pixel, and any illumination change dur-
ing the process will highly influence the results. If we down-sample
the resolution, a discretization error will be introduced, resulting in
poor compensation performance.

To make the parameter calibration more efficient in memory and
computation, we simplified the model and reduced the number of
parameters by applying an approximation. First, we decomposed v;
into two vectors v, and v|, where v, is vertical to z,,(@) X zc and v
is parallel to z(8) X z.. These two vectors can be expressed as

V||=(Vi‘m)'(m)

vy =Vi—V"

(12)

where m is the normalized unit vector of z,,(0) x z.. Then,
Eq. 10 can be written as

v, =G(vl+v",zw(0))-vi
~g (V1. 2,(®) v

—

=¢(V1,2,) v +£(V1,2,(0)) -v,
=(g(v1.2,@)-¥7) - lIve I +v,

(13)

where from Eq. 7, we have that g(v, z,,(0)) = R(W}, 8(v;, zw(ﬂ))).
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( Optical Model )
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Fig. 8. Demonstration of the optical model, model simplification, and calibration procedures of our system. (A) The 2D wedge-prism camera optical model and the
3D rotating model of the proposed AMI-EV. (B) A simplified model of (A). (C) The calibration procedure. (Left) The coarse-to-fine search procedure, where blue points are
samples from coarse search and red points are samples from fine search (bottom of the surface). A surface was fitted to the samples. (Center) Bad estimate of the actual
trajectory, with a sharpness cost of 29,569. (Right) Good estimate of the actual trajectory, with a sharpness cost of 2382.

The trajectory of v; over time is shown in Fig. 8B. It is close to, but
not exactly, a circle in SO(3). This is because the rotation axis z. is
not aligned with z,/(8), resulting in the change of [|v; X z,(0)||.
Therefore, the radius 6(v;, zw(0)) also varies over time, and we de-
note the set of 8(v;, z,(0)) as A = 8'(i = 1,2...).

Still, because A has hundreds of parameters, further simplifica-
tion is needed. Thus, we defined a new frame w’ that is fixed to the
wedge prism and rotates with it. W’ has the same origin as w, and
their z axes z,, and z,, are aligned. Because z,, is aligned with the
rotational axis 2, ||[vi X z,/ || is constant. Now, g(ﬁ, zw(G)) can be
represented as

¢(¥5,2(®) =R(2X2,(0).8(v1. 2 ))

=R (zcr)z.z-;fﬁ), S(Vi, zc)) i
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In this model, as shown in Fig. 8C, z,,(8) = R(z, 0) - R(Xc, o) - Z,
and B(t) =6, + 8(t), where 0, denotes the bias of initial position
between the actuator encoder and the circular trajectory and 8(t)
denotes the angular measurement obtained from the encoder.
Through the above approximation, the trajectory of v; is simpli-
fied to a circle ©¢(8, 8) € SO(3), which brings two main advantages.
First, it only has two parameters, 8 and 8, for each pixel, which are
easy to calculate, store, and optimize. Second, it is differentiable,
which means that it does not lose accuracy because of discretization.
Admittedly, this simplification also introduces some errors. Our
analysis found that the error is within 2 pixels in a 90 field of view,
which can be safely ignored. Details of the analysis are in Supple-
mentary Methods.
Microsaccade calibration and compensation
The calibration procedure calibrates & and 6, in an optimization-
based manner. The first step of our algorithm is to assign the initial
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values for & and 0, denoted as §° and Gg. The choice of initial values
was based on the hardware setup. 8” was set as the refraction angle
of the wedge prism, and the zero-position of the encoder deter-
mined Bg. In our procedure, we collected a batch of events E= ¢;(i =
1,2...) and encoder data over some time f — f = 2s. In the experiment,
we found that this achieved a good balance between calibration ac-
curacy and computational cost. There was not enough information
for shorter time windows, and sometimes it did not converge. Large
time windows could result in a heavy burden on the computation
because millions of events had to be processed in each iteration.
Still, they did not increase the accuracy notably because, with 2 s,
there were already 15 or more periods of rotation, which was suffi-
cient for the computation. Next, we transferred the events from
the spatial-temporal domain (x, y, f) to the (x, y, 8) domain by syn-
chronizing the events’ time stamp with the wedge prism’s angular
position. Then, we warped all events back to 8, to compensate for
the rotation.

The warping function is described as IT: B> — R, which warps the
event’s position on image plane asII(x, y, 8(t)): (x,y,0) = («',)6).
The warping function can be written as

X
¢ =T{(x,5,0)} =K-g'~" (v, 2,,8)) -K"-| y |=(x",)/,8,) (15)
1

From the warped events E' = e',(i = 1,2...), we constructed the im-
age of wrapped events (IWE) (74) H as

H= Zg(e’i)

geF

(16)

where each pixel (i, j) sums the warped events e; that mapped to it.
represents intensity spikes, where {(¢’;) = 1 means ¢’; is mapped to (i,
), otherwise {(€';) = 0. To evaluate the quality of this calibration
parameter pair, we designed a cost function by leveraging the idea of
motion compensation (52). Because a well-parameterized IWE will
warp events triggered by the same incoming light to the same pixel,
the IWE should be sharp. Therefore, we designed our cost function
J to measure the sharpness of the IWE:

J= Y bj| 1+exp (17)

h(i.j)
i n
where h(i, j) is the value of pixel (i, j) in H, and 7 is the scale factor.
If h(i, j) is positive, then b; ; is set to 1; otherwise, b; ; = 0 so that
the cost would not be summed. We used the exponential in the
above equation because it heavily weighted pixels with low num-
bers of events. Therefore, the sharpness of IWE is inversely pro-
portional to the cost, as shown in Fig. 8C. The optimal parameter
pair 8, 8y was optimized by maximizing the sharpness, or contrast,
of IWE: ming, g,/.

In practice, the above equation was robustly solved by a coarse-
to-fine search. The search process was demonstrated in Fig. 8C. It
was formulated as a standard circular function fitting problem as
shown in eq. S1. Figure S3 indicates that the optimal solution is
unique. Moreover, in Supplementary Methods, we further prove
that eq. S1 is convex in a certain domain, which means that it can be
solved much faster if the initial guess is precise.
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