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Vector Symbolic Sub-objects Classifiers
as Manifold Analogues

Renato Faraone*f, Peter Sutor*, Cornelia Fermiiller, and Yiannis Aloimonos

Abstract—Vector Symbolic Architectures (VSAs) generally
consist of a hyper-algebra that is defined on points in a space
of vectors. However, such a space is typically defined in usual
ways, such as Euclidean Spaces for real vectors, Hamming Spaces
for binary vectors, and so on. In any empirical setting, such
as Artificial Intelligence, Machine Learning, Data Science, etc.,
observations in these spaces tend to produce subspaces of these
broader spaces. As a result, these empirically-derived subspaces
enable VSAs to make predictions through how severely the
subspaces deviate from what is expected. Thus, it is desirable
to be able to understand how such subspaces behave. As an
analogy, when one observes terrain, they should find good “roads
and bridges” to navigate that terrain. In Category Theory, the
idea of Topos describes how such roads and bridges should be
placed. In this paper, we explore the relationship between VSAs
and Topoi. Namely, we show how a Topos-like representation
can be constructed from empirical observations of vectors and
demonstrate this on a practical example using Hyperdimensional
Computing (HDC) on dense binary hypervectors. Our results
indicate that a Topos can be effectively constructed for a dataset
and the resulting space of vectors is biased to reflect the
compositional aspects of the data. We conclude that such a
Topos can be used to better guide the construction of VSAs
for downstream tasks, in lieu of the original space of vectors,
much like manifolds in Topology.

Index Terms—VSA, Vector Symbolic Architectures, HDC,
Hyperdimensional Computing, Topos Theory, Topoi, Category
Theory, Cartesian Closed Categories, Hypervector

I. INTRODUCTION

Vector Symbolic Architectures (VSAs) are equipped with
algebraic operations on high-dimensional spaces of vectors.
More specifically, in Hyperdimensional Computing (HDC),
properties of these high dimensional spaces are leveraged to
perform computational tasks, encode data, and train Artificial
Intelligence (AI) models. In general, no assumptions are made
on these spaces of vectors, and randomness is utilized to bind
symbolic meaning into these spaces. Using the VSA algebra to
compute in this space gives rise to emergent topological prop-
erties of the space that are naturally derived from the empirical
data. However, the hypervectors inside these topologies are
used as-is, without actually trying to learn the structure these
hypervectors reside in. As an analogous example, if you are
trying to understand the topology of a table, empirical obser-
vations of points on the surface of the table should eventually
make it obvious that the surface is better approximated by a
plane. Such external reasoning on topologies of hypervector
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Fig. 1. Let A be an open subset of B. Given a point x € B, choose a
neighborhood S around x on which g is a local homeomorphism. Unlike the
usual set theoretical classification options of z € A or x ¢ A, the topological
context affords us the ability to classify according to how close x is to A.
This is the heart of using sub-object classification in a topological view of
the vectors in a VSA. The Topos enables generalizing the compositional
transformations shown here to alter the usual metric we use to measure
distance between vectors. So, we can alter the topology of our space to suit
our empirical observations; placing roads and bridges where needed.

subspaces are not typically performed in VSA/HDC. From a
typical VSA’s point of view, points above the table are just as
likely to occur - even though the empirical data would suggest
this can’t occur.

The observation of these properties can be linked to mean-
ingful correlations between the original data samples. Among
other applications, this could offer a variety of custom strate-
gies for problems in Explainable Al

In this paper, we attack the problem of approximating hyper-
dimensional topologies extracted from empirical data through
Topos Theory. By design, Topoi are well-suited towards under-
standing the compositionality and networking of an evolving
topology. We show how a Topos can be constructed from
empirically-derived hypervectors algorithmically and demon-
strate how such a structure differs from the standard space
of vectors. Using genetically constructed hypervectors, we
employ the Topos on a practical example of a biased space of
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Algorithm 1 Topos Generation
1: procedure TOPOSGENERATOR(H st)
2: T < TOPOS(Hget)
3 T < LOCALNEIGHBORHOODS(T')
4 return 7'
5: end procedure

6: procedure TOPOS(H ., local Root = root)
7: if |Hset| == 1 then

8 local Root.h < h € Hgoy

9

: return
10: end if
11: P < SEPARATION(H ¢, local Root)
12: for i from 1 to |P| do
13: child <+ MAKECHILD(local Root)
14: Toros(Pi], child)
15: end for
16: return

17: end procedure

18: procedure LOCALNEIGHBORHOODS(T)
19: for ¢ from HEIGHT(T) - 1 to 1 do

20: Ny < LEVELSET(:, M)
21: for N € N(i) do

22: PUSHOUT(N)

23: end for

24: end for

25: end procedure

ancestor and descendant hypervectors. Our results indicate that
this can be effectively constructed for a dataset of hypervectors
and the resulting structure accurately reflects the compositional
nature of the source data - in this case, genetic lineages of
hypervectors. We conclude that Topoi can be used to better
guide the construction of VSAs within their internal algebras
for use in downstream tasks, in lieu of the original space
of vectors. This is reminiscent of the relationship between
Manifolds in Topology, and Neural Networks in Machine
Learning.

