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Abstract—Despite ongoing efforts to make black-box machine
learning models more explainable, transparent, and trustworthy,
there is a growing advocacy for using only inherently inter-
pretable models for high-stake decision making. For instance,
post-hoc explanations have recently been criticized because they
learn surrogate white-box (explainer) models that, while op-
timized to approximate the original predictive model, remain
different from the latter. Moreover, the post-hoc models neces-
sitate a post-hoc training phase at prediction time, that adds
to the computational burden. In this paper, we propose two
novel explainability approaches that make black-box models
more explainable, which we call pre-hoc explainability and co-
hoc explainability. Our goal is to maintain the black-box model’s
prediction accuracy while benefiting from the explanations that
come with an inherently interpretable white-box model, and
without the need for a post-hoc training phase at prediction time.
In contrast to post-hoc methods, the black-box model training
phase is guided by explanations that are used as a regularizer.
Our experiments demonstrate the advantages of our proposed
technique on three real-life datasets, in terms of fidelity, without
compromising accuracy.

Index Terms—Explainability in Artificial Intelligence, XAI

I. INTRODUCTION

Machine learning models are increasingly being used to sup-
port decision-making in various fields, from personalized med-
ical diagnosis to credit risk assessment and criminal justice.
However, the increasing reliance on powerful black-box mod-
els raises concerns about their transparency, interpretability,
and trustworthiness [1] [2] [3]. The ability to understand why
a model made a particular prediction is crucial to supporting
auditing models, detecting potential biases and errors, and, in
turn, supporting model accountability and fairness.

Several approaches have been proposed to explain black-box
models, ranging from local methods that provide explanations
for individual predictions to global methods that aim to capture
the model’s overall behavior. Post hoc explanations, such
as LIME (Local Interpretable Model-Agnostic Explanations)
[4], SHAP (Shapley Additive Explanations) [5], and Grad-
CAM (Gradient Weighted Class Activation Mapping) [6], have
gained popularity in recent years as a way to explain black-
box models by perturbing the input data and learning a sur-
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rogate model that approximates the original model’s behavior
locally. Although these methods can be effective in generating
explanations, they have been criticized for several reasons.
First, the explanations may not reflect the true mechanisms
of the original model, but rather a simplified version that is
easier to interpret [7]. Second, the surrogate model may not be
faithful to the behavior of the original model in some cases,
leading to potentially misleading explanations and being open
to adversarial attacks [8]. Third, the perturbation of the input
data can alter the semantics of the features, rendering the
explanations invalid or misleading and unstable explanations
that arise with models already trained [9] [10].

To address these limitations, some researchers have pro-
posed the use of inherently interpretable models, such as
decision trees or linear models, instead of black-box models
for high-stakes decision-making [11]. However, this approach
may come at the cost of reduced prediction accuracy, as
interpretable models may not be able to capture the complexity
of some datasets as well as black-box models. Moreover, the
use of interpretable models does not solve the problem of
explaining black-box models that are already in use.

In this paper, we propose two novel approaches to enhancing
the explainability of black-box models, which we call pre-
hoc explainability and co-hoc explainability. Our approach
aims to incorporate explanations derived from an inherently
interpretable white-box model into the original model’s learn-
ing stage without compromising its high prediction accuracy.
Unlike post-hoc explanations, our approach does not rely
on input perturbation or secondary model learning and thus
avoids the potential pitfalls of surrogate modeling. Instead, we
leverage the insights provided by a white-box model to guide
the training of the black-box model in a way that preserves
its accuracy while enhancing its global interpretability. We
show that our approach outperforms traditional black-box and
white-box models on several benchmark datasets and offers a
promising direction for making machine learning models more
transparent and trustworthy. Our contributions are summarized
below:

o« We propose two novel approaches to enhancing the
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explainability of black-box models, called pre-hoc ex-
plainability and co-hoc explainability, which leverage the
insights provided by an inherently interpretable white-
box model to guide the training of the black-box model
in a way that preserves its accuracy while enhancing its
interpretability.

« Unlike post-hoc explanations, our approaches do not rely
on input perturbation or post-secondary model learning,
and thus avoid the potential pitfalls of surrogate modeling.
This makes it more scalable, robust, and reliable in
practice.

o We demonstrate the effectiveness of our approaches on
several real-world benchmark datasets, showing that it
outperforms traditional black-box in terms of fidelity.

o« We provide a theoretical analysis of our approaches,
showing that it can be seen as a form of regularized
learning that balances the trade-off between accuracy and
interpretability.

