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Abstract—Despite ongoing efforts to make black-box machine
learning models more explainable, transparent, and trustworthy,
there is a growing advocacy for using only inherently inter-
pretable models for high-stake decision making. For instance,
post-hoc explanations have recently been criticized because they
learn surrogate white-box (explainer) models that, while op-
timized to approximate the original predictive model, remain
different from the latter. Moreover, the post-hoc models neces-
sitate a post-hoc training phase at prediction time, that adds
to the computational burden. In this paper, we propose two
novel explainability approaches that make black-box models
more explainable, which we call pre-hoc explainability and co-
hoc explainability. Our goal is to maintain the black-box model’s
prediction accuracy while benefiting from the explanations that
come with an inherently interpretable white-box model, and
without the need for a post-hoc training phase at prediction time.
In contrast to post-hoc methods, the black-box model training
phase is guided by explanations that are used as a regularizer.
Our experiments demonstrate the advantages of our proposed
technique on three real-life datasets, in terms of fidelity, without
compromising accuracy.

Index Terms—Explainability in Artificial Intelligence, XAI

I. INTRODUCTION

Machine learning models are increasingly being used to sup-

port decision-making in various fields, from personalized med-

ical diagnosis to credit risk assessment and criminal justice.

However, the increasing reliance on powerful black-box mod-

els raises concerns about their transparency, interpretability,

and trustworthiness [1] [2] [3]. The ability to understand why

a model made a particular prediction is crucial to supporting

auditing models, detecting potential biases and errors, and, in

turn, supporting model accountability and fairness.

Several approaches have been proposed to explain black-box

models, ranging from local methods that provide explanations

for individual predictions to global methods that aim to capture

the model’s overall behavior. Post hoc explanations, such

as LIME (Local Interpretable Model-Agnostic Explanations)

[4], SHAP (Shapley Additive Explanations) [5], and Grad-

CAM (Gradient Weighted Class Activation Mapping) [6], have

gained popularity in recent years as a way to explain black-

box models by perturbing the input data and learning a sur-

rogate model that approximates the original model’s behavior

locally. Although these methods can be effective in generating

explanations, they have been criticized for several reasons.

First, the explanations may not reflect the true mechanisms

of the original model, but rather a simplified version that is

easier to interpret [7]. Second, the surrogate model may not be

faithful to the behavior of the original model in some cases,

leading to potentially misleading explanations and being open

to adversarial attacks [8]. Third, the perturbation of the input

data can alter the semantics of the features, rendering the

explanations invalid or misleading and unstable explanations

that arise with models already trained [9] [10].
To address these limitations, some researchers have pro-

posed the use of inherently interpretable models, such as

decision trees or linear models, instead of black-box models

for high-stakes decision-making [11]. However, this approach

may come at the cost of reduced prediction accuracy, as

interpretable models may not be able to capture the complexity

of some datasets as well as black-box models. Moreover, the

use of interpretable models does not solve the problem of

explaining black-box models that are already in use.
In this paper, we propose two novel approaches to enhancing

the explainability of black-box models, which we call pre-
hoc explainability and co-hoc explainability. Our approach

aims to incorporate explanations derived from an inherently

interpretable white-box model into the original model’s learn-

ing stage without compromising its high prediction accuracy.

Unlike post-hoc explanations, our approach does not rely

on input perturbation or secondary model learning and thus

avoids the potential pitfalls of surrogate modeling. Instead, we

leverage the insights provided by a white-box model to guide

the training of the black-box model in a way that preserves

its accuracy while enhancing its global interpretability. We

show that our approach outperforms traditional black-box and

white-box models on several benchmark datasets and offers a

promising direction for making machine learning models more

transparent and trustworthy. Our contributions are summarized

below:

• We propose two novel approaches to enhancing the
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explainability of black-box models, called pre-hoc ex-
plainability and co-hoc explainability, which leverage the

insights provided by an inherently interpretable white-

box model to guide the training of the black-box model

in a way that preserves its accuracy while enhancing its

interpretability.