II. BACKGROUND

We assume the reader is familiar with VSAs and HDC.
Namely, the notion of binding, bundling. Primarily, our work
will focus on the bundling aspect itself, which usually serves
as the “learning” operation. The practical example of a Topos
in the Results section will assume dense binary hypervectors.
However, the algorithm for Topos creation is not specific
to this, and can be done on any hyperdimensional space.
Indeed, the algorithm can be done with a broad class of
functions, that can be task dependent. As such, it suffices for
the reader to be familiar with the use of bitwise XOR for
binding and for measuring Hamming Distance (the count of
1 bits after XOR), and the Consensus Sum over hypervectors,
which is simply the hypervector formed by taking the most
occurring bit value across the terms in each component. For
those unfamiliar with such formulations of HDC, [1] is an

excellent starting reference for what is presented in this paper.
Since our work can be extended to other formulations of
VSA/HDC paradigms, [2] is a great survey for reference.
Instead, we provide more background on Topos Theory, which
is more likely to be unfamiliar to the reader. This is provided
in Appendix A. At a high-level, the construction provided
in the pseudo code describes the behaviour of a Sub-object
classifier, which is the key component of a Topos. This
provides a compositional interpretation of the entire space
of hypervectors. The main definitions are that of Sub-Object
Classifier ( A.10) and of Topos ( A.11). Both depend to the
unifying concept of (co)limit, that also offers the link with
Hyperstructures. In the appendix, the reader is given some
hopefully motivating examples of these constructions.

In terms of related works, the usage of Topos Theory
appears to be quite novel in VSAs/HDC. Mostly, usages are
indirect, such as the proscriptive Sub-Object Classification in
the Life-Long Learning approach presented in [3] - we differ
by generating the Topos from empirical samples of the space.
Some works are in the same vein, however, and will described
here for further reading. In [4], the authors similarly explore
the usage of network topologies in HDC. By cloning hyper-
vectors, the authors were able to quickly perform dynamic
programming in HDC-based Al for exploratory robots. The
authors analyzed the effects of differing network topologies
on this dynamic programming. Another relevant work can
be found in [5], in which the authors attempt to take word
embedding models (which are a type of VSA-like structure
themselves) and learn their underlying topology, in order to
isolate context from complex phrases and sentences. While
the authors themselves do not reference the term Topos, the
compositional algorithm they present seems to approximate
Sub-Object classification. Indeed, there are striking similarities
to that work and what is shown in Fig. 1. Outside of direct
applications of VSAs/HDC to Category Theory, it is also well-
understood how Category Theory applies to compositional
distributive semantic spaces, such as in Linguistics [6]. While
not strictly linguistic in nature, the self-encoding aspects of
HDC and Vector-Symbolic Representations tend to manifest
as distributional semantics. Furthermore, the genetic working
problem we present here for analyzing the performance of
Topoi is well-founded in evolutionary biology, genetics, and
their tie-ins to Category Theory [7], [8] and Neural Net-
works [9].

III. METHODOLOGY

In this section, we describe our algorithm for Topos gen-
eration, describe our practical example involving genetically-
derived hypervectors, and our experimental methodology.

A. Topos Generation

Broadly speaking, our Topos generation can be described
as a recursive top-down sub-object classification. An example
of this type of algorithm can be seen in the TOPOS function
in Alg. 1. Given a predefined SEPARATION function, we
recursively cluster a dataset of hypervectors, called Hg.t,
into child nodes of a tree-like data structure, according to a
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partitioning P of H,., that partitions our dataset into Sub- Algorithm 2 A General Separation/Pushout Algorithm

Object classes. The separation function itself is task-specific.
However, we will present and use a general separation function
in our experiments, shown in Alg. 2.