II. RELATED WORK

The majority of the existing work on explainable Al has
focused on either developing post hoc explanation methods for
black-box models or building models that are explainable by
design. Post-hoc techniques analyze trained models to provide
explanations for individual predictions [5] [4] [12], either with
model-specific methods based on input perturbations or model-
agnostic explainer models. However, post hoc approaches
have been criticized for potential discrepancies between the
explainer and the black-box model [8] [13]. On the other
hand, model-specific explainability has its own limitations as
it requires individual methods and implementations for each
different black-box model.

In contrast, research on enhancing explainability through
model training is more limited. Only a few methods have
explored using interpretable models to directly guide black-
box training for higher explainability. Using tree regularization
[14] to train deep time-series models, with the aim of human-
simulability [15]. Other works proposed training models with
latent explainability, but they still rely on post hoc explanations
[16] [17]. An alternative approach is to use a game-theoretic
approach between predictor and explainer [18], [19]. By using
a cooperative game, they optimize the explainer for locality,
specifically for sequential data. [20] used a regularization
approach to nudge black-box models toward relying more on
interpretable features, but their explanations remain post-hoc,
specifically optimized for LIME’s neighborhood-based fidelity,
which has to be computed at prediction time. In fact, their goal
is to improve the qguality of post-hoc explanations of the model,
thus they do not attempt to solve the same problem as ours,
as we do not rely on post-hoc explanations. Another line of
work designed to learn the latent concept-based explanations
implicitly during training, which eliminates the requirement
of post-hoc explanation generation techniques [21]. Because
the concepts must be learned using either external annotation
or self-supervision, e.g. using auto-encoders from the input
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features, this approach is limited to special input types like
images or domains with available external supervision.
Overall, research on enhancing model explainability high-
lights the need for further work on optimization during train-
ing, and model-agnostic methods to improve global explain-
ability. Our approach addresses this need by directly injecting
global interpretability into black-box learning, at training time,
through an interpretable explainer model, that does not require
additional post-hoc computation at prediction time.
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Fig. 1: Proposed Explainability Frameworks

III. PROBLEM FORMULATION

Let $= {(Xi7y,-)}f£1 C Z be a sample from a distribution D
in a domain Z = X X 9, where X is the instance and ¢ is the
label set. We learn a differentiable predictive function f € ¥ :
X — 9 together with a transparent function g€ G : X —
defined over a functional class G. We refer to functions f and g
as the predictor and the explainer, respectively, throughout the
paper. G is strictly constrained to be an inherently explainable
functional set, such as a set of linear functions or decision
trees. We assume that we have a distance function d : X x )" —
R>¢ such that d(y, ) = 0 <— y =J, which measures the point-
wise similarity between two probability distributions in 9" and
can be used to optimize f and g.

Our idea is, instead of learning a post hoc white-box
model, to learn a model that is explainable from the start and
then let this explainer model guide the predictor model. To
accomplish this goal, there are several ways. We design two
different frameworks; (1) A Pre-Hoc Explainable Predictive
Framework, where the white box model regularizes the black
box model for optimized fidelity and (2) A Co-hoc Explainable
Predictive Framework, where white-box and black-box models
are optimized simultaneously with a shared loss function that
enforces fidelity. See Figure 1.
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IV. PROPOSED EXPLAINABILITY FRAMEWORKS

In this section, we define our fidelity objective function and

show two different implementations to enforce fidelity and
present them as two novel frameworks, as stated in Section
I problem formulation.

We use the explainer function g € G to guide the predictor

f by means of distance measures globally. We define global

interpretability by measuring how close f is to a family G

over N number of batches in point-wise fashion, see Figure 2.

A. Enforcing Fidelity

Definition 1 (Fidelity Objective Function). Given an inher-
ently interpretable white-box model g with parameters ¢, let

its predictions result in a probability distribution p®. Given

the black-box, f with parameters 0, let its predictions result in

probability distribution p® over K classes y € Y ={1,2,..,K}.
We propose a fidelity objective function, which measures the
point-wise probability distance between p® and p®, which are

respectively the outputs of g and f for all given input data X.
Our global distance metric is as follows:

(xi)), (1

mm—
fefN

ZD

where function D is a divergence distance measurement,

Jensen-Shannon divergence [22]. We aim to use Dys, Jensen-
Shanon divergence, to measure the point-wise deviation of the
predictive distributions fo and g.

