
Authorized licensed use limited to: University of Cincinnati. Downloaded on January 09,2025 at 14:37:15 UTC from IEEE Xplore. Restrictions apply.

FaultArm: Detecting Fault Injection Vulnerabilities

in Arm Assembly

Prateek Kharangate†, Guillermo Rached†, Harris Musungu§, Nan Niu†, Boyang Wang†
†University of Cincinnati, §Ashland University

{kharanpv, rachedge}@mail.uc.edu, harrismusungu@gmail.com, nan.niu@uc.edu, boyang.wang@uc.edu

Abstract—Fault injection attacks can flip bits by changing

voltage, temperature or EM radiation on a target (e.g., a mi-

crocontroller), and therefore, modify program execution on the

target, such as bypassing secure boot. However, there are limited

tools to automatically detect these vulnerabilities in source code

at the development stage. In this paper, we develop a new tool,

named FaultArm, which can automatically detection four types

of vulnerable code under fault injection attacks in Arm assembly.

Our approach includes (1) parsing and (2) token matching.

Specifically, we design a customized parser for Arm assembly

and design specific token matching rules. We create a dataset of

32 Arm assembly files with 8,493 lines across three optimization

levels, including O0, O1 and O2. Our evaluation show that our tool

is effective and efficient. Specifically, our tool can achieve 100%

precision and 98% recall in O0, 98.6% precision and 90.9% recall

in O1, and 96.5% precision and 88.2% recall in O2.

I. INTRODUCTION

Fault injection attacks (or glitching attacks) [1], [2] can

change the voltage, temperature [3], [4] or EM radiation [5], [6]

on a target (e.g. a microcontroller) when it executes programs.

As a result, the attack can flip bits (e.g., 0 to 1), and therefore,

modify the execution of a program and forces the target to

misbehave. There are several real-world examples of fault

injection attacks, such as revealing AES (Advanced Encryption

Standard [7]) encryption keys, bypassing secure boot on crypto

wallets [1], and modifying flash memory [6].

One proactive approach of mitigating fault injection attacks

at the development stage is to produce code that are resilient

under fault injection attacks. For instance, two comprehensive

values with a greater number of Hamming distance (e.g.,

0x3CA5 and 0xC35A) are preferred to represent False and

True rather than using two trivial values (e.g., 0 and 1). This

is because modifying 0x3CA5 to 0xC35A requires flipping 16

bits, which is much challenging to achieve than flipping 1 bit

to change 0 to 1.

A recent study developed a tool, named FaultHunter [8],

which can automatically detection vulnerable code under fault

injection attacks in C. This tool parses a C file into a parsing

tree by leveraging ANTLR, a JAVA-based generator, and then

search nodes in the parsing tree to detect vulnerable lines. The

tool can detect 3 types of vulnerable patterns, including Branch,

ConstantCoding, and DefaultFail, achieve 90.3% precision and

56.4% recall. However, how to detect vulnerable lines under

fault injection attacks at the assembly level remains unknown.

Our Contributions. In this paper, we design a new tool,

referred to as FaultArm, which can automatically detect vul-

nerable lines under fault injection attacks in Arm assembly.

Our design consists of two phases, including parsing and token

matching. Specifically, we first design a parser that can parse a

given assembly file into a list of tokens, including instructions,

registers, addresses, strings, and integers. Next, we design

specific token matching rules to detect each vulnerable pattern.

Our tool can detect four vulnerable patterns, including Branch,

ConstantCoding, DoubleCheck, and LoopCheck [1].

We create a labeled dataset of 32 Arm assembly files (8,493

lines) and evaluate the detection performance of our tool

across three optimization levels, including 00, O1, and O2.

Our evaluation indicates that our tool is effective and efficient.

Specifically, our tool can achieve 100% precision and 98%

recall in O0, 98.6% precision and 90.9% recall in O1, and

96.5% precision and 88.2% recall in O2. Our findings suggest

that it is feasible to improve the robustness and resiliency of

embedded systems and mitigate fault injection attacks early in

the development stage at the assembly level.

Reproducibility. Our source code and dataset are

made publicly available and can be found on GitHub

https://github.com/UCdasec/FaultArm.