1: procedure SEPARATION(H s, local Root)
2: Cset < @

Since we are also interested in creating a meaningful 3 Fye < 0
. . . 4 Hocal) « AVERAGEHYPERVECTOR (H )
composition of local neighborhoods that behave like general s local Root.h — F(local)
space of vectors, a key part of Alg. 1 is LOCALNEIGHBOR- 6. oca io |'H(local)|
HOODS, which takes the level set of our tree from the bottom ’ upper
. . 7 lower <+ 0
up, and attempts to collapse Sub-Object classes into well- X ball Lupper+lower |
behaved local neighborhoods through application of a function 0 ra ¢ 2
PUSHOUT on each node of the tree. Once again, like the ’ cepea
separation function, the pushout function is predefined and 10: prev < ball
. ’ . . 1L (Csets Fyer) < PARTITION(H gop, H 00 ball)
specific to the space of vectors and/or is task-specific. We will .
. . . 12: if |Cset| < |Fset| — 1 then
present and use a general pushout function in our experiments, upper+ball
. . « ” . 13: temp | “PEELT2AZ |
shown in Alg. 2. These local neighborhoods “capture” specific 2
. . 14: upper <— ball
classes of hypervectors, and are the terminal points of the tree.
. .. 15: ball < temp
For example, Fig. 2 represents these as a parenthesization of .
. . 16: else if |Cyet| > |Fset| + 1 then
a Topos, with 2 Sub-Object classes per node. The complete lowert-ball
. 17: temp < |Lestoat |
tree has been collapsed through the pushout function to group 2
. . 18: lower < ball
the hypervectors into classes. The number here indicates how
. . 19: ball < temp
many hypervectors in our dataset fall into that class. .
. . .- 20: end if
The usage of the Topos can be summarized via utility .
. . . 21: if prev == ball then
functions, such as those in Alg. 3. Namely, the primary usage
. . . 22: break
of the Topos is to classify hypervectors into the correct Sub- .
. . ) . 23: end if
Object collection, i.e. a path to the correct node in the tree il O Pl
describing the Topos. This is done via the FIND function. > until |Csey| [ Faet|
25: return [Cet, Fset]

Once classified, a local metric can be made to measure the
distance between the two Sub-Object collections, such as the
LOCALMETRIC function described in Alg. 3. We can define
a geodesic-like distance between two specific hypervectors by ~ 27: procedure PUSHOUT(/)

26: end procedure

using both the local metric function in the Topos and the local 28 Hyer =0
neighborhood distance function, which is typically the default 2% for child € N.children do
distance metric for you space of hypervectors (e.g., Euclidean ~ 30: if ISLEAF(child) == False then
Distance, Cosine Distance, Hamming Distance, etc.). Once 3! return
again, these utility functions are both specific to the space 3% end if
of vectors and the task at hand. We present and use general 33 Hier = Haer U {child.h}
versions of these utility functions in Alg.3. 34: end for
35: H < AVERAGEHYPERVECTOR(H.¢)
B. Practical Working Example 36: D «+ H(Het, H)
In order to show how our construction would be used in 3" {)all ¢ MIN(D)
a practical VSA/HDC setting, we present now the working 38: if ISDISAMBIGUABLE(H,¢;, H) then
example to use throughout the remainder of this paper. The 39: N « NEWNODE(N.parent)
goal is to demonstrate the usage of a Topos and to evaluate 40: N.ball < ball
its differences from the original space the VSA was defined 4l N.h« H
o 42: N.ocal = Hget
43: end if

We consider the practical problem of understanding genetic
lineage in ancestors and descendants. This is conceptualized
as a hypervector representing DNA, which is then passed
on to descendants. Specifically, we consider dense binary 45: procedure ISDISAMBIGUABLE(H e, H)

44: end procedure

hypervectors for this problem, for the sake of simplicity. Given 46 for 1 in Hye, do

a random hypervector a, its descendant d(a) = FLIP(a + b,¢), 47 Ppest < argmin, ¢ (H(z, Hset))
where b is another random hypervector, and FLIP is a function ~ 48: if hpest # h then

that random flips the bits in the positions where a 1 is specified 49 return False

in e. Essentially, FLIP adds noise to the result, which can be 50 end if

specified by percent of noise parameter that is allowed. This  51: end for

parameter controls how chaotic the DNA of the descendant is. 52 return True

Furthermore, we will use a working example of such 53: end procedure

genetic lineage throughout the rest of the paper, in order to
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Algorithm 3 Topos Utility Functions

procedure HYPERDESIC(H1, H>)
RW <« FIND(H})
R®) < FIND(H>)
d + LOCALMETRIC(R(), R(?))
d + d+min(H(H;, RM.h), RM ball)
d + d +min(H (Hy, R®.1h), R ball)
return d

end procedure

procedure LOCALMETRIC(R(Y) | R(?))
(RM), Py) < FIND(H}, get Path = True)
(R®) | Py) < FIND(Hy, get Path = True)
P =PAP,
return DISTANCE(P)

end procedure

procedure DISTANCE(P)
s < P.head
e < P.tail
c+ s
sum < 0
while ¢ # e do
sum <— sum +
H(c.localRoot.h, c.next.local Root.h)
c < c.next
end while
return sum
end procedure

demonstrate properties of the Topos. Consider the 45 children
generated in Fig. 3. We can see through their coloration, how
the descendant function d would be used compositionally to
generate the children and their ancestors. These children were
generated using hypervectors of length 2!4 and noise in up to
20% of the those bits.