Denote by P the set of probability distributions. Kullback-
Leibler divergence (KL). KL : P x P — [0,0] is a fundamental

distance between probability distributions in D [23], defined
by:

DxL(pllq) :== /plogg du, 2)

where p and q denote probability measures P and Q with
respect to u.

Let p,q € AK7! have the corresponding weights m =
[nl,ng]T € A. Then, the Jensen-Shannon divergence between

p and q is given by

Dis (p,q) :=H(m) —mH (p) —mH (q)
= m Dgy (p|lm) + mDk1. (¢]|m) ,

with H the Shannon entropy, and m = 7| p + T>q. Unlike
the Kullback-Leibler divergence (Dxi, (pl|¢)), IS is symmetric,

3)

bounded, and does not require absolute continuity.

The fidelity objective function, Ljsp, is calculated using the

Jensen-Shannon divergence (JS), as follows:

Lys (x1:n. fo, 80) == Dys(5°,9%) @)
1 50 4 5
Lys (x1:v, fo,80) == E(DKL(yAq) l MTy)) )
50 0
N =)
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Our goal is to learn the black-box predictive model fy to
optimize fidelity to an inherently explainable g.
Substituting Eq. 2 into L;5 (Eq. 5), we obtain:

Z In < A9> 5
Ae Ae
Z In < ~ ¢)
Our proposed fidelity objective function has three distinct
regularization properties that we explain below.

Lis(5* )| 5°)
(6)

a) Bounded Regularizer: The Jensen—Shannon diver-
gence distance is always bounded, i.e.,

)

Since the square root of the JS yields a metric distance
satisfying the triangular inequality [24]. Thus, lower and upper
bounds become

0<JS(p:q) <log2,

®)

b) Symmetry Preserving Regularizer: The Jensen Shan-
non divergence is symmetric w.r.t. two input variables if
swapping them does not change the distance. For instance, Djg
is symmetric w.r.t. p and q if and only if Dys(p;q) = Dys(q; p)
for all values of p and q. JS is symmetry preserving if the
corresponding weights T = [1t;, 7] are selected as = [4,1].

c) Differentiable Regularizer: Our fidelity loss imple-
ments a differentiable regularizer to enforce fidelity between
the predictor model and the explainer model, which is used to
derive explanations for the predictor model. The regularizer
is based on the Jensen-Shannon divergence (JS) between
the probability distributions of the explainer model and the
predictor model outputs.

Thus, the regularizer is differentiable, which means that it
can be easily incorporated into the training process of the
predictor model using standard backpropagation techniques.
By minimizing the JS between the two distributions, the regu-
larizer encourages the predictor to produce similar probability
distributions to the explainer model, thereby ensuring that
the explanations derived from the explainer model are more
accurate and trustworthy.

0<Djs(p:q) <+/log2.

B. Pre-hoc Explainability Framework

We formulate the framework in Figure 1 (a) into a modified
learning objective to obtain the Pre-hoc explainability as
follows

Lpre—hoc = Lpce +MDys + A Lo, &)

where Lpcp is the binary cross-entropy loss, A; is an ex-
plainability regularization coefficient that controls the smooth-
ness of the new representation and the trade-off between
explainability and accuracy, while A, coefficient for standard
L, regularization of model parameters 0 that aims to avoid
overfitting and exploding gradients.
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L consists of cross-entropy loss and a fidelity regularization
term along with a £, regularization term.

Since the explanation e is provided by the white box model
that is inherently interpretable, the transparency is considered
high when the explanatory white box model outputs J, are
similar to the regularized model outputs yg. This is captured
by Djs, which is term 2, Fidelity, in the proposed objective
function, Lprehoc (€q. 9). While the objective function is
to learn the predictions, we give greater importance to the
predictions that are similar to the white-box predictions and
penalize those that are not similar.

