
Neural Human Intent Estimator for an Adaptive
Robotic Nursing Assistant

Christopher Trombley, Student Member IEEE, Madan Rayguru, Payman Sharafian, Student Member IEEE,

Irina Kondaurova, Nancy Zhang, Moath Alqatamin, Sumit K. Das, and Dan O. Popa, Senior Member IEEE

Abstract—Estimation of human intent during interaction with
a robot is important for maintaining safety, predictability,
and performance. This paper proposes a neural, model-free,
online human intent estimator to guide our Adaptive Robotic
Nursing Assistant (ARNA) robot. ARNA is a service mobile
manipulator designed to assist nurses and healthcare workers
with patient sitting and walking tasks in hospital environments.
The proposed Human Intent Estimator (HIE) is implemented
as two efficient one-layer neural networks (NN) that generate
reference trajectories based on the user torque inputs from the
robot’s handlebar. These trajectories are sent to an NN-based
neuroadaptive controller (NAC) in the inner loop to generate the
necessary wheel torques to follow human-guided trajectories.
The proposed NN weight adaptation laws for the HIE-NAC
are shown to be stable as long as the trajectories generated by
the human intent dynamics are smooth and bounded, which
requires the user not to change his/her intention abruptly.
We tested the proposed intent estimator and controller in
three different human-robot interaction experiments with 10
participants. A linear mixed-effect model was used to test the
difference between the HIE-NAC scheme and a conventional
admittance controller. The results show significant performance
improvements by reducing jerk and tracking velocity errors
during operation.

I. INTRODUCTION

The number of robots introduced into environments with

physical human collaborators has been rapidly increasing

[1] [2]. Healthcare facilities are one of the frontiers where

physical human-interaction (pHRI) capable robots can be

employed to assist with medical needs such as monitoring

patients, daily hygiene, and more. The idea of using nursing

assistant robots has been a longstanding consideration for

tasks such as assisting patients with lifts, transfers, and

dressing [3] [4].

To help nursing staff with physically intensive duties and

tasks, an Adaptive Robotic Nursing Assistant (ARNA) unit

has been developed in our lab over the last decade [5].

ARNA was designed to serve in a hospital environment and

perform pick-and-place tasks, guidance, tugging, and other

functions. It has omnidirectional motion capabilities to suit

the dynamic hospital environment and a robotic arm with

seven DOFs on the top of its base, as shown in Fig.1. pHRI

has long been an active research area to improve the robot’s

performance and maintain safety. Impedance and admittance

control methods have been commonly used to control the
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Fig. 1: Adaptive Robotic Nursing Assistant (ARNA) robot

interaction behavior during pHRI [6] [7] [8]. These control

techniques, however, need to know the robot dynamics and

robot-environment interaction dynamics for proper tuning.

In the case of ARNA, the system dynamics is perturbed

by uncertain and diverse environmental factors such as floor

inclines, surfaces, and tugging heavy loads. Adaptive control

methods have previously been proposed to deal with the

uncertainties and parameter changes in the robot dynamics

and to overcome the ambiguity in the contact environment

[9]. Combining impedance control schemes with adaptive

methods has been used to achieve a safe and stable operation

during pHRI [10] [11] [12]. Many researchers proposed using

neural networks to approximate the system nonlinearities

[13] by employing offline batch training methods. Safety,

operational efficiency, and task reliability during pHRI could

be greatly enhanced if the robots can handle nonlinearities

and infer human actions and intentions toward the robot [14].

Human intention can be deduced by utilizing various sens-

ing modalities to measure different types of human signals,

which are captured by wearable and nonwearable sensors

[15], [16], [17], [18]. Previously, the human motion dynamics

were modeled to estimate users’ intention in [19] [20].

Hidden Markov Models (HMMs) are used in [21] to estimate

people’s actions and interactions with autonomous mobile

robots. In [22], a Bayesian methodology was employed to

estimate both human impedance and motion intention within

the context of a collaborative human-robot task. Wang et al.