• Unlike post-hoc explanations, our approaches do not rely

on input perturbation or post-secondary model learning,

and thus avoid the potential pitfalls of surrogate modeling.

This makes it more scalable, robust, and reliable in

practice.

• We demonstrate the effectiveness of our approaches on

several real-world benchmark datasets, showing that it

outperforms traditional black-box in terms of fidelity.

• We provide a theoretical analysis of our approaches,

showing that it can be seen as a form of regularized

learning that balances the trade-off between accuracy and

interpretability.

II. RELATED WORK

The majority of the existing work on explainable AI has

focused on either developing post hoc explanation methods for

black-box models or building models that are explainable by

design. Post-hoc techniques analyze trained models to provide

explanations for individual predictions [5] [4] [12], either with

model-specific methods based on input perturbations or model-

agnostic explainer models. However, post hoc approaches

have been criticized for potential discrepancies between the

explainer and the black-box model [8] [13]. On the other

hand, model-specific explainability has its own limitations as

it requires individual methods and implementations for each

different black-box model.

In contrast, research on enhancing explainability through

model training is more limited. Only a few methods have

explored using interpretable models to directly guide black-

box training for higher explainability. Using tree regularization

[14] to train deep time-series models, with the aim of human-

simulability [15]. Other works proposed training models with

latent explainability, but they still rely on post hoc explanations

[16] [17]. An alternative approach is to use a game-theoretic

approach between predictor and explainer [18], [19]. By using

a cooperative game, they optimize the explainer for locality,

specifically for sequential data. [20] used a regularization

approach to nudge black-box models toward relying more on

interpretable features, but their explanations remain post-hoc,

specifically optimized for LIME’s neighborhood-based fidelity,

which has to be computed at prediction time. In fact, their goal

is to improve the quality of post-hoc explanations of the model,

thus they do not attempt to solve the same problem as ours,

as we do not rely on post-hoc explanations. Another line of

work designed to learn the latent concept-based explanations

implicitly during training, which eliminates the requirement

of post-hoc explanation generation techniques [21]. Because

the concepts must be learned using either external annotation

or self-supervision, e.g. using auto-encoders from the input

features, this approach is limited to special input types like

images or domains with available external supervision.
Overall, research on enhancing model explainability high-

lights the need for further work on optimization during train-
ing, and model-agnostic methods to improve global explain-

ability. Our approach addresses this need by directly injecting

global interpretability into black-box learning, at training time,

through an interpretable explainer model, that does not require

additional post-hoc computation at prediction time.

Fig. 1: Proposed Explainability Frameworks

III. PROBLEM FORMULATION

Let S = {(xi,yi)}N
i=1 ⊂ Z be a sample from a distribution D

in a domain Z = X ×Y , where X is the instance and Y is the

label set. We learn a differentiable predictive function f ∈ F :

X → Y together with a transparent function g ∈ G : X → Y
defined over a functional class G . We refer to functions f and g
as the predictor and the explainer, respectively, throughout the

paper. G is strictly constrained to be an inherently explainable

functional set, such as a set of linear functions or decision

trees. We assume that we have a distance function d : X ×Y →
R≥0 such that d(y, ŷ) = 0←→ y= ŷ, which measures the point-

wise similarity between two probability distributions in Y and

can be used to optimize f and g.
Our idea is, instead of learning a post hoc white-box

model, to learn a model that is explainable from the start and

then let this explainer model guide the predictor model. To

accomplish this goal, there are several ways. We design two

different frameworks; (1) A Pre-Hoc Explainable Predictive

Framework, where the white box model regularizes the black

box model for optimized fidelity and (2) A Co-hoc Explainable

Predictive Framework, where white-box and black-box models

are optimized simultaneously with a shared loss function that

enforces fidelity. See Figure 1.
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IV. PROPOSED EXPLAINABILITY FRAMEWORKS

In this section, we define our fidelity objective function and

show two different implementations to enforce fidelity and

present them as two novel frameworks, as stated in Section

III problem formulation.

