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Abstract— Enhancing the explainability of machine learning
(ML) models is crucial for bridging their use gap for practical
applications of robotic autonomy. The common standard for
adding explainability has been to use a post-hoc explana-
tion approach. However, post-hoc approaches have recently
attracted criticism for their lack of transparency, specifically
because the post-hoc methods learn a surrogate model after the
predictive model has already been learned, which means that
the explanations are not authentically explaining the model’s
behavior. This study aims to add explainability to the task of
robot grasping failure prediction using Factorization Machines
as the predictive model and using a novel pre-hoc explainability
framework to learn an explainable Factorization Machine
model. Unlike post-hoc methods, pre-hoc explainability starts
with learning the explainable model before training the black-
box model and then provides guidance while learning the
latter to make predictions that are faithful to the explanations
through a regularization mechanism. Through a detailed case
study, we explore the trade-off between prediction accuracy
and explanation fidelity and show that our framework is able
to make predictions that are more accurate than an explainable
white-box model while simultaneously learning a model whose
pre-hoc explanations achieve a high level of fidelity relative to
the predictions. Results show that our framework can predict
the robustness of the grasp with 83% accuracy while explaining
that increased effort exerted in Joint 2 of Finger 3 contributes
tremendously to producing grasp failure, which is in contrast
to increased efforts exerted at Joint 2 of Fingers 1 and 2 and
at joint 1 of Finger 3, that all lead to reducing grasp failure.

I. INTRODUCTION

The integration of artificial intelligence into intelligent

systems has revolutionized the way industries approach

decision-making, automation, and operational efficiency [1].

However, this integration has also raised significant chal-

lenges regarding the trustworthiness and interpretability of

the underlying algorithms [2], [3]. In particular, autonomous

robotic systems, which apply AI and machine learning in un-

certain physical systems, often operate as ”black boxes” with

decision-making processes and failure modes that may not

be transparent or easily understood by human operators. This

lack of transparency and interpretability hinders the adoption

and reliability of intelligent systems in critical applications,

where understanding the rationale behind decisions is crucial

[4]–[7]. Therefore, providing a clear explanation of such

complex models is a significant aspect of increasing trust
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in machine learning (ML) models of operational success or

failure. [8], [9].

Explainable AI techniques have emerged as a promising

solution to address the lack of transparency and interpretabil-

ity in autonomous systems [10] aim to bridge the gap

between complex algorithms and human understanding [11]–

[13].

Robot grasping is a fundamental task in robotics that

involves complex interactions between the robot, its en-

vironment, and the object it is grasping. One critical as-

pect of tasks such as robot grasping is fault diagnostics,

which refers to the process of identifying and diagnosing

issues or failures within a system. Traditional approaches to

fault diagnostics in robot grasping often rely on rule-based

systems, physics-based models with incompletely known

parameters, or simple sensor thresholding methods, which

lack the robustness required for operation in uncertain envi-

ronments. [14]. ML-based approaches offer the potential to

overcome these limitations by using large datasets to learn

complex patterns and relationships inherent in the grasping

process. By training models on diverse grasping scenarios

and corresponding sensor data, ML algorithms can learn to

identify subtle deviations indicative of faults or suboptimal

grasping strategies [15]. For instance, DexNet is an ML

framework under continued development for identifying sta-

ble grasp poses from visual information using Convolutional

Neural Networks from synthetic or experimental point clouds

[16]. Another related approach [17] uses deep reinforcement

learning methods in robotic grasping through visio-motor

feedback. This approach outperforms baseline methods, en-

hancing accuracy with a multi-view camera setup.

However, the adoption of ML for fault diagnostics in robot

grasping is limited by the lack of interpretability of black-box

ML models. In [10], Alvanpour et al. explored the balance

between accuracy and interpretability in predicting robot

grasp failure by explaining black-box models with post-hoc

explanation generation methods, such as Shapley Additive

Explanations (SHAP) [18] and LIME [19]. Despite progress

towards interpretable fault prediction, post-hoc methods may

not be faithful to the original model [20].