[23] introduced an intention-driven dynamics model to de-

duce intentions from observed human motions, specifically in

the context of robot table tennis and human activities. Mean-
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while, the work [24] utilized Gaussian processes (GP) based

on impedance for predicting behavior during pHRI. Their

findings demonstrated improved performance compared to

the standard GP model; however, this enhanced performance

was highly sensitive to changes in the impedance parameters.

In our previous work [10], we designed an adaptive

impedance controller with human intent estimation based

on converting the applied force on the robot to a desired

future position. A double integrator dynamics was exploited

to approximate the human intent pushing the robot end-

effector. In an additional past work [25], we designed a dual

loop control scheme for the guidance pHRI application with

the PR-2 robot arm. These control schemes have an inner

loop based on a model-free neuroadaptive controller (NAC)

to ensure that the robot follows the desired trajectories and

an outer loop that predicts the human motion intent and

estimates the reference trajectories for the inner loop. These

Cartesian space controllers were experimentally validated on

a small number of human subjects, which did not allow for

statistically significant conclusions about the performance.

In our follow-up work [5], we adapted the NAC inner

loop controller for ARNA’s mobile base in joint space and

combined it with a fixed admittance input model from the

robot’s handlebar force-torque sensor. Tuning the NAC in

joint space was easier than in Cartesian space because joint

variables have comparable dimensional values. The controller

was extensively validated for performance improvements

against a standard PID controller. However, it lacked the

human intent estimator in the outer loop.

In this work, we combined the advantages of NN-based

human-intent estimation with the inner loop NAC and made

contributions in two directions: 1) We designed a pHRI

scheme called HIE-NAC for our omnidirectional mobile

robot base of ARNA for walking assistance; Specifically, we

refined the pHRI framework based on a cascaded HIE-NAC

control structure shown in Fig.2. Furthermore, we showed

that the HIE scheme is stable under reasonable assumptions

about the operator’s force outputs. 2) We implemented the

HIE-NAC scheme on our robot and performed user trials to

rigorously test the effectiveness under various scenarios. The

outer loop of HIE-NAC was implemented as two efficient

one-layer NNs. No batch training was required, and only

a few parameters needed to be adjusted to optimize the

performance, including the NN size and learning rates. To

ensure that the improved tracking errors and jerks of our

controller are not due to random effects, we conducted exper-

iments with 10 subjects who guided the robot along different

desired paths. Data collected were statistically analyzed using

a mixed effect regression model that demonstrates that our

proposed scheme statistically improves a previously tuned ad-

mittance controller in terms of the smoothness and precision

of guided operation.

The paper is organized as follows. The outer-loop HIE

design is presented, and proof of stability is shown in section

II. In section III, we describe the ARNA robot used during the

Fig. 2: ARNA Robot’s HIE-NAC architecture consisting of

3 single hidden layer NNs with online updated weights

experiments and present our experimental results, including

the interpretation of statistics. Finally, section IV concludes

the paper and discusses future work.

II. CONTROL METHOD AND DESIGN

This section describes the technical details of the proposed

pHRI system, which involves designing and implementing

the outer-loop intent estimator and the inner-loop neuroadap-

tive controller. The outer-loop intent estimator utilizes the

user’s handlebar sensor data to compute a set of desired

position and velocity commands for the wheel motors. These

signals are passed onto the inner-loop NAC, which generates

robot base motor torques and tracks the outer-loop pHRI

trajectories.

A. Outer-Loop Intent Estimator Design
The objective of the HIE outer loop is to compute a set

of desired position and velocity commands for the wheel

motors based on the handlebar sensor data from the user. The

architecture of the proposed HIE-NAC scheme is depicted in

Fig. 2. We developed the HIE loop for ARNA based on the

human intent model in (1). The outer HIE-NAC loop consists

of two parallel single-layer neural networks. One is used to

estimate the parameters (i.e., gains) of the human model, and

another one is used to approximate desired trajectories for the

robot to follow. It is important to note that the parameters of

the human model differ from person to person; therefore, the

adaptive estimation of these constants is critical to make the

interaction personalized and smooth.