II. BACKGROUND

A. Vulnerable Patterns

Riscure whitepaper [1] identifies 11 vulnerable patterns in

C under fault injection attacks. Riscure is a security company

specialized in analyzing and preventing side-channel attacks

and fault injection attacks on embedded systems. For each vul-

nerable pattern, the whitepaper also provides resilient coding

practices that can mitigate the attacks in C. In essence, resilient

coding examples double check critical paths or data and force

an attacker flipping multiple bits rather than a single bit.

In this section, we specifically present 4 vulnerable patterns,

including Branch, ConstantCoding, LoopCheck, and Bypass,

that we examine in this study and provide concrete examples

in both C and Arm assembly. For the detection of remaining

vulnerable patterns, we will leave those as future work.

Branch. This vulnerability presents when Boolean values

are used in an if statement. A Boolean value in an if

statement can be modified from one state to the other (e.g.,

from 1 to 0) when an attacker flips one bit. On the other hand,

using non-trivial numerical values to represent two different

states in an if statement is considered more resilient (flipping

multiple bits v.s. flipping 1 single bit). The vulnerable and

979-8-3503-6762-1/24/$31.00 ©2024 IEEE 285

N
A

EC
O

N
 2

0
24

 -
IE

EE
 N

at
io

n
al

 A
er

o
sp

ac
e

an
d

 E
le

ct
ro

n
ic

s
C

o
n

fe
re

n
ce

 |
 9

7
9

-8
-3

5
0

3-
6

76
2

-1
/2

4/
$

3
1

.0
0

 ©
2

0
2

4
 IE

EE
 |

 D
O

I:
 1

0.
11

09
/N

A
EC

O
N

61
87

8.
20

24
.1

06
70

66
4

mailto:harrismusungu@gmail.com
mailto:nan.niu@uc.edu
mailto:boyang.wang@uc.edu

286

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 09,2025 at 14:37:15 UTC from IEEE Xplore. Restrictions apply.

int i = 0;

int sum = 1;

for (i = 0; i<=10; i++) {

sum++;

}

// check for loop is completed before call foo

if (i==10) {

foo(sum);

}

resilient examples related to Branch in C are described in

List. 1 and List. 2 respectively.

Listing 1: Vulnerable Example (Branch, C)

Listing 7: Vulnerable Example (ConstantCoding, Arm, com-

piled from List. 5 with O0)

Listing 2: Resillient Example (Branch, C)

An if statement in C can be associated with two instructions

in Arm assembly, including a comparison instruction (e.g.

cmp) and a branch instruction (e.g., bne). The associated

vulnerable example of Branch in Arm compares register r3

with a trivial value 1 in List. 3. On the other hand, the resilient

example compares register r3 with a non-trivial value 15,525

in List. 4.

Listing 8: Resilient Example (ConstantCoding, Arm, compiled

from List. 6 with O0)

LoopCheck. This vulnerability exists when an for loop is

not followed with an if condition to verify if the for loop

completed with the expected number of iterations. Without

checking the completion of the loop, an attacker could flip

bits such that the last few iterations are skipped and data/state

is incorrect/corrupted.

Listing 3: Vulnerable Example (Branch, Arm, compiled from

List. 1 with O0

Listing 4: Resillient Example (Branch, Arm, compiled from

List. 2 with O0)

ConstantCoding. This vulnerable pattern covers sensitive

constants carrying a limited set of values/states, e.g., {0, 1,

0xFF}, where these constant values can be easily modified

from one to another within the set by modifying a single bit.

On the other hand, non-trivial numerical values with greater

hamming distance between two states are believed to be more

resilient under fault injection attacks. This vulnerable pattern

is similar as Branch. Instead of focusing on if statements in

Branch, ConstantCoding focuses on constant variables (e.g.,

static variables). A vulnerable example and resilient example

in C are presented below.

Listing 5: Vulnerable Example (ConstantCoding, C)

Listing 9: Vulnerable Example (LoopCheck, C)

Listing 10: Resilient Example (LoopCheck, C)

In the corresponding examples in Arm assembly, the resilient

example of LoopCheck leads to the repeat of a load instruction

(ldr) on register r3 and a comparison instruction (cmp) on

register r3 with the same integer value (e.g., 10). On the other

hand, the vulnerable example only performs the comparison

instruction on register r3 with value 10 once.

