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Abstract— Enhancing the explainability of machine learning
(ML) models is crucial for bridging their use gap for practical
applications of robotic autonomy. The common standard for
adding explainability has been to use a post-hoc explana-
tion approach. However, post-hoc approaches have recently
attracted criticism for their lack of transparency, specifically
because the post-hoc methods learn a surrogate model after the
predictive model has already been learned, which means that
the explanations are not authentically explaining the model’s
behavior. This study aims to add explainability to the task of
robot grasping failure prediction using Factorization Machines
as the predictive model and using a novel pre-hoc explainability
framework to learn an explainable Factorization Machine
model. Unlike post-hoc methods, pre-hoc explainability starts
with learning the explainable model before training the black-
box model and then provides guidance while learning the
latter to make predictions that are faithful to the explanations
through a regularization mechanism. Through a detailed case
study, we explore the trade-off between prediction accuracy
and explanation fidelity and show that our framework is able
to make predictions that are more accurate than an explainable
white-box model while simultaneously learning a model whose
pre-hoc explanations achieve a high level of fidelity relative to
the predictions. Results show that our framework can predict
the robustness of the grasp with 83% accuracy while explaining
that increased effort exerted in Joint 2 of Finger 3 contributes
tremendously to producing grasp failure, which is in contrast
to increased efforts exerted at Joint 2 of Fingers 1 and 2 and
at joint 1 of Finger 3, that all lead to reducing grasp failure.

I. INTRODUCTION

The integration of artificial intelligence into intelligent
systems has revolutionized the way industries approach
decision-making, automation, and operational efficiency [1].
However, this integration has also raised significant chal-
lenges regarding the trustworthiness and interpretability of
the underlying algorithms [2], [3]. In particular, autonomous
robotic systems, which apply Al and machine learning in un-
certain physical systems, often operate as black boxes” with
decision-making processes and failure modes that may not
be transparent or easily understood by human operators. This
lack of transparency and interpretability hinders the adoption
and reliability of intelligent systems in critical applications,
where understanding the rationale behind decisions is crucial
[4]-[7]. Therefore, providing a clear explanation of such
complex models is a significant aspect of increasing trust
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in machine learning (ML) models of operational success or
failure. [8], [9].

Explainable Al techniques have emerged as a promising
solution to address the lack of transparency and interpretabil-
ity in autonomous systems [10] aim to bridge the gap
between complex algorithms and human understanding [11]—
[13].

Robot grasping is a fundamental task in robotics that
involves complex interactions between the robot, its en-
vironment, and the object it is grasping. One critical as-
pect of tasks such as robot grasping is fault diagnostics,
which refers to the process of identifying and diagnosing
issues or failures within a system. Traditional approaches to
fault diagnostics in robot grasping often rely on rule-based
systems, physics-based models with incompletely known
parameters, or simple sensor thresholding methods, which
lack the robustness required for operation in uncertain envi-
ronments. [14]. ML-based approaches offer the potential to
overcome these limitations by using large datasets to learn
complex patterns and relationships inherent in the grasping
process. By training models on diverse grasping scenarios
and corresponding sensor data, ML algorithms can learn to
identify subtle deviations indicative of faults or suboptimal
grasping strategies [15]. For instance, DexNet is an ML
framework under continued development for identifying sta-
ble grasp poses from visual information using Convolutional
Neural Networks from synthetic or experimental point clouds
[16]. Another related approach [17] uses deep reinforcement
learning methods in robotic grasping through visio-motor
feedback. This approach outperforms baseline methods, en-
hancing accuracy with a multi-view camera setup.

However, the adoption of ML for fault diagnostics in robot
grasping is limited by the lack of interpretability of black-box
ML models. In [10], Alvanpour et al. explored the balance
between accuracy and interpretability in predicting robot
grasp failure by explaining black-box models with post-hoc
explanation generation methods, such as Shapley Additive
Explanations (SHAP) [18] and LIME [19]. Despite progress
towards interpretable fault prediction, post-hoc methods may
not be faithful to the original model [20].