To address these challenges, this paper presents a novel

approach that leverages a pre-hoc explainability framework

[21], aiming to enhance the transparency and interpretability

of grasp failure prediction. We applied this framework to the

analysis of grasp robustness within Shadow’s Smart Grasping

System [22] using Factorization Machines (FM) [23] as the

predictive ML model since FMs capture latent factors of

the input variable and their interactions. Unlike our previous
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post-hoc explainability approach in [10], the proposed pre-

hoc method optimizes the predictor model during training

to make predictions that are faithful to explanations. Thus,

improved fidelity scores can be achieved while maintaining

similar levels of accuracy. Results show that our framework

can predict the robustness of the grasp with 83% accuracy

and display the most influential feature as H1F3J2eff, the ef-

fort of the finger 3 joint 2. Our contributions are summarized

below:

• We conduct a case study using a novel approach to

enhancing the explainability of black-box models, called

pre-hoc explainability, which leverages the insights pro-

vided by an inherently interpretable white-box model

to guide the training of the black-box model in a

way that preserves its accuracy while enhancing its

interpretability.

• Unlike post-hoc explanations, our approach does not

rely on input perturbation or post-secondary model

learning, thus avoiding the potential pitfalls of surrogate

modeling. This makes it more scalable, robust, and

reliable in practice.

• We demonstrate the effectiveness and flexibility of our

pre-hoc approach on the grasping dataset for the Shadow

Hand, showing that a desired prediction accuracy can

be attained while ensuring high levels of explanation

fidelity.

II. BACKGROUND

A. Post-hoc Explainability

The current standard explainability approach is Post-hoc

explainability, which is widely used to generate explanations

for the predictions made by a trained black-box model.

However, because the training and explanation generation

phases are decoupled (e.g. LIME [19]), they create the risk

of having explanations that are a result of some artifacts

learned by the model instead of actual knowledge from the

data [24]. Post-hoc explanation techniques that rely on input

perturbations, such as LIME and SHAP, can, therefore, suffer

from unfaithful explanations [20].

Model-agnostic classifiers produce explanations either lo-

cally in a few instances or globally across all instances

without changing the predictive model itself. One of the

most popular algorithms, LIME [19], is an algorithm that

approximates a linear regressor or classifier to serve as

the explainer. Another common method is SHAP (SHap-

ley Additive exPlanations) [18], which rates each feature

according to its contribution to the prediction relative to

the contribution of all other input features. By their nature,

model-agnostic methods cannot access the internal model

state, including model weights or structural details, and their

post-hoc explanations are decoupled from the model itself.

B. Pre-hoc Explainability

Unlike Post-hoc methods, Pre-hoc explainability [21] uses

pre-trained white-box explanations to guide the learning of a

black-box model, as depicted in Figure 1. Table I shows the

notation used below. The Explainer function g ∈ G serves as

TABLE I: Variables and Parameters

Symbol Description
f Predictor: black-box machine learning model

g Explainer: white-box machine learning model

pφ Probability distribution of f
pθ Probability distribution of f g
L2 Regularization for sparsity

D Divergence distance measurement

JS Jensen-Shannon divergence

λ Explainability regularization coefficient

Z Grasping dataset

a guide to the predictor model f , with the guidance being

controlled by minimizing the following distance measure

between the explainer and the predictor’s outputs, globally:

min
f∈F

DJS =
1

N

N

∑
i=1

D( f (xi) ,g(xi)) , (1)

where function D is a divergence distance measurement,

specifically the Jensen-Shannon divergence, which is low

when the explainer fidelity is high. Finally, the predictive

model is learned by minimizing a loss function that com-

bines the loss from the prediction with the Jensen-Shannon

divergence:

LPre−hoc = LBCE +λ1DJS +λ2L2, (2)

where LBCE is the binary cross-entropy loss, λ1 is an ex-

plainability regularization coefficient that controls the trade-

off between explainability and accuracy, while λ2 is a coef-

ficient used for L2 regularization of model parameters θ to

avoid overfitting and exploding gradients. Algorithm 1 shows

the steps involved in pre-hoc explainability.