Listing 6: Resilient Example (ConstantCoding, C)

The difference between trivial values and non-trivial values

still presents in Arm assembly. The corresponding vulnerable

example and resilient example in Arm assembly are presented

in List. 7 and List. 8.

Listing 11: Vulnerable Example (LoopCheck, Arm, compiled

from List. 9 with O0)

if(flag == 0x3CA5){ // flag is 0x3CA5 or 0xC35A

// Critical Code, e.g., secure boot

}

static short STATE_INIT = 0x5A3C; //global variable

static short STATE_LOCKED = 0xC3A5; //global variable

ldr r3, [r7, #20]

cmp r3, #10

ble .L7

ldr r0, [r7, #16] // missing loop check

bl foo

static short STATE_INIT = 0; //global variable

static short STATE_LOCKED = 1; //global variable

cmp r3, #15525 // 0x3CA5

bne .L2 // L2 jumps to critical instructions

int i = 0;

int sum = 1;

for (i = 0; i<10; i++) {

sum++;

}

// missing loop check

foo(sum);

cmp r3, #1

bne .L2 // L2 jumps to critical instructions

STATE_INIT:

.short 23100

STATE_LOCKED:

.short -15451

if(flag == 1){ // flag is 0 or 1

// Critical Code, e.g., secure boot

}

STATE_INIT:

.short 0

STATE_LOCKED:

.short 1

287

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 09,2025 at 14:37:15 UTC from IEEE Xplore. Restrictions apply.

Listing 12: Resilient Example (LoopCheck, Arm, compiled

from List. 10 with O0)

Bypass. This vulnerable pattern is present when a condition

check does not occur at the same level as protected func-

tionality. For example, a verification function call is made

within an if statement. This may allow an attacker to modify

the return value or execution of a program and run critical

code with a single fault. Instead, Riscure whitepaper suggests

that faults should be detected at the same level (function)

that executes protected functionality, e.g. storing the return

values of function calls to variables before being checked in

conditions. To make it even more secure, double condition

checks with the same logic should be applied to avoid single

fault failures. A vulnerable example and resilient example in

C are presented below.

Listing 13: Vulnerable Example (Bypass, C)

Listing 16: Resilient Example (Bypass, Arm, compiled from

Listing 14 with O0)

B. Problem Formulation

We formulate the problem of identifying Arm assembly

code that are vulnerable under fault injection attacks as below.

Specifically, given a sequence of lines of Arm assembly code

A = {a1, ..., am}, where m is the total number of lines in

an Arm assembly file, a method identifying vulnerable code

assigns a label to every line. Let li be the label of line ai,

where 1 i m. Label li is either V (vulnerable) or N (not

vulnerable).

C. Evaluation Metric

We leverage precision and recall to measure the effectiveness

of a method identifying vulnerable lines under fault injection

attacks. Specifically, a line is considered as a true positive if its

ground truth is vulnerable and its predicted label from a method

is vulnerable. Precision and recall are defined as below.

Pecision =
TP

TP + FP

, Recall =

TP

TP + FN

Listing 14: Resilient Example (Bypass, C)

The resilient example of Bypass (in Listing 16) first saves a

return value of a function to register r3 with a mov instruction,

stores the value to stack with a strb instruction, and loads a

return value from stack with a ldrb instruction. On the other

hand, the vulnerable example moves the return value to register

r3 without storing it to stack or performing comparison with

a cmp instruction based on register r3.

Listing 15: Vulnerable Example (Bypass, Arm, compiled from

where TP is true positive, FP is false positive, and FN is false

negative.

III. PROPOSED AUTOMATIC DETECTION

A. Detection Overview

In this section, we describe the details of our automatic

detection tool, named FaultArm. The main idea of our tool

can be highlighted in Fig. 1. Given an assembly file as input,

our tool (1) parses the assembly code based on each line, (2)

generates tokens based on registers, instructions, integers, and

strings, and (3) detects lines with vulnerable patterns based

on token matching across multiple lines. The associated lines

and specific vulnerable patterns will be included in the output

of our tool. We implement the parser, specifically for Arm

assembly, and develop customized token matching for each

type of vulnerable patterns.