To address these challenges, this paper presents a novel
approach that leverages a pre-hoc explainability framework
[21], aiming to enhance the transparency and interpretability
of grasp failure prediction. We applied this framework to the
analysis of grasp robustness within Shadow’s Smart Grasping
System [22] using Factorization Machines (FM) [23] as the
predictive ML model since FMs capture latent factors of
the input variable and their interactions. Unlike our previous
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post-hoc explainability approach in [10], the proposed pre-
hoc method optimizes the predictor model during training
to make predictions that are faithful to explanations. Thus,
improved fidelity scores can be achieved while maintaining
similar levels of accuracy. Results show that our framework
can predict the robustness of the grasp with 83% accuracy
and display the most influential feature as H1F3J2eff, the ef-
fort of the finger 3 joint 2. Our contributions are summarized
below:

e« We conduct a case study using a novel approach to
enhancing the explainability of black-box models, called
pre-hoc explainability, which leverages the insights pro-
vided by an inherently interpretable white-box model
to guide the training of the black-box model in a
way that preserves its accuracy while enhancing its
interpretability.

o Unlike post-hoc explanations, our approach does not
rely on input perturbation or post-secondary model
learning, thus avoiding the potential pitfalls of surrogate
modeling. This makes it more scalable, robust, and
reliable in practice.

« We demonstrate the effectiveness and flexibility of our
pre-hoc approach on the grasping dataset for the Shadow
Hand, showing that a desired prediction accuracy can
be attained while ensuring high levels of explanation
fidelity.

II. BACKGROUND
A. Post-hoc Explainability

The current standard explainability approach is Post-hoc
explainability, which is widely used to generate explanations
for the predictions made by a trained black-box model.
However, because the training and explanation generation
phases are decoupled (e.g. LIME [19]), they create the risk
of having explanations that are a result of some artifacts
learned by the model instead of actual knowledge from the
data [24]. Post-hoc explanation techniques that rely on input
perturbations, such as LIME and SHAP, can, therefore, suffer
from unfaithful explanations [20].

Model-agnostic classifiers produce explanations either lo-
cally in a few instances or globally across all instances
without changing the predictive model itself. One of the
most popular algorithms, LIME [19], is an algorithm that
approximates a linear regressor or classifier to serve as
the explainer. Another common method is SHAP (SHap-
ley Additive exPlanations) [18], which rates each feature
according to its contribution to the prediction relative to
the contribution of all other input features. By their nature,
model-agnostic methods cannot access the internal model
state, including model weights or structural details, and their
post-hoc explanations are decoupled from the model itself.

B. Pre-hoc Explainability

Unlike Post-hoc methods, Pre-hoc explainability [21] uses
pre-trained white-box explanations to guide the learning of a
black-box model, as depicted in Figure 1. Table I shows the
notation used below. The Explainer function g € G serves as

TABLE I: Variables and Parameters

Symbol  Description

f Predictor: black-box machine learning model
g Explainer: white-box machine learning model
p? Probability distribution of f

p° Probability distribution of fg

Ly Regularization for sparsity

D Divergence distance measurement

JS Jensen-Shannon divergence

A Explainability regularization coefficient

Z Grasping dataset

a guide to the predictor model f, with the guidance being
controlled by minimizing the following distance measure
between the explainer and the predictor’s outputs, globally:

1 N
jl}éi;lDJs: N;D(f(xi)ag(xi))’ (1

where function D is a divergence distance measurement,
specifically the Jensen-Shannon divergence, which is low
when the explainer fidelity is high. Finally, the predictive
model is learned by minimizing a loss function that com-
bines the loss from the prediction with the Jensen-Shannon
divergence:

Lpre—hoe = Lpce +MDys + A Ly, 2

where Lpcg is the binary cross-entropy loss, A is an ex-
plainability regularization coefficient that controls the trade-
off between explainability and accuracy, while A, is a coef-
ficient used for £, regularization of model parameters 6 to
avoid overfitting and exploding gradients. Algorithm 1 shows
the steps involved in pre-hoc explainability.

