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Abstract

This paper proposes a novel max-pressure (MP) algorithm that incorporates pedestrian traffic into the MP
control architecture. Pedestrians are modeled as being included in one of two groups: those walking on
sidewalks and those queued at intersections waiting to cross. Traffic dynamics models for both groups are
developed. Under the proposed control policy, the signal timings are determined based on the queue length
of both vehicles and pedestrians waiting to cross the intersection. The proposed algorithm maintains the
decentralized control structure, and the paper proves that it also exhibits the maximum stability property
for both vehicles and pedestrians. Microscopic traffic simulation results demonstrate that the proposed
model can improve the overall operational efficiency—i.e., reduce person travel delays—under various vehicle
demand levels compared to the original queue-based MP (Q-MP) algorithm and a recently developed rule-
based MP algorithm considering pedestrians. The Q-MP ignores the yielding behavior of right-turn vehicles
to conflicting pedestrian movements, which leads to high delay for vehicles. On the other hand, the delay
incurred by pedestrians is high from the rule-based model since it imposes large waiting time tolerance to
guarantee the operational efficiency of vehicles. The proposed algorithm outperforms both models since the
states of both vehicles and pedestrians are taken into consideration to determine signal timings.

Keywords: Max Pressure algorithm; Pedestrians; Decentralized traffic signal control; Maximum stability

1. Introduction

Real-time decentralized signal control for large-scale urban networks has attracted intensive research
interest in the past decades. Various methods have been developed, including SCOOT (Hunt et al., 1981),
OPAC (Gartner, 1983), UTOPIA (Mauro and Di Taranto, 1990), SCATS (Lowrie, 1990) and RHODES
(Mirchandani and Head, 2001). More recently, max-pressure (MP) has become a very popular decentralized
traffic signal control algorithm. This algorithm was originally developed to address the packet scheduling
problem in wireless communication networks (Tassiulas and Ephremides, 1990), but was applied to traffic
signal control in (Varaiya, 2013). Since then, many MP-based traffic signal control algorithms (Kouvelas
et al., 2014; Gregoire et al., 2014; Xiao et al., 2014; Le et al., 2015; Wu et al., 2017; Li and Jabari, 2019; Rey
and Levin, 2019; Levin et al., 2020; Mercader et al., 2020; Dixit et al., 2020; Liu and Gayah, 2022; Xu et al.,
2022; Wang et al., 2022; Liu and Gayah, 2023) have been proposed as a result of its ease of implementation,
prominent control performance, and fast computational speed. Additionally, certain MP algorithms share
the following desirable properties: no need for external demand information and maximum stability. The
latter property indicates that the MP algorithm can accommodate any demand that can be served by an
admissible control strategy. A detailed review of MP-based signal control algorithms can be found in (Levin,
2023).

∗Corresponding author
Email addresses: hfl5376@psu.edu (Hao Liu), gayah@engr.psu.edu (Vikash V. Gayah), mlevin@umn.edu (Michael Levin)

Preprint submitted to Elsevier July 12, 2024



The MP algorithms determine signal timings for each intersection based on the pressure of all phases,
which is calculated based on the values of a selected metric—such as queue length, travel time and travel
delay—measured for all local movements at the intersection. In general, the MP control algorithm aims at
keeping the overall pressure low to maintain the operational efficiency at the intersection, and the pressure
of each phase reflects the pressure value that can be potentially “released” from the associated intersection
by the phase. Therefore, the MP algorithms usually tend to allocate green time in favor of the phase with
the highest pressure.

According to this basic working mechanism, it is easy to imagine that the control performance of an
MP algorithm is highly dependent on the selected metric for the pressure computation. Therefore, the first
aspect that the MP-related studies in the literature have mainly concentrated on is the selection of the
metric. The queue length is used as the metric in (Varaiya, 2013). Note that, since point queue models were
employed for traffic dynamics modeling in (Varaiya, 2013), the queue length is equivalent to the number of
vehicles of a given link. Thus, for simplicity and consistency with what is used in the MP literature, the
term “queue” is referred to as the number of vehicles in this paper. However, this metric does not consider
the position, moving status of vehicles and maximum occupancies of links, which can affect the control
performance significantly. Various MP-based algorithms have been proposed to address these drawbacks.
For example, the maximum occupancies of links were taken into consideration in (Gregoire et al., 2014; Xiao
et al., 2014). A position-weighted MP algorithm was proposed in (Li and Jabari, 2019), which incorporates
each vehicle’s location on the link into the pressure calculation. Compared to queue length, travel time and
travel delay are inherently influenced by the maximum occupancy of links, and travel time-based (Mercader
et al., 2020) and delay-based (Dixit et al., 2020; Liu and Gayah, 2022, 2023) MP algorithms have also been
developed and shown to outperform queue-based MP approaches.

In addition to the metric, another pressing area of interest with respect to MP algorithms is its practica-
bility. Many MP-based algorithms (Varaiya, 2013; Gregoire et al., 2014; Liu and Gayah, 2022; Li and Jabari,
2019) update phases at a fixed frequency in an arbitrary order, which could be a barrier for implementation
since doing so may confuse travelers who expect regular cyclic structure. MP algorithms with fixed signal
sequences have been developed to address this issue (Levin et al., 2020; Mercader et al., 2020).

Another practical concern for the aforementioned MP algorithms is that they do not distinguish vehicle
types in a mixed traffic flow environment, and this treatment could diminish the overall operational efficiency.
An MP algorithm considering public transit signal priority in networks with exclusive bus lanes was proposed
in (Xu et al., 2022). In addition to bus rapid transit, pedestrians are another important component of urban
transportation networks. However, incorporating pedestrians into the MP control architecture has received
very little attention in the research literature. Xu et al. (2023) proposed an MP algorithm that considers
pedestrian access at intersections by using a rule-based approach. Specifically, when the waiting time of the
first-arrived pedestrian exceeds a predefined threshold value, the traffic signal provides protected phase to
the corresponding pedestrian movement. Otherwise, the signals are controlled by a regular queue-based MP
algorithm. Although the maximum stability of the proposed model was proved for vehicles, the stable region
is dependent on the predefined threshold for pedestrian’s waiting times. Also, the stability for pedestrians
in the network is not clear. In addition, the proposed method did not consider the yielding behavior of
right-turn vehicles to pedestrians during permissive phases, which is a common signal design in urban
transportation networks.

In order to partially bridge these gaps, this paper proposes an MP algorithm that incorporates pedestrians
into the pressure calculation while maintaining the MP control structure. The contributions of this paper
include: 1. develop a traffic dynamics model for pedestrians; 2. propose a queue-based MP algorithm that
considers both vehicle and pedestrian queues; 3. demonstrate the proposed model inherits the maximum
stability property for both vehicles and pedestrians; 4. show the proposed model can outperform the queue-
based MP proposed in (Varaiya, 2013) and the rule-based model proposed in (Xu et al., 2023) under various
traffic conditions.

The remainder of this paper is organized as follows. Section 2 describes the traffic dynamics models
for both vehicles and pedestrians. Then, the novel MP algorithm that incorporates pedestrian states is
proposed, and the maximum stability is proved in Section 3. Section 4 shows the results of microscopic
traffic simulations, which demonstrate that the proposed model can outperform two baseline models under
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various vehicle demand levels. Finally, concluding remarks are provided in Section 5.