Branch:

Listing 13) with O0)
foo.s

List of

tokens

line 136: cmp r3, #0

line 137: bne .L8

Bypass

line 46: bl open

line 47: subs r8, r0, 0

line 48: beq .L4

……

Fig. 1: Overview of FaultArm

Token

Search

Arm Parser

& Tokenizer

bl test1

mov r3, r0 // save return value to register r3

eor r3, r3, #1

and r3, r3, #255

cmp r3, #0

bool r1 = test1();

bool r2 = test1();

if (r1 != r2) faultDetect(); // fault detected

if (!r1 || !r2) return; // access denied

// critical code

....

if (!test1()) return; // access denied

// critical code

....

288

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 09,2025 at 14:37:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Example of tokens parsed by our Arm parser for file loop_simple_secure.s in O0

B. Arm Assembly Parser

We implement a customized parser for Arm assembly as

we could not find an existing parser that satisfies our re-

quirement. Specifically, our parser is a linear parser, which

scans assembly code line by line and tokenize each in-

struction based on its broader type, including Location,

Instruction, and Address. We also tokenize each ele-

ment of an instruction into Register, IntegerLiteral,

and StringLiteral. A list of tokens output by our parser

is linearly searched by our detection algorithm for each vul-

nerable pattern. An example of our parser parsing an assembly

file is presented in Fig. 2.

C. Our Proposed Detection

Detection of Branch. Our method decides a line is Branch

vulnerable if (1) this line consists of a conditional instruc-

tion (e.g. a comparison instruction cmp), (2) this conditional

instruction consists of an integer augment with low Hamming

weight value, and (3) its next instruction is a branch instruction

(bne, ble, or bx). In this paper, if the Hamming weight of

an integer is lower than 4, we consider it as low. A high-level

overview of our detection for Branch is present in Fig. 3.

It is worth to mention that, in some optimizations, such as O1

and O2, instruction subs or rsbs can be used as conditional

instruction rather than cmp. Similarly, a branch instruction can

be achieved by using an instruction movx instead of bne, ble,

or bx. Our method incorporates these instructions as well when

it performs the detection. This diversity of detection pattern, in

essence, is because different combinations of instructions can

offer same functionalities.

Detection of ConstantCoding. Our method detects a Con-

stantCoding vulnerability if (1) the type of a token is Location;

(2) its next line consists of data type and an integer with low

Hamming weight value. The line with low Hamming weight

value will be marked as vulnerable. A high-level overview

of our detection for ConstantCoding is present in Fig. 4. In

Fig. 3: Our detection method for Branch.

Fig. 4: Our detection method for ConstantCoding.

addition to global variables, we also detect local variables with

low Hamming weights.

Detection of LoopCheck. Our detection of LoopCheck

consists of two phases. The first phase identifies whether there

is a for loop in assembly. The second phase examines whether

there is an if statement right next to the for loop in assembly.

Specifically, for the first phase, our method detects there is a

for loop if a combination of load instruction (e.g., ldr), a

comparison instruction (e.g., cmp) and a branch instruction

(e,g., bx) is repeated and the branch instruction returns to

the same address. A high-level overview of this detection is

illustrated in Fig. 5.

If the detection of the first phase is positive, our detection

moves to the second phase. Specifically, the register r and

value v associated with the comparison instruction in phase

1 are recorded. Our method detects there is an if statement

for LooCheck if there is a later comparison on the recorded

register r with the recorded value v again. If negative, then

a LoopCheck vulnerable pattern is detected. The line right

after the last branch instruction of the for loop is predicted

as vulnerable. On the other hand, if the later comparison

instruction is still on register r but with a different value than

289

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 09,2025 at 14:37:15 UTC from IEEE Xplore. Restrictions apply.

STATE_INIT:

.short 0 // labeled as vulnerable

STATE_LOCKED:

.short 1 // labeled as vulnerable

ldr r3, [r7, #20]

cmp r3, #10

ble .L7

ldr r0, [r7, #16] // labeled as vulnerable

bl foo

bl test1

mov r3, r0

eor r3, r3, #1 // labeled as vulnerable

and r3, r3, #255

cmp r3, #0

Fig. 5: Our detection method for LoopCheck (Phase 1).

Fig. 6: Our detection method for LoopCheck (Phase 2).

v, then it indicates the for loop is still on-going and value v is

updated accordingly. A high-level overview of this detection is

illustrated in Fig. 6.

