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Abstract—Fault injection attacks can flip bits by changing 

voltage, temperature or EM radiation on a target (e.g., a mi- 

crocontroller), and therefore, modify program execution on the 

target, such as bypassing secure boot. However, there are limited 

tools to automatically detect these vulnerabilities in source code 

at the development stage. In this paper, we develop a new tool, 

named FaultArm, which can automatically detection four types 

of vulnerable code under fault injection attacks in Arm assembly. 

Our approach includes (1) parsing and (2) token matching. 

Specifically, we design a customized parser for Arm assembly 

and design specific token matching rules. We create a dataset of 

32 Arm assembly files with 8,493 lines across three optimization 

levels, including O0, O1 and O2. Our evaluation show that our tool 

is effective and efficient. Specifically, our tool can achieve 100% 

precision and 98% recall in O0, 98.6% precision and 90.9% recall 

in O1, and 96.5% precision and 88.2% recall in O2. 

I. INTRODUCTION 

Fault injection attacks (or glitching attacks) [1], [2] can 

change the voltage, temperature [3], [4] or EM radiation [5], [6] 

on a target (e.g. a microcontroller) when it executes programs. 

As a result, the attack can flip bits (e.g., 0 to 1), and therefore, 

modify the execution of a program and forces the target to 

misbehave. There are several real-world examples of fault 

injection attacks, such as revealing AES (Advanced Encryption 

Standard [7]) encryption keys, bypassing secure boot on crypto 

wallets [1], and modifying flash memory [6]. 

One proactive approach of mitigating fault injection attacks 

at the development stage is to produce code that are resilient 

under fault injection attacks. For instance, two comprehensive 

values with a greater number of Hamming distance (e.g., 

0x3CA5 and 0xC35A) are preferred to represent False and 

True rather than using two trivial values (e.g., 0 and 1). This 

is because modifying 0x3CA5 to 0xC35A requires flipping 16 

bits, which is much challenging to achieve than flipping 1 bit 

to change 0 to 1. 

A recent study developed a tool, named FaultHunter [8], 

which can automatically detection vulnerable code under fault 

injection attacks in C. This tool parses a C file into a parsing 

tree by leveraging ANTLR, a JAVA-based generator, and then 

search nodes in the parsing tree to detect vulnerable lines. The 

tool can detect 3 types of vulnerable patterns, including Branch, 

ConstantCoding, and DefaultFail, achieve 90.3% precision and 

56.4% recall. However, how to detect vulnerable lines under 

fault injection attacks at the assembly level remains unknown. 

Our Contributions. In this paper, we design a new tool, 

referred to as FaultArm, which can automatically detect vul- 

nerable lines under fault injection attacks in Arm assembly. 

Our design consists of two phases, including parsing and token 

matching. Specifically, we first design a parser that can parse a 

given assembly file into a list of tokens, including instructions, 

registers, addresses, strings, and integers. Next, we design 

specific token matching rules to detect each vulnerable pattern. 

Our tool can detect four vulnerable patterns, including Branch, 

ConstantCoding, DoubleCheck, and LoopCheck [1]. 

We create a labeled dataset of 32 Arm assembly files (8,493 

lines) and evaluate the detection performance of our tool 

across three optimization levels, including 00, O1, and O2. 

Our evaluation indicates that our tool is effective and efficient. 

Specifically, our tool can achieve 100% precision and 98% 

recall in O0, 98.6% precision and 90.9% recall in O1, and 

96.5% precision and 88.2% recall in O2. Our findings suggest 

that it is feasible to improve the robustness and resiliency of 

embedded systems and mitigate fault injection attacks early in 

the development stage at the assembly level. 

Reproducibility. Our source code and dataset are 

made publicly available and can be found on GitHub 

https://github.com/UCdasec/FaultArm. 