2. Traffic dynamics

First, we define the required notations used for the modeling of traffic dynamics in this paper. We
consider a network consisting of a set of intersections N and a set of directional links L. A link that
connects a pair of adjacent intersections, i and j, is denoted by (i, j). A movement from link (i, j) to link
(j, k) is denoted by (i, j, k). Links are classified as either entry links Lenter from where vehicles enter the
network, exit links Lexit from where vehicles exit the network, and internal links Lin that simply connect
intersections. Also, let U i (Di) indicate the set of upstream (downstream) intersections of intersection i if i
is not an entry (exit) intersection.

We assume without loss of generality that all links have a sidewalk on the right side that allows pedestrian
movements in both directions, as shown in Figure 1. At each intersection, pedestrians are allowed to wait at
each corner, referred to as pedestrian nodes, to cross the intersection. We use iα to denote a pedestrian node
at intersection i, where α indicates the relative location of the pedestrian node. Assume each intersection has
four corners (i.e., that each intersection has four links). Then, for example, iSE represents the pedestrian
node in the southeast of intersection i, as shown in Figure 1. Each sidewalk is represented by a pair of
pedestrian nodes. We use Oiα to indicate the set of adjacent pedestrian nodes of iα at the same intersection,
i, and U iα to denote the set of pedestrian nodes from adjacent intersections of i that connect iα. For the
example shown in Figure 1, OjSW = {jNW , jSE} and U jSW = {iSE , kNW }.

Let Mvi and Mpi indicate the set of vehicle movements and pedestrian movements between two pedes-
trian nodes at intersection i, respectively, and let S i be the set of admissible phases, at intersection i. An
admissible phase at intersection i is represented by an array with a length of |Mvi|+ |Mpi|, in which each
element is a binary variable indicating if the associated movement is served by the phase. Let Si(t) be the
phase that is activated at intersection i at time t and Sv,i

h,i,j(t) and S
p,i
iα,iβ

(t) be the elements associated with

the vehicle movement (h, i, j) and the pedestrian crosswalk movement (iα, iβ) in S
i(t), respectively. For sim-

plicity, we also use the symbols Sv
h,i,j(t) and S

p
iα,iβ

(t) without the superscript for intersection index, which

is unique for both vehicle and crosswalk movements, to represent whether the vehicle movement (h, i, j) and
the pedestrian crosswalk movement (iα, iβ) are served at time t.

2.1. Vehicle traffic dynamics

Most MP algorithms in the literature—e.g., (Sun and Yin, 2018; Varaiya, 2013) use a store-and-forward
point queue model for the vehicle traffic dynamics in which the maximum occupancy of each link is assumed
to be infinite, and this model was observed to be effective in micro-simulations comparing MP to existing
signal timings (Levin et al., 2020; Barman and Levin, 2022). Therefore, this paper use the same model for
the vehicle dynamics modeling. Specifically, the evolution of the number of vehicles on link (h, i, j) can be
expressed as:

xvh,i,j(t+ 1) =xvh,i,j(t)−min(Cv
h,i,j(t)S

v,i
h,i,j(t), x

v
h,i,j(t))

+
∑
g∈Uh

min(Cv
g,h,i(t)S

v,i
g,h,i(t), x

v
g,h,i(t))R

v
h,i,j(t+ 1)1Lin

(h, i)

+ dvh,i,j1Lentry
(h, i)

(1)

where xvh,i,j(t) is the number of vehicles of movement (h, i, j), i.e., the number of vehicles waiting on link
(h, i) to join link (i, j), at time t; Cv

h,i,j is the stochastic and bounded saturation flow for movement (h, i, j)
at time step t with mean value cvh,i,j ; R

v
g,h,i is the random turning ratio from link (g, h) to link (h, i) with

mean value rvg,h,i; 1A(x) is the indicator function. The second term in Equation (1) is the outflows of
movement (h, i, j) during time interval (t, t + 1); the third term is the inflows from upstream movements if
link (h, i) is an internal link; and, the fourth term is the external demand if link (h, i) is an entry link. Note
that the second and third terms in Equation (1) imply that the time step size is equal to the free-flow travel
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Figure 1: Pedestrian network.

time of the link. The long links in the network can be divided into shorter sub-links to satisfy this condition
(Varaiya, 2013).

2.2. Pedestrian dynamics

Pedestrians are divided into two groups based on their locations: pedestrians waiting at a pedestrian node
to cross the intersection—i.e., pedestrian movement between two pedestrian nodes at the same intersection—
and pedestrians movement on the sidewalk. For simplicity, the former group is called crosswalk movements
while the latter is called sidewalk movements. The following assumptions for pedestrian dynamics are made:

1. Pedestrians enter or exit the network from sidewalks;

2. The maximum occupancy for pedestrian nodes is infinite, so pedestrians cannot be blocked on side-
walks;

3. Pedestrians on sidewalks always walk at the free-flow speed;

4. Pedestrians crossing an intersection from a pedestrian node will not go back to the same pedestrian
node immediately.

Following these assumptions, the evolution of pedestrians of a crosswalk movement can be expressed as:

xpciα,iβ
(t+ 1) =xpciα,iβ

(t)−min(Cp
iα,iβ

(t)Sp,i
iα,iβ

(t), xpciα,iβ
(t))

+
∑

iγ∈Oiα\{iβ}

min(Cp
iγ ,iα

(t)Sp,i
iγ ,iα

(t), xpciγ ,iα(t))R
p
iγ ,iα,iβ

(t+ 1)

+
∑

jη∈U iα

ψ(V(jη, iα))R
p
jη,iα,iβ

(2)

where Cp
iα,iβ

(t) is the stochastic saturation flow of crosswalk movement (iα, iβ) at time t; Rp
iγ ,iα,iβ

(t+ 1) is

the turning ratio from (iγ , iα) to (iα, iβ). The second term is the outflow of crosswalk movement (iα, iβ);
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the third term is the inflow from the adjacent pedestrian node; ψ is a function mapping the distribution
of pedestrians on a sidewalk to the number of pedestrians that are going to join movement (iα, iβ). Since
the walking speed of pedestrians is much slower than the free flow travel speed of vehicles, pedestrians on
a sidewalk can arrive the downstream node within one time step only if their distance to the downstream
node is shorter than the walking travel distance in one time step. Specifically, ψ can be expressed as:

ψ(V(jη, iα)) =
∑

v∈[1,nv(jη,iα)]

1b(v)≤bf (v) (3)

where nv(jη, iα) is the number of pedestrians on (jη, iα); b(v) is the distance between the vth pedestrian to
the downstream node; bf(v) is the travel distance of pedestrian v in a time step.

The number of pedestrians of sidewalk movement (iα, jβ) can be expressed as,

xpsiα,jβ
(t+ 1) =xpsiα,jβ

(t)− ψ(V(iα, jβ))(t)− qoutiα,jβ
(t) + qiniα,jβ

(t)

+
∑

iγ∈Oiα

min(Cp
iγ ,iα

(t)Sp
iγ ,iα

(t), xpciγ ,iα(t))R
p
iγ ,iα,jβ

(t+ 1)

+
∑

hγ∈U iα\{jβ}

ψ(V(hγ , iα))R
p
hγ ,iα,jβ

(4)

where qiniα,jβ
(t) and qoutiα,jβ

(t) are the number of enter and exit pedestrians on sidewalk (iα, jβ) at time t,
respectively; the fifth term is the inflow from adjacent pedestrian nodes at the same intersection; the sixth
term is the inflow from the upstream sidewalk.

3. Max pressure algorithm incorporating pedestrians

3.1. Signal control algorithm

Following the traffic dynamics models, this section derives a step-based MP algorithm that incorporates
pedestrian queues into pressure calculation. The proposed algorithm is referred to as PQ-MP in the remain-
der of this paper. The signal phase at all intersections is updated at a fixed frequency. Like most step-based
MP algorithms in the literature, the proposed PQ-MP works in the following four steps.