1) Human Transfer Function
We begin our discussion of the HIE outer loop design by

describing the human intent model. In physical interactions

with ARNA, the user guides the robot along desired paths

by applying force to the robot’s handlebar. Users change

their applied forces and moments dynamically based on their

perceived tracking errors and other measures of operation

smoothness, such as the jerk. Given a current planar position

and orientation of ARNA P =
[
x, y, θ

]T
and velocity

Ṗ =
[
vx, vy, ωz

]T
, the human dynamics can be modeled

as a low pass filter [11]:

fh = Dhėd +Khed (1)
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where fh ∈ R
3×1 is the human force vector along the three-

axis handlebar force sensor; Dh = diag(d), Kh = diag(k)
are individual specific diagonal gain matrices containing

coefficients for 3-DOF of in-plane velocities in x, y, ω direc-

tions); ed = Pr −P and ėd = Ṗr − Ṗ are the tracking errors

to a reference robot position Pr. The model (1) captures this

user-specific interaction through the gain matrices Kh and

Dh, which are tuned by our HIE NN1. Finally, the HIE NN2

generates a robot trajectory, and the error dynamics ed are

combined into a prescribed error dynamic term and passed

on to NN3 of our inner loop NAC controller.

2) Human Intent Estimator
As the desired position and velocity are known to the user

but unknown to the robot, the proposed HIE scheme estimates

these signals through neural network NN2 expressed as:[
Pr

Ṗr

]
= h(P, Ṗ , fh) = STφ(ξ) + ε1 (2)

where the unknown weight matrix of the NN2 is ST ∈ R
6×9,

φ denotes a sigmoid activation function, ε1 is a approximation

residual, and ξ =
[
fT
h , PT , ˙PT

]T
∈ R

9×1. The estimated

human intent can be written as:[
P̂r

˙̂
Pr

]
= ŜTφ(ξ) (3)

where ŜT is the estimated weight matrix. P̂r and
˙̂
Pr are the

estimated desired position and velocity. The error dynamics

can be written as: [
êd
˙̂ed

]
=

[
P̂r − P
˙̂
Pr − Ṗ

]
(4)

The difference between the actual and estimated errors is

defined as:

¯̃ed =

[
ẽd
˙̃ed

]
=

[
ed
ed

]
−
[
êd
˙̂ed

]
=

[
Pr

Ṗr

]
−
[
P̂r

˙̂
Pr

]
= S̃Tφ(ξ) + ε1

(5)

where S̃ = S− Ŝ is the weight estimation error. Let’s define

a sliding mode error variable as: s = êd − ea, where the

filtered error ea is determined from the approximated human

dynamics:

fh = D̂hėa + K̂hea = J(Êh � ēa) (6)

where Eh =

[
k
d

]
∈ R

6×1 contains the diagonal elements of

K̂h, D̂h, J = [I6, I6], � is the Hadamard product and the

vector ēa =

[
ea
ėa

]
∈ R

6×1. These gains k, d are estimated

by neural network NN1 given in equation (9). To find the

open loop error dynamics of the HIE loop, we start from

the human dynamics equation, substitute the value of human

force and use the definition of ẽd(t) to derive the following

expression:

Dh( ˙̂ed − ėd) = −Kh(êd − ea)−Khẽd −Dh
˙̃ed − K̃hea (7)

where D̃h and K̃h are the estimation errors of Dh and Kh

defined as:

D̃h � Dh − D̂h, K̃h � Kh − K̂h (8)

As the human gain matrix Eh is unknown, we assume that it

is a nonlinear function of ξ in the form Eh = UTφ(ξ) + ε2.