We use the explainer function g ∈ G to guide the predictor

f by means of distance measures globally. We define global

interpretability by measuring how close f is to a family G
over N number of batches in point-wise fashion, see Figure 2.

A. Enforcing Fidelity

Definition 1 (Fidelity Objective Function). Given an inher-
ently interpretable white-box model g with parameters φ, let
its predictions result in a probability distribution pφ. Given
the black-box, f with parameters θ, let its predictions result in
probability distribution pθ over K classes y∈Y = {1,2, ..,K}.
We propose a fidelity objective function, which measures the
point-wise probability distance between pφ and pθ, which are
respectively the outputs of g and f for all given input data X .
Our global distance metric is as follows:

min
f∈F

1

N

N

∑
i=1

D( f (xi) ,g(xi)) , (1)

where function D is a divergence distance measurement,
Jensen-Shannon divergence [22]. We aim to use DJS, Jensen-
Shanon divergence, to measure the point-wise deviation of the
predictive distributions fθ and gφ.

Denote by P the set of probability distributions. Kullback-

Leibler divergence (KL). KL : P ×P → [0,∞] is a fundamental

distance between probability distributions in D [23], defined

by:

DKL(p||q) :=
∫

p log
p
q

dμ, (2)

where p and q denote probability measures P and Q with

respect to μ.

Let p,q ∈ ΔK−1 have the corresponding weights π =
[π1,π2]

T ∈ Δ. Then, the Jensen-Shannon divergence between

p and q is given by

DJS (p,q) := H(m)−π1H (p)−π2H (q)

= π1DKL (p‖m)+π2DKL (q‖m) ,
(3)

with H the Shannon entropy, and m = π1 p+ π2q. Unlike

the Kullback-Leibler divergence (DKL (p‖q)), JS is symmetric,

bounded, and does not require absolute continuity.

The fidelity objective function, LJSD, is calculated using the

Jensen-Shannon divergence (JS), as follows:

LJS

(
x1:N , fθ,gφ

)
:= DJS(ŷφ, ŷθ) (4)

LJS

(
x1:N , fθ,gφ

)
:=

1

2
(DKL(ŷφ ‖ (ŷφ + ŷθ)

2
)

+DKL(ŷθ ‖ (ŷφ + ŷθ)

2
))

(5)

Our goal is to learn the black-box predictive model fθ to

optimize fidelity to an inherently explainable gφ.

Substituting Eq. 2 into LJS (Eq. 5), we obtain:

LJS(ŷφ ‖ ŷθ) =
1

2
(

N

∑
i=1

ln

(
ŷφ

ŷθ

)
ŷφ

+
N

∑
i=1

ln

(
ŷθ

ŷφ

)
ŷθ)

(6)

Our proposed fidelity objective function has three distinct

regularization properties that we explain below.

a) Bounded Regularizer: The Jensen–Shannon diver-

gence distance is always bounded, i.e.,

0 ≤ JS(p : q)≤ log2, (7)

Since the square root of the JS yields a metric distance

satisfying the triangular inequality [24]. Thus, lower and upper

bounds become

0 ≤ DJS(p : q)≤
√

log2. (8)

b) Symmetry Preserving Regularizer: The Jensen Shan-

non divergence is symmetric w.r.t. two input variables if

swapping them does not change the distance. For instance, DJS

is symmetric w.r.t. p and q if and only if DJS(p;q) = DJS(q; p)
for all values of p and q. JS is symmetry preserving if the

corresponding weights π = [π1,π2] are selected as π =
[

1
2 ,

1
2

]
.

c) Differentiable Regularizer: Our fidelity loss imple-

ments a differentiable regularizer to enforce fidelity between

the predictor model and the explainer model, which is used to

derive explanations for the predictor model. The regularizer

is based on the Jensen-Shannon divergence (JS) between

the probability distributions of the explainer model and the

predictor model outputs.

Thus, the regularizer is differentiable, which means that it

can be easily incorporated into the training process of the

predictor model using standard backpropagation techniques.