Detection of Bypass. Our detection on Bypass is character-

ized by identifying whether the value of a register is stored to

the stack (e.g., strb) or loaded from the stack (e.g., ldrb)

after a branch to a function (e.g., bx and mov) and prior to

a comparison instruction (e.g., cmp). If positive, then it is

considered not vulnerable. Otherwise, the line right after the

mov instruction is considered as vulnerable.

Fig. 7: Overview of our detection method for Bypass.

IV. DATASET AND EVALUATION

A. Our Dataset

To measure the detection performance of our design, we cre-

ate a dataset of 96 Arm assembly files across three optimization

levels (O0, O1, and O2). Specifically, we first create 24 C files

manually. In addition, we leverage ChatGPT (version 3.5) to

create 8 C files that are associated with security functions in

embedded systems. The description of each C file generated

by ChatGPT is presented below.

• caesarCipher.c – A program that performs the Caesar

Cipher encryption method.

• calibration.c – A program that calibrates the position of

an embedded component.

• data encryption xor.c – A program that encrypts a string

message with an XOR operation.

• data integrity checksum.c – A program that generates a

checksum given a string message.

• file searcher.c – A program that returns information of a

specific file or folder given its path.

• rate limiting brute force.c – A program that reads a

password and blocks after 3 failed attempts.

• rpm plot.c – A program that creates data for a plot for

the rpm (revolutions per minute) of a hypothetical motor.

• secure data wipe.c – A program that deletes a data in a

program securely.

• simple password check.c – A program that just reads and

compares the password in a single attempt.

Given these 32 C files, we compile each one of them

with cross-compiler arm-none-eabi-gcc with multiple

optimizations, including O1, O2, and O3. We obtain 32 Arm

assembly files for each optimization.

Ground Truth. To generate the ground truth labels, we

first label each line in each C file by following the vulnerable

patterns defined in Riscure whitepaper. Only four vulnerable

patterns, including Branch, ConstantCoding, LoopCheck, and

Bypass, are considered through this labeling process. Next, we

find one corresponding line in assembly based on every vul-

nerable line labeled in the C file. The labelling was performed

by two students independently and then cross-referenced to

minimize disagreements. It is worth to mention that a single

line in C can map to multiple lines in assembly. Among these

multiple lines, we choose the assembly line that is the most

associated with each vulnerable pattern. Although each line

is labeled as vulnerable or non-vulnerable, we would like to

emphasize that a line is not labeled independently but based

on a few lines before or/and after it. We clarify which line is

labeled as vulnerable in our assembly dataset by presenting the

examples below from the four vulnerable patterns.

Listing 17: Groud Truth Labeling (Branch, Arm, compiled

from List. 1 with O0.

Listing 18: Groud Truth Labeling (ConstantCoding, Arm,

compiled from List. 5 with O0)

Listing 19: Groud Truth Labeling (LoopCheck, Arm, compiled

from List. 9 with O0)

Listing 20: Ground Truth Labeling (Bypass, Arm, compiled

from Listing 13) with O0)

cmp r3, #1 // labeled as vulnerable

bne .L2

290

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 09,2025 at 14:37:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Precision and Recall for FaultArm

 Fault Pattern # Detected TP FP FN # Ground Truth Precision Recall

O0

Branch 53 53 0 0 53 100.0% 100.0%

ConstantCoding 57 57 0 2 59 100.0% 96.6%

LoopCheck 6 6 0 1 7 100.0% 85.7%

Bypass 15 15 0 0 15 100.0% 100.0%

Total 131 131 0 2 133 100.0% 97.8%

O1

Branch 37 37 0 0 37 100.0% 100.0%

ConstantCoding 13 13 0 2 15 100.0% 86.7%

LoopCheck 3 3 0 5 8 100.0% 37.5%

Bypass 18 17 1 0 17 94.4% 100.0%

Total 71 70 1 7 77 98.6% 90.9%

O2

Branch 48 48 0 0 48 100.0% 100.0%

ConstantCoding 10 10 0 4 14 100.0% 71.4%

LoopCheck 9 9 0 7 16 100.0% 56.3%

Bypass 18 15 3 0 15 83.3% 100.0%

Total 85 82 3 11 93 96.5% 88.2%

TABLE II: Summary of the number of vulnerable lines over

our C and assembly files

 C O0 O1 O2

Branch 24 53 37 48
ConstantCoding 58 59 15 14

LoopCheck 3 7 8 16

Bypass 14 15 17 15

Total No of Vulnerable Lines 99 133 77 93

Total No. of Lines 705 3,594 2,396 2,503

Note that the reason we first create C files and then produce

assembly files is mainly because it is feasible to manually label

vulnerable lines in C and then accurately map these labels to

assembly code. It provides more accurate and reliable ground

truth than labeling assembly code directly. While there are

C files (related to security functions for embedded systems)