It can be approximated by:

Êh = ÛTφ(ξ) (9)

where Û ∈ R
6×9 is the weight matrix of a second neural

network. After using the definition of s the open loop

dynamics can be written as

Dhṡ = −Khs− J(Eh � ¯̃ed)− J(Ẽh � ēa) (10)

Stability Analysis: The weight matrices of two neural net-

works should be updated in such a way that s is bounded,

which means the dynamics (10) is stable. In this regard,

define a candidate Lyapunov function:

V = 0.5sTDhs+0.5tr(S̃TA−1S̃)+0.5tr(ŨTB−1Ũ) (11)

where A,B are positive definite matrices, which can be

tuned for weight updates. After some matrix manipulation,

we obtain:

V̇ ≤ −||s||
(
λ||s||+ κ

[||S̃T ||F
||ŨT ||F

]T [
Sb

Ub

]

+

[||S̃T ||F
||ŨT ||F

]T [ −κ 0.5φ2
b

0.5φ2
b −κ

] [||S̃T ||F
||ŨT ||F

])
,

(12)

where Sb, Ub denotes the upper bound of the weight

matrices, and φb is the upper bound of the activation function

output.By examining equation (12), we can prove that the

sliding error s is uniformly ultimately bounded in the region

defined by:

||s|| ≥ c1/λ, c1 =
κ2(κS2

b + κU2
b + UbSbφ

2
b)

φ4
b − 4κ2

, or[||S̃T ||F
||ŨT ||F

]
> c2, c2 =

√
c1 +

κ

φ4
b − 4κ2

2κSb + Ubφ
2
b

2κUb + Sbφ2
b

.

(13)

Note that the tracking error bounds can be made smaller by

reducing the design constant κ. The above-described stability

analysis can be formalized as the following theorem:

Theorem 1: The HIE scheme implementing neural up-
dates ensures that the discrepancy between reference values
(P̂r,

ˆ̇Pr) and user intended position and velocity Pr, Ṗr

asymptotically converge to a small bound, under the fol-
lowing conditions: 1) the user interacts with ARNA with a
bounded amount of force fh; 2) the intended desired position
Pr and velocity Ṗr are bounded; and 3) the NN weights in
equations (3) and (9) are saturated inside compact sets.

B. Inner-Loop Neuroadaptive Controller
The inner loop NAC learns and cancels the robot’s remain-

ing Mass and Coriolis nonlinearities of the robot and forces

the current position of ARNA P towards the reference trajec-

tory Pr. The NAC computes the wheel input torque vector τ
by regulating a filtered error variable e � P −Pr, r � ė−ρe
where ρ is a symmetric design matrix. In this section, we

briefly introduce the NAC controller formulated through a

third Neural Network. The detailed performance of the inner

loop was presented in previous publications [10], [25]–[27].

Let’s assume that we have a nonlinear model that describes
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our robotic system, given by:

Mẍ+ C(x, ẋ)ẋ+G(x) + T (x) = τd (14)

where M is the moment of inertia matrix, C(.) is Coriolis

Matrix, G(x) is gravitational forces, T (x) is cumulative

uncertianties and τd is the input torque. By making use of

the universal nonlinear function approximation property of

Neural Networks (NN), we can approximate T (x) as:

T (x) = WT
n σ(V T

n x) + ε (15)

where Wn and Vn are ideal weights, σ is the activation

function vector and ε is the approximation error of the NN

approximation such that ‖ε‖F ≤ εN on a compact set. Since

the ideal weights are unknown, estimated weights that are

dynamically tuned, Ŵn and V̂n, can be used to obtain T̂ (x),
an approximation of T (x) as:

T̂ (x) = ŴT
n σ(V̂ T

n x) (16)

Let an approximation torque controller based on T̂ (x) be:

τ = − ˆT (x) +Kvr − tr(t) (17)

Where Kv is a positive definite matrix, and Kvr is used to en-

sure a proportional-derivative (PD) tracking the performance

of the closed loop system. Here tr is a robustifying signal

compensating for unmodeled and unstructured disturbances.

tr = −Kz(‖Ẑ‖F + ZB)r (18)

with Kz as the robustifying term gain and

Ẑ =

(
Ŵn 0

0 V̂n

)
(19)

‖.‖F is the Frobeinus norm, and ZB is a bound on the NN

weights.