By minimizing the JS between the two distributions, the regu-

larizer encourages the predictor to produce similar probability

distributions to the explainer model, thereby ensuring that

the explanations derived from the explainer model are more

accurate and trustworthy.

B. Pre-hoc Explainability Framework

We formulate the framework in Figure 1 (a) into a modified

learning objective to obtain the Pre-hoc explainability as

follows

LPre−hoc = LBCE +λ1DJS +λ2L2, (9)

where LBCE is the binary cross-entropy loss, λ1 is an ex-

plainability regularization coefficient that controls the smooth-

ness of the new representation and the trade-off between

explainability and accuracy, while λ2 coefficient for standard

L2 regularization of model parameters θ that aims to avoid

overfitting and exploding gradients.

Authorized licensed use limited to: University of Louisville. Downloaded on January 09,2025 at 15:34:42 UTC from IEEE Xplore.  Restrictions apply. 



��� ����	 
�	 �


������� ����� ��������� ���������� ����� 
� ���

�� ���������� ����������� �
 �� �� ����  �������


� ��! "
�

�
 ��! "��

#��$��������

"��

"
�


� ��! "
�

�
 ��! "��

"��

"
�


� ��! "
� 
� ��! "
� ����������

������������
 ��! "�� �
 ��! "��

Fig. 2: Training Phase of Co-hoc Explainability Framework

LPre−hoc(θ,φ,X ,y,) =
1

N

N

∑
i=1

−yθ log(ŷθ)+(1− yθ) log(1− ŷθ)

︸ ︷︷ ︸
Predictor Accuracy

+λ1
1

2
(

N

∑
i=1

ln

(
ŷφ

ŷθ

)
ŷφ +

N

∑
i=1

ln

(
ŷθ
ŷφ

)
ŷθ)

︸ ︷︷ ︸
Fidelity

+ λ2 ∑
i

θ2
i︸ ︷︷ ︸

L2 Regularization

,

(10)

L consists of cross-entropy loss and a fidelity regularization

term along with a L2 regularization term.

Since the explanation e is provided by the white box model

that is inherently interpretable, the transparency is considered

high when the explanatory white box model outputs ŷφ are

similar to the regularized model outputs ŷθ. This is captured

by DJS, which is term 2, Fidelity, in the proposed objective

function, LPre-hoc (eq. 9). While the objective function is

to learn the predictions, we give greater importance to the

predictions that are similar to the white-box predictions and

penalize those that are not similar.

C. Co-hoc Explainability Framework

We formulate this framework (Figure 2) into a modified

learning objective to obtain the Co-hoc explainability as fol-

lows

Definition 2 (Co-hoc Fidelity Objective Function). Given an
inherently interpretable white-box model g with parameters
φ, let its predictions result in a probability distribution pφ

and given the black-box model f with parameters θ, let its
predictions result in probability distribution pθ over K classes
y∈Y = {1,2, ..,K}. We propose a Co-Learning Explainability
Framework, where fθ and gφ are jointly learned, given pφ

and pθ, respectively, as inputs. We use an added distance
function (eq. 1) as a regularization for the objective function
to guide the co-learning process. Our global distance metric
is the same as the Definition 1, and the combined Co-hoc loss
function is given by

LCo−hoc(θ,φ,X ,y,) =
1

N

N

∑
i=1

−yn log(ŷθn)+(1− yn) log(1− ˆyθn)

︸ ︷︷ ︸
Predictor Accuracy

+
1

N

N

∑
i=1

−yn log
(
ŷφn

)
+(1− yn) log

(
1− ˆyφn

)
︸ ︷︷ ︸

Explainer Accuracy

+λ1
1

2
(

N

∑
i=1

ln

(
ŷφ

ˆyθn

)
ŷφn +

N

∑
i=1

ln

(
ˆyθn

ŷn

)
ˆyθn)

︸ ︷︷ ︸
Fidelity

+ λ2 ∑
i

θ2
i︸ ︷︷ ︸

Regularization 1

+ λ3 ∑
i

φ2
i︸ ︷︷ ︸

Regularization 2

,

(11)

which contains binary cross-entropy and fidelity regulariza-
tion terms, along with other regularization terms; Regulariza-
tion 1 discourages exploding gradients, and Regularization 2
encourages the sparsity of the explainer model.