C. Dense Binary Hypervector Separation and Pushout

For our practical working example, we need to specify the
SEPARATION and PUSHOUT functions. We use the simplest
versions of both of these for dense binary hypervectors. In
reality, these functions can be tailor made to the task at hand.
Alg. 2 describes pseudo-code for both of these functions. In
simple terms, the separation is contingent upon identifying
“close” and “far” subsets of our hypervector dataset Hg;.
An attempt is made to make the close and far subsets as
equal in size as possible, though this cannot always be done,
especially if they all have the same Hamming Distances
from the H.;’s average hypervector, which is computed
via a simple Consensus Sum superposition. Furthermore, the
pushout function simply identifies and groups hypervectors
that can be superposed and then subsequently identified via
the superposition. Namely, given superposition s and a target
term ¢t € L, where L is the set of hypervectors in the local
space, the min, (H (x,s)) =t for all ¢t € L. This tells us that
for this class of hypervectors in L, their Hamming Distances

approximates what is expected with random hypervectors in
their local neighborhood.

TABLE I
AVERAGE HYPERVECTOR DISTANCES IN ANCESTORS AND DESCENDANTS

Descendant-Descendant | Ancestor-Descendant
Random+Hamming | 8013.07 8190.18
Hamming 7056.73 6390.26
Random+Topos 8013.07 5868.98
Topos 5893.94 4490.54

Average hypervector distances for the working example in Fig. 3. Column 1
measures the average distances between each descendant. Column 2 measures
the average distances between each ancestor and each of the 45 descendants.
The rows compare Hamming Distance versus Topos Distance, with and
without replacing descendants with random hypervectors.

D. Experiments

To measure the differences between Topoi hypervector
spaces and classical spaces of hypervectors, we can measure
the distribution of distances in the former vs. the latter between
ancestors and descendants. Namely, the terminal descendants,
such as the 45 children in Fig. 3. We are interested in how the
two spaces differ in their distribution of distances. There are
two metrics to track; the average Hamming Distance between
the children, and the average Hamming Distance between the
children and their ancestors. This can be compared to random
data for both the Topoi Distance and Hamming Distance. We
would expect a good Topos to identify genetic relationships
better than the classic space of hypervectors.

IV. RESULTS

In this section, we summarize our results on the practical
working problem described in the Methodology section.

A. Working Example

To elucidate the functionality of the Topos, we investigate
the differences in distances between the Topos’ “metric” and
the Hamming Distance. We examine these distributions of
distances both with random data and the actual descendants
shown in Fig. 3. The Topos that is constructed for these
descendants is shown in Fig. 2. This Topos is approximately
symmetric in how it classifies our set of descendant hyper-
vectors. There appear to be two major classes, as shown by
the leaf nodes marked “(11)”. The next two major classes
are marked by the “(6)” and “(5)”. The symmetric nature
implies that the Topos is classifying the children similarly
to a Normal Distribution. This is expected, since genetic
variance here can be constructive or deconstructive, and the
random perturbations will cause this to occur in a Normal
way, as dense binary hypervectors follow a Bernoulli Coin-
Flip Distribution, and will be approximately Normal as the
hypervector size approaches infinity. In this case, the size is
214 and so it well approximates it.

In Fig. 4, the distances of the descendants are compared to
random data in both regular Hamming Distance and the Topos’
Distance. We can see that the Topos maintains the properties
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Fig. 2. A Topos for the Working Example: A parenthesization for the Topos
from the working example in Fig. 3. The 45 descendant hypervectors are
grouped into the above compositionally connected Sub-Object classes. Leaf
nodes end with a local neighborhood that approximates Hamming Distance
within a Hamming Ball around the superposition of the vectors that fall
into that class. The numbers in these nodes, such as “(11)”, mean that 11
descendants fall into this class.

of random dense hypervectors, as the plots match between
both distances, but it uncovers much more genetic structure
than regular Hamming Distance, shown by the darker colors
that imply lower Hamming Distance. The same phenomenon
can be seen in Fig. 5, where the same measurements are made
between ancestors and the children. Note that even the oldest
ancestor is significantly closer to the children than regular
Hamming Distance, which looks random in comparison. The
averages of these distances are shown in Table I, which reflect
these results in the average. In fact, the random data behaves
exactly as expected in both distances, with the subspace of
genetically related hypervectors being significantly closer.

B. Randomized Trials

We further study this behavior by running 1000 randomized
trials of Topos generation, acquiring similar data as shown in
Table I. Our genetic lineage was randomly generated to be up
to 4 ancestors (height of 4) with up to 5 children per ancestor.
We ran 10 trials for each power in vector size from 25 up to
24 and for each noise percentage in increments of 5% from

@000 ©

19 ‘ 17 ‘

45 Children

Fig. 3. Working Example of Genetically Generated Descendants: Descendants
inherit their parent’s DNA by averaging their random hypervector with their
parent’s. Then, a random percent of bits up to a given noise ratio are flipped,
so that each sibling is different. The color codes signify these alterations from
ancestral hypervectors.

5% to 50%. The goal was to study how well each distance
metric handles the extremes of noise (with 50% noise being
nearly random for even large hypervectors) at each vector size
from the small to the hyperdimensional. Our results are plotted
for hypervector size in Fig. 6 and Fig. 7. The same phenomena
are observed as with our working example. Indeed, each
graph has the same general trend, despite the hypervector size.
Interestingly, as the noise approaches 50%, the Topos begins
categorizing ancestors the same as the descendants, while the
regular Hamming Distance maintains a large gap between the
two. This indicates that the Topos has a better compositional
understanding of the relationship between the descendants and
between their ancestors than regular Hamming Distance.