Using (17) and sliding-mode error dynamics of the robot

and controller can be simplified to:

Mṙ = −C(x, ẋ)r + T̃ (x) + τd + tr. (20)

The control law can ensure that, given a bounded initial

reference trajectory and other feasible bounds on quantities

described in the proof, the error in the following trajectories

of robot states θ and derived states ‖r‖ are asymptotically

bounded. This proof presents weight tuning laws for the

approximate NN weights Ŵn and V̂n as:

˙̂
Wn = Aσ̂rT −Aσ̂

′
V̂nxr

T − κA‖r‖Ŵn (21)

˙̂
Vn = Bx(σ̂

′
TŴnr)

T − κB‖r‖V̂n (22)

σ̂
′
= diag{σ(V̂ T

n x)}[I − diag{σ(V̂ T
n x}] (23)

In these update equations, A and B are two positive definite

matrices, σ is the sigmoid activation function, and κ > 0 is

a small design parameter.

III. EXPERIMENTAL RESULTS

A. ARNA Robot
The Adaptive Robot Nursing Assistant (ARNA) robot is

a customized mobile manipulator consisting of a base, a

7-DOF arm, and a sensorized handlebar to allow patients

and nurses to physically interact. ARNA uses a four-wheel

Mecanum drive and suspension system for omnidirectional

movement. The wheels are arranged in a longitudinal sym-

metrical layout and integrated with four independently con-

trolled servo motors [5]. The wheels are affixed at each

of the robot chassis’s four corners. The drivetrain provides

omnidirectional mobility, enabling the robot to perform both

agile translation (forward/backward, sideways) and rotation

maneuvers independently and simultaneously, regardless of

its initial orientation. This eliminates the need for difficult

nonholonomic path maneuvering in cluttered hospital envi-

ronments. High-ratio gearboxes are used to perpendicularly

connect the Mecanum wheels to the servo motors. Assuming

the slippage between the rollers and the ground is negligible,

the inverse kinematics of the robot base can be written as

[27]:

Vw =

⎡
⎢⎢⎣
ω1

ω2

ω3

ω4

⎤
⎥⎥⎦ =

1

R

⎡
⎢⎢⎢⎣
1 −1

−(Lx+Ly)
2

1 1
(Lx+Ly)

2

1 1
−(Lx+Ly)

2

1 −1
−(Lx+Ly)

2

⎤
⎥⎥⎥⎦
⎡
⎣vxvy
ωz

⎤
⎦ (24)

where the vector
[
vx, vy, ωz

]T
represents the velocity of

ARNA center of rotation, Vω ∈ R denotes the speed vector

of the wheels. The parameters R, Lx, and Ly are the

wheel radius, the width, and the length of the ARNA base,

respectively.

The primary pHRI interface for ARNA is a handlebar

attached to the robot’s rear section. This serves a dual purpose

of supporting users while walking along the robot, as well as

measuring the force applied to it through a 6-axis torque/force

sensor and other handlebar pressure sensors. The force or

torques measured on the handlebar are then sent to the real-

time patched OS of our ARNA computer, which uses them

to estimate the user-intended motion directions based on the

NAC-HIE algorithm.

The control scheme was implemented using C++. The

generated torques are sent to ARNA’s four-wheeled mo-

tor drivers through the Robotic Operating System (ROS-

1 Kinetic) running on an Ubuntu 16.05 operating system.

The human intent estimator generates the reference velocity

vector in the outer loop. Using the inverse kinematics from

(1) and the reference angular velocities, the rotation vector for

the four wheels is calculated and sent to the NAC controller

in the inner loop. The inner loop controller is running at 300

Hz, and the outer loop HIE is running at 100 Hz.

B. Description of Experiments
Design parameters: In this section, we present exper-

iments used to validate the proposed NAC-HIE control

scheme compared to a baseline method involving a tuned

conventional admittance model instead of the HIE block.