C. Factorization Machines

Factorization machines (FMs) [23] are supervised learning
models that can be applied to a wide range of prediction tasks
while reliably estimating model parameters under large quan-
tities of sparse data, enabling the model to be trained with
very few data points. The model equation for a factorization
machine of degree d = 2 is defined as:

n n n
)= wo +Y wixi+Y, Y (vi,vj)xix; 3)
m i=1 i=1 j=i+1

Term 2 Term 3

where the model parameters that have to be estimated are:

wo € R,w; € R",v; € R™K, 4)

And (- ,-) is the dot product of two vectors of size k:

k
(vi,vj) =Y vipvis (5)
=
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Fig. 1: Training Phase of Pre-hoc Explainability Framework

A row v; within V represents the i'" variable with k factors,
where k is a hyperparameter that defines the dimensionality
of the factorization.

D. Transparency in Factorization Machines

One of the key drawbacks of Factorization Machines
(FMs) is it’s lack of interpretability. In FMs, the variable
interactions are modeled by a polynomial expansion, which
is difficult to explain. In 3, Term 1 and Term 2 are classical
regression terms that are explainable. However, Term 3
(vi,v;) adds opacity, thus reducing the transparency of the
predictions.

Algorithm 1 Pre-hoc Explainability Framework

Require: Black-box model fg, white-box model gy, input
instance x, true label y, and parameter A; for weighting
the divergence term.
procedure PREHOCEXPLAINABILITY(fs, g9, X, ¥, M)

for each x; in Xj,4, do
Compute p® = go(x;)
white-box model
Compute p® = fo(xi)
black-box model
Compute Ljs =JS(p®, p?®) > Using JS divergence
Compute Lpcr = BinaryCrossEntropy(p®,y)
Liotal = Lpce + M1 - Lgys
Update fy using gradient descent:
aveLtotal
end for
end procedure

> Predictions from

> Predictions from

0+ 06—

III. PROBLEM FORMULATION

We focus on a robot’s hand with three fingers, includ-
ing information about the joints’ position, velocity, effort
(torque) of each finger, and stability of the grasp for an
object. Our aim is to predict grasp failure from the position,
velocity, and effort measurements of each of the three
joints in each of the three fingers. These measurements are
collected into features that are named after the combination
of hand (only Hand 1 is used), finger, join, and either
position, velocity, or effort, as summarized in the following
nomenclature.

e H1: Hand one, indicating the only hand used in the
simulation.

e F1,F2,F3: Fingers on the hand, where each finger has
three joints.

e J1,J2,J3: Joints in each finger, with each joint having
measurements for position (pos), velocity (vel), and
effort (ef fort).

Hence HI1F jJk indicates joint k of Finger j of Hand 1.

The dataset for a single experiment e; can be represented as
a matrix:

posmiriyn velgipin  effortpirin

Mei = : : :
posuiFas velgiris  effortyirass

where poswir k. veluirjk. and ef fortyr iy represent
the position, velocity, and effort measurements of joint k in
finger j of hand one, respectively.

The grasp robustness R for each experiment is computed
based on the variation of the distance between the palm and
the ball during the shake, as shown in Figure 2, denoted as:

R(e;) = f(Adistpaim—paii(€:))

Where f is a function that computes the robustness based
on the distance variation Adistpy,—pey during experiment
e;. By having all these features as a dataset Z, then, let
S= {(x,',yl-)}?:[l C Z be a sample from a distribution D in
a domain Z= X x 9", where X is the instance and 9 is the
label set. We learn a differentiable predictive function f € F :
X — 9 together with a transparent function g€ G : X — 9
defined over a functional class G. We refer to functions f and
g as the predictor and the explainer, respectively, throughout
the paper. G 1is strictly constrained to be an inherently
explainable functional set, such as a set of linear functions or
decision trees. We assume that we have a distance function
d: X x9 — Rxo such that d(y,§) =0 <— y = J, which
measures the point-wise similarity between two probability
distributions in 9" and can be used to optimize f and g.

Instead of learning a post hoc white-box model, we learn
a model that is explainable from the start and then let
this explainer model guide the predictor. We use the Pre-
Hoc Explainable Predictive Framework, where the white box
model regularizes the black box model for higher fidelity
(Figure 1).