C. Co-hoc Explainability Framework

We formulate this framework (Figure 2) into a modified
learning objective to obtain the Co-hoc explainability as fol-
lows

Definition 2 (Co-hoc Fidelity Objective Function). Given an
inherently interpretable white-box model g with parameters
0, let its predictions result in a probability distribution p®
and given the black-box model f with parameters ©, let its
predictions result in probability distribution p® over K classes
ye Y ={1,2,..,K}. We propose a Co-Learning Explainability
Framework, where fo and gy are jointly learned, given o
and p®, respectively, as inputs. We use an added distance
function (eq. 1) as a regularization for the objective function
to guide the co-learning process. Our global distance metric
is the same as the Definition 1, and the combined Co-hoc loss
function is given by

I (Xn; Yon)

9 (x2; Ye3) Explanation

Training Phase of Co-hoc Explainability Framework

N

1
=N Z —yulog (Pen) + (1 —y,)log (1 —ya,)
i1

£C07h06(97¢axaya)

Predictor Accuracy

1 N
+ 7 &~ log (gn) + (1 =) log (1= ¥6n)

i=1

Explainer Accuracy

+Az Zln( )y¢n+21n<y9”)y§,,)
i=1 Yn
Fidelity
+ 7»229,2 + A3 Z‘DIZ )

Regularization 1~ Regularization 2

an

which contains binary cross-entropy and fidelity regulariza-

tion terms, along with other regularization terms, Regulariza-

tion 1 discourages exploding gradients, and Regularization 2
encourages the sparsity of the explainer model.

The primary distinction between Co-hoc and Pre-hoc lies in
the joint optimization of predictor fg and explainer gy through
simultaneous stochastic gradient descent with mini-batches,
see Figure 2.

V. EXPERIMENTS

We conduct experiments that aim to answer the following
research questions:
RQ1: Can we maintain an accuracy that is higher than the
explainer model even if it is lower than the baseline BB
predictor model; while having explanations from g (since g
was used to guide fg?)
RQ2: How good is our regularized predictor model fy at
mimicking the explainer model g¢?
RQ3: How does A; affect the fidelity and accuracy trade-off?
RQ4: What are the differences between the pre-hoc and co-
hoc frameworks?
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A. Experimental Settings

a) Datasets: We experimented with three publicly ac-
cessible real-world datasets. All three datasets used in a
binary classification setting. Movielens 100k movie ratings,
has 100,000 ratings based on 1000 users on 1700 movies.
MovieLens 1M movie ratings, has 1 million ratings based on
6000 users on 4000 movies. For Movielens datasets [25], the
classification target is the movie rating. Our goal is to learn
like or dislike a movie. The target is discretized into liked and
disliked; 1 is the class label for a rating of 3 and above; O
is the class label for a rating of less than 3. FICO HELOC
dataset [26] contains 10,459 anonymized information about
home equity line of credit (HELOC) applications made by real
homeowners. The target variable is risk performance, which
predicts whether the homeowner qualifies for a line of credit
or not.

b) Evaluation Protocols: To assess the classification ac-
curacy, we use the Area under the ROC Curve, AUC(fy, ¥).
Each dataset is split randomly into training, validation, and test
sets in the ratio 80:10:10. After training on every batches with
a learning rate of 0.001, AUC is calculated on the validation
and test datasets. We measure all the metrics on a held-out
test set. All models are trained with L, regularization until
validation accuracy is stabilized for at least ten epochs.

Fidelity, also known as descriptive accuracy [27], measures
how accurately an explanation method can mimic the behavior
of a black-box classifier in terms of assigning class labels
to data records. We use AUC(fy, g¢) to evaluate the fidelity.
Our baseline for fidelity is the AUC of the original black-
box predictor model and the explainer model, which can also
be considered as a post-hoc explainability score without any
optimization.

c) Baselines: We compared our Pre-hoc and Co-hoc
predictor models with their original black-box (BB) version.
The black-box model is Factorization Machines [28] as it is
widely used for classification, regression, and recommendation
tasks. The explainer white-box model (WB) is a sparse logistic
regression model, which is inherently explainable, and thus
provides the explanation.

d) Parameter Settings: We implemented our proposed
methods based on PyTorch. All models are learned by opti-
mizing the binary cross entropy and with Adam [29], which
is an extension to stochastic gradient descent. Batch size is
selected as 64,2056,64 respectively, for ML-100K, ML-1M,
and HELOC datasets, which are the optimal batch size for
each dataset. We tested A; for {0.01, 0.1, 0.25, 0.5, 0.75, 1}.
The regularization weight of the loss function is estimated
using a mini-batch. We pick the best regularization weight
for each dataset using the validation set and use that for the
final evaluation. The final evaluation is done by retraining the
models using their chosen configurations and evaluating them
on the test set.
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TABLE I: Model comparison in terms of prediction accuracy
and fidelity of explainability on the three real-world datasets,
two interaction datasets, ML100k and ML1M, and one tabular,
HELOC dataset. All evaluation metrics are computed with,
respectively, for datasets A; = 0.75,0.5,1 and batch size n =
64,2056, 64. The explainer is the white-box model, BB is the
predictor black-box model. The best results are in bold. Higher
AUC and Fidelity is better.