Both these controllers use our neuroadaptive controller

(NAC) for inner loop velocity tracking. The parameters set

during experiments were as follows κ was set to 0.001,

A = {0.04, 0.04, 0.04}, and B = {0.01, 0.01, 0.01}. Dh,

J , and Kh were all set to the identity matrix to begin each

interaction experiment. Dh, and Kh are dynamically updated

by our proposed NAC-HIE method as the user is operating

the robot, while J remains the identity matrix to be used in

the weight update equations. For the admittance portion, a
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Fig. 3: Floor paths straight line (SL), square (SQ), and

obstacle (OB) for evaluation of human-intent estimator and

controller

second order transfer function [6]:

F (s)

Ṗ (s)
=

1

mas2 + das+ ka
(25)

is implemented for reference velocity generation where

the parameters of the transfer function (ka = 0.2, da =
0.03,ma = 1.1) are tuned by trial and error in order to

minimize both velocity tracking as well as jerk for all the

guiding tasks. We carried out experiments to investigate

whether the proposed NAC-HIE control scheme is better

than the admittance-NAC controller while following three

reference trajectories (straight paths, square paths, and paths

with obstacles). The performance metrics employed included

velocity tracking errors and smoothness of operation repre-

sented as motion jerk. For the remainder of the paper, we re-

fer to our conventional admittance controller as simply NAC,

while our proposed human intent estimator and controller is

the HIE-NAC.

Participants: 10 subjects were recruited for this study. The

selection criteria for these participants are that they are at

least 18 years old and have no prior experience with the

robot. For each experiment, the subject was asked to follow

a particular reference path: a straight line (SL), a square

path (SQ), or a straight line with an obstacle (OB), depicted

in Fig. 3. The University of Louisville Institutional Review

Board granted approval to conduct the experiments under

IRB no.18.0659.

Experiment Design and Instruments: This study em-

ployed a repeated measures design for two conditions

(Conventional Controller (NAC), Proposed Controller (HIE-

NAC)) with three tasks, e.g. following paths SL,SQ,OB. All

experiments were run in one sitting for each participant. For a

fair comparison, we administered a brief learning task before

the experiment to familiarize the participants with the robot.

The learning task simply consisted of the user acclimatizing

themselves to the robot by pushing it around a predefined

path.

The first experiment was designed to measure the perfor-

mance of each method on a simple task consisting of the

participant pushing the robot in a straight line for a distance

of 5m. The second experiment was designed to measure

TABLE I: Velocity Error Statistics.

Meth. Exp. Dir. Min Median Mean Max

NAC

SL Ex 0.025 0.050 0.055 0.100

OB
Ex 0.040 0.050 0.062 0.100
Ey 0.020 0.060 0.057 0.090
Ez 0.008 0.030 0.034 0.090

SQ
Ex 0.030 0.070 0.088 0.160
Ey 0.006 0.070 0.064 0.120
Ez 0.007 0.030 0.035 0.070

HIE-NAC

SL Ex 0.020 0.035 0.051 0.140

OB
Ex 0.030 0.040 0.051 0.090
Ey 0.010 0.020 0.029 0.060
Ez 0.001 0.010 0.011 0.030

SQ
Ex 0.010 0.035 0.057 0.140
Ey 0.002 0.020 0.027 0.060
Ez 0.003 0.035 0.048 0.110

TABLE II: Jerk Statistics.