C. Factorization Machines

Factorization machines (FMs) [23] are supervised learning

models that can be applied to a wide range of prediction tasks

while reliably estimating model parameters under large quan-

tities of sparse data, enabling the model to be trained with

very few data points. The model equation for a factorization

machine of degree d = 2 is defined as:

ŷ(x) = w0︸︷︷︸
Term 1

+
n

∑
i=1

wixi︸ ︷︷ ︸
Term 2

+
n

∑
i=1

n

∑
j=i+1

〈vi,v j〉xix j︸ ︷︷ ︸
Term 3

(3)

where the model parameters that have to be estimated are:

w0 ∈ R,wi ∈ R
n,vi ∈ R

n×k, (4)

And 〈· , ·〉 is the dot product of two vectors of size k:

〈vi,v j〉=
k

∑
f=1

vi, f v j, f (5)
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Fig. 1: Training Phase of Pre-hoc Explainability Framework

A row vi within V represents the ith variable with k factors,

where k is a hyperparameter that defines the dimensionality

of the factorization.

D. Transparency in Factorization Machines

One of the key drawbacks of Factorization Machines

(FMs) is it’s lack of interpretability. In FMs, the variable

interactions are modeled by a polynomial expansion, which

is difficult to explain. In 3, Term 1 and Term 2 are classical

regression terms that are explainable. However, Term 3

(vi,v j) adds opacity, thus reducing the transparency of the

predictions.

Algorithm 1 Pre-hoc Explainability Framework

Require: Black-box model fθ, white-box model gφ, input

instance x, true label y, and parameter λ1 for weighting

the divergence term.

procedure PREHOCEXPLAINABILITY( fθ, gφ, x, y, λ1)

for each xi in Xtrain do
Compute pφ = gφ(xi) � Predictions from

white-box model

Compute pθ = fθ(xi) � Predictions from

black-box model

Compute LJS = JS(pθ, pφ) � Using JS divergence

Compute LBCE = BinaryCrossEntropy(pθ,y)
Ltotal = LBCE +λ1 ·LGJS
Update fθ using gradient descent: θ ← θ −

α∇θLtotal
end for

end procedure

III. PROBLEM FORMULATION

We focus on a robot’s hand with three fingers, includ-

ing information about the joints’ position, velocity, effort

(torque) of each finger, and stability of the grasp for an

object. Our aim is to predict grasp failure from the position,

velocity, and effort measurements of each of the three

joints in each of the three fingers. These measurements are

collected into features that are named after the combination

of hand (only Hand 1 is used), finger, join, and either

position, velocity, or effort, as summarized in the following

nomenclature.

• H1: Hand one, indicating the only hand used in the

simulation.

• F1,F2,F3: Fingers on the hand, where each finger has

three joints.

• J1,J2,J3: Joints in each finger, with each joint having

measurements for position (pos), velocity (vel), and

effort (e f f ort).
Hence H1F jJk indicates joint k of Finger j of Hand 1.

The dataset for a single experiment ei can be represented as

a matrix:

Mei =

⎡
⎢⎣posH1F1J1 velH1F1J1 e f f ortH1F1J1

...
...

...

posH1F3J3 velH1F3J3 e f f ortH1F3J3

⎤
⎥⎦

where posH1F jJk, velH1F jJk, and e f f ortH1F jJk represent

the position, velocity, and effort measurements of joint k in

finger j of hand one, respectively.

The grasp robustness R for each experiment is computed

based on the variation of the distance between the palm and

the ball during the shake, as shown in Figure 2, denoted as:

R(ei) = f (Δdistpalm−ball(ei))

Where f is a function that computes the robustness based

on the distance variation Δdistpalm−ball during experiment

ei. By having all these features as a dataset Z, then, let

S = {(xi,yi)}N
i=1 ⊂ Z be a sample from a distribution D in

a domain Z = X ×Y , where X is the instance and Y is the

label set. We learn a differentiable predictive function f ∈F :

X → Y together with a transparent function g ∈ G : X → Y
defined over a functional class G . We refer to functions f and

g as the predictor and the explainer, respectively, throughout

the paper. G is strictly constrained to be an inherently

explainable functional set, such as a set of linear functions or

decision trees. We assume that we have a distance function

d : X × Y → R≥0 such that d(y, ŷ) = 0 ←→ y = ŷ, which

measures the point-wise similarity between two probability

distributions in Y and can be used to optimize f and g.