IV. EXPERIMENTS

We evaluate the performance of our approach on the grasp-
ing dataset obtained from Shadow’s Smart Grasping System
[22] simulation with ROS [25] and Gazebo [26] environment
using the Smart Grasping Sandbox [22], depicted in Figure
2, and containing three 3-DOF fingers. The dataset has been
annotated with an objective grasp of consistency and contains

1995

Authorized licensed use limited to: University of Louisville. Downloaded on December 14,2024 at 21:01:05 UTC from IEEE Xplore. Restrictions apply.



Fig. 2: Shadow Robot in the Smart Grasping Simulation

various data obtained from the joints (position, velocity, and
effort), containing about 54,000 unique data points and 29
measurements for each experiment. The classification target
is the predicted grasp robustness. Moreover, the output is
discretized to 1 for a stable grasp and O for an unstable
grasp. A grasp is considered stable if the robustness value
exceeds 100.

A. Data Preprocessing

The discretization process can be defined as a function D
that maps each robustness value r to a discrete label /, as

follows:
0
D p—
(" {1

The dataset Z is normalized to standardize the feature
values, ensuring that each feature contributes equally to the
analysis.

Therefore, for every element r in Z, we apply D to obtain a
binary label indicating whether the grasp robustness is below
or above a threshold of 100, effectively categorizing the
data into two classes: less robust (0) and more robust (1).
This process simplifies the target for predictive modeling,
focusing on the binary classification of grasp robustness.

if r <100
if r > 100

B. Experimental Setup and Evaluation

The dataset was randomly divided into training, validation,
and test sets with an 80:10:10 ratio. Model performance
and fidelity were assessed using AUC on the validation and
test datasets after training with a learning rate of 0.001 and
L, regularization until validation accuracy stabilized for at
least ten epochs. We used the Area under the ROC Curve
AUC(fe,¥) as our primary metric for classification accuracy,
and Fidelity as our transparency metric. Fidelity reflects the
descriptive accuracy of our explanation method against the
black-box classifier [27]. It is measured by computing the
AUC between the original black-box predictions and the ex-
plainer model’s predictions AUC(fy,g¢), with the explainer
model.

Our approach was benchmarked against a black-box (BB)
version using Factorization Machines, while the white-box

(WB) model was implemented as a sparse logistic regression
model for its inherent explainability. We adopted PyTorch
for implementation, leveraging Adam [28] for optimization
and binary cross-entropy for loss calculation. The models
were trained with a batch size of 2056, and A; was varied
across 0.05, 0.01, 0.1, 0.25, 0.5, 1 to determine the optimal
regularization weight via a validation set. The final evaluation
was conducted by retraining the models with their optimal
configurations and assessing them on the test set.

V. RESULTS
A. Ablation Study

We did an ablation study to compare the regularized black-
box (Pre-hoc Predictor) and the non-regularized black-box
(BB Predictor) in Table II. The explainer model used was
a white-box (WB) model, while the predictor model was a
black-box (BB) model. In Table II, the BB Predictor and
Pre-hoc Predictor models showed similar accuracy scores
with almost no differences in AUC. Also they maintained
a higher AUC score compared to the WB Explainer model,
indicating better prediction accuracy. In terms of fidelity,
which measures the explainer’s accuracy in mimicking the
black-box model’s decisions, while maintaining the same
accuracy score Pre-hoc Predictor showed 4.3% increase on
fidelity. The Pre-hoc BB over regularized model achieved the
highest score 0.9560 which is approximately 27% increase,
significantly outperforming other models, see Figure 3 (b).
This suggests that while the Pre-hoc BB model has the
best predictive and explainer performance, the Pre-hoc BB
over-regularized model offers the most reliable explanations,
highlighting a trade-off between prediction accuracy and
explainability fidelity.

TABLE II: Model comparison in terms of prediction accu-
racy and fidelity of explainability. The explainer is the white-
box model, BB is the predictor black-box model. The best
results are in bold. Higher AUC and Fidelity is better.