Meth. Exp. Dir. Min Median Mean Max

NAC

SL Jx 9.4 72.0 81.2 207.0

OB
Jx 62.0 106.0 124.4 217.0
Jy 45.0 90.0 91.6 146.0
Jz 55.0 117.0 126.8 231.0

SQ
Jx 94.0 141.0 139.1 172.0
Jy 6.0 148.0 145.9 241.0
Jz 83.0 105.0 124.1 215.0

HIE-NAC

SL Jx 7.9 13.3 36.0 112.0

OB
Jx 4.1 6.7 7.3 12.1
Jy 1.7 5.6 5.2 8.5
Jz 1.8 6.3 5.4 7.3

SQ
Jx 5.0 9.9 9.0 12.8
Jy 4.5 7.0 7.5 10.8
Jz 2.1 6.4 6.8 10.1

the performance of each method on a more complex task

involving higher dimensional motion. This task consisted

of the participant pushing the robot in a 3m x 3m square

trajectory. The third experiment was designed to measure

the performance in a scenario where a user must navigate

around an obstacle. This task consisted of the participant

pushing the robot in a straight line for 2.5m, navigating

around a chair in the path, and then pushing the robot

another 2.5m. To measure velocity errors, we recorded the

reference and actual velocity values. The reference velocity

was computed using our proposed human intent estimator.

The actual velocity was calculated using wheel encoders. To

investigate the operation’s smoothness, we used motion jerk

information. Generally, jerk quantifies the rate of acceleration

change. A lower jerk demonstrates a smoother motion while

the user is pushing the robot. These were computed according

to standard definitions in the literature [5], [25].

C. Descriptive Statistical Analysis
The acquired datasets were cleaned and visually checked

for outliers using standard procedures such as boxplots and

histograms. Any observation that was classified as a sus-

pected outlier using the interquartile range (IQR) criterion

was removed from the dataset. The statistical results are

summarized in Tables I and II. Ex, Ey, Ez represent velocity

errors in x, y, z coordinates, and Jx, Jy, Jz denote jerk in

x,y, and rotation coordinates respectively. It can be seen from

Table I that min, max, median, and mean of velocity errors

for HIE-NAC are considerably smaller across all experiments

and directions than for NAC. This is except for the mean

value of Ez in SQ, as explained in the Discussion section.

Similar trends are also observed for the jerk data, where
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Fig. 4: Distribution of velocity errors for all subjects

Fig. 5: Distribution of jerk for all subjects

HIE-NAC gives smoother performance than NAC for all

three types of experiments. We also plotted the data from all

subjects to examine the data distribution. We chose box plots

to visualize the data distribution, and these plots comparing

HIE-NAC vs. NAC for all experiments by direction are

provided in Figures 4 and 5.

D. Mixed Effect Regression Model Analysis
Even though the results presented in the previous subsec-

tion are promising, they are not conclusive. It could be argued

that the variance in performance may be due to random

effects such as the individual’s abilities or other influencing

factors. Therefore, we fitted a mixed effect model (estimated

using REML and nloptwrap optimizer) to compare velocity

errors and jerks with Experiment, Method, and Directions as

independent variables. The baseline corresponded to Method

= NAC, Experiment = SL, and Direction = Ex, Jx. The model

included ID as a random effect (intercept) term. P-values

were computed using a Wald t-distribution approximation.

We fitted two models, one for velocity error and another for

our jerk data. The results are presented in Tables III and IV.

The results for the velocity errors mixed effect model are

provided in Table III. Within this model, the estimated effect

of HIE-NAC is negative and statistically non-significant

(β̂HIE−NAC = −0.006, p = 0.614). The estimated ef-

fects of Ey and Ez are statistically significant and negative

(β̂Ey
= −0.021, p < 0.001) and (β̂Ez

= −0.03, p < 0.001),

compared to the straight line (SL). These results suggest

that the average velocity errors are smaller in the direction

of y and z. However, the explanatory power of the model

is relatively low (conditional R2 = 0.45, marginal R2=

0.21), indicating that the proposed control strategy offers

TABLE III: Mixed Effects Model Results: Velocity Error

Comparison

Variables Estimate Std. Error Pr(t)

Intercept 0.057 0.010 0.000
OB 0.011 0.011 0.284
SQ 0.025 0.011 0.024

HIE-NAC -0.006 0.012 0.614
Ey -0.021 0.006 0.001
Ez -0.030 0.006 0.000

OB:HIE -0.014 0.014 0.303
SQ:HIE -0.015 0.014 0.301

R2 = 0.45

TABLE IV: Mixed Effects Model Results: Jerk Comparison

Variables Estimate Std. Error Pr(t)