Instead of learning a post hoc white-box model, we learn

a model that is explainable from the start and then let

this explainer model guide the predictor. We use the Pre-

Hoc Explainable Predictive Framework, where the white box

model regularizes the black box model for higher fidelity

(Figure 1).

IV. EXPERIMENTS

We evaluate the performance of our approach on the grasp-

ing dataset obtained from Shadow’s Smart Grasping System

[22] simulation with ROS [25] and Gazebo [26] environment

using the Smart Grasping Sandbox [22], depicted in Figure

2, and containing three 3-DOF fingers. The dataset has been

annotated with an objective grasp of consistency and contains

1995
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Fig. 2: Shadow Robot in the Smart Grasping Simulation

various data obtained from the joints (position, velocity, and

effort), containing about 54,000 unique data points and 29

measurements for each experiment. The classification target

is the predicted grasp robustness. Moreover, the output is

discretized to 1 for a stable grasp and 0 for an unstable

grasp. A grasp is considered stable if the robustness value

exceeds 100.

A. Data Preprocessing

The discretization process can be defined as a function D
that maps each robustness value r to a discrete label l, as

follows:

D(r) =

{
0 if r < 100

1 if r ≥ 100

The dataset Z is normalized to standardize the feature

values, ensuring that each feature contributes equally to the

analysis.

Therefore, for every element r in Z, we apply D to obtain a

binary label indicating whether the grasp robustness is below

or above a threshold of 100, effectively categorizing the

data into two classes: less robust (0) and more robust (1).

This process simplifies the target for predictive modeling,

focusing on the binary classification of grasp robustness.

B. Experimental Setup and Evaluation

The dataset was randomly divided into training, validation,

and test sets with an 80:10:10 ratio. Model performance

and fidelity were assessed using AUC on the validation and

test datasets after training with a learning rate of 0.001 and

L2 regularization until validation accuracy stabilized for at

least ten epochs. We used the Area under the ROC Curve
AUC( fθ, ŷ) as our primary metric for classification accuracy,

and Fidelity as our transparency metric. Fidelity reflects the

descriptive accuracy of our explanation method against the

black-box classifier [27]. It is measured by computing the

AUC between the original black-box predictions and the ex-

plainer model’s predictions AUC( fθ,gφ), with the explainer

model.

Our approach was benchmarked against a black-box (BB)

version using Factorization Machines, while the white-box

(WB) model was implemented as a sparse logistic regression

model for its inherent explainability. We adopted PyTorch

for implementation, leveraging Adam [28] for optimization

and binary cross-entropy for loss calculation. The models

were trained with a batch size of 2056, and λ1 was varied

across 0.05, 0.01, 0.1, 0.25, 0.5, 1 to determine the optimal

regularization weight via a validation set. The final evaluation

was conducted by retraining the models with their optimal

configurations and assessing them on the test set.

V. RESULTS

A. Ablation Study

We did an ablation study to compare the regularized black-

box (Pre-hoc Predictor) and the non-regularized black-box

(BB Predictor) in Table II. The explainer model used was

a white-box (WB) model, while the predictor model was a

black-box (BB) model. In Table II, the BB Predictor and

Pre-hoc Predictor models showed similar accuracy scores

with almost no differences in AUC. Also they maintained

a higher AUC score compared to the WB Explainer model,

indicating better prediction accuracy. In terms of fidelity,

which measures the explainer’s accuracy in mimicking the

black-box model’s decisions, while maintaining the same

accuracy score Pre-hoc Predictor showed 4.3% increase on

fidelity. The Pre-hoc BB over regularized model achieved the

highest score 0.9560 which is approximately 27% increase,

significantly outperforming other models, see Figure 3 (b).

This suggests that while the Pre-hoc BB model has the

best predictive and explainer performance, the Pre-hoc BB

over-regularized model offers the most reliable explanations,

highlighting a trade-off between prediction accuracy and

explainability fidelity.

