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Abstract—Estimation of human intent during interaction with
a robot is important for maintaining safety, predictability,
and performance. This paper proposes a neural, model-free,
online human intent estimator to guide our Adaptive Robotic
Nursing Assistant (ARNA) robot. ARNA is a service mobile
manipulator designed to assist nurses and healthcare workers
with patient sitting and walking tasks in hospital environments.
The proposed Human Intent Estimator (HIE) is implemented
as two efficient one-layer neural networks (NN) that generate
reference trajectories based on the user torque inputs from the
robot’s handlebar. These trajectories are sent to an NN-based
neuroadaptive controller (NAC) in the inner loop to generate the
necessary wheel torques to follow human-guided trajectories.
The proposed NN weight adaptation laws for the HIE-NAC
are shown to be stable as long as the trajectories generated by
the human intent dynamics are smooth and bounded, which
requires the user not to change his/her intention abruptly.
We tested the proposed intent estimator and controller in
three different human-robot interaction experiments with 10
participants. A linear mixed-effect model was used to test the
difference between the HIE-NAC scheme and a conventional
admittance controller. The results show significant performance
improvements by reducing jerk and tracking velocity errors
during operation.

I. INTRODUCTION

The number of robots introduced into environments with
physical human collaborators has been rapidly increasing
[1] [2]. Healthcare facilities are one of the frontiers where
physical human-interaction (pHRI) capable robots can be
employed to assist with medical needs such as monitoring
patients, daily hygiene, and more. The idea of using nursing
assistant robots has been a longstanding consideration for
tasks such as assisting patients with lifts, transfers, and
dressing [3] [4].

To help nursing staff with physically intensive duties and
tasks, an Adaptive Robotic Nursing Assistant (ARNA) unit
has been developed in our lab over the last decade [5].
ARNA was designed to serve in a hospital environment and
perform pick-and-place tasks, guidance, tugging, and other
functions. It has omnidirectional motion capabilities to suit
the dynamic hospital environment and a robotic arm with
seven DOFs on the top of its base, as shown in Fig.1. pHRI
has long been an active research area to improve the robot’s
performance and maintain safety. Impedance and admittance
control methods have been commonly used to control the
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Fig. 1: Adaptive Robotic Nursing Assistant (ARNA) robot

interaction behavior during pHRI [6] [7] [8]. These control
techniques, however, need to know the robot dynamics and
robot-environment interaction dynamics for proper tuning.
In the case of ARNA, the system dynamics is perturbed
by uncertain and diverse environmental factors such as floor
inclines, surfaces, and tugging heavy loads. Adaptive control
methods have previously been proposed to deal with the
uncertainties and parameter changes in the robot dynamics
and to overcome the ambiguity in the contact environment
[9]. Combining impedance control schemes with adaptive
methods has been used to achieve a safe and stable operation
during pHRI [10] [11] [12]. Many researchers proposed using
neural networks to approximate the system nonlinearities
[13] by employing offline batch training methods. Safety,
operational efficiency, and task reliability during pHRI could
be greatly enhanced if the robots can handle nonlinearities
and infer human actions and intentions toward the robot [14].

Human intention can be deduced by utilizing various sens-
ing modalities to measure different types of human signals,
which are captured by wearable and nonwearable sensors
[15], [16], [17], [18]. Previously, the human motion dynamics
were modeled to estimate users’ intention in [19] [20].
Hidden Markov Models (HMMs) are used in [21] to estimate
people’s actions and interactions with autonomous mobile
robots. In [22], a Bayesian methodology was employed to
estimate both human impedance and motion intention within
the context of a collaborative human-robot task. Wang et al.
[23] introduced an intention-driven dynamics model to de-
duce intentions from observed human motions, specifically in
the context of robot table tennis and human activities. Mean-
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while, the work [24] utilized Gaussian processes (GP) based
on impedance for predicting behavior during pHRI. Their
findings demonstrated improved performance compared to
the standard GP model; however, this enhanced performance
was highly sensitive to changes in the impedance parameters.

In our previous work [10], we designed an adaptive
impedance controller with human intent estimation based
on converting the applied force on the robot to a desired
future position. A double integrator dynamics was exploited
to approximate the human intent pushing the robot end-
effector. In an additional past work [25], we designed a dual
loop control scheme for the guidance pHRI application with
the PR-2 robot arm. These control schemes have an inner
loop based on a model-free neuroadaptive controller (NAC)
to ensure that the robot follows the desired trajectories and
an outer loop that predicts the human motion intent and
estimates the reference trajectories for the inner loop. These
Cartesian space controllers were experimentally validated on
a small number of human subjects, which did not allow for
statistically significant conclusions about the performance.

In our follow-up work [5], we adapted the NAC inner
loop controller for ARNA’s mobile base in joint space and
combined it with a fixed admittance input model from the
robot’s handlebar force-torque sensor. Tuning the NAC in
joint space was easier than in Cartesian space because joint
variables have comparable dimensional values. The controller
was extensively validated for performance improvements
against a standard PID controller. However, it lacked the
human intent estimator in the outer loop.

In this work, we combined the advantages of NN-based
human-intent estimation with the inner loop NAC and made
contributions in two directions: 1) We designed a pHRI
scheme called HIE-NAC for our omnidirectional mobile
robot base of ARNA for walking assistance; Specifically, we
refined the pHRI framework based on a cascaded HIE-NAC
control structure shown in Fig.2. Furthermore, we showed
that the HIE scheme is stable under reasonable assumptions
about the operator’s force outputs. 2) We implemented the
HIE-NAC scheme on our robot and performed user trials to
rigorously test the effectiveness under various scenarios. The
outer loop of HIE-NAC was implemented as two efficient
one-layer NNs. No batch training was required, and only
a few parameters needed to be adjusted to optimize the
performance, including the NN size and learning rates. To
ensure that the improved tracking errors and jerks of our
controller are not due to random effects, we conducted exper-
iments with 10 subjects who guided the robot along different
desired paths. Data collected were statistically analyzed using
a mixed effect regression model that demonstrates that our
proposed scheme statistically improves a previously tuned ad-
mittance controller in terms of the smoothness and precision
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experiments and present our experimental results, including
the interpretation of statistics. Finally, section IV concludes
the paper and discusses future work.
II. CONTROL METHOD AND DESIGN

This section describes the technical details of the proposed
pHRI system, which involves designing and implementing
the outer-loop intent estimator and the inner-loop neuroadap-
tive controller. The outer-loop intent estimator utilizes the
user’s handlebar sensor data to compute a set of desired
position and velocity commands for the wheel motors. These
signals are passed onto the inner-loop NAC, which generates
robot base motor torques and tracks the outer-loop pHRI
trajectories.
A. Outer-Loop Intent Estimator Design

The objective of the HIE outer loop is to compute a set
of desired position and velocity commands for the wheel
motors based on the handlebar sensor data from the user. The
architecture of the proposed HIE-NAC scheme is depicted in
Fig. 2. We developed the HIE loop for ARNA based on the
human intent model in (1). The outer HIE-NAC loop consists
of two parallel single-layer neural networks. One is used to
estimate the parameters (i.e., gains) of the human model, and
another one is used to approximate desired trajectories for the
robot to follow. It is important to note that the parameters of
the human model differ from person to person; therefore, the
adaptive estimation of these constants is critical to make the
interaction personalized and smooth.
1) Human Transfer Function

We begin our discussion of the HIE outer loop design by
describing the human intent model. In physical interactions
with ARNA, the user guides the robot along desired paths
by applying force to the robot’s handlebar. Users change
their applied forces and moments dynamically based on their
perceived tracking errors and other measures of operation
smoothness, such as the jerk. Given a currentTplanar position

of guided operation and orientation of ARNA P = [x, Y, 9] and velocity
: : T .
The paper is organized as follows. The outer-loop HIE £ = Ve, vy,w:]" . the human dynamics can be modeled
design is presented, and proof of stability is shown in section 3 @ low pass filter [11]:
II. In section III, we describe the ARNA robot used during the fn = Dneq+ Kpeq (D)
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where f;, € R3*! is the human force vector along the three-
axis handlebar force sensor; Dy, = diag(d), K, = diag(k)
are individual specific diagonal gain matrices containing
coefficients for 3-DOF of in-plane velocities in z, y, w direc-
tions); eq = P, — P and €5 = Pr — P are the tracking errors
to a reference robot position P,. The model (1) captures this
user-specific interaction through the gain matrices K} and
Dy, which are tuned by our HIE NN1. Finally, the HIE NN2
generates a robot trajectory, and the error dynamics ey are
combined into a prescribed error dynamic term and passed
on to NN3 of our inner loop NAC controller.
2) Human Intent Estimator

As the desired position and velocity are known to the user
but unknown to the robot, the proposed HIE scheme estimates
these signals through neural network NN2 expressed as:

7w ra =5t

where the unknown weight matrix of the NN2 is ST € R6*9,
¢ denotes a sigmoid activation function, €; is a approximation

AT
residual, and § = {th,PT,PT} € R9*!. The estimated
human intent can be written as:

2] .
5| =568 3)

P,

where ST is the estimated weight matrix. Zf’r and ]57, are the
estimated desired position and velocity. The error dynamics
P, —P

can be written as:
|:Ad:| —
2 AT .

The difference between the actual and estimated errors is

defined as:
d éd €dq éd PT !
R . (5)
where S = S — S is the weight estimation error. Let’s define
a sliding mode error variable as: s = é4 — e,, where the

filtered error e, is determined from the approximated human
dynamics:

“4)

p,
b,

™

o= Dnéa+ Knea = J(Ey, © &) (©)
where Ej, = [lﬂ € R®*! contains the diagonal elements of

Ky, Dy, J = [Ig, Is], @ is the Hadamard product and the
vector €, = Z“L € R%%!, These gains k,d are estimated

a

by neural network NN1 given in equation (9). To find the
open loop error dynamics of the HIE loop, we start from
the human dynamics equation, substitute the value of human
force and use the definition of é,4(¢) to derive the following
expression:

Dh(éd~_ €q) :~_Kh(éd —eq) — Knéq— Dpég— Kneq (7)
where Dy, and K, are the estimation errors of D; and K},
defined as:

Dy 2 Dy, — Dy, Ky 2 K), — Ky, (8)

As the human gain matrix £}, is unknown, we assume that it
is a nonlinear function of ¢ in the form Ej, = UT¢(€) + ea.
It can be approximated by:

By, =U"9(¢) ©)
where U € R®*? is the weight matrix of a second neural
network. After using the definition of s the open loop
dynamics can be written as

Dyps=—Kps — J(E, ©éq) — J(E, ©€,)  (10)
Stability Analysis: The weight matrices of two neural net-
works should be updated in such a way that s is bounded,

which means the dynamics (10) is stable. In this regard,
define a candidate Lyapunov function:

V = 0.55" Dys+0.5tr(STATLS) +0.5tr(UTB~U) (11)
where A, B are positive definite matrices, which can be

tuned for weight updates. After some matrix manipulation,
we obtain:

< sl (sl + {|ST||F]T 5

[logaiV mtes
~ T ~
1ST11p]" [ =& 053] [11ST]1r
+ T 2 T )
USR] (0505 —& | [[IUT]|F
where Sy, U, denotes the upper bound of the weight
matrices, and ¢, is the upper bound of the activation function
output.By examining equation (12), we can prove that the
sliding error s is uniformly ultimately bounded in the region

defined by:
&2(555 + /iUb2 + UbSngSg)

HSHZCl/)\?Cl: ¢Zl_4ﬁ.12 )
|‘§T||F K 2/€Sb+Ub(b§
2 > ¢, Cy =4/ .
[|UT|F e mvat ¢y — 4K2 26Uy + Syy

(13)

Note that the tracking error bounds can be made smaller by

reducing the design constant x. The above-described stability
analysis can be formalized as the following theorem:

Theorem 1: The HIE scheme implementing neural up-

dates ensures that the discrepancy between reference values

(PT,PT) and user intended position and velocity PMPT
asymptotically converge to a small bound, under the fol-
lowing conditions: 1) the user interacts with ARNA with a
bounded amount of force fr; 2) the intended desired position
P, and velocity P, are bounded; and 3) the NN weights in
equations (3) and (9) are saturated inside compact sets.

B. Inner-Loop Neuroadaptive Controller

The inner loop NAC learns and cancels the robot’s remain-
ing Mass and Coriolis nonlinearities of the robot and forces
the current position of ARNA P towards the reference trajec-
tory P,. The NAC computes the wheel input torque vector 7
by regulating a filtered error variable ¢ £ P — P, r £ ¢ — pe
where p is a symmetric design matrix. In this section, we
briefly introduce the NAC controller formulated through a
third Neural Network. The detailed performance of the inner
loop was presented in previous publications [10], [25]-[27].
Let’s assume that we have a nonlinear model that describes
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our robotic system, given by:

Mi+ C(z, )t + G(z) +T(x) =74 (14)
where M is the moment of inertia matrix, C(.) is Coriolis
Matrix, G(x) is gravitational forces, T'(z) is cumulative
uncertianties and 7, is the input torque. By making use of
the universal nonlinear function approximation property of
Neural Networks (NN), we can approximate T'(z) as:

T(z)=Wro(VIz)+ ¢ (15)
where W,, and V,, are ideal weights, o is the activation
function vector and e is the approximation error of the NN
approximation such that ||e||p < ey on a compact set. Since
the ideal weights are unknown, estimated weights that are
dynamically tuned, W,, and V,,, can be used to obtain T(JU),
an approximation of T'(x) as:

T(z) = Wlo(Vx) (16)
Let an approximation torque controller based on T(x) be:

T= —T(x) + K, —t-(t) (17
Where K, is a positive definite matrix, and K, is used to en-
sure a proportional-derivative (PD) tracking the performance
of the closed loop system. Here ¢, is a robustifying signal

compensating for unmodeled and unstructured disturbances.

te = —K.(|Z|lr + Zp)r (18)
with K, as the robustifying term gain and
. (W, 0
Z = A 19
(% 7) 4
||l.|| 7 is the Frobeinus norm, and Zpg is a bound on the NN

weights.

Using (17) and sliding-mode error dynamics of the robot
and controller can be simplified to:

M7 = —C(x,&)r + T(x) + 74 + t,. (20)

The control law can ensure that, given a bounded initial
reference trajectory and other feasible bounds on quantities
described in the proof, the error in the following trajectories
of robot states 6 and derived states ||r|| are asymptotically
bounded. This proof presents weight tuning laws for the
approximate NN weights W,, and V,, as:

W, = AsrT — A&lf/"er - I{A”’I‘HWH (21)
Vi, = Bx(6 TW,,r)T — kB||r||V, (22)
& = diag{o(VF2)}[I — diag{o(V,l z}] (23)

In these update equations, A and B are two positive definite
matrices, o is the sigmoid activation function, and x > 0 is
a small design parameter.
III. EXPERIMENTAL RESULTS

A. ARNA Robot

The Adaptive Robot Nursing Assistant (ARNA) robot is
a customized mobile manipulator consisting of a base, a
7-DOF arm, and a sensorized handlebar to allow patients
and nurses to physically interact. ARNA uses a four-wheel
Mecanum drive and suspension system for omnidirectional
movement. The wheels are arranged in a longitudinal sym-
metrical layout and integrated with four independently con-

trolled servo motors [5]. The wheels are affixed at each
of the robot chassis’s four corners. The drivetrain provides
omnidirectional mobility, enabling the robot to perform both
agile translation (forward/backward, sideways) and rotation
maneuvers independently and simultaneously, regardless of
its initial orientation. This eliminates the need for difficult
nonholonomic path maneuvering in cluttered hospital envi-
ronments. High-ratio gearboxes are used to perpendicularly
connect the Mecanum wheels to the servo motors. Assuming
the slippage between the rollers and the ground is negligible,
the inverse kinematics of the robot base can be written as
[27]:

w 1 —1 —(Lz+Ly)

1 2
% I T B S R = i e

Vw a w3 N R 1 1 ;(L’”;'Ly) Z:y (24)
W4 1 —1 7(L12+Ly) ?

where the vector [vz,vy,wz]T represents the velocity of
ARNA center of rotation, V,, € R denotes the speed vector
of the wheels. The parameters R, L., and L, are the
wheel radius, the width, and the length of the ARNA base,
respectively.

The primary pHRI interface for ARNA is a handlebar
attached to the robot’s rear section. This serves a dual purpose
of supporting users while walking along the robot, as well as
measuring the force applied to it through a 6-axis torque/force
sensor and other handlebar pressure sensors. The force or
torques measured on the handlebar are then sent to the real-
time patched OS of our ARNA computer, which uses them
to estimate the user-intended motion directions based on the
NAC-HIE algorithm.

The control scheme was implemented using C++. The
generated torques are sent to ARNA’s four-wheeled mo-
tor drivers through the Robotic Operating System (ROS-
1 Kinetic) running on an Ubuntu 16.05 operating system.
The human intent estimator generates the reference velocity
vector in the outer loop. Using the inverse kinematics from
(1) and the reference angular velocities, the rotation vector for
the four wheels is calculated and sent to the NAC controller
in the inner loop. The inner loop controller is running at 300
Hz, and the outer loop HIE is running at 100 Hz.

B. Description of Experiments

Design parameters: In this section, we present exper-
iments used to validate the proposed NAC-HIE control
scheme compared to a baseline method involving a tuned
conventional admittance model instead of the HIE block.
Both these controllers use our neuroadaptive controller
(NAC) for inner loop velocity tracking. The parameters set
during experiments were as follows x was set to 0.001,
A = {0.04,0.04,0.04}, and B = {0.01,0.01,0.01}. Dy,
J, and K} were all set to the identity matrix to begin each
interaction experiment. Dy, and K} are dynamically updated
by our proposed NAC-HIE method as the user is operating
the robot, while J remains the identity matrix to be used in
the weight update equations. For the admittance portion, a

2431

Authorized licensed use limited to: University of Louisville. Downloaded on November 25,2024 at 16:22:25 UTC from IEEE Xplore. Restrictions apply.



3 M sQ. Path

Fig. 3: Floor paths straight line (SL), square (SQ), and
obstacle (OB) for evaluation of human-intent estimator and
controller

second order transfer function [6]:
F 1
"(s) _ (25)
P(s)

Mmes2 + dgs + kg

is implemented for reference velocity generation where
the parameters of the transfer function (k, = 0.2,d, =
0.03,m, = 1.1) are tuned by trial and error in order to
minimize both velocity tracking as well as jerk for all the
guiding tasks. We carried out experiments to investigate
whether the proposed NAC-HIE control scheme is better
than the admittance-NAC controller while following three
reference trajectories (straight paths, square paths, and paths
with obstacles). The performance metrics employed included
velocity tracking errors and smoothness of operation repre-
sented as motion jerk. For the remainder of the paper, we re-
fer to our conventional admittance controller as simply NAC,
while our proposed human intent estimator and controller is
the HIE-NAC.

Participants: 10 subjects were recruited for this study. The
selection criteria for these participants are that they are at
least 18 years old and have no prior experience with the
robot. For each experiment, the subject was asked to follow
a particular reference path: a straight line (SL), a square
path (SQ), or a straight line with an obstacle (OB), depicted
in Fig. 3. The University of Louisville Institutional Review
Board granted approval to conduct the experiments under
IRB no.18.0659.

Experiment Design and Instruments: This study em-
ployed a repeated measures design for two conditions
(Conventional Controller (NAC), Proposed Controller (HIE-
NAC)) with three tasks, e.g. following paths SL,SQ,OB. All
experiments were run in one sitting for each participant. For a
fair comparison, we administered a brief learning task before
the experiment to familiarize the participants with the robot.
The learning task simply consisted of the user acclimatizing
themselves to the robot by pushing it around a predefined
path.

The first experiment was designed to measure the perfor-
mance of each method on a simple task consisting of the
participant pushing the robot in a straight line for a distance
of 5Sm. The second experiment was designed to measure

TABLE I: Velocity Error Statistics.

Meth. Exp. Dir. Min Median  Mean Max
SL E, 0.025 0.050 0.055 0.100
E, 0.040 0.050 0.062 0.100
OB E, 0.020 0.060 0.057 0.090
NAC E. 0.008 0.030 0.034  0.090
E, 0.030 0.070 0.088 0.160
SQ E, 0.006 0.070 0.064  0.120
E. 0.007 0.030 0.035 0.070
SL E, 0.020 0.035 0.051 0.140
E, 0.030 0.040 0.051 0.090
OB E, 0.010 0.020 0.029 0.060
HIE-NAC E. 0.001 0.010 0.011 0.030
E, 0.010 0.035 0.057 0.140
SQ E, 0.002 0.020 0.027 0.060
E, 0.003 0.035 0.048 0.110
TABLE II: Jerk Statistics.
Meth. Exp. Dir. Min Median Mean Max
SL Ja 9.4 72.0 81.2 207.0
Ja 62.0 106.0 1244 2170
OB Jy 45.0 90.0 91.6 146.0
NAC J= 55.0 117.0 126.8 231.0
Ja 94.0 141.0 139.1 172.0
SQ Jy 6.0 148.0 145.9 241.0
Jx 83.0 105.0 124.1 215.0
SL Ja 7.9 13.3 36.0 112.0
Ja 4.1 6.7 7.3 12.1
OB Jy 1.7 5.6 52 8.5
HIE-NAC Jx 1.8 6.3 54 7.3
Jz 5.0 9.9 9.0 12.8
SQ Jy 45 7.0 7.5 10.8
Jz 2.1 6.4 6.8 10.1

the performance of each method on a more complex task
involving higher dimensional motion. This task consisted
of the participant pushing the robot in a 3m x 3m square
trajectory. The third experiment was designed to measure
the performance in a scenario where a user must navigate
around an obstacle. This task consisted of the participant
pushing the robot in a straight line for 2.5m, navigating
around a chair in the path, and then pushing the robot
another 2.5m. To measure velocity errors, we recorded the
reference and actual velocity values. The reference velocity
was computed using our proposed human intent estimator.
The actual velocity was calculated using wheel encoders. To
investigate the operation’s smoothness, we used motion jerk
information. Generally, jerk quantifies the rate of acceleration
change. A lower jerk demonstrates a smoother motion while
the user is pushing the robot. These were computed according
to standard definitions in the literature [5], [25].

C. Descriptive Statistical Analysis

The acquired datasets were cleaned and visually checked
for outliers using standard procedures such as boxplots and
histograms. Any observation that was classified as a sus-
pected outlier using the interquartile range (IQR) criterion
was removed from the dataset. The statistical results are
summarized in Tables I and II. E,, E,, E, represent velocity
errors in X, y, z coordinates, and J,,.J,,J. denote jerk in
X,y, and rotation coordinates respectively. It can be seen from
Table I that min, max, median, and mean of velocity errors
for HIE-NAC are considerably smaller across all experiments
and directions than for NAC. This is except for the mean
value of F, in SQ, as explained in the Discussion section.
Similar trends are also observed for the jerk data, where
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HIE-NAC gives smoother performance than NAC for all
three types of experiments. We also plotted the data from all
subjects to examine the data distribution. We chose box plots
to visualize the data distribution, and these plots comparing
HIE-NAC vs. NAC for all experiments by direction are
provided in Figures 4 and 5.

D. Mixed Effect Regression Model Analysis

Even though the results presented in the previous subsec-
tion are promising, they are not conclusive. It could be argued
that the variance in performance may be due to random
effects such as the individual’s abilities or other influencing
factors. Therefore, we fitted a mixed effect model (estimated
using REML and nloptwrap optimizer) to compare velocity
errors and jerks with Experiment, Method, and Directions as
independent variables. The baseline corresponded to Method
= NAC, Experiment = SL, and Direction = E,, J,.. The model
included ID as a random effect (intercept) term. P-values
were computed using a Wald t-distribution approximation.
We fitted two models, one for velocity error and another for
our jerk data. The results are presented in Tables III and IV.

The results for the velocity errors mixed effect model are
provided in Table III. Within this model, the estimated effect
of HIE-NAC is negative and statistically non-significant
Buip—nac = —0.006,p = 0.614). The estimated ef-
fects of F, and E, are statistically significant and negative
(Bg, = —0.021,p < 0.001) and (Bz. = —0.03,p < 0.001),
compared to the straight line (SL). These results suggest
that the average velocity errors are smaller in the direction
of y and z. However, the explanatory power of the model
is relatively low (conditional R? = 0.45, marginal R?=
0.21), indicating that the proposed control strategy offers

TABLE III: Mixed Effects Model Results: Velocity Error
Comparison

Variables Estimate Std. Error Pr(t)
Intercept 0.057 0.010 0.000
OB 0.011 0.011 0.284
SQ 0.025 0.011 0.024
HIE-NAC -0.006 0.012 0.614
E, -0.021 0.006 0.001
E, -0.030 0.006 0.000
OB:HIE -0.014 0.014 0.303
SQ:HIE -0.015 0.014 0.301
R?* =0.45

TABLE IV: Mixed Effects Model Results: Jerk Comparison

Variables  Estimate  Std. Error Pr(t)
Intercept 81.557 12.323 0.000
OB 39.209 14.780 0.009
SQ 59.021 14.609 0.000
HIE-NAC -45.547 16.387 0.006
Jy -3.795 8.459 0.655
J. -3.107 8.365 0.711
OB:HIE -66.974 19.241 0.001
SQ:HIE -84.951 19.016 0.000
R? =0.73

limited improvement in practical applications. These results
are expected since the inner loop, which is responsible for
generating torques for desired velocities, remains the same
for both controllers.

The results in Table IV indicate the performance of our
proposed controller HIE-NAC in terms of jerk. We found
that the jerk mixed effect model’s total explanatory power
is substantial (conditional R? = 0.73, marginal R? = 0.70).
The estimated effects of the experiment (OB) are statisti-
cally significant and positive (BOB = 39.21,p = 0.009).
The estimated effect of the experiment (SQ) is statistically
significant (BSQ = 59.02,p < 0.001), which means that
the observed jerk for the square path and obstacle path are
substantial and higher compared to the straight line path
when ARNA is operated with the baseline NAC controller.
The effect of HIE-NAC itself is significant and negative
(Bure—nac = —45.55,p = 0.006), suggesting that the
average jerk in the HIE-NAC experiment (ARNA operated
with the proposed controller) is lower than the one in the
conventional NAC experiment across all tasks/paths (SL, SQ,
OB). The interaction terms b/w the Experiment type and HIE
are also significant and negative ( BOB = —66.97,p = 0.001
and BSQ = —84.95,p < 0.001). Hence, the proposed
HIE controller may significantly reduce robot’s jerk during
an obstacle avoidance task (OB) or a square path tracking
(8Q). Overall, the mixed effect model results reveal that our
proposed HIE-NAC makes the operation of ARNA person-
alized and much smoother than the conventional admittance
controller.

IV. DISCUSSION

The proposed HIE-NAC framework demonstrates promis-
ing improvements in reducing jerk and increasing smoothness
in guided robot motion. However, several limitations must be
addressed. From Table I, we can observe in the SQ path that
the mean value of Ez in HIE-NAC is larger than NAC. This
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is because the mean can be influenced by outliers and large
values, potentially skewing the result in those directions. If
some users changed their direction very fast during the square
path experiment, it would have affected the mean in the
angular direction, which is £, in our case. It’s worth noting
that the median value for HIE is smaller than for NAC, as the
median is not impacted by outliers. The small sample size in
our study restricts the statistical power and generalizability
of the findings. Additionally, the current framework may
not fully account for more complex motion scenarios and
constraints. The reference for our HIE controller is generated
from the human intent model, which takes the forces exerted
on the force sensor as its input. If the user behaves erratically
or abruptly changes his/her intention, the reference signals
generated might be non-smooth and unbounded. Our current
controller cannot track and adapt to these types of signals.
V. CONCLUSION AND FUTURE WORK

This paper presents HIE-NAC, a nonlinear human intent
estimator and controller framework HIE-NAC using three
neural networks to estimate the desired velocity of a guided
mobile manipulator based on user-applied force. The HIE
includes a neural network to estimate human intent gains,
which are then used by another network to compute desired
positions and velocities for the robot base. The neural net-
work weight updates are derived from a Lyapunov stability
analysis, ensuring guaranteed error bounds under reasonable
assumptions. A standard admittance controller maps Desired
robot velocities from user-applied force-torque values. Test-
ing against the standard NAC controller using data from 10
users shows that HIE-NAC significantly reduces jerk and
increases motion smoothness. However, the small sample size
limits the study’s ability to detect true effects, so results
should be interpreted cautiously. Future studies with larger
samples are necessary to confirm these findings. Future work
will optimize HIE-NAC for more complex motion scenarios
and constraints and incorporate the ARNA manipulator in
addition to the base.
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