V. DISCUSSION

Our results indicate that the learned Topos has gained some
compositional understanding of the genetic relationships in our
practical working problem. The randomized trials demonstrate
that this is the general trend across even less than hyperdimen-
sional sizes of hypervectors. Additionally, the Topos is quite
resilient to noise altering its compositional power. We do note
that noise causes a wider distribution of descendants which
can then influence the average distance of random vectors, as
the sparse examples presented will bias the whole space. All
in all, the Topos is behaving as expected.

These results open a plethora of possible future works. Our
results imply that a model can benefit from the compositional
understanding of its input space in downstream tasks using a
Topos instead of the standard space of vectors that the model is
defined in. A basic use of this would be guided superposition,
instead of naive superposition of all terms. Additionally, the
separation and pushout functions used for our experiments
are just the most basic methods of creating a Topos for the
Hamming Space, and they certainly are not representative of
what can be done for the other typical VSA/HDC structures.
It remains to be seen which functions are best suited for
these. Furthermore, in the interest of explainability of Al, the
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(b) Hamming Distance of Descendants

T T e

(a) Hamming Distance of Random Data (c) Topos Distance of Random Data

(d) Topos Distance of Descendants

Fig. 4. Example Descendant vs. Descendant Distances: Shows the distances between the 45 descendant of the example in Fig. 3. Yellow symbolizes
orthogonality, and darker colors symbolize closeness. Plot (a): Randomly generated descendants and their pairwise Hamming Distances. Plot (b): Descendants
and the Hamming Distances between each. Plot (c): Topos Distance between the same random descendants in plot (a). Plot (d): Topos Distance between the
same descendants as plot (b). While some of the genetic structure is apparent in plot (b), many distance relatives appear random (yellow), even though they
share the same ancestry. In plot (d), the Topos reveals much deeper genetic similarity than (b), without compromising the randomness of unrelated vectors as
shown in plots (a) and (c).

Hamming Distance Topos Distance

3 S

]
40

( a) 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 (C)
[1] 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

T ‘ ‘ ‘ ‘ ‘ ‘ ‘ . | | H N W W N ‘ o]
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
"I W EE T e
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Fig. 5. Example Ancestor vs. Descendant Distances: Shows the distances between the 45 descendants and their ancestors in Fig. 3. Yellow symbolizes
orthogonality, and darker colors symbolize closeness. Since each descendant has 2 generations of ancestors before their parents, we show both generations.
Plot (a): Randomly generated descendants and the Hamming Distance between them and the actual ancestors. Plot (b): Hamming Distance between descendants
and their ancestors. Plot (c): Topos distance between the same random descendants in plot (a). Plot (d): Topos Distance between descendants and their ancestors.
We can see that plot (a) is completely random, while plot (b) shows similarity in at least the closer generation of ancestors. Plot (c) shows that the Topos puts

ancestors in a non random and unusual close subspace of the hypervectors. Plot (d) shows that genetic similarity is preserved better in the first generation
and even in the second generation, which doesn’t happen in plot (b).

separation and pushout can be used to discover meaningful
categorizations learned by an Al using VSAs/HDC. Some
of these properties are easily observable in our results, but
task-specific version of these functions still remain an open
question. An even more interesting observation is that the
separation and pushout functions themselves can be learned
by an Al or Machine Learning model. This opens the door to
allowing VSAs to not only receive learned encodings as hyper-
vectors from other trained models, as is typical in VSA/HDC,
but also use trained models to compositionally create its own
algebra for each given task. Finally, the results in Fig. 6 and
Fig. 7 imply that the most suitable Topos for a given input
can be selected based off of the Hamming Distance to Sub-
Object classifiers in the Topoi. This opens up further avenues
of exploration in Anomaly Detection, Federated Learning, and
more.

VI. CONCLUSION

We discussed the clear relationship between how VSAs and
HDC function and Topoi. We conclude this paper with some
thought provoking insight. In some sense, it can be said, that