Intercept 81.557 12.323 0.000
OB 39.209 14.780 0.009
SQ 59.021 14.609 0.000

HIE-NAC -45.547 16.387 0.006
Jy -3.795 8.459 0.655
Jz -3.107 8.365 0.711

OB:HIE -66.974 19.241 0.001
SQ:HIE -84.951 19.016 0.000

R2 = 0.73

limited improvement in practical applications. These results

are expected since the inner loop, which is responsible for

generating torques for desired velocities, remains the same

for both controllers.

The results in Table IV indicate the performance of our

proposed controller HIE-NAC in terms of jerk. We found

that the jerk mixed effect model’s total explanatory power

is substantial (conditional R2 = 0.73, marginal R2 = 0.70).

The estimated effects of the experiment (OB) are statisti-

cally significant and positive (β̂OB = 39.21, p = 0.009).

The estimated effect of the experiment (SQ) is statistically

significant (β̂SQ = 59.02, p < 0.001), which means that

the observed jerk for the square path and obstacle path are

substantial and higher compared to the straight line path

when ARNA is operated with the baseline NAC controller.

The effect of HIE-NAC itself is significant and negative

(β̂HIE−NAC = −45.55, p = 0.006), suggesting that the

average jerk in the HIE-NAC experiment (ARNA operated

with the proposed controller) is lower than the one in the

conventional NAC experiment across all tasks/paths (SL, SQ,

OB). The interaction terms b/w the Experiment type and HIE

are also significant and negative ( β̂OB = −66.97, p = 0.001
and β̂SQ = −84.95, p < 0.001). Hence, the proposed

HIE controller may significantly reduce robot’s jerk during

an obstacle avoidance task (OB) or a square path tracking

(SQ). Overall, the mixed effect model results reveal that our

proposed HIE-NAC makes the operation of ARNA person-

alized and much smoother than the conventional admittance

controller.

IV. DISCUSSION

The proposed HIE-NAC framework demonstrates promis-

ing improvements in reducing jerk and increasing smoothness

in guided robot motion. However, several limitations must be

addressed. From Table I, we can observe in the SQ path that

the mean value of Ez in HIE-NAC is larger than NAC. This
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is because the mean can be influenced by outliers and large

values, potentially skewing the result in those directions. If

some users changed their direction very fast during the square

path experiment, it would have affected the mean in the

angular direction, which is Ez in our case. It’s worth noting

that the median value for HIE is smaller than for NAC, as the

median is not impacted by outliers. The small sample size in

our study restricts the statistical power and generalizability

of the findings. Additionally, the current framework may

not fully account for more complex motion scenarios and

constraints. The reference for our HIE controller is generated

from the human intent model, which takes the forces exerted

on the force sensor as its input. If the user behaves erratically

or abruptly changes his/her intention, the reference signals

generated might be non-smooth and unbounded. Our current

controller cannot track and adapt to these types of signals.

V. CONCLUSION AND FUTURE WORK

This paper presents HIE-NAC, a nonlinear human intent

estimator and controller framework HIE-NAC using three

neural networks to estimate the desired velocity of a guided

mobile manipulator based on user-applied force. The HIE

includes a neural network to estimate human intent gains,

which are then used by another network to compute desired

positions and velocities for the robot base. The neural net-

work weight updates are derived from a Lyapunov stability

analysis, ensuring guaranteed error bounds under reasonable

assumptions. A standard admittance controller maps Desired

robot velocities from user-applied force-torque values. Test-

ing against the standard NAC controller using data from 10

users shows that HIE-NAC significantly reduces jerk and

increases motion smoothness. However, the small sample size

limits the study’s ability to detect true effects, so results

should be interpreted cautiously. Future studies with larger

samples are necessary to confirm these findings. Future work

will optimize HIE-NAC for more complex motion scenarios

and constraints and incorporate the ARNA manipulator in

addition to the base.
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