Dataset ml-100k ml-1M HELOC
Model AUC Fidelity AUC Fidelity AUC Fidelity
Explainer WB | 0.7655 - 0.7882 - 0.7616 -
Original BB 0.7784  0.8287 | 0.8078  0.8875 | 0.7703  0.7728
Pre-hoc BB 0.7801  0.9094 | 0.8033  0.9404 | 0.7698  0.8454
Co-hoc BB 0.7816  0.9194 | 0.8036  0.9484 | 0.7743  0.8572

VI. RESULTS AND DISCUSSION

RQ1: For the predictor model fy, can we maintain an
accuracy that is higher than the explainer model g, if
lower than the original f; while having explanations from
gy (since g, was used to guide the fg)?

The experimental results in Table I, Figure 3, Figure 4
provide insights into this question. Comparing the accuracy
scores between the predictor model and the explainer model,
we observe that the predictor model for both Pre-hoc predictor
and Co-hoc predictor consistently achieves significantly higher
accuracy scores than the explainer model gy (p-value < .05),
even with the A; = 1, which is the highest coefficient for
optimizing fidelity, for each dataset and the both proposed
models.

These results clearly demonstrate that the proposed Pre-hoc
and Co-hoc predictors maintain higher accuracy compared to
the explainer model gy baseline while achieving improved
fidelity in mimicking the behavior of the explainer model gg.

RQ2: How good is our regularized predictor model fy
in mimicking the explainer model g,?

On the ml-100k dataset, Pre-hoc predictor and Co-hoc
predictor achieve fidelity scores of 0.9094 and 0.9194, re-
spectively, 9.7% and 10.9% increase by outperforming the
original black-box predictor fidelity score of 0.8287. This
indicates that the proposed models better capture the behavior
of the explainer model compared to the baseline predictor
model. Similarly, on the ml-1M dataset, Pre-hoc predictor
and Co-hoc predictor achieve a fidelity score of 0.9404 and
0.9484, outperforming the original fidelity score of 0.8875 by
improving 5.9% and 6.8%. Moreover, in the HELOC dataset,
improvement in the fidelity score is respectively, 9.3% and
10.9% for Pre-hoc predictor and Co-hoc predictor.

In summary, the experimental findings support the notion
that the proposed models, Pre-hoc and Co-hoc predictors,
are more successful in mimicking the behavior of the ex-
plainer model compared to the baseline black-box model. This
demonstrates the effectiveness of the proposed techniques in
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enhancing the fidelity of the predictor model while maintaining
high accuracy.

Importantly, these improvements in fidelity are achieved
without any decrease in the accuracy score. The proposed
predictor models maintain a similar level of accuracy
compared to the original black-box predictor. The trade-off
between fidelity and accuracy will be explored and discussed
further in the next research question.

RQ3: How does lambda affect the fidelity and accuracy
trade-off?

As we can see in Table II, the regularization hyperparameter
A1 plays a crucial role in balancing the fidelity and accuracy
trade-off in our models. A value of A; = 0 indicates that there
is no regularization of the fidelity, while A; = 1 signifies an
equal weight of the fidelity and accuracy in the objective
function. The impact of A on the results is noteworthy. When
A1 is set to 0.01 and 0.1, there is no noticeable difference in
the Fidelity AUC metric across all datasets. However, as we
increase the value of A, we observe a consistent improvement
in the fidelity results. In particular, when A; is set to 1, we
achieve almost perfect fidelity scores, indicating a high level of
agreement between the explainer model gy and the regularized
predictor model fy. This demonstrates the effectiveness of
the regularization approach in mimicking the behavior of the
explainer model.

In the Pre-hoc Explainability Framework, for the ml-100k
dataset, the accuracy values remain relatively stable across
different A; values, ranging from 0.7840 to 0.7740. On the
other hand, the fidelity values gradually increase as A; in-
creases, starting from 0.8207 and reaching a peak at A=1.0
with a fidelity value of 0.9410, which is a 14.6% increase. This
suggests that higher A; values in the Pre-hoc framework result
in more faithful explanations without significantly sacrificing
accuracy.

Similarly, for the ml-1M dataset, the accuracy values are rel-

atively consistent, with the highest accuracy, 0.8076, observed
at A;= 0.25. On the other hand, the fidelity values show an
increase of at most 12. 3% when the value of A; increases,
ranging from 0.8769 to 0.9856. A;=1.0 achieves the highest
fidelity, indicating that the Pre-hoc framework with a higher
A1 value captures more accurate and informative explanations.

In the HELOC dataset, the accuracy values range from
0.7591 to 0.7719 across different A, values. As A; increases,
the fidelity values also exhibit an upward trend, starting from
0.7482 and reaching a peak at A=1.0 with a fidelity value
of 0.8454. This suggests that the Pre-hoc framework with
higher A values enhances the fidelity of the explanations while
maintaining comparable accuracy.

Similarly, in the Co-hoc Explainability Framework; for the
ml-100k dataset, the accuracy values remain relatively stable,
ranging from 0.7840 to 0.7766. The fidelity values show a
gradual increase with increasing A, starting from 0.8215 and
reaching the highest fidelity of 0.9492 at A;=1. This suggests
that the Co-hoc framework with a moderate A value achieves
better fidelity without compromising accuracy significantly.

In the ml-1M dataset, the accuracy values are consistent
across different A; values, ranging from 0.8075 to 0.7924. On
the other hand, the fidelity values show an increase of 12. 5%,
starting at 0.8771 and reaching the highest fidelity of 0.9868 at
A1=1. This indicates that the Co-hoc framework with higher A
values captures more faithful explanations while maintaining
comparable accuracy.

In the HELOC dataset, the accuracy values range from
0.7591 to 0.7743 across different A; values. As A; increases,
the fidelity values also exhibit an upward trend with a 14.5%
increase, starting from 0.7482 and reaching the highest fidelity
of 0.8572 at A;=1. This suggests that the Co-hoc framework
with higher A; values improves the fidelity of the explanations
while maintaining similar accuracy levels.

Overall, the analysis of the experimental results shows
that increasing A; values lead to improvements in fidelity,

TABLE II: Proposed Explainability Frameworks, A; comparison in prediction accuracy (AUC)
and explainability (Fidelity) on the three datasets that were described in experimental settings.

Higher AUC and Fidelity is better.

Framework | Dataset Metric | A=0.01 | A=0.1 | A=025 | A=05 | A=075| A=

ml-100k AUC 0.7840 0.7845 0.7849 0.7841 0.7801 0.7740
Fidelity | 0.8207 0.8283 0.8430 0.8755 0.9094 | 0.9410
AUC 0.8075 0.8079 0.8076 0.8033 0.7954 | 0.7896

Pre-hoc ml-1M o
Fidelity | 0.8769 0.8871 0.9058 0.9404 0.9696 | 0.9856
HELOC AUC 0.7591 0.7611 0.7648 0.7699 0.7720 | 0.7719
Fidelity | 0.7482 0.7541 0.7664 0.7903 0.8137 0.8454
ml-100k AUC 0.7840 0.7845 0.7852 0.7849 0.7816 0.7766
Fidelity 0.8215 0.8326 0.8507 0.8869 0.9194 0.9492
AUC 0.8075 0.8079 0.8077 0.8036 0.7968 0.7924

Co-hoc ml-1M
Fidelity 0.8771 0.8901 0.9122 0.9484 0.9749 0.9868
HELOC AUC 0.7591 0.7612 0.7651 0.7707 0.7736 | 0.7743
Fidelity | 0.7482 0.7563 0.7705 0.7767 0.8277 0.8572
235

Authorized licensed use limited to: University of Louisville. Downloaded on January 09,2025 at 15:34:42 UTC from IEEE Xplore. Restrictions apply.