available on GitHub, these files cannot always be compiled

directly due to missing libraries or files. This is why we create

in-house C files for evaluation. Besides, creating in-house C

files also allows us to compile with different optimization levels

and examine the changes of the number of vulnerable lines

across different optimizations.

Overall, there are 133 lines, 77 lines, and 93 lines that

are labeled as vulnerable in O0, O1, and O2 Arm assembly

respectively. A summary of our labeled dataset is described in

Table II.

B. Evaluation

We measure the detection performance of our methods in

precision and recall and report the results in Table I. Overall,

we have two main findings. First, our detection is effective

across the 3 optimization levels. Second, our detection per-

formance decreases slightly when it gets to a higher level of

optimization. This is expected as a higher level of optimization

leads to more optimized instructions, which increases the

difficulty of our detection. Specifically, our detection achieves

100% precision and 98% recall in O0. It is also worth men-

tioning that our detection runs in almost real time. The analysis

of each file takes within 2 seconds on average.

V. DISCUSSION AND FUTURE WORK

For our future work, we plan to extend our current meth-

ods to detect more vulnerable patterns mentioned in Riscure

whitepaper [1]. In addition, we would like to further extend our

dataset and investigate assembly written in other instruction

sets, such as RISC-V assembly.

VI. CONCLUSION

We design a tool that can automatically detect vulnerable

lines under fault injection attacks in Arm assembly. Our

evaluation shows our method is effective and efficient. We also

make our source code and dataset publicly available for the

research community to reproduce and expand the findings.

ACKNOWLEDGEMENTS

This work was partially supported by National Science Foun-

dation (CNS-2150086, DGE-2043106, and CNS-1916722).

REFERENCES

[1] M. Witteman, “Secure application programming in the presence of side

channel attacks,” Riscure, Tech. Rep., Aug 2017. [Online]. Available:

https://www.riscure.com/uploads/2017/08/Riscure Whitepaper Side
Channel Patterns.pdf

[2] N. Timmers, A. Spruyt, and M. Witteman, “Controlling pc on arm using
fault injection,” in 2016 Workshop on Fault Diagnosis and Tolerance in

Cryptography (FDTC), 2016, pp. 25–35.

[3] R. Kumar, P. Jovanovic, and I. Polian, “Precise fault-injections using

voltage and temperature manipulation for differential cryptanalysis,” in

2014 IEEE 20th International On-Line Testing Symposium (IOLTS), 2014,

pp. 43–48.

[4] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “Ram-

jam: Remote temperature and voltage fault attack on fpgas using memory
collisions,” in 2019 Workshop on Fault Diagnosis and Tolerance in

Cryptography (FDTC), 2019, pp. 48–55.

[5] J. Breier and X. Hou, “How practical are fault injection attacks, really?”

Cryptology ePrint Archive, Paper 2022/301, 2022. [Online]. Available:

https://eprint.iacr.org/2022/301

[6] R. Viera, J.-M. Dutertre, M. Dumont, and P.-A. Moe¨llic, “Permanent laser

fault injection into the flash memory of a microcontroller,” in 2021 19th

IEEE International New Circuits and Systems Conference (NEWCAS),
2021, pp. 1–4.

[7] F. Khelil, M. Hamdi, S. Guilley, J. L. Danger, and N. Selmane, “Fault

analysis attack on an fpga aes implementation,” in 2008 New Technologies,

Mobility and Security, 2008, pp. 1–5.

[8] L. Reichling, I. Warsame, S. Reilly, A. Brownfield, N. Niu, and B. Wang,

“FaultHunter: Automatically Detecting Vulnerabilities in C against Fault

Injection Attacks,” in 2022 Symposium for Undergraduate Research in

Data Science, Systems, and Security (REU Symposium 2022), 2022.

http://www.riscure.com/uploads/2017/08/Riscure