Dataset Grasping
Model AUC 1 Fidelity 1
Explainer WB 0.8080 -
Predictor BB 0.8340 0.7532
Pre-hoc BB A=0.01 | 0.8327 0.7860
Pre-hoc BB A=0.05 | 0.8242 0.8718
Pre-hoc BB A=0.1 0.8120 0.9560

B. Transparency and Accuracy Trade-off

The experiments collectively highlight the inherent chal-
lenge in optimizing both model accuracy and transparency,
suggesting that enhancing one aspect can often lead to com-
promises in the other. This trade-off is critical in developing
and evaluating intelligent systems, where both accuracy and
explainability are essential for trust and reliability.

Specifically, Figure 3 shows that from A = 0.1, the AUC
decreased 0.834, for A =1 to 0.812, but fidelity improved
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Fig. 3: Experimental Results in Accuracy AUC all models (a) and Fidelity AUC for Pre-hoc Predictor (b) for different A’s.
Pre-hoc Predictor is the regularized predictor model, BB is the baseline black-box predictor model, WB is the explainer

model.

from 0.753 to 0.956, which is approximately a 27% in-
crease, showcasing a substantial gain in model transparency
at a modest cost to accuracy. Thus, the ability to adjust
the A value accuracy and transparency demonstrates our
framework’s flexibility in balancing the tradeoff. In fact, we
obtain a good balance at A=0.05, where the AUC accuracy
and fidelity achieve favorable scores of 0.82 and 0.87,
respectively.

C. Global Explainability

Global explainability addresses the need to understand
a machine learning model’s decision-making on a broad
level, containing the entire model rather than individual
predictions. The top 10 features from the Pre-hoc framework,
as shown in Figure 4, indicate the relative importance of each
feature and its contribution to predicting grasp robustness.
Figure 4 shows that the most influential feature is Hy F3Jref f,
joint 2’s effort in finger 3, which increases the model score
by 0.5. It shows a strong positive correlation, suggesting a
significant impact on grasp stability. In contrast, HiFaJref f
joint 2 effort in finger 2 demonstrates a negative influence
on robustness by decreasing the model score by 0.25. Also,
effort (e.g., torque) consistently has more effect on grasping
results than the grasping velocity. This disparity in feature
impact highlights the complex interaction between joint
effort and velocity in determining the successful execution of
a grasp. The analysis of these top features not only provides
insights into the decision of the grasping process but also
reinforces the value of explainable Al in enhancing our
understanding.

VI. CONCLUSION

We demonstrated the integration of a pre-hoc explainabil-
ity framework using Factorization Machines for enhancing
the explainability of machine learning models in autonomous

H1_F3)2_eff-
H1_F2J2_eff-
H1_F3J1_eff-
H1_F1)2_eff-
H1_F2J1_vel -
H1_F3J3_vel -
H1_F1)2_vel-
H1_F1J1_eff-
H1_F3J2_vel-
H1_F2J2_vel-

—02 -01 00 01 02 03 04 05

Fig. 4: Top 10 Feature Importance: Global explanation from
the Pre-hoc framework, showing that increased effort exerted
in Joint 2 of Finger 3 contributes tremendously to producing
grasp failure, which is in contrast to increased efforts exerted
at joint 2 of Fingers 1 and 2 and at joint 1 of Finger 3, that
lead to reducing grasp failure.

robotic grasping systems. Through experiments and analysis,
we have illustrated the inherent trade-off between accu-
racy and transparency, revealing that increased regulariza-
tion can significantly enhance model fidelity without sub-
stantially compromising predictive accuracy. This research
contributes valuable insights into the optimization of au-
tonomous decision-making processes, offering a pathway to
more interpretable and user-trustworthy intelligent systems.

The current work has several limitations. Common ex-
plainable Al techniques often prioritize model-internal ex-
planations, overlooking the valuable insights that domain
experts or end-users can provide. So, one of the main limi-
tations is that explanations are only model-internal. Another
limitation is that only feature importance scores are used,
which is the most commonly used explanation format. Future

1997

Authorized licensed use limited to: University of Louisville. Downloaded on December 14,2024 at 21:01:05 UTC from IEEE Xplore. Restrictions apply.



work should explore methods for integrating domain knowl-
edge and feedback into the explanation generation process,
ensuring that the explanations are meaningful relative to
domain-specific requirements and user expectations.
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