The primary distinction between Co-hoc and Pre-hoc lies in

the joint optimization of predictor fθ and explainer gφ through

simultaneous stochastic gradient descent with mini-batches,

see Figure 2.

V. EXPERIMENTS

We conduct experiments that aim to answer the following

research questions:

RQ1: Can we maintain an accuracy that is higher than the

explainer model even if it is lower than the baseline BB

predictor model; while having explanations from gφ (since gφ
was used to guide fθ?)

RQ2: How good is our regularized predictor model fθ at

mimicking the explainer model gφ?

RQ3: How does λ1 affect the fidelity and accuracy trade-off?

RQ4: What are the differences between the pre-hoc and co-

hoc frameworks?
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A. Experimental Settings

a) Datasets: We experimented with three publicly ac-

cessible real-world datasets. All three datasets used in a

binary classification setting. Movielens 100k movie ratings,

has 100,000 ratings based on 1000 users on 1700 movies.

MovieLens 1M movie ratings, has 1 million ratings based on

6000 users on 4000 movies. For Movielens datasets [25], the

classification target is the movie rating. Our goal is to learn

like or dislike a movie. The target is discretized into liked and

disliked; 1 is the class label for a rating of 3 and above; 0

is the class label for a rating of less than 3. FICO HELOC

dataset [26] contains 10,459 anonymized information about

home equity line of credit (HELOC) applications made by real

homeowners. The target variable is risk performance, which

predicts whether the homeowner qualifies for a line of credit

or not.

b) Evaluation Protocols: To assess the classification ac-

curacy, we use the Area under the ROC Curve, AUC( fθ, ŷ).

Each dataset is split randomly into training, validation, and test

sets in the ratio 80:10:10. After training on every batches with

a learning rate of 0.001, AUC is calculated on the validation

and test datasets. We measure all the metrics on a held-out

test set. All models are trained with L2 regularization until

validation accuracy is stabilized for at least ten epochs.

Fidelity, also known as descriptive accuracy [27], measures

how accurately an explanation method can mimic the behavior

of a black-box classifier in terms of assigning class labels

to data records. We use AUC( fθ, gφ) to evaluate the fidelity.

Our baseline for fidelity is the AUC of the original black-

box predictor model and the explainer model, which can also

be considered as a post-hoc explainability score without any

optimization.

c) Baselines: We compared our Pre-hoc and Co-hoc

predictor models with their original black-box (BB) version.

The black-box model is Factorization Machines [28] as it is

widely used for classification, regression, and recommendation

tasks. The explainer white-box model (WB) is a sparse logistic

regression model, which is inherently explainable, and thus

provides the explanation.

d) Parameter Settings: We implemented our proposed

methods based on PyTorch. All models are learned by opti-

mizing the binary cross entropy and with Adam [29], which

is an extension to stochastic gradient descent. Batch size is

selected as 64,2056,64 respectively, for ML-100K, ML-1M,

and HELOC datasets, which are the optimal batch size for

each dataset. We tested λ1 for {0.01, 0.1, 0.25, 0.5, 0.75, 1}.

The regularization weight of the loss function is estimated

using a mini-batch. We pick the best regularization weight

for each dataset using the validation set and use that for the

final evaluation. The final evaluation is done by retraining the

models using their chosen configurations and evaluating them

on the test set.

TABLE I: Model comparison in terms of prediction accuracy

and fidelity of explainability on the three real-world datasets,

two interaction datasets, ML100k and ML1M, and one tabular,

HELOC dataset. All evaluation metrics are computed with,

respectively, for datasets λ1 = 0.75,0.5,1 and batch size n =
64,2056,64. The explainer is the white-box model, BB is the

predictor black-box model. The best results are in bold. Higher

AUC and Fidelity is better.