0.785 —_—
0.805 0.770
0.780
0.800 0.765
o 0.775{ —— Co-hoc Predictor o —+— Co-hoc Predictor o —+— Co-hoc Predictor
<3( —+— BB Predictor <3( —+— BB Predictor <3( —+— BB Predictor
0.770 WB Explainer 0.795 WB Explainer 0.760 WB Explainer
0.765 0.790 0.755
0.760 0.785 0.750
0.01 0.1 0.25 0.5 0.75 1 0.01 0.1 0.25 0.5 0.75 1 ' 0.01 0.1 0.25 0.5 0.75 1
A A A
(@) (b ©
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(b), HELOC (c) datasets. Pre-hoc Predictor is our proposed model, BB is the original black-box predictor model, WB is the

explainer model.
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Fig. 4: Co-hoc Explainability Framework Comparison in Accuracy AUC for different lambda on the ml-100k (a), ml-1M (b),
HELOC (c) datasets. Co-hoc Predictor is our proposed model, BB is the original black-box predictor model, and WB is the

explainer model.

indicating more accurate and faithful explanations with
accuracy values remaining relatively stable or showing
marginal variations across different A; values. The optimal
balance between accuracy and fidelity may vary depending on
the dataset and the specific requirements of the explainability
framework.

RQ4: What are the differences between the pre-hoc and
co-hoc frameworks?
For comparing the two proposed frameworks, we consider
accuracy, fidelity, and lambda sensitivity properties aspects.

Accuracy: In terms of prediction accuracy, both frameworks
generally perform similarly across the evaluated datasets.
In most cases, the accuracy values are comparable, with
only slight variations observed. For example, in the ml-100k
dataset, both frameworks achieve accuracy values around 0.78.
Similarly, in the ml-1M and HELOC datasets, both frame-
works achieve similar accuracy values with slight differences.

Fidelity: The fidelity of the Co-hoc framework tends to

be consistently higher compared to the Pre-hoc framework.
Across all datasets, the Co-hoc framework achieves higher
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fidelity scores, indicating that it better approximates the be-
havior of the explainer model. For instance, in the ml-100k
dataset, the fidelity of Co-hoc ranges from 0.8215 to 0.9492,
whereas Pre-hoc ranges from 0.8207 to 0.9410. The same
trend applies to other datasets as well, see Table II.

Lambda Sensitivity: Both frameworks exhibit sensitivity
to the choice of A. The performance in terms of accuracy and
fidelity can vary depending on the specific value of A used.
The optimal value of A that maximizes the trade-off between
fidelity and accuracy may differ between the two frameworks
and across different datasets.

Overall, the Co-hoc Explainability Framework consistently
demonstrates higher fidelity than the Pre-hoc Framework,
while the differences in prediction accuracy between the two
frameworks are relatively minor. This suggests that the Co-
hoc approach, which jointly optimizes both the predictor
model and explainer model, has the potential to approximate
the mechanisms of the original model better and provide
more accurate explanations. However, further analysis and
experimentation are needed to fully understand the underlying
factors contributing to these differences and their implications

Authorized licensed use limited to: University of Louisville. Downloaded on January 09,2025 at 15:34:42 UTC from IEEE Xplore. Restrictions apply.



in various contexts. One advantage of the co-hoc framework
over the pre-hoc framework is that it has a more accurate
white-box model due to the joint training phase.

VII. CONCLUSION

We proposed two novel approaches called Pre-hoc explain-
ability and Co-hoc explainability frameworks that guide black-
box predictor model training via an interpretable white-box
model to align the black-box predictor’s global logic with
the white-box explainer’s transparent reasoning rather than
extracting post-hoc approximations of the white-box’s logic.
The proposed models incorporate the fidelity for any differen-
tiable machine learning model without modifying the model
architecture. Our work addresses the lack of explainability
optimization during training and model-agnostic methods to
enhance global explainability. Our future work will include
extending our framework to produce local explanations.

The transparency of the white-box model may depend on
the quality and quantity of the training data, as well as the
complexity and heterogeneity of the underlying distribution.
In particular, if the data are noisy or biased, or if the true
relationship between the input and output variables is highly
nonlinear or ambiguous. Thus, the white-box explainer model
in our proposed framework could be easily replaced by alter-
native differentiable white-box models, such as rule-based or
sparse additive models.

Additionally, our proposed approach does not explicitly
address the issue of fairness or bias in the black-box model,
which may be exacerbated by using pre-hoc and co-hoc
explainability. Therefore, future work could explore how to
incorporate fairness and bias considerations into our approach,
develop complementary methods to mitigate these issues, and
experiment with diverse datasets.
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