the hypervectors allow us to approximate the functionality
of Deep Neural Networks (DNNs) as an algebra (typically
done via learning the output embeddings such as in [10],
[11], [12]) defined by HDC operations. Our first results
indicate that Toposes can be used to approximate the higher-
order relationships of hypervectors through its Sub-Objects
classifier. In [13] and [14] it is presented how to formulate the
fundamental operations carried out by Deep Neural Networks
in a purely categorial framework. Rephrasing standard VSA
constructions through the lens of Topos Theory could afford us
some new insights on how to translate Deep Learning Models
into HDC.
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Fig. 6. Descendant vs. Descendant Distances Average Trial Results: Shows the average distances across multiple randomly generated lineages between
descendants, much like in Fig. 4. Each subplot is a different power of 2, starting from left to right, and top to bottom at 2% up to 2'4. The vertical axis is
the Distance (Hamming or Topos) and the horizontal axis is the level of noise in increments of 5%. We can see that no matter the hypervector size or the
genetic ancestry, the hypervector spaces have similar distributions in each graph across increasing noise levels. The distance is generally smaller in the Topos,
which tends to identify genetic relationships better than Hamming Distance, despite the sparse samples of descendants.
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Fig. 7. Ancestor vs. Descendant Distances Average Trial Results: Shows the average distances across multiple randomly generated lineages between descendants
and their ancestors, much like in Fig. 5. Each suplot is a different power of 2, starting from left to right and top to bottom at 2% up to 214. The vertical axis
is the Distance (Hamming or Topos) and the horizontal axis is the level of noise in increments of 5%. We can see that regardless of the hypervector size or
ancestry, similar distributions occur in each graph across increasing noise levels. The distance is significantly smaller in the Topos than in Hamming Distance,
as the Topos identifies genetic similarities. With high noise, the Topos loses the ability to identify between ancestors and random data, as this is empirically

derived from observations during training.

APPENDIX
TOPOI FROM FIRST PRINCIPLES

The monograph [15] is a standard and comprehensive
introduction to Topos Theory, suited both for readers already
experienced with Category Theory and its applications to
Computer Sciences and readers with no previous exposure to
such concepts.

The founding work of Grothendieck proposes Topoi as a
unifying concept for mathematical theories, a contemporary
and comprehensive account is given by [16], where their role
as bridges between mathematical universes is largely explored.

Informally, underlying a Category C is just a pair of
collections Obj(C), Arr(C), whose elements are objects and
arrows, together with an associative composition scheme o.
Each arrow f comes equipped with the information of a source
dom f and a farget cod f objects, while each object a comes
in pair with a special arrow: the identity on that object ¢,. This

allows us, to a great extent, to forget about objects entirely. In
order to further describe the arrows of a Category, we recall
some standard taxonomy.

Definition A.1 (Monics and Epics): An arrow f :a — b is
monic if for all pairs of parallel arrows g, h : ¢ = a we have

fog=foh=g=h. (1)
Dually, f is epic when, for all g,h : b = c,
gof=hof=g=h. 2

In the realm of Sets, one concludes that an arrow (function)
is monic/epic iff it is injective/surjective iff it is left/right-
invertible. In Category Theory, since we do not describe
objects element-wise, the notion of being isomorphic replaces
the stricter requirement of having actual equality.

Definition A.2 (Isos): An arrow f : a — b is iso if there
exists g : b — a such that

fog=uw, gof=t. 3)
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When this is the case, we also write a ~ b and say that they
are isomorphic.

Note that isos are always both monic and epic, but the
contrary is, in general, not guaranteed: take the monoid of
the Naturals (IN,0,+) as a one-object category with arrows
representing the integers, then any arrow is monic and epic but
only 0 is an iso. Categories where the contrary holds, such as
Grp (groups and their homomorphisms), are called balanced.

We pause for a second to note that while “monic/epic” and
“left/right-invertible” make sense for sets but also arbitrary
categories, the concepts of injectivity and surjectivity are
not immediately translated to categorial semantics. Indeed,
they seem entirely element-based and their arrow-theoretic
formulations is one of the cornerstones of Topos Theory.

Usually, there can be many parallel arrows between the
same source and target. Objects that are connected in precisely
one way to every other one are of fundamental interest.

Definition A.3 (Initial and Terminal Objects): An object z is
initial if there is exactly one arrow p :  — b for any object b.
Dually, it is terminal if there is exactly one arrow ¢ : a — x
for each a. An object which is both is called a zero object.

Initial and Terminal objects are desirable inhabitants for
any suitable notion of “Universe of Sets”. A Category with
an initial object is sometimes termed pointed. A degenerate
category is one where all objects are isomorphic, although
in Topos Theory this terminology is typically used more
generally to simply mean that it has a zero object. This
precludes a Category from being a Topos, with the only
exception being the Trivial Topos (the one comprising of
one object and its identity arrow only). Observe that arrows
with domain/codomain a terminal/initial object are always
monic/epic and that initial/terminal/zero objects are unique
only up to (unique) isomorphism.

We now turn our attention to the Extensionality principle
of Set Theory, which asserts that sets with the same elements
are actually the same set, following again [15]. Its categorial
form addresses the extent to which we can distinguish parallel
arrows in a given category. Note that a Category in which
there is at most one arrow between each pair of objects is
essentially just a Preorder.

Definition A.4 (Generators): An object s is called a gener-
ator (or separator) if, for each pair of arrows f,g:a =2 b,

Ve:s—a(foe=goe)= f=g. 4

An initial object can be a generator only in case the
Category is already just a preorder. A terminal object instead,
is required to be a generator in order to have a Well-pointed
Topos. Even though Grp has a zero object, it also has infinitely
many non-isomorphic generators. This shows how the idea of
well-pointedness makes sense for arbitrary Categories and not
just Toposes, and is in fact an open research topic. Hence, the
following definition is somewhat non-standard.

Definition A.5 (Well-pointedness): A Pointed Category is
Well-pointed if it has a non-zero terminal generator.

The main consequence of Well-pointedness is that one can
think of the monics e : s — a as' generalised elements of a.

'0ne is, of course, also free to think the same holds in the Trivial Topos.

Our next goal is to translate the ideas of bundling and
binding in categorial terms. In [17] it is given a comprehensive
and in depth account of the binding problem. It turns out, that
its arrow reformulation leads to the idea of colimits. This is
one of the motivations of many works of Baas, such as [18],
on the foundational role of Hyperstructures.

A (Covariant) Functor F between Categories C, D, written
F : C — D, maps objects of C to objects of D and arrows
to arrows in a way that respects the composition schemes and
their units, i.e. it preserves commuting triangles:

F(fog)=F(f)oF(g), 5)

F(La) - LF((J,)~ (6)

Now, in a similar way as we can think as a set function
as a special kind of relation (its graph), a functor is a special
case of the more general concept of a Diagram. Instead of
attempting a formal definition of diagrams, which are the
very essence of Category Theory, we focus on some concrete
examples that are relative to this paper and Hyper-Dimensional
Computing in general.

The Theory of Nets, was one of the main motivations
behind early Category Theory. It was developed in [19] in
order to generalise the idea of sequences and limit points
in Topology so that an arbitrary topological space could be
entirely recovered by studying the convergence of its nets
(recall that this is not possible by simply using sequences).

Example A.1 (Directed Sets): As already mentioned, any
preorder (P, C) can be made into a category P with Obj(P) =
P and one arrow f : a — b whenever a C b. Now, given
two elements a,b of P, an upper bound is an element c
satisfying a C ¢ and b C c. A preorder where upper bounds
exist for all pair of elements is called a (upward) directed set.
A category where isomorphism actually reduces to equality is
termed skeletal, so that a Poset is simply a skeletal preorder
(i.e. a symmetric one). A Totally Ordered Set is a poset with
path-connected objects, that is: we always either have a C b
or vice versa (i.e. trichotomy holds).

Definition A.6 (Nets): A functor S : P — C, where P is a
directed set, is called a net in C.

Example A.2 (Joins and Meets): An element c of a preorder
P is maximal if whenever ¢ T a, we also have a T c.
It is called a greatest element if it is terminal. Dually,
we obtain lower bounds, minimal elements and smallest
elements. Note that a preorder with a greatest/smallest element
is trivially upward/downward directed. The join/meet of a,b
is, when it exists, the smallest/greatest element of the directed
(sub)set of upper/lower bounds of a and b, and is denoted by,
resp., a Vb and a A b.

In an arbitrary Category, this generalises to the idea of
(co)products: given objects a, b, a span (sometimes, internal
object) a x b is an object together with two maps (the
projections) m, : a X b — b,m, : a x b — b. A span which
is universal, i.e. such that given any other span ¢ with arrows
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f,9:¢c=a,b we have a unique f X g : ¢ = a X b making

Cc

/ fxg NJ (7)

a = axb - b

a commutative diagram, is called the product of a and b. As
usual, reversing the direction of all arrows leads us to the dual
concept of cospans and, specifically, the coproduct of a,b,
which is denoted a + b. Thanks to associativity, if a category
has products for each pair of objects, it is always possible
to extend the definition to any (finite) number n of objects
{@i}i<n, denoted by [],_, a;, with the terminal object as the
limiting case when n = 0.

Looking back at Sets, one recognises that the product
is given by the familiar notion of the Cartesian product.
Moreover, given two sets a, b, the collection of arrows from
a to b is the set b®. Categories such that the families of
parallel arrows carry the same structure as its objects are
termed closed.

Definition A.7 (Exponentials): Let a x b be the product of
objects a,b, we say that an object c together with an arrow
v : ¢ X a — b, the evaluation, is the exponential of a and
b, denoted %, if for any other w : d X a — b there exists a
unique ¢ : d — ¢ such that

vo(t X)) =w. (8)

Definition A.8 (CCC): A Cartesian Closed Category is a
Category with all finite products (including a terminal object)
and all exponentials.

Now, suppose that we were given not only some objects
{a;}i<n but also a (finite) collection of arrows between them.
A cone over this diagram is just an object ¢ together with one
arrow f; : ¢ — a; for any index ¢ such that all triangles

fI X ©)

ai%a]’

commute. Reversing directions, we find the cocones under a
diagram.

Definition A.9 (Completeness): A universal cone for a
diagram, if it exists, is called its limit. A category is finitely
complete if every finite diagram has a limit. Duality yields
colimits as universal cocones and finite cocompleteness.

Example A.3 (Bounded Lattices): A Bounded Lattice is a
finitely complete and finitely cocomplete poset.