Dataset ml-100k ml-1M HELOC

Model AUC Fidelity AUC Fidelity AUC Fidelity

Explainer WB 0.7655 - 0.7882 - 0.7616 -

Original BB 0.7784 0.8287 0.8078 0.8875 0.7703 0.7728

Pre-hoc BB 0.7801 0.9094 0.8033 0.9404 0.7698 0.8454

Co-hoc BB 0.7816 0.9194 0.8036 0.9484 0.7743 0.8572

VI. RESULTS AND DISCUSSION

RQ1: For the predictor model fθ, can we maintain an
accuracy that is higher than the explainer model gφ if
lower than the original f ; while having explanations from
gφ (since gφ was used to guide the fθ)?

The experimental results in Table I, Figure 3, Figure 4

provide insights into this question. Comparing the accuracy

scores between the predictor model and the explainer model,

we observe that the predictor model for both Pre-hoc predictor

and Co-hoc predictor consistently achieves significantly higher

accuracy scores than the explainer model gφ (p-value < .05),

even with the λ1 = 1, which is the highest coefficient for

optimizing fidelity, for each dataset and the both proposed

models.

These results clearly demonstrate that the proposed Pre-hoc

and Co-hoc predictors maintain higher accuracy compared to

the explainer model gφ baseline while achieving improved

fidelity in mimicking the behavior of the explainer model gφ.

RQ2: How good is our regularized predictor model fθ
in mimicking the explainer model gφ?

On the ml-100k dataset, Pre-hoc predictor and Co-hoc

predictor achieve fidelity scores of 0.9094 and 0.9194, re-

spectively, 9.7% and 10.9% increase by outperforming the

original black-box predictor fidelity score of 0.8287. This

indicates that the proposed models better capture the behavior

of the explainer model compared to the baseline predictor

model. Similarly, on the ml-1M dataset, Pre-hoc predictor

and Co-hoc predictor achieve a fidelity score of 0.9404 and

0.9484, outperforming the original fidelity score of 0.8875 by

improving 5.9% and 6.8%. Moreover, in the HELOC dataset,

improvement in the fidelity score is respectively, 9.3% and

10.9% for Pre-hoc predictor and Co-hoc predictor.

In summary, the experimental findings support the notion

that the proposed models, Pre-hoc and Co-hoc predictors,

are more successful in mimicking the behavior of the ex-

plainer model compared to the baseline black-box model. This

demonstrates the effectiveness of the proposed techniques in
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enhancing the fidelity of the predictor model while maintaining

high accuracy.

Importantly, these improvements in fidelity are achieved

without any decrease in the accuracy score. The proposed

predictor models maintain a similar level of accuracy

compared to the original black-box predictor. The trade-off

between fidelity and accuracy will be explored and discussed

further in the next research question.

RQ3: How does lambda affect the fidelity and accuracy
trade-off?

As we can see in Table II, the regularization hyperparameter

λ1 plays a crucial role in balancing the fidelity and accuracy

trade-off in our models. A value of λ1 = 0 indicates that there

is no regularization of the fidelity, while λ1 = 1 signifies an

equal weight of the fidelity and accuracy in the objective

function. The impact of λ on the results is noteworthy. When

λ1 is set to 0.01 and 0.1, there is no noticeable difference in

the Fidelity AUC metric across all datasets. However, as we

increase the value of λ1, we observe a consistent improvement

in the fidelity results. In particular, when λ1 is set to 1, we

achieve almost perfect fidelity scores, indicating a high level of

agreement between the explainer model gφ and the regularized

predictor model fθ. This demonstrates the effectiveness of

the regularization approach in mimicking the behavior of the

explainer model.

In the Pre-hoc Explainability Framework, for the ml-100k

dataset, the accuracy values remain relatively stable across

different λ1 values, ranging from 0.7840 to 0.7740. On the

other hand, the fidelity values gradually increase as λ1 in-

creases, starting from 0.8207 and reaching a peak at λ=1.0

with a fidelity value of 0.9410, which is a 14.6% increase. This

suggests that higher λ1 values in the Pre-hoc framework result

in more faithful explanations without significantly sacrificing

accuracy.

Similarly, for the ml-1M dataset, the accuracy values are rel-

atively consistent, with the highest accuracy, 0.8076, observed

at λ1= 0.25. On the other hand, the fidelity values show an

increase of at most 12. 3% when the value of λ1 increases,

ranging from 0.8769 to 0.9856. λ1=1.0 achieves the highest

fidelity, indicating that the Pre-hoc framework with a higher

λ1 value captures more accurate and informative explanations.

In the HELOC dataset, the accuracy values range from

0.7591 to 0.7719 across different λ1 values. As λ1 increases,

the fidelity values also exhibit an upward trend, starting from

0.7482 and reaching a peak at λ=1.0 with a fidelity value

of 0.8454. This suggests that the Pre-hoc framework with

higher λ values enhances the fidelity of the explanations while

maintaining comparable accuracy.

Similarly, in the Co-hoc Explainability Framework; for the

ml-100k dataset, the accuracy values remain relatively stable,

ranging from 0.7840 to 0.7766. The fidelity values show a

gradual increase with increasing λ1, starting from 0.8215 and

reaching the highest fidelity of 0.9492 at λ1=1. This suggests

that the Co-hoc framework with a moderate λ value achieves

better fidelity without compromising accuracy significantly.

In the ml-1M dataset, the accuracy values are consistent

across different λ1 values, ranging from 0.8075 to 0.7924. On

the other hand, the fidelity values show an increase of 12. 5%,

starting at 0.8771 and reaching the highest fidelity of 0.9868 at

λ1=1. This indicates that the Co-hoc framework with higher λ
values captures more faithful explanations while maintaining

comparable accuracy.

In the HELOC dataset, the accuracy values range from

0.7591 to 0.7743 across different λ1 values. As λ1 increases,

the fidelity values also exhibit an upward trend with a 14.5%

increase, starting from 0.7482 and reaching the highest fidelity

of 0.8572 at λ1=1. This suggests that the Co-hoc framework

with higher λ1 values improves the fidelity of the explanations

while maintaining similar accuracy levels.

Overall, the analysis of the experimental results shows

that increasing λ1 values lead to improvements in fidelity,

TABLE II: Proposed Explainability Frameworks, λ1 comparison in prediction accuracy (AUC)

and explainability (Fidelity) on the three datasets that were described in experimental settings.

Higher AUC and Fidelity is better.

Framework Dataset Metric λ = 0.01 λ = 0.1 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

Pre-hoc

ml-100k
AUC 0.7840 0.7845 0.7849 0.7841 0.7801 0.7740

Fidelity 0.8207 0.8283 0.8430 0.8755 0.9094 0.9410

ml-1M
AUC 0.8075 0.8079 0.8076 0.8033 0.7954 0.7896

Fidelity 0.8769 0.8871 0.9058 0.9404 0.9696 0.9856

HELOC
AUC 0.7591 0.7611 0.7648 0.7699 0.7720 0.7719

Fidelity 0.7482 0.7541 0.7664 0.7903 0.8137 0.8454

Co-hoc

ml-100k
AUC 0.7840 0.7845 0.7852 0.7849 0.7816 0.7766

Fidelity 0.8215 0.8326 0.8507 0.8869 0.9194 0.9492

ml-1M
AUC 0.8075 0.8079 0.8077 0.8036 0.7968 0.7924

Fidelity 0.8771 0.8901 0.9122 0.9484 0.9749 0.9868

HELOC
AUC 0.7591 0.7612 0.7651 0.7707 0.7736 0.7743

Fidelity 0.7482 0.7563 0.7705 0.7767 0.8277 0.8572
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(a) (b) (c)

Fig. 3: Pre-hoc Explainability Framework Comparison in Accuracy AUC for different lambda on the ml-100k (a), ml-1M

(b), HELOC (c) datasets. Pre-hoc Predictor is our proposed model, BB is the original black-box predictor model, WB is the

explainer model.

(a) (b) (c)

Fig. 4: Co-hoc Explainability Framework Comparison in Accuracy AUC for different lambda on the ml-100k (a), ml-1M (b),

HELOC (c) datasets. Co-hoc Predictor is our proposed model, BB is the original black-box predictor model, and WB is the

explainer model.

indicating more accurate and faithful explanations with

accuracy values remaining relatively stable or showing

marginal variations across different λ1 values. The optimal

balance between accuracy and fidelity may vary depending on

the dataset and the specific requirements of the explainability

framework.

RQ4: What are the differences between the pre-hoc and
co-hoc frameworks?
For comparing the two proposed frameworks, we consider

accuracy, fidelity, and lambda sensitivity properties aspects.

Accuracy: In terms of prediction accuracy, both frameworks

generally perform similarly across the evaluated datasets.

In most cases, the accuracy values are comparable, with

only slight variations observed. For example, in the ml-100k

dataset, both frameworks achieve accuracy values around 0.78.

Similarly, in the ml-1M and HELOC datasets, both frame-

works achieve similar accuracy values with slight differences.

Fidelity: The fidelity of the Co-hoc framework tends to

be consistently higher compared to the Pre-hoc framework.

Across all datasets, the Co-hoc framework achieves higher

fidelity scores, indicating that it better approximates the be-

havior of the explainer model. For instance, in the ml-100k

dataset, the fidelity of Co-hoc ranges from 0.8215 to 0.9492,

whereas Pre-hoc ranges from 0.8207 to 0.9410. The same

trend applies to other datasets as well, see Table II.

Lambda Sensitivity: Both frameworks exhibit sensitivity

to the choice of λ. The performance in terms of accuracy and

fidelity can vary depending on the specific value of λ used.

The optimal value of λ that maximizes the trade-off between

fidelity and accuracy may differ between the two frameworks

and across different datasets.

Overall, the Co-hoc Explainability Framework consistently

demonstrates higher fidelity than the Pre-hoc Framework,

while the differences in prediction accuracy between the two

frameworks are relatively minor. This suggests that the Co-

hoc approach, which jointly optimizes both the predictor

model and explainer model, has the potential to approximate

the mechanisms of the original model better and provide

more accurate explanations. However, further analysis and

experimentation are needed to fully understand the underlying

factors contributing to these differences and their implications
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in various contexts. One advantage of the co-hoc framework

over the pre-hoc framework is that it has a more accurate

white-box model due to the joint training phase.

VII. CONCLUSION

We proposed two novel approaches called Pre-hoc explain-

ability and Co-hoc explainability frameworks that guide black-

box predictor model training via an interpretable white-box

model to align the black-box predictor’s global logic with

the white-box explainer’s transparent reasoning rather than

extracting post-hoc approximations of the white-box’s logic.

The proposed models incorporate the fidelity for any differen-

tiable machine learning model without modifying the model

architecture. Our work addresses the lack of explainability

optimization during training and model-agnostic methods to

enhance global explainability. Our future work will include

extending our framework to produce local explanations.

The transparency of the white-box model may depend on

the quality and quantity of the training data, as well as the

complexity and heterogeneity of the underlying distribution.

In particular, if the data are noisy or biased, or if the true

relationship between the input and output variables is highly

nonlinear or ambiguous. Thus, the white-box explainer model

in our proposed framework could be easily replaced by alter-

native differentiable white-box models, such as rule-based or

sparse additive models.

Additionally, our proposed approach does not explicitly

address the issue of fairness or bias in the black-box model,

which may be exacerbated by using pre-hoc and co-hoc

explainability. Therefore, future work could explore how to

incorporate fairness and bias considerations into our approach,

develop complementary methods to mitigate these issues, and

experiment with diverse datasets.
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