TABLE II: Model comparison in terms of prediction accu-

racy and fidelity of explainability. The explainer is the white-

box model, BB is the predictor black-box model. The best

results are in bold. Higher AUC and Fidelity is better.

Dataset Grasping

Model AUC ↑ Fidelity ↑
Explainer WB 0.8080 -

Predictor BB 0.8340 0.7532

Pre-hoc BB λ=0.01 0.8327 0.7860

Pre-hoc BB λ=0.05 0.8242 0.8718

Pre-hoc BB λ=0.1 0.8120 0.9560

B. Transparency and Accuracy Trade-off

The experiments collectively highlight the inherent chal-

lenge in optimizing both model accuracy and transparency,

suggesting that enhancing one aspect can often lead to com-

promises in the other. This trade-off is critical in developing

and evaluating intelligent systems, where both accuracy and

explainability are essential for trust and reliability.

Specifically, Figure 3 shows that from λ = 0.1, the AUC

decreased 0.834, for λ = 1 to 0.812, but fidelity improved
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(a) (b)

Fig. 3: Experimental Results in Accuracy AUC all models (a) and Fidelity AUC for Pre-hoc Predictor (b) for different λ’s.

Pre-hoc Predictor is the regularized predictor model, BB is the baseline black-box predictor model, WB is the explainer

model.

from 0.753 to 0.956, which is approximately a 27% in-

crease, showcasing a substantial gain in model transparency

at a modest cost to accuracy. Thus, the ability to adjust

the λ value accuracy and transparency demonstrates our

framework’s flexibility in balancing the tradeoff. In fact, we

obtain a good balance at λ=0.05, where the AUC accuracy

and fidelity achieve favorable scores of 0.82 and 0.87,

respectively.

C. Global Explainability

Global explainability addresses the need to understand

a machine learning model’s decision-making on a broad

level, containing the entire model rather than individual

predictions. The top 10 features from the Pre-hoc framework,

as shown in Figure 4, indicate the relative importance of each

feature and its contribution to predicting grasp robustness.

Figure 4 shows that the most influential feature is H1F3J2e f f ,

joint 2’s effort in finger 3, which increases the model score

by 0.5. It shows a strong positive correlation, suggesting a

significant impact on grasp stability. In contrast, H1F2J2e f f
joint 2 effort in finger 2 demonstrates a negative influence

on robustness by decreasing the model score by 0.25. Also,

effort (e.g., torque) consistently has more effect on grasping

results than the grasping velocity. This disparity in feature

impact highlights the complex interaction between joint

effort and velocity in determining the successful execution of

a grasp. The analysis of these top features not only provides

insights into the decision of the grasping process but also

reinforces the value of explainable AI in enhancing our

understanding.

VI. CONCLUSION

We demonstrated the integration of a pre-hoc explainabil-

ity framework using Factorization Machines for enhancing

the explainability of machine learning models in autonomous

Fig. 4: Top 10 Feature Importance: Global explanation from

the Pre-hoc framework, showing that increased effort exerted

in Joint 2 of Finger 3 contributes tremendously to producing

grasp failure, which is in contrast to increased efforts exerted

at joint 2 of Fingers 1 and 2 and at joint 1 of Finger 3, that

lead to reducing grasp failure.

robotic grasping systems. Through experiments and analysis,

we have illustrated the inherent trade-off between accu-

racy and transparency, revealing that increased regulariza-

tion can significantly enhance model fidelity without sub-

stantially compromising predictive accuracy. This research

contributes valuable insights into the optimization of au-

tonomous decision-making processes, offering a pathway to

more interpretable and user-trustworthy intelligent systems.

The current work has several limitations. Common ex-

plainable AI techniques often prioritize model-internal ex-

planations, overlooking the valuable insights that domain

experts or end-users can provide. So, one of the main limi-

tations is that explanations are only model-internal. Another

limitation is that only feature importance scores are used,

which is the most commonly used explanation format. Future
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work should explore methods for integrating domain knowl-

edge and feedback into the explanation generation process,

ensuring that the explanations are meaningful relative to

domain-specific requirements and user expectations.
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