In order to have a Topos, we need all finite (co)limits. For
completeness, the following diagrams will suffice in a CCC.

Example A.4 (Equalizers and Coequalizers): Given a par-
allel pair of arrows, f,g : a =2 b their (co)equalizer is, if it
exists, their (co)limit.

Theorem A.1: A Cartesian Closed Category is finitely com-
plete if and only if it has all equalizers.

Example A.5 (Pullback and Pushouts):

o A pullback is the limit of a cospan.
o A pushout is the colimit of a span.

A proof of the following classical result (actually, of its
dual) can be found in [20].

Theorem A.2: A category is finitely cocomplete if and only
if it is pointed and has all pushouts.

Thus far, we have seen how the unifying concepts of
functors, diagrams and (co)limits permits us to create new
objects from old ones. These constructions take the place, and
generalise, the Pairing and Union axioms from Set Theory.
The last ingredient needed to obtain a Topos, will take care
of Power-sets.

First of all, as we think of elements of an object a as the
monics with source the terminal object (at least if the category
is well-pointed), a subobject of a is any monic with target a;
the collection of subobjects of a is denoted Sub(a). For sets,
there is an immediate correspondence between subsets and
functions with value in 2 := {0, 1}, namely P(X) ~ 2.

Definition A.10: [Sub-objects Classifier] An object €2 of a
category with terminal object s, together with an arrow TRUE :
s — (), is called a subobjects classifier whenever for all
monics f : a — b there is precisely one arrow x; : b — €,
the characteristic arrow, making

a—1
i
a pullback. In general, the arrows of type s — 2 are called
the truth-values.

With all of this in place, we can finally give a proper
definition of a Topos.

Definition A.11: [Elementary Toposes] A (Elementary)
Topos is a Finitely Cocomplete Cartesian Closed Category
with a subobjects classifier and all equalizers.

The explicit mention of equalizers is needed because we
are following the current modern definition of CCCs, as given
in [21], that requires all finite products but not all finite limits.

It is instructive to draw a comparison with the classical
definition of topological space, to better understand the new
perspective given by Toposes.

Example A.6 (General Topology): Usually, one presents
a Topological Space as a set T’ together with a collection
T of open subsets containing (), X and closed under finife
intersections and arbitrary unions. We can now rephrase this
as saying that 7 is a bounded lattice with union for the join and
meet for the intersection with the additional presence arbitrary
joins. The points of a topological space are not the objects. The
connection is, of course, much deeper and, in fact, the study of
sheaves and bundles from Algebraic Geometry served as the
inspiration for much of the early development of the Theory
of Toposes.

Now that we have sketched a path to Topoi, we conclude
by giving a glimpse of how one can reason “inside” a Topos
and how this relates to Manifold Learning.

According to the constructivist view of mathematics, truth is
not absolute but rather context-dependant: the truth-value of a
sentence varies according to the state of knowledge regarding

its matter. Indeed, the theory of topoi is deeply connected to
Kripke Frames. An interpretation of classical Vector Spaces

b
le (10)
TRUE

— Q
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in these terms is discussed in [22], which further motivate the
investigation of how models for Modal Logic can be realised
as VSAs.

To make things easier, we can think of a frame as being
simply any poset (P,C). Given a set X and a formula ¢, the
Separation Scheme allows us to consider the set {z € X :
¢(x)} of elements of X that satisfy it. If truth is supposed
to persist in time, we can instead consider the P-indexed
collection of formulas which have been proven to hold at
instant p € P:

{r e X : ¢p(x)}.

The algebras of subobjects in the case of sets are Boolean
Algebras, which are known to be the models of Classical
Propositional Logic. The models for Intuitionistic Logic are
instead provided by

Definition A.12 (Heyting Algebras): A Heyting Algebra is
a bounded lattice with all exponentials. The exponential of
objects a, b is referred to as implication and denoted by a = b.

This construction is essentially the weakest possible such
that modus ponens is sound.

Definition A.13 (Hereditary Sets): Consider a poset (P,C),
a subset @@ C P is hereditary (or upward closed) if ¢ C p
implies p € Q whenever ¢ € . For any element p € P, the
principal hereditary set {¢ € Q : p C ¢} is denoted by [p).

Example A.7: Denoting by P the collection of its heredi-
tary (sub)sets, we have actually defined a topology, whose col-
lection of open sets forms a Heyting Algebra: the exponential
of S,(Q is obtained by taking the interior of (P — S) U @,
where P — S is the complement of S.

The reader interested with the paradigms of Lattice-based
Computing, always throughout the lens of Category Theory,
can find an extensive treatment in [23]. This line of research
was initiated by the groundbreaking work of Lawvere, starting
from [24], where a detailed description of metric spaces in
terms of Enriched Categories is given. In the paper, it is
also made extensive use of the notion of Closed Categories,
where the collections of arrows carry the structure of objects
themselves, and Monoidal Categories, which are equipped
with an abstract tensor product (the categorial notion of
bundling), both generalising CCCs.
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