

Effects of the maternal social environment on the mating signals and mate preferences of adult offspring in *Enchenopa* treehoppers

Drew W. Little ¹, Kirsten J. Lindemann ¹, & Rafael L. Rodríguez ¹

¹Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee

Email: dwlittle@uwm.edu, rafa@uwm.edu

12

13

14

14

15

16

17

18

19

30

21

22

23 **Abstract**

24

25 Much is known about how the maternal environment can shape offspring traits via
26 intergenerational effects. It is less clear, however, whether such effects may reach adult offspring
27 sexual traits, with potential consequences for sexual selection and speciation. Here, we report
28 effects of adult female aggregation density on the mating signals and mate preferences of their
29 offspring in an insect that communicates via plant-borne vibrational signals. We experimentally
30 manipulated the density of aggregations experienced by egg-laying mothers, reared the offspring
31 in standard densities, and tested for corresponding differences in their signals and preferences.
32 We detected a strong effect in male signals, with sons of mothers that experienced low
33 aggregation density signaling more. We also detected a weak effect on female mate preferences,
34 with daughters of mothers that experienced low aggregation density being less selective. These
35 adjustments may help males and females find mates and secure matings in low densities, if the
36 conditions they encounter correspond to those their mothers experienced. Our results thus extend
37 theory regarding adjustments to the social environment to the scale of intergenerational effects,
38 with maternal social environments influencing the expression of the sexual traits of adult
39 offspring.

40

41 **Keywords:**

42 Behavior, evolution, interacting phenotypes theory, maternal effects, social plasticity, vibrational
43 communication

44

45

46 Social environments constitute important causes of variation in animal behavior and other
47 phenotypes, including those associated with courtship and mate choice (West-Eberhard 1983;
48 Moore et al. 1997; Wolf et al. 1998; Valone et al. 2002; Danchin et al. 2004; Bailey et al. 2018;
49 Rodríguez et al. 2019; Parker 1974; Bretman et al. 2011; Parker et al. 2013; Jennions & Petrie
50 1997; Hebets & Sullivan-Beckers 2010; Verzijden et al. 2012). These social influences are not
51 limited to the generation in which they are experienced. In fact, across taxa there are examples of
52 the maternal social environment having intergenerational effects on traits such as sociality and
53 aggression (Bentz et al. 2013; Babb et al. 2014). We were interested in whether these maternal
54 intergenerational effects could ultimately influence courtship and mate choice behavior.

55 Effects of the maternal social environment on offspring courtship and mate choice
56 behavior would constitute a form of maternal effect or, more broadly, an indirect environmental
57 effect imparted on offspring by mothers (Moore et al. 1997). We tested for such intergenerational
58 effects to explore how the social environment can influence sexual selection across generations.
59 Specifically, we asked whether intergenerational effects might allow adjustments to the
60 conditions offspring will face (cf. Mousseau & Fox 1998; Marshall & Uller 2007; Bentz et al
61 2013; Bestion et al. 2014; Storm et al. 2010; Ensminger et al. 2018; see below). We also asked
62 whether intergenerational effects may cause variation in male signals and/or female mate
63 preferences, and thereby alter the signal-preference relationship and influence the strength and
64 direction of sexual selection due to female mate choice; patterns of assortative mating; and/or the
65 maintenance of genetic variation of sexual traits (Jennions & Petrie 1997; Bailey & Moore 2012;
66 Rodríguez et al. 2013a; Rosenthal 2017; Desjonquères & Rodríguez 2023).

67 We therefore tested the hypothesis that the maternal social environment acts as a cause of
68 variation in adult offspring mating signals and/or adult offspring female mate preferences. We

69 used a species that lives in aggregations as juveniles and adults, including the egg-laying stage
70 (see below). We experimentally manipulated the egg-laying density of mothers. We then reared
71 those mothers' offspring in standard aggregation densities, and tested for changes in male signals
72 and female mate preferences according to egg-laying maternal aggregation density treatments.
73 Although we did not measure any aspect of the mothers' phenotype, this experiment allows us to
74 test for variation in adult offspring traits due to inputs into trait expression arising from the social
75 environment of their mothers.