II. BACKGROUND 

A. Vulnerable Patterns 

Riscure whitepaper [1] identifies 11 vulnerable patterns in 

C under fault injection attacks. Riscure is a security company 

specialized in analyzing and preventing side-channel attacks 

and fault injection attacks on embedded systems. For each vul- 

nerable pattern, the whitepaper also provides resilient coding 

practices that can mitigate the attacks in C. In essence, resilient 

coding examples double check critical paths or data and force 

an attacker flipping multiple bits rather than a single bit. 

In this section, we specifically present 4 vulnerable patterns, 

including Branch, ConstantCoding, LoopCheck, and Bypass, 

that we examine in this study and provide concrete examples 

in both C and Arm assembly. For the detection of remaining 

vulnerable patterns, we will leave those as future work. 

Branch. This vulnerability presents when Boolean values 

are used in an if statement. A Boolean value in an if 

statement can be modified from one state to the other (e.g., 

from 1 to 0) when an attacker flips one bit. On the other hand, 

using non-trivial numerical values to represent two different 

states in an if statement is considered more resilient (flipping 

multiple bits v.s. flipping 1 single bit). The vulnerable and 
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int i = 0; 

int sum = 1; 

for (i = 0; i<=10; i++) { 

sum++; 

} 

// check for loop is completed before call foo 

if (i==10) { 

foo(sum); 

} 

 

resilient examples related to Branch in C are described in 

List. 1 and List. 2 respectively. 

 

 

 

Listing 1: Vulnerable Example (Branch, C) 

Listing 7: Vulnerable Example (ConstantCoding, Arm, com- 

piled from List. 5 with O0) 

 

 
 

Listing 2: Resillient Example (Branch, C) 

An if statement in C can be associated with two instructions 

in Arm assembly, including a comparison instruction (e.g. 

cmp) and a branch instruction (e.g., bne). The associated 

vulnerable example of Branch in Arm compares register r3 

with a trivial value 1 in List. 3. On the other hand, the resilient 

example compares register r3 with a non-trivial value 15,525 

in List. 4. 

 

Listing 8: Resilient Example (ConstantCoding, Arm, compiled 

from List. 6 with O0) 

LoopCheck. This vulnerability exists when an for loop is 

not followed with an if condition to verify if the for loop 

completed with the expected number of iterations. Without 

checking the completion of the loop, an attacker could flip 

bits such that the last few iterations are skipped and data/state 

is incorrect/corrupted. 

 

 

Listing 3: Vulnerable Example (Branch, Arm, compiled from 

List. 1 with O0 

 

 

 

Listing 4: Resillient Example (Branch, Arm, compiled from 

List. 2 with O0) 

ConstantCoding. This vulnerable pattern covers sensitive 

constants carrying a limited set of values/states, e.g., {0, 1, 

0xFF}, where these constant values can be easily modified 

from one to another within the set by modifying a single bit. 

On the other hand, non-trivial numerical values with greater 

hamming distance between two states are believed to be more 

resilient under fault injection attacks. This vulnerable pattern 

is similar as Branch. Instead of focusing on if statements in 

Branch, ConstantCoding focuses on constant variables (e.g., 

static variables). A vulnerable example and resilient example 

in C are presented below. 

 

 

 

Listing 5: Vulnerable Example (ConstantCoding, C) 

Listing 9: Vulnerable Example (LoopCheck, C) 

 

Listing 10: Resilient Example (LoopCheck, C) 

In the corresponding examples in Arm assembly, the resilient 

example of LoopCheck leads to the repeat of a load instruction 

(ldr) on register r3 and a comparison instruction (cmp) on 

register r3 with the same integer value (e.g., 10). On the other 

hand, the vulnerable example only performs the comparison 

instruction on register r3 with value 10 once. 

 

 
 

Listing 6: Resilient Example (ConstantCoding, C) 

The difference between trivial values and non-trivial values 

still presents in Arm assembly. The corresponding vulnerable 

example and resilient example in Arm assembly are presented 

in List. 7 and List. 8. 

 

Listing 11: Vulnerable Example (LoopCheck, Arm, compiled 

from List. 9 with O0) 

 

if(flag == 0x3CA5){ // flag is 0x3CA5 or 0xC35A 

// Critical Code, e.g., secure boot 

} 

static short STATE_INIT = 0x5A3C; //global variable 

static short STATE_LOCKED = 0xC3A5; //global variable 

ldr r3, [r7, #20] 

cmp r3, #10 

ble .L7 

ldr r0, [r7, #16] // missing loop check 

bl foo 

static short STATE_INIT = 0; //global variable 

static short STATE_LOCKED = 1; //global variable 

cmp r3, #15525 // 0x3CA5 

bne .L2 // L2 jumps to critical instructions 

int i = 0; 

int sum = 1; 

for (i = 0; i<10; i++) { 

sum++; 

} 

// missing loop check 

foo(sum); 

cmp r3, #1 

bne .L2 // L2 jumps to critical instructions 

STATE_INIT: 

.short 23100 

STATE_LOCKED: 

.short -15451 

if(flag == 1){ // flag is 0 or 1 

// Critical Code, e.g., secure boot 

} 

STATE_INIT: 

.short 0 

STATE_LOCKED: 

.short 1 
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Listing 12: Resilient Example (LoopCheck, Arm, compiled 

from List. 10 with O0) 

Bypass. This vulnerable pattern is present when a condition 

check does not occur at the same level as protected func- 

tionality. For example, a verification function call is made 

within an if statement. This may allow an attacker to modify 

the return value or execution of a program and run critical 

code with a single fault. Instead, Riscure whitepaper suggests 

that faults should be detected at the same level (function) 

that executes protected functionality, e.g. storing the return 

values of function calls to variables before being checked in 

conditions. To make it even more secure, double condition 

checks with the same logic should be applied to avoid single 

fault failures. A vulnerable example and resilient example in 

C are presented below. 

 

 

 

 

Listing 13: Vulnerable Example (Bypass, C) 

Listing 16: Resilient Example (Bypass, Arm, compiled from 

Listing 14 with O0) 

 

 

B. Problem Formulation 

We formulate the problem of identifying Arm assembly 

code that are vulnerable under fault injection attacks as below. 

Specifically, given a sequence of lines of Arm assembly code 

A = {a1, ..., am}, where m is the total number of lines in 

an Arm assembly file, a method identifying vulnerable code 

assigns a label to every line. Let li be the label of line ai, 

where 1  i  m. Label li is either V (vulnerable) or N (not 

vulnerable). 

 

C. Evaluation Metric 

We leverage precision and recall to measure the effectiveness 

of a method identifying vulnerable lines under fault injection 

attacks. Specifically, a line is considered as a true positive if its 

ground truth is vulnerable and its predicted label from a method 

is vulnerable. Precision and recall are defined as below. 

 

Pecision = 
TP  

 
 

TP + FP  

 
, Recall = 

TP  
 

 

TP + FN  
 
 
 

 
Listing 14: Resilient Example (Bypass, C) 

The resilient example of Bypass (in Listing 16) first saves a 

return value of a function to register r3 with a mov instruction, 

stores the value to stack with a strb instruction, and loads a 

return value from stack with a ldrb instruction. On the other 

hand, the vulnerable example moves the return value to register 

r3 without storing it to stack or performing comparison with 

a cmp instruction based on register r3. 

 

 

 

 

 

Listing 15: Vulnerable Example (Bypass, Arm, compiled from 

where TP is true positive, FP is false positive, and FN is false 

negative. 

 

III. PROPOSED AUTOMATIC DETECTION 

A. Detection Overview 

In this section, we describe the details of our automatic 

detection tool, named FaultArm. The main idea of our tool 

can be highlighted in Fig. 1. Given an assembly file as input, 

our tool (1) parses the assembly code based on each line, (2) 

generates tokens based on registers, instructions, integers, and 

strings, and (3) detects lines with vulnerable patterns based 

on token matching across multiple lines. The associated lines 

and specific vulnerable patterns will be included in the output 

of our tool. We implement the parser, specifically for Arm 

assembly, and develop customized token matching for each 

type of vulnerable patterns. 

 
Branch: 

Listing 13) with O0) 
foo.s 

 

 

List of 

tokens 
 

 

line 136: cmp r3, #0 

line 137: bne .L8 
 

 

Bypass 

line 46: bl open 

line 47: subs r8, r0, 0 

line 48: beq .L4 

…… 

Fig. 1: Overview of FaultArm 

 

 

 

  

  

  

  

 

  

 

  

  

 

Token 

Search 

Arm Parser 

& Tokenizer 

bl test1 

mov r3, r0 // save return value to register r3 

eor r3, r3, #1 

and r3, r3, #255 

cmp r3, #0 

bool r1 = test1(); 

bool r2 = test1(); 

if (r1 != r2) faultDetect(); // fault detected 

if (!r1 || !r2) return; // access denied 

// critical code 

.... 

if (!test1()) return; // access denied 

// critical code 

.... 
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Fig. 2: Example of tokens parsed by our Arm parser for file loop_simple_secure.s in O0 
 

B. Arm Assembly Parser 

We implement a customized parser for Arm assembly as 

we could not find an existing parser that satisfies our re- 

quirement. Specifically, our parser is a linear parser, which 

scans assembly code line by line and tokenize each in- 

struction based on its broader type, including Location, 

Instruction, and Address. We also tokenize each ele- 

ment of an instruction into Register, IntegerLiteral, 

and StringLiteral. A list of tokens output by our parser 

is linearly searched by our detection algorithm for each vul- 

nerable pattern. An example of our parser parsing an assembly 

file is presented in Fig. 2. 

 

C. Our Proposed Detection 

Detection of Branch. Our method decides a line is Branch 

vulnerable if (1) this line consists of a conditional instruc- 

tion (e.g. a comparison instruction cmp), (2) this conditional 

instruction consists of an integer augment with low Hamming 

weight value, and (3) its next instruction is a branch instruction 

(bne, ble, or bx). In this paper, if the Hamming weight of 

an integer is lower than 4, we consider it as low. A high-level 

overview of our detection for Branch is present in Fig. 3. 

It is worth to mention that, in some optimizations, such as O1 

and O2, instruction subs or rsbs can be used as conditional 

instruction rather than cmp. Similarly, a branch instruction can 

be achieved by using an instruction movx instead of bne, ble, 

or bx. Our method incorporates these instructions as well when 

it performs the detection. This diversity of detection pattern, in 

essence, is because different combinations of instructions can 

offer same functionalities. 

Detection of ConstantCoding. Our method detects a Con- 

stantCoding vulnerability if (1) the type of a token is Location; 

(2) its next line consists of data type and an integer with low 

Hamming weight value. The line with low Hamming weight 

value will be marked as vulnerable. A high-level overview 

of our detection for ConstantCoding is present in Fig. 4. In 

 

 
Fig. 3: Our detection method for Branch. 

 

Fig. 4: Our detection method for ConstantCoding. 

 

addition to global variables, we also detect local variables with 

low Hamming weights. 

Detection of LoopCheck. Our detection of LoopCheck 

consists of two phases. The first phase identifies whether there 

is a for loop in assembly. The second phase examines whether 

there is an if statement right next to the for loop in assembly. 

Specifically, for the first phase, our method detects there is a 

for loop if a combination of load instruction (e.g., ldr), a 

comparison instruction (e.g., cmp) and a branch instruction 

(e,g., bx) is repeated and the branch instruction returns to 

the same address. A high-level overview of this detection is 

illustrated in Fig. 5. 

If the detection of the first phase is positive, our detection 

moves to the second phase. Specifically, the register r and 

value v associated with the comparison instruction in phase 

1 are recorded. Our method detects there is an if statement 

for LooCheck if there is a later comparison on the recorded 

register r with the recorded value v again. If negative, then 

a LoopCheck vulnerable pattern is detected. The line right 

after the last branch instruction of the for loop is predicted 

as vulnerable. On the other hand, if the later comparison 

instruction is still on register r but with a different value than 
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STATE_INIT: 

.short 0 // labeled as vulnerable 

STATE_LOCKED: 

.short 1 // labeled as vulnerable 

ldr r3, [r7, #20] 

cmp r3, #10 

ble .L7 

ldr r0, [r7, #16] // labeled as vulnerable 

bl foo 

bl test1 

mov r3, r0 

eor r3, r3, #1 // labeled as vulnerable 

and r3, r3, #255 

cmp r3, #0 

 

 

Fig. 5: Our detection method for LoopCheck (Phase 1). 

 

Fig. 6: Our detection method for LoopCheck (Phase 2). 

 

v, then it indicates the for loop is still on-going and value v is 

updated accordingly. A high-level overview of this detection is 

illustrated in Fig. 6. 

Detection of Bypass. Our detection on Bypass is character- 

ized by identifying whether the value of a register is stored to 

the stack (e.g., strb) or loaded from the stack (e.g., ldrb) 

after a branch to a function (e.g., bx and mov) and prior to 

a comparison instruction (e.g., cmp). If positive, then it is 

considered not vulnerable. Otherwise, the line right after the 

mov instruction is considered as vulnerable. 

 

Fig. 7: Overview of our detection method for Bypass. 

 

IV. DATASET AND EVALUATION 

A. Our Dataset 

To measure the detection performance of our design, we cre- 

ate a dataset of 96 Arm assembly files across three optimization 

levels (O0, O1, and O2). Specifically, we first create 24 C files 

manually. In addition, we leverage ChatGPT (version 3.5) to 

create 8 C files that are associated with security functions in 

embedded systems. The description of each C file generated 

by ChatGPT is presented below. 

• caesarCipher.c – A program that performs the Caesar 

Cipher encryption method. 

• calibration.c – A program that calibrates the position of 

an embedded component. 

• data encryption xor.c – A program that encrypts a string 

message with an XOR operation. 

• data integrity checksum.c – A program that generates a 

checksum given a string message. 

• file searcher.c – A program that returns information of a 

specific file or folder given its path. 

• rate limiting brute force.c – A program that reads a 

password and blocks after 3 failed attempts. 

• rpm plot.c – A program that creates data for a plot for 

the rpm (revolutions per minute) of a hypothetical motor. 

• secure data wipe.c – A program that deletes a data in a 

program securely. 

• simple password check.c – A program that just reads and 

compares the password in a single attempt. 

Given these 32 C files, we compile each one of them 

with cross-compiler arm-none-eabi-gcc with multiple 

optimizations, including O1, O2, and O3. We obtain 32 Arm 

assembly files for each optimization. 

Ground Truth. To generate the ground truth labels, we 

first label each line in each C file by following the vulnerable 

patterns defined in Riscure whitepaper. Only four vulnerable 

patterns, including Branch, ConstantCoding, LoopCheck, and 

Bypass, are considered through this labeling process. Next, we 

find one corresponding line in assembly based on every vul- 

nerable line labeled in the C file. The labelling was performed 

by two students independently and then cross-referenced to 

minimize disagreements. It is worth to mention that a single 

line in C can map to multiple lines in assembly. Among these 

multiple lines, we choose the assembly line that is the most 

associated with each vulnerable pattern. Although each line 

is labeled as vulnerable or non-vulnerable, we would like to 

emphasize that a line is not labeled independently but based 

on a few lines before or/and after it. We clarify which line is 

labeled as vulnerable in our assembly dataset by presenting the 

examples below from the four vulnerable patterns. 
 

 

Listing 17: Groud Truth Labeling (Branch, Arm, compiled 

from List. 1 with O0. 
 

Listing 18: Groud Truth Labeling (ConstantCoding, Arm, 

compiled from List. 5 with O0) 
 

Listing 19: Groud Truth Labeling (LoopCheck, Arm, compiled 

from List. 9 with O0) 
 

Listing 20: Ground Truth Labeling (Bypass, Arm, compiled 

from Listing 13) with O0) 

cmp r3, #1 // labeled as vulnerable 

bne .L2 
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TABLE I: Precision and Recall for FaultArm 
 

 Fault Pattern # Detected TP FP FN # Ground Truth Precision Recall 

 

O0 

Branch 53 53 0 0 53 100.0% 100.0% 

ConstantCoding 57 57 0 2 59 100.0% 96.6% 

LoopCheck 6 6 0 1 7 100.0% 85.7% 

Bypass 15 15 0 0 15 100.0% 100.0% 

Total 131 131 0 2 133 100.0% 97.8% 

 

O1 

Branch 37 37 0 0 37 100.0% 100.0% 

ConstantCoding 13 13 0 2 15 100.0% 86.7% 

LoopCheck 3 3 0 5 8 100.0% 37.5% 

Bypass 18 17 1 0 17 94.4% 100.0% 

Total 71 70 1 7 77 98.6% 90.9% 

 

O2 

Branch 48 48 0 0 48 100.0% 100.0% 

ConstantCoding 10 10 0 4 14 100.0% 71.4% 

LoopCheck 9 9 0 7 16 100.0% 56.3% 

Bypass 18 15 3 0 15 83.3% 100.0% 

Total 85 82 3 11 93 96.5% 88.2% 

 

TABLE II: Summary of the number of vulnerable lines over 

our C and assembly files 
 

 C O0 O1 O2 

Branch 24 53 37 48 
ConstantCoding 58 59 15 14 

LoopCheck 3 7 8 16 

Bypass 14 15 17 15 

Total No of Vulnerable Lines 99 133 77 93 

Total No. of Lines 705 3,594 2,396 2,503 

 

Note that the reason we first create C files and then produce 

assembly files is mainly because it is feasible to manually label 

vulnerable lines in C and then accurately map these labels to 

assembly code. It provides more accurate and reliable ground 

truth than labeling assembly code directly. While there are 

C files (related to security functions for embedded systems) 

available on GitHub, these files cannot always be compiled 

directly due to missing libraries or files. This is why we create 

in-house C files for evaluation. Besides, creating in-house C 

files also allows us to compile with different optimization levels 

and examine the changes of the number of vulnerable lines 

across different optimizations. 

Overall, there are 133 lines, 77 lines, and 93 lines that 

are labeled as vulnerable in O0, O1, and O2 Arm assembly 

respectively. A summary of our labeled dataset is described in 

Table II. 

 

 

B. Evaluation 

We measure the detection performance of our methods in 

precision and recall and report the results in Table I. Overall, 

we have two main findings. First, our detection is effective 

across the 3 optimization levels. Second, our detection per- 

formance decreases slightly when it gets to a higher level of 

optimization. This is expected as a higher level of optimization 

leads to more optimized instructions, which increases the 

difficulty of our detection. Specifically, our detection achieves 

100% precision and 98% recall in O0. It is also worth men- 

tioning that our detection runs in almost real time. The analysis 

of each file takes within 2 seconds on average. 

V. DISCUSSION AND FUTURE WORK 

For our future work, we plan to extend our current meth- 

ods to detect more vulnerable patterns mentioned in Riscure 

whitepaper [1]. In addition, we would like to further extend our 

dataset and investigate assembly written in other instruction 

sets, such as RISC-V assembly. 

VI. CONCLUSION 

We design a tool that can automatically detect vulnerable 

lines under fault injection attacks in Arm assembly. Our 

evaluation shows our method is effective and efficient. We also 

make our source code and dataset publicly available for the 

research community to reproduce and expand the findings. 
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