1. At each signal update instant t, measure the number of vehicles of all vehicle movements and the
number of pedestrians at each pedestrian node;

2. Define the weight of a vehicle movement (pedestrian crosswalk movement) as the difference between
the number of vehicles (pedestrians) of this movement and the average number of vehicles (pedestrians)
over all downstream vehicle movement (pedestrian crosswalk movement) using the turning ratio as the
proportion. Specifically, both types of weights can be expressed as Equation (5) and Equation (6),
respectively. Note that since we assume pedestrians on sidewalks do not incur delay, this group of
pedestrians is not considered in the weight definition. In addition, for pedestrian crosswalk movement,
we do not consider the downstream sidewalk movement in the weight calculation. In addition, since
we assume the pedestrians from node iα to node iβ will not go back to node iα immediately, there is
only one downstream crosswalk movement in Equation (6).

wv
h,i,j(t) = xvh,i,j(t)−

∑
k∈Dj

xvi,j,k(t)Ri,j,k(t) (5)

wp
iα,iβ

(t) = xpciα,iβ
(t)− xpciβ ,iγ (t)R

p
iα,iβ ,iγ

(6)

3. Compute the pressure for the phase array Si(t) at intersection i, as:

p(Si(t)) =
∑

(h,i,j)∈Mvi

wv
h,i,j(t)C̃

v
h,i,j(t)S

v,i
h,i,j(t) + λ

∑
(iα,iβ)∈Mpi

wp
iα,iβ

(t)Cp
iα,iβ

(t)Sp,i
iα,iβ

(t) (7)
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It is assumed that the right-turn vehicles need to yield to conflicting pedestrian movements served by
the same phase. Therefore, the saturation flow for an activated right-turn vehicle movement needs to
be adjusted if the conflicting pedestrian crosswalk movements are being served as well. Specifically,
the portion of a time step that is required to serve the associated pedestrian cross movement cannot be
utilized by the right-turn vehicle movement, so the same proportion needs to be subtracted from the
original saturation flow of the right-turn vehicle movements. C̃v

h,i,j(t) in Equation (7) is the saturation
flow of vehicles considering the impact from pedestrians, and it can be expressed as:

C̃v
h,i,j(t) = Cv

h,i,j(t)

(
1−min

(
1, max

(iα,iβ)∈Mp
h,i,j

xpciα,iβ
(t)Sp,i

iα,iβ
(t)

Cp
iα,iβ

(t)

))
(8)

where Cv
h,i,j(t) is the saturation flow of vehicle movement (h, i, j) without pedestrians, and Mp

h,i,j is the

set of pedestrian movements that conflict with vehicle movement (h, i, j). The term of
xpc
iα,iβ

(t)Sp,i
iα,iβ

(t)

Cp
iα,iβ

(t)
is

the proportion of a time step that is required to clear the pedestrian queue of movement (iα, iβ). Note,
since pedestrians are allowed to travel in both directions on a crosswalk, each right-turn vehicle move-

ment has two conflicting crosswalk movements. Therefore, min

(
1,max(iα,iβ)∈Mp

h,i,j

xpc
iα,iβ

(t)Sp,i
iα,iβ

(t)

Cp
iα,iβ

(t)

)
is the portion that needs to be subtracted from the saturation flow of the corresponding right-turn
movement.
In general, the travel speed of vehicles is higher than the walking speed of pedestrians; however,
the density of pedestrian stream is higher than the critical density of vehicle flows, and this excess
in density usually outweighs the speed shortage. As a result, the saturation flow for pedestrians is
significantly higher than that of vehicles. Therefore, without a coefficient for the pedestrian weight,
Equation (7) will weigh pedestrian crosswalk movements considerably more over vehicle movements
and assign excessive green time to pedestrians. Consequently, the delay incurred by vehicles, especially
the left-turn vehicles, could be extremely high. To address this issue, we added an coefficient 0 < λ < 1
for the second term of Equation (7).

4. At each intersection, the phase with the maximum pressure is activated for the next time step,

S∗
i (t) = argmax

Si(t)∈Si

p(Si(t)) (9)

Equations (7) and (9) indicate that the signal timings in PQ-MP are determined by the combined
pressure of the vehicle and pedestrian movements, rather than the weight of individual vehicle/pedestrian
movements. Consequently, a combined pedestrian-vehicle phase can be called even if the pedestrian move-
ment has a negative weight, provided that the combined pressure of these movements is the highest of all
potential phasing options.

3.2. Maximum stability property

One desirable property of MP-based algorithms is the maximum stability, which suggests that they can
accommodate a demand if this demand can be accommodated by any feasible control strategy. This section
proves this property holds for the PQ-MP.

3.2.1. Stable region

Let dv indicate the vector of (average) vehicular demand from entry links, qin indicate the vector of
(average) pedestrian generation rate from all sidewalks, and qout indicate the vector of (average) pedestrian
exit rate from all sidewalks. In addition, let fv indicate the vector of (average) vehicular demand on all
internal links, fps indicate the vector of (average) pedestrian demand on sidewalks, and fpc indicate the
vector of (average) pedestrian demand for crosswalks. fv, fps and fpc can be uniquely determined by dv,
qin, qout and turning ratios for both vehicles and pedestrians (Hao et al., 2018). It is easy to obtain the
expressions in Equations (10)–(12).
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fvl,m,n =


dvl,m,n, if (l,m) ∈ Lenter∑
k∈U l

fvk,l,mr
v
l,m,n otherwise

(10a)

(10b)

fpciα,iβ
=

∑
iγ∈Oiα\{iβ}

fpciγ ,iα
rpiγ ,iα,iβ

+
∑

jη∈U iα

fpsjη,iα
rpjη,iα,iβ

, ∀(iα, iβ) (11)

fpsiα,jβ
= qiniα,jβ

− qoutiα,jβ
+

∑
iγ∈Oiα

fpciγ ,iα
rpiγ ,iα,jβ

+
∑

hγ∈U iα\{jβ}

fpshγ ,iα
rphγ ,iα,jβ

, ∀(iα, jβ) (12)

The convex hull of all admissible phases at intersection i can be expressed as:

co(S i) = {
∑

Si,e∈Si

πeS
i,e|πe ≥ 0,

∑
e

πe = 1} (13)

Definition 1. A demand (dv,pin) is feasible if there exists a control vector Σ ∈ co(S) such that

fpsiα,jβ
≤ cpsiα,jβ

, ∀(iα, jβ) (14)

fvl,m,n ≤ c̃vl,m,nΣ
v
l,m,n, ∀(l,m, n) (15)

fpciα,iβ
≤ cpiα,iβ

Σp
iα,iβ

, ∀(i, α, β) (16)

where c̃vl,m,n and cpiα,iβ
are the mean of the saturation flows for vehicle movement and pedestrian crosswalk

movement, respectively.

It is easy to prove that a control sequence {S(t), t = 0, T, 2T, 3T, ...} is admissible if and only if

lim inf
N→∞

1

N

N∑
n=0

Si(nT ) ∈ co(S i), ∀i ∈ N (17)

Therefore, Definition 1 indicates that a control sequence can accommodate a demand, or equivalently, a
demand can be stabilized by the control sequence, if the average service rate is not lower than the average
demand for all movements in the network. Equation (15) and Equation (16) indicate the vehicle and
pedestrian demand for crosswalks are lower than the corresponding average service rates. Note that if Equa-
tion (16) holds, the third and fourth terms in Equation (14) are independent of the signal control strategy
and uniquely determined by qin, qout and rp. Then, Equation (14) indicates that the sum of pedestrian gen-
erating rate and the external demand from adjacent sidewalks and cross movements subtracted by the exit
rate on sidewalks should be lower than the corresponding saturation flow to make the pedestrian demand
feasible. This relationship is independent of signal timings under the assumptions made in the previous
section. In other words, if Equation (16) holds, the number of pedestrians on sidewalks is always bounded
no matter the signal control strategy. The stable region of demand, denoted by (Dv,Qin), is defined as
the set of demand that satisfies Equations (14)-(16). Let D0 and Q0

in denote the interior of Dv and Qin,
respectively.

3.2.2. Maximum stability

Definition 2. A signal control policy S stabilizes the queue process in the mean if for some Mv < ∞ and
Mp <∞,

1

T

T∑
t=1

∑
l,m,n

E(xvl,m,n(t)) ≤Mv, T = 1, 2, 3... (18)

1

T

T∑
t=1

∑
i,α,β

E(xpciα,iβ
(t)) ≤Mp, T = 1, 2, 3... (19)
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As mentioned before, the average number of pedestrians on sidewalks is stabilized regardless of the signal
control strategy if the demand is in the stable region. The combination of Equation (18) and Equation (19)
is equivalent to

1

T

T∑
t=1

∑
l,m,n

E(xvl,m,n(t)) +
∑
i,α,β

E(xpciα,iβ
(t))

 ≤M, T = 1, 2, 3... (20)

where M <∞.

Theorem 1 (Maximum stability). The proposed PQ-MP algorithm Equations (5)–(9) stabilizes the queue
process if (dv,pin) ∈ (D0,Q0

in) and if the distribution of the adjusted saturation flow, C̃v
h,i,j(t) in Equation

(7), is fixed for all right-turn vehicle movements.

Proof. The first step is to prove that there exist ϵ1 > 0 and ϵ2 > 0 such that the Lyapunov functions |Xv(t)|2
and |

√
λXpc(t)|2 under the control of PQ-MP satisfy the following inequality:

E{|Xv(t+1)|2−|Xv(t)|2+ |
√
λXpc(t+1)|2−|

√
λXpc(t)|2|Xv(t),Xpc(t)} ≤ k− ϵ1|Xv(t)|− ϵ2|Xpc(t)| (21)

where |X| ≡
∑

xi∈X xi, |X|2 ≡
∑

xi∈X(xi)
2, and |

√
λX|2 ≡ λ

∑
xi∈X(xi)

2.
Using Eqs. (1) and (8), we obtain:

δvl,m,n(t) =x
v
l,m,n(t+ 1)− xvl,m,n(t)

=−min(C̃v
l,m,n(t)S

v
l,m,n(t), x

v
l,m,n(t))

+
∑
k

min(C̃v
k,l,m(t)Sv

k,l,m(t), xvk,l,m(t))Rv
l,m,n(t+ 1)1Lin

(l,m)

+ dvl,m,n1Lenter
(l,m)

(22)

Equation (22) leads to

|Xv(t+ 1)|2 − |Xv(t)|2 = 2Xv(t)T δv(t) + |δv(t)|2 = 2ωv + χv (23)

where

χv =
∑
l,m,n

(xvl,m,n(t+ 1)− xvl,m,n(t))
2

=
∑
l,m,n

{−min(C̃v
l,m,n(t)S

v
l,m,n(t), x

v
l,m,n(t))

+
∑
k

min(C̃v
k,l,m(t)Sv

k,l,m(t), xvk,l,m(t))Rv
l,m,n(t+ 1)1Lin

(l,m)

+ dvl,m,n1Lenter
(l,m)}2

(24)
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and

ωv =Xv(t)T δv(t) (25a)

=−
∑
l,m,n

xvl,m,n(t)min(C̃v
l,m,n(t)S

v
l,m,n(t), x

v
l,m,n(t)) (25b)

+
∑
l,m,n

xvl,m,n(t)
∑
k

min(C̃v
k,l,m(t)Sv

k,l,m(t), xvk,l,m(t))Rv
l,m,n(t+ 1)1Lin

(l,m) (25c)

+
∑
l,m,n

xvl,m,n(t)d
v
l,m,n1Lenter

(l,m) (25d)

=−
∑
l,m,n

xvl,m,n(t)min(C̃v
l,m,n(t)S

v
l,m,n(t), x

v
l,m,n(t)) (25e)

+
∑
m,n,k

xvm,n,k(t)
∑
l

min(C̃v
l,m,n(t)S

v
l,m,n(t), x

v
l,m,n(t))R

v
m,n,k(t+ 1)1Lin

(m,n) (25f)

+
∑
l,m,n

xvl,m,n(t)d
v
l,m,n1Lenter

(l,m) (25g)

=−
∑
l,m,n

min(C̃v
l,m,n(t)S

v
l,m,n(t), x

v
l,m,n(t))

(
xvl,m,n(t)−

∑
k∈Dn

xvm,n,k(t)R
v
m,n,k(t+ 1)1Lin

(m,n)

)
(25h)

+
∑
l,m,n

xvl,m,n(t)d
v
l,m,n1Lenter

(l,m) (25i)

Note that the expression of ωv has the same expression in (Varaiya, 2013). Using Equation (10) and the
same manner as in (Varaiya, 2013), it is easy to obtain

E[ωv|Xv(t)] = ωv1 + ωv2 (26)

where
ωv1 =

∑
l,m,n

[
fvl,m,n − c̃vl,m,n(t)S

v
l,m,n(t)

]
wv

l,m,n(t+ 1) (27)

ωv2 =
∑
l,m,n

[
c̃vl,m,n(t)− E[min(C̃v

l,m,n(t), x
v
l,m,n(t))|Xv(t)]

]
Sv
l,m,n(t)w

v
l,m,n(t+ 1) (28)

where c̃vl,m,n(t) = E[C̃v
l,m,n(t)|Xv(t)].

Lemma 1. ωv2 and E[χv|Xv(t)] are always bounded by a positive number regardless of the control policy.

The proof for Lemma 1 can be found in (Varaiya, 2013), and it is omitted for simplicity.
Next, for pedestrian crosswalk movements, according to Equation (2), we obtain

δpc(iα, iβ)(t) =x
pc
iα,iβ

(t+ 1)− xpciα,iβ
(t)

=−min(Cp
iα,iβ

(t)Sp
iα,iβ

(t), xpciα,iβ
(t)) + min(Cp

iγ ,iα
(t)Sp

iγ ,iα
(t), xpciγ ,iα(t))R

p
iγ ,iα,iβ

+
∑

jη∈U iα

ψ(V(jη, iα))R
p
jη,iα,iβ

(29)

Then,
|
√
λXpc(t+ 1)|2 − |

√
λXpc(t)|2 = 2λXpc(t)T δpc(t) + λ|δpc(t)|2 = 2λωpc + λχpc (30)

where

χpc = |δpc(t)|2 (31)
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and

ωpc =Xpc(t)T δpc(t) (32a)

=−
∑
i,α,β

xpciα,iβ
(t)min

(
Cp

iα,iβ
(t)Sp

iα,iβ
(t), xpciα,iβ

(t)
)

(32b)

+
∑
i,α,β

xpciα,iβ
(t)min(Cp

iγ ,iα
(t)Sp

iγ ,iα
(t), xpciγ ,iα(t))R

p
iγ ,iα,iβ

(32c)

+
∑
i,α,β

xpciα,iβ
(t)

 ∑
jη∈Uiα

ψ(V(jη, iα))R
p
jη,iα,iβ

 (32d)

=ωpc1
iα,iβ

(t) + ωpc2
iα,iβ

(t) + ωpc3
iα,iβ

(t) (32e)

Lemma 2. λχpc is upper bounded by a positive constant.

Proof. Since the random saturation flow for pedestrians is bounded, the first two terms in Equation (29)
are bounded. In addition, according to Equation (14), the number of pedestrians on sidewalks is bounded.
Therefore, ψ(V(jη, iα)) in Equation (29) is also bounded. Consequently, λχpc is upper bounded.

Next, we focus on ωpc. Changing the sequence of the subscripts for ωpc2
iα,iβ

(t) obtains,

ωpc2
iα,iβ

(t) =
∑
i,α,β

xpciβ ,iγ (t)min(Cp
iα,iβ

(t)Sp
iα,iβ

(t), xpciα,iβ
(t))Rp

iα,iβ ,iγ
(33)

Therefore, according to Equation (6), we obtain

ωpc1
iα,iβ

(t) + ωpc2
iα,iβ

(t)

=−
∑
i,α,β

min(Cp
iα,iβ

(t)Sp
iα,iβ

(t), xpciα,iβ
(t))

(
xpciα,iβ

(t)− xpciβ ,iγ (t)R
p
iα,iβ ,iγ

)
=−

∑
i,α,β

min(Cp
iα,iβ

(t)Sp
iα,iβ

(t), xpciα,iβ
(t))wp

iα,iβ
(t+ 1)

(34)

The term in the parenthesis in ωpc3
iα,iβ

(t) in Equation (32) is the average pedestrian demand from upstream
sidewalks to a crosswalk, which is equivalent to the total pedestrian demand for the crosswalk movement
subtracted by the pedestrian demand from upstream crosswalks. Therefore,

E[ωpc3
iα,iβ

(t)|Xpc(t)] =
∑
i,α,β

xpciα,iβ
(t)
(
fpciα,iβ

(t)− fpciγ ,iα
(t)Rp

iγ ,iα,iβ
(t)
)

(35a)

(For a crosswalk movement, only one upstream crosswalk movement exists)

=
∑
i,α,β

[
xpciα,iβ

(t)fpciα,iβ
(t)− xpciα,iβ

(t)fpciγ ,iα
(t)Rp

iγ ,iα,iβ
(t)
]

(35b)

=
∑
i,α,β

[
xpciα,iβ

(t)fpciα,iβ
(t)− xpciβ ,iγ (t)f

pc
iα,iβ

(t)Rp
iα,iβ ,iγ

(t)
]

(35c)

=
∑
i,α,β

fpciα,iβ
wp

iα,iβ
(t+ 1) (35d)

Therefore, by combining Equation (34) and Equation (35), we have

10



E [ωpc|Xpc(t)] =E

∑
i,α,β

[
fpciα,iβ

−min(Cp
iα,iβ

(t)Sp
iα,iβ

(t), xpciα,iβ
(t))
]
wp

iα,iβ
(t+ 1)|Xpc(t)

 (36a)

=
∑
i,α,β

[
fpciα,iβ

− cpiα,iβ
(t)Sp

iα,iβ
(t)
]
wp

iα,iβ
(t+ 1) (36b)

+

∑
i,α,β

[
cpiα,iβ

(t)Sp
iα,iβ

(t)−min(Cp
iα,iβ

(t)Sp
iα,iβ

(t), xpciα,iβ
(t))
]
wp

iα,iβ
(t+ 1)|Xpc(t)

 (36c)

=ωpc4 + ωpc5 (36d)

Again, using the same manner as in Lemma 1 can easily prove that ωpc5 is upper bounded by a positive
number.

Combining Equations (23), (26), (30) and (36) obtains

E{|Xv(t+ 1)|2 − |Xv(t)|2 + |
√
λXpc(t+ 1)|2 − |

√
λXpc(t)|2|Xv(t),Xpc(t)}

=2ωv1 + 2ωv2 + E[χv|Xv(t)] + 2λωpc4 + 2λωpc5 + λE[χpc|Xpc(t)]

=2
(
ωv1 + λωpc4

)
+
(
2ωv2 + E[χv|Xv(t)] + 2λωpc5 + λE[χpc|Xpc(t)]

) (37)

We already proved that the term in the second parenthesis in Equation (37) is bounded, so we next focus
on ωv1+λωpc4. Let S∗(t) be the optimal control array from PQ-MP. Since S∗(t) maximizes

∑
(h,i,j)∈Mvi wv

h,i,jC̃
v
h,i,jS

ij
h,i,j+

λ
∑

(iα,iβ)∈Mpi w
p
iα,iβ

Cp
iα,iβ

Sij
iα,iβ

which is a linear function of S(t), based on the fundamental theorem of

linear programming, S∗(t) also maximizes this function over the entire convex hull. By combining Eqs. (27)
and (36), for any control array S ∈ co(S), we have

ωv1 + λωpc4

=
∑
l,m,n

[
fvl,m,n − c̃vl,m,n(t)S

v∗
l,m,n(t)

]
wv

l,m,n(t+ 1) +
∑
i,α,β

[
fpciα,iβ

− cpiα,iβ
Sp∗
iα,iβ

(t)
]
λwp

iα,iβ
(t+ 1)

≤
∑
l,m,n

[
fvl,m,n − c̃vl,m,n(t)S

v
l,m,n(t)

]
wv

l,m,n(t+ 1) +
∑
i,α,β

[
fpciα,iβ

− cpiα,iβ
Sp
iα,iβ

(t)
]
λwp

iα,iβ
(t+ 1)

(38)

Since (dv,qin) in (D0,Q0
in), there exist ϵ1 > 0, ϵ2 > 0 and a control array S ∈ co(S) such that

c̃vl,m,n(t)S
v
l,m,n ≥ fvl,m,n + ϵ1 if wv

l,m,n(t+ 1) ≥ 0 (39a)

Sv
l,m,n = 0 if wv

l,m,n(t+ 1) < 0 (39b)

cpiα,iβ
Sp
iα,iβ

(t) ≥ fpciα,iβ
+ ϵ2 if wp

iα,iβ
(t+ 1) ≥ 0 (39c)

Sp
iα,iβ

(t) = 0 if wp
iα,iβ

(t+ 1) < 0 (39d)

We assume that the distribution of the adjusted saturation flow, C̃v
l,m,n(t), is fixed, so the corresponding

mean value c̃vl,m,n(t) is also fixed. Substituting S into Equation (38) obtains
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ωv
1 + λωpc4 (40a)

≤
∑
l,m,n

[
fvl,m,n − c̃vl,m,n(X

v(t),S(t))Sv
l,m,n(t)

]
wv

l,m,n(t+ 1) +
∑
i,α,β

[
fpciα,iβ

− cpiα,iβ
Sp
iα,iβ

(t)
]
λwp

iα,iβ
(t+ 1)

(40b)

≤
∑

{(l,m,n):wv
l,m,n(t+1)≥0}

−ϵ1wv
l,m,n(t+ 1) +

∑
{(l,m,n):wv

l,m,n(t+1)<0}

fvl,m,nw
v
l,m,n(t+ 1) (40c)

+
∑

{(i,α,β):wp
iα,iβ

(t+1)≥0}

−λϵ2wp
iα,iβ

(t+ 1) +
∑

{(i,α,β):wp
iα,iβ

(t+1)<0}

fpciα,iβ
λwp

iα,iβ
(t+ 1) (40d)

≤− ϵ1
∑
l,m,n

|wv(t)| − λϵ2
∑
i,α,β

|wp(t)| (40e)

Since wv(t) and wp(t) are linear functions of Xv(t) and Xpc(t), respectively, it is easy to prove that
there exist η1 > 0 and η2 > 0 such that

|wv(t)| ≥ η1|Xv(t)| and |wp(t)| ≥ η2|xpc(t)| (41)

Therefore, there exist ξ1 > 0 and ξ2 > 0 such that

αv
1 + αpc4 ≤ −ξ1|Xv(t)| − ξ2|Xpc(t)| (42)

Thus, Equation (21) holds under the control of PQ-MP.

Lemma 3. If there exist ξ1 > 0, ξ2 > 0 such that the Lyapunov functions |Xv(t)|2 and |Xpc(t)|2 satisfy
Equation (21) under a control sequence, then the control sequence stabilizes the queue process.

Proof. Taking expectation for both sides of Eq. (21) obtains

|Xv(t+ 1)|2 − |Xv(t)|2 + λ|Xpc(t+ 1)|2 − λ|Xpc(t)|2 ≤ k − ξ1E[|Xv(t)|]− ξ2E[|Xpc(t)|] (43)

Summing over t = 1, 2, 3, ..., T for both sides of Eq. (45) gives

|Xv(T +1)|2− |Xv(1)|2+λ|Xpc(T +1)|2−λ|Xpc(1)|2 ≤ k−min(ξ1, ξ2)

T∑
t=1

(E[|Xv(t)|] + E[|Xpc(t)|]) (44)

Therefore,

1

T

T∑
t=1

(E[|Xv(t)|] + E[|Xpc(t)|]) ≤ 1

min(ξ1, ξ2)T

(
k + |Xv(1)|2 + λ|Xpc(1)|2

)
=M, ∀T (45)

Theorem 1 is proved.

The maximum stability property indicates that PQ-MP can accommodate the combined vehicular and
pedestrian demand if it can be served by any signal control strategy. Thus, the proposed PQ-MP maximizes
network throughput.

4. Numerical simulation

This section demonstrates the control performance of PQ-MP under various conditions in microscopic
traffic simulations using the SUMO simulation software (Lopez et al., 2018). The original queue-based MP
that does not consider pedestrians, referred to as Q-MP in the following, and the rule-based MP proposed
in (Xu et al., 2023) are used as baseline models.
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4.1. Network setup

A 5×5 uniform grid network of two-way streets, as shown in Figure 2, is used in the simulation. All links
have three dedicated lanes, one for each of left-turn, through and right-turn vehicle movement. Each link
has a sidewalk on the right side, and each intersection has a crossing on each of the four sides. The length
for all links is 300 m. The speed limit for vehicles on all links is 15 m/s, and the average pedestrian travel
speed is 1.3 m/s.

6 7 8 9

11

16

21

12 13 14

17 18 19

22 23 24

Internal link: Entry link: Exit link:

10

15

20

25

1 2 3 4 5

: High ped demand region : Low ped demand region

Figure 2: Network setup.

All intersections have an identical set of admissible signal phases, shown in Figure 3. There are 11
admissible phases in total. The first four rows in Figure 3 correspond to the four phases for vehicle move-
ments: northbound-southbound (NS) through (T) and right-turn (R) movement, NS left (L) movement,
eastbound-westbound (EW) T and R movement and EW L movement. Pedestrians can only be served
during the phases for T-R vehicular movements or during an exclusive phase for pedestrian-only movement,
shown as the bottom phase in Figure 3. In the former situation, pedestrians from either one side or both
sides can be served, and the right-turn vehicles need to yield to the conflicting pedestrian crosswalk move-
ments. The time step for signal timing update is equal to the free-flow travel time of vehicles traversing
a link, which is 20 s. This value is chosen due to two reasons: 1. it matches with the step size defined in
the store-and-forward vehicle traffic dynamics, shown by Equation (1); 2. according to the Traffic Signal
Timing Manual (Koonce and Rodegerdts, 2008), the minimum pedestrian green time should be equal to the
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time required by a pedestrian to cross the intersection plus 4 seconds. Under the simulation settings, the
minimum pedestrian green time is equal to 18.76 s, which is close to the time step. The yellow time and
all-red time are set to 3 s and 1 s, respectively.

Ped movements

N-S T-R

N-S L

E-W T-R

E-W L

No vehicle

Vehicle movements

Figure 3: Signal configuration.

Vehicles enter and exit the network through the entry links and exit links, respectively, as shown in
Figure 2. For simplicity, identical vehicle demand value is used for all entry links, and four vehicle demand
levels, i.e., {400, 500, 600, 700} veh/h/entry link, are tested. Each sidewalk serves as a pedestrian cen-
troid to generate or attract trips. Every pedestrian (origin) centroid has a certain probability to generate a
pedestrian trip to each of the rest (destination) centroid during the simulation. Different pedestrian demand
levels are modeled. In Figure 2, the pedestrian generation probability is 0.6 if both the origin and destination
centroids are in the green region; otherwise, the probability between an OD pair is 0.3.

The simulation time is 2 hours, and the second hour serves as a cool down period with zero demand. To
consider the randomness, each simulation was run for 10 different starting seeds.

4.2. Implementation of signal control algorithms

We assume that the number of pedestrians waiting to cross the intersection is available for PQ-MP. The
following values for λ: {0.0005, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.05, 0.1}, in Equation (7) are tested
for the proposed PQ-MP.

For the rule-based MP, it is assumed that the waiting times of pedestrians in the pedestrian nodes
are always available. A threshold value for the waiting time of the first arrival of crosswalk movements,
denoted by τ , is applied. At the instant of each signal update (every 20 s), if the waiting times from all
crosswalk movements are lower than τ , one of the four phases that include only vehicle movements shown
in Figure 3 is activated based on the Q-MP. Only vehicles are considered in this pressure calculation, and
no pedestrian crosswalk movements are allowed. On the contrary, if the waiting time of certain crosswalk
movements exceeds τ , the phase serving the corresponding movements will be activated for the next phase.
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For example, if only the waiting time on the eastern side crosswalk movement exceeds the threshold, the
second phase in the first row in Figure 3 will be activated for the next step. For another example, if at
least one crosswalk movement from each of the N-S and E-W directions incurs a waiting time longer than
τ , the no-vehicle phase, which is the bottom phase in Figure 3, will be activated. It is easy to imagine that
a larger τ leads to a higher operational efficiency for vehicles, but generates higher delays for pedestrians.

For the Q-MP, the signal phase is determined by the pressure only taking vehicles into consideration.
However, the associated pedestrian movements will always be activated as well, and the right-turn vehicles
need to yield to pedestrians. For example, if the N-S T-R phase has the highest vehicle pressure, the third
phase in the first row in Figure 3 will be activated.

4.3. Results

4.3.1. Stable regions

As mentioned before, maximum stability is a desirable property of MP algorithms. Therefore, we first
examined the stable region of each algorithm by monitoring the number of vehicles and pedestrians over time
during the simulation. If a demand is stabilized under the control, the number of vehicles/pedestrians is
expected to be stable after the network reaches equilibrium. Otherwise, the number of vehicles/pedestrians
is expected to be continuously increasing until the demand starts decreasing. Figures 4–6 show the results
under the control of the Q-MP, the rule-based MP and the PQ-MP, respectively.
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Figure 4: Evolution of number of vehicles and pedestrians under Q-MP.

Figure 4 shows that the variation of pedestrian evolution across different vehicle demand levels is insignif-
icant compared to the variation in vehicle evolution. In addition to the fixed pedestrian demand, another
reason is that under this control policy, pedestrians are always served during the T-R phases with higher
priorities than the right-turn vehicles. Therefore, as long as the turning ratios do not change, the average
service rate for pedestrians is expected to be relatively constant as well. On the other hand, since the right-
turn vehicles are required to yield to pedestrians, under the fixed turning ratios, an increase in the vehicle
demand level leads increases in delays for the right-turn vehicles. The evolution of the number of vehicles
indicates that Q-MP can stabilize vehicle demands under 500 veh/h/entry link. Once the vehicle demand
exceeds 600 veh/h/entry link, the number of vehicles continues to increase until the vehicle demand drops
to zero at t = 60 min. Compared to Q-MP, both the proposed PQ-MP and the rule-based MP can still
stabilize those vehicle demands with certain values for λ and τ , respectively, as shown in Figures 5–6. This

15



0 20 40 60 80 100
Time (min)

0

250

500

750

1000

1250

1500

Nu
m

be
r o

f v
eh

icl
es

/p
ed

es
tri

an

Threshold (s)
20
40
60
80
100
120
Variable
Vehicle
Pedestrian

(a) Vehicle demand: 400 veh/h/entry link
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(b) Vehicle demand: 500 veh/h/entry link
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(c) Vehicle demand: 600 veh/h/entry link
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(d) Vehicle demand: 700 veh/h/entry link

Figure 5: Evolution of number of vehicles and pedestrians under rule-based MP.

finding unveils the necessity of the development of MP algorithms considering pedestrians for the network
stability.

For the rule-based MP algorithm, the threshold for the waiting time determines the frequency that
pedestrians receive green times. A lower threshold of pedestrian waiting time allows pedestrians to be
served more frequently and thus, increases the number of vehicles in the network. The results in Figure 5
show that the rule-based MP algorithm can achieve a larger stable region for vehicles than the Q-MP if the
threshold is large enough. For example, the rule-based model can even stabilize the vehicle demand of 700
veh/h/entry link if the threshold is larger than 60 s.
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(a) Vehicle demand: 400 veh/h/entry link
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(b) Vehicle demand: 500 veh/h/entry link
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(c) Vehicle demand: 600 veh/h/entry link
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(d) Vehicle demand: 700 veh/h/entry link

Figure 6: Evolution of number of vehicles and pedestrians under PQ-MP.

For the proposed PQ-MP, as λ increases, the pedestrian-related term in Equation (7) makes higher
contribution to the pressure calculation and the influence of the pedestrian states on the control outputs
becomes greater. As a result, the number of vehicles in the network increases as λ rises. For the lowest
vehicle demand scenario, all coefficients can stabilize the vehicle demand level, as shown by Figure 6. As
the vehicle demand level increases, the number of coefficients that can stabilize the network decreases. For
example, when the entry demand is 600 veh/h/entry link, only the coefficients less than 0.002 can stabilize
the network. When the vehicle demand reaches 700 veh/h/entry link, the network cannot be stabilized
by any of the examined coefficients. Note although the rule-based model can stabilize this vehicle demand
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when the threshold value for the pedestrian waiting time is larger than 60 s, this superiority over PQ-MP
is not surprising. Theoretically, under the control of the rule-based MP, the stable region for vehicles can
be maximized when the threshold is infinity. However, this advantage is achieved with the sacrifice in the
operational efficiency of pedestrians. This conflicts with the goal of the proposed model, which is to ensure
the overall operational efficiency for both vehicles and pedestrians.

4.3.2. Travel delay

In addition to the stable region, travel delay—the most commonly used metric to evaluate the control
efficiency in traffic operations—obtained from all models are examined in this section. Figure 7 and Figure 8
show the average delay and total delay for both vehicles and pedestrians under the control of the rule-based
model and the PQ-MP, respectively.
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Figure 7: Delay from the rule-based MP algorithm.

Figure 7 reveals that, under the rule-based MP algorithm, the delay of vehicles decreases as the threshold
for the pedestrian waiting time increases, and the delay incurred by pedestrians is close to a linear function
of the threshold. The reason is that a pedestrian phase is activated when the largest delay incurred by all
pedestrians served by this phase is equal to the threshold. Therefore, the threshold can be regarded as an
approximation of the largest delay that can be incurred by a pedestrian at an intersection. Assume that
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Figure 8: Delay from PQ-MP.

the pedestrian arrivals are random, then the average/total delay of pedestrians is linear to the largest delay,
which is equivalent to the threshold value.

Figure 8 shows that when λ is lower than 0.01, the delay of vehicles resulting from the PQ-MP is relatively
stable against the change in the coefficient. However, the delay of pedestrians can be reduced significantly
by increasing the coefficient. When the coefficient exceeds 0.01, the delay of vehicles increases rapidly.

The actual delay for the Q-MP is omitted since it has the worst overall performance. However, it is used
as the baseline for the following comparison between PQ-MP and the rule-based MP.

In order to generate a fair comparison, we assume the average occupancy of vehicles is 1.3 pax/veh and
calculate the total person delay to evaluate the performance of PQ-MP for all coefficients and the rule-based
MP algorithm for all threshold values under all vehicle demand levels. We found that the coefficient of 0.0006
and threshold of 80 s generate the lowest person delay for both algorithms, respectively. Therefore, only the
results from the corresponding models are compared. Note that these values do not necessarily generate the
best performance for other scenarios. In practice, the values of both coefficients are determined by individ-
ual traffic engineers based on how they value the operational efficiencies between vehicles and pedestrians.
For a better visualization, the delay reductions from both models compared to Q-MP are shown in Figure
9. A positive reduction in these figures represents the algorithm can reduce travel delay compared to the
Q-MP, and vice versa. These results manifest that although the rule-based model can achieve a desirable
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performance for vehicles, the overall efficiency cannot be ensured. By considering the traffic states of both
vehicles and pedestrians in the pressure calculation, the PQ-MP manages to improve the overall efficiency.
This improvement is more significant for relatively low vehicle demand scenarios. Note that if we select
a lower threshold for the waiting time, e.g., 60 s, both the vehicle delay and pedestrian delay from the
rule-based model are higher than those of the PQ-MP.
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(a) Vehicle delay reduction.
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(b) Pedestrian delay reduction.
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(c) Person delay reduction.

Figure 9: Delay reduction compared to Q-MP.

Figure 9a indicates that compared to the Q-MP, both models can reduce the vehicle delay significantly,
especially for the large vehicle demand scenarios. Moreover, the rule-based model generates a lower vehicle
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delay than the proposed algorithm when vehicle demand exceeds 600 veh/h/entry link, which is consistent
with the findings on the stable region. On the contrary, both models increase the pedestrian delay compared
to Q-MP, as shown in Figure 9b. This is reasonable due to the same reason for the smaller vehicle stable
region of Q-MP mentioned in the previous section.

The proposed PQ-MP produces considerably lower pedestrian delay than the rule-based model, as shown
in Figure 9b. Consequently, the person delay from PQ-MP is lower than the delay from the rule-based model
under all tested vehicle demand levels, as shown in Figure 9c. In addition, due to the large delay incurred
by pedestrians, the person delay from the rule-based MP is significantly higher than the Q-MP when the
vehicle demand is under 500 veh/h/entry link. The PQ-MP generates similar person delay to the Q-MP
when the vehicle demand is 400 veh/h/entry link and significantly lower delay for all other vehicle demand
levels. Compared to rule-based MP, the PQ-MP can reduce the total person delay by 114 hours when the
vehicle demand is 400 veh/h/entry link. The reduction in person delay decreases with increasing vehicle
demand. It reaches 20 hours when the vehicle demand is equal to 700 veh/h/entry link.

4.3.3. Influence of pedestrian demand on vehicle delays

We further explore the vehicle delay incurred in the high (green) and low (blue) pedestrian demand
regions shown in 2 to investigate the impact of pedestrian demand level on vehicle delays from both the
rule-based MP and the PQ-MP algorithms. The delay reductions compared to Q-MP, which still serves
as the baseline algorithm, are shown in Figure 10. It shows that, consistent with the pattern of the entire
network shown in Figure 9a, the delay reductions from both models in both region increase with the vehicle
demand, and the vehicle delay reduction from the PQ-MP, shown by the circle markers, is higher than that
from the rule-based MP, shown by the cross markers, in both regions when the vehicle demand is less than
500 veh/h/entry link, and different pattern occurs when the vehicle demand exceeds 600 veh/h/entry link.
In addition, two other interesting phenomena are observed.
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Figure 10: Impact of pedestrian demand on vehicle delay.

First, when the vehicle demand is very high, i.e., 700 veh/h/entry link, the difference of delay reduction
between both models in the high pedestrian demand region, shown by the green markers, is larger than
that in the low pedestrian demand region, shown by the blue markers. The rule-based MP employs the
same threshold value for both regions. However, in PQ-MP, the pedestrian term has a higher proportion
in the phase pressure, shown by Equation (7), in the high pedestrian demand region than that in the low
pedestrian demand region. Consequently, under the control of PQ-MP, the phases serving pedestrians are
activated more frequently, and thus, the vehicle delay is higher in the high demand region, which results in
a larger difference of delay reduction between both models.
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Second, for both models, the delay reduction in the region with low pedestrian demand region, shown
by the blue markers, is higher than that in the region with high pedestrian demand region, shown by the
green markers. Note that since all entry links have the same external inflows, and the turning ratios at
all intersections are identical, the patterns of average vehicle flows in both regions are similar. In addition,
because the Q-MP only considers vehicle states, in the long run, the signal timing of one intersection, in
terms of the average service rate for each vehicle movement at that intersection, is expected to be similar
to that of the symmetric intersection with respect to the common boarder of both regions. Unlike Q-MP,
both the rule-based MP and PQ-MP tend to allocate less green time to pedestrians in the low pedestrian
demand region than the other region. For the rule-based model, the average pedestrian arrival rate at
an intersection is lower in the low pedestrian demand region, so the intervals between pedestrian signal
activation condition being satisfied are longer. Therefore, the pedestrian phases are activated less frequently
in the low pedestrian demand region. Consequently, the vehicle delay improvement in that region from the
rule-based MP is higher. Similarly, when the pedestrian flow is low, the proportion of the pedestrian term
in the phase pressure of the PQ-MP, shown by Equation (7), is low. Therefore, under the control of PQ-MP,
the phase phase serving pedestrians is activated less frequently in the low pedestrian demand region as well,
and the delay reduction in this region is higher.

4.3.4. Impact of measure errors on travel delays

All results from the proposed PQ-MP in previous sections are based on accurate measurement of pedes-
trian queues; however, this requirement is difficult or even impossible to meet under the available infrastruc-
tures at most intersections. Therefore, it is necessary to test the performance of the PQ-MP in the presence
of measurement errors in pedestrian queues. To this end, we assume that the measurement of a pedestrian
queue for a crosswalk movement follows a normal distribution with mean equal to the actual pedestrian
queue length and standard deviation equal to a proportion of the mean, denoted by σ. For example, if
the actual pedestrian queue length is 10, and σ = 0.1, the measurement output is obtained by randomly
drawing a value from the distribution of N(10, 0.1 × 10) = N(10, 1). Bounds are included to ensure that
queues lengths are non-negative values. The following values for σ are tested: {0.1, 0.2, 0.3, 0.4, 0.5}.

Since we already demonstrated that both the rule-based MP and PQ-MP can effectively reduce person
travel delay compared to Q-MP, for simplicity, we use the rule-based MP (τ = 80s) with perfect knowledge
of pedestrian waiting time as the baseline algorithm in this section. Figure 11 shows the influence of σ
on the delay reductions of vehicles, pedestrians and total persons. Figure 11b shows that the pedestrian
delay improvement from the PQ-MP generally decreases with the increase of σ. With the increase in the
uncertainties in the measurement, the frequency of the PQ-MP makes the “correct” decision for pedestrian
queues, in terms of serving the phase with longest pedestrian queues, is lower, which leads to an undermining
of the pedestrian operational efficiency. However, its influence on vehicle delays is less predictable, especially
when the vehicle demand is high, as shown in Figure 11a. A possible reason is that pedestrians have a higher
priority than right-turn vehicles, which can generate either an increase or a decrease in vehicle delays. For
example, if the phase for a pedestrian crosswalk movement that has a relatively short queue length is
activated due to the measurement error, compared to the case when the controller activates the phase
serving the longest pedestrian queue, the associated right-turning vehicles could incur less delay resulting
from the shorter yielding time. Overall, when the vehicle demand delay is less than 600 veh/h/entry link, the
PQ-MP with measurement randomness can still outperform the rule-based MP under all tested uncertainty
values, even though the rule-based MP has perfect information. When the vehicle demand reaches 700
veh/h/entry link, as shown in Figure 9c, both models with accurate measurement generate similar person
delay. After considering measurement errors in the PQ-MP, the person delay increases and exceeds that
from the rule-based MP under this vehicle demand level.

5. Concluding remarks

This paper proposes a novel MP algorithm, PQ-MP, that incorporates pedestrians into pressure com-
putation to determine signal timings while maintaining the MP control structure. Pedestrian movements
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(b) Pedestrian delay reduction.
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(c) Person delay reduction.

Figure 11: Impact of measurement errors on delay.

are divided into two groups: sidewalk movements and crosswalk movements, and traffic dynamics models
are developed for both groups. Then, an MP algorithm that updates signal phase based on both vehicle
queues and pedestrian queues of the crosswalk movement is derived. The proposed PQ-MP is decentralized,
and does not require the knowledge on external demand. More importantly, we proved that PQ-MP has
the maximum stability property, which ensures the maximization of the combined vehicle and pedestrian
throughput. The stability in both vehicular and pedestrian queues is critical for the overall operational
efficiency. This is highlighted by the simulation results which demonstrate that the PQ-MP generates a
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lower person delay than the Q-MP and a recently proposed rule-based MP algorithm at various vehicle
demand levels, although the stable vehicle region of the PQ-MP is smaller than that of the rule-based model
with a high threshold for pedestrian waiting times. We also tested the performance of the PQ-MP with
measurement errors in pedestrian queues. The simulation results show that, in general, pedestrian delay
increases with the increase in the measurement error. However, the impact of the measurement error on
vehicle delays is less predictable than that on the pedestrian delay. Moreover, the PQ-MP with measurement
errors still outperforms the rule-based model when the vehicle demand is not extremely large.

The proposed PQ-MP requires the number of pedestrians of each crosswalk movement at an intersection
to be available, which may restrict its practicability. It is promising to propose a method to predict this
metric based on readily available information, such as the first pedestrian arrival from pushing the cross
button and the number of pedestrians served by each phase in previous steps, etc. In addition, since the
maximum occupancy of pedestrian nodes is usually greater than that of vehicle links, it may require a longer
time step than the free flow travel time for vehicles traversing a link to serve all pedestrians that are already
waiting at the pedestrian nodes. Moreover, extending green time for T-R phases can help reduce the number
of right-turn vehicles blocked by the conflicting pedestrian movements. Therefore, the development of an
MP algorithm with dynamic time step size is another meaningful research direction.
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