76 We based our expectations for potential adjustments in adult offspring sexual traits
77 according to the aggregation density experienced by egg-laying mothers on theory regarding
78 adjustments to experience of competitors and options in the recent/immediate social
79 environment. These expectations assume that the maternal social environment is in fact
80 informative about the conditions adult offspring will face in mate searching and mate choice (see
81 below). Males are generally predicted to increase signaling investment when facing increased
82 risk of sexual competition (Bailey et al. 2010; Callander et al. 2013; Parker et al. 2013; Höbel
83 2015), which may be conditions in which females may become more selective in their mate
84 choice (Rebar & Rodríguez 2016). However, experimental studies have also found increased
85 male investment (faster development, higher signaling effort) with lowered risk of competition
86 (Bretman et al. 2011; Kasumovic et al. 2011; Rebar et al. 2016). Either form of the effect may be
87 advantageous; e.g., making males more competitive in the former case (Parker et al. 2013) but
88 perhaps making males more likely to find mates in low densities in the latter case (Bretman et al.
89 2011; Rebar et al. 2016). The prediction for male adult offspring signaling effort in our
90 experiment must therefore remain agnostic regarding the sign of the effect, and focus on the
91 presence of effects due to the maternal social environment.

92 Females may adjust mate choice decisions in different ways: they may adjust preferred
93 mate types according to the options available, and/or they may adjust how selective they are in
94 their mate choice (Hebets & Sullivan-Beckers 2010; Verzijden et al. 2012; Rodríguez et al.
95 2013c; Desjonquères & Rodríguez 2023). We do not have a rationale for anticipating change in
96 preferred mate types according to our treatments of aggregation density experienced by egg-
97 laying mothers. There are, however, strong reasons to expect adjustments in female selectivity.
98 For instance, the "mating assurance" hypothesis posits that when preferred mate types are likely
99 to be present, females can afford to be highly selective; however, when preferred mate types are
100 likely to be rare or absent, the cost of rejecting a potential mate male is high because of the low
101 likelihood encountering another, and females should lower their selectivity to ensure they obtain
102 a mating (Fowler-Finn & Rodríguez, 2012a,b; Rodríguez et al. 2013c; Desjonquères &
103 Rodríguez 2023). In terms of our experiment, the prediction is therefore that daughters of
104 mothers that experienced low aggregation densities during egg laying will show lower selectivity
105 in mate choice.

106

107 **Methods**

108

109 We investigated the transgenerational effects of maternal density on offspring traits in a member
110 of the *Enchenopa binotata* species complex of treehoppers (Hemiptera: Membracidae). These
111 plant-feeding insects are widely distributed across eastern North America (Wood 1993; Cocroft
112 et al. 2008). *Enchenopa* communicate with plant-borne vibrational signals and live in
113 aggregations as juveniles and adults (Cocroft & Rodríguez 2005; Cocroft et al. 2008). Males in
114 search of a mate fly from plant to plant and produce bouts of advertisement signals, each

115 consisting of a "whine" (a pure tone which decreases slightly in frequency) followed by a series
116 of pulses (Hunt 1994; Cocroft et al. 2008, 2010). If a receptive female finds a male's signals
117 attractive, she responds with her own signal, which alerts him of her presence; the male and
118 female then establish a duet that facilitates pair formation (Rodríguez et al. 2004, 2006;
119 Rodríguez & Cocroft 2006; Cocroft et al. 2008). Thus an *E. binotata* female can decide whether
120 to inform a particular male about her presence on the plant and allow him the opportunity to
121 court her. This behavior of selective duetting has revealed strong mate preferences in *E. binotata*
122 females for the features of male advertisement signals, mainly according to dominant frequency
123 (Rodríguez et al. 2004, 2006, 2013a; Cirino et al. 2023). Selection on signals arises mainly from
124 female mate preferences and has established a strong pattern of signal-preference coevolution
125 across the complex (Rodríguez et al. 2004, 2006, 2013a; Cocroft et al. 2008, 2010; Sullivan-
126 Beckers & Cocroft 2010).

127 Members of the *E. binotata* complex have a yearly life cycle with some variation in the
128 timing of the mating season dictated by the phenology of their host plants (Wood et al. 1990;
129 Cocroft et al. 2008). Mating occurs from June to mid-August, with males progressively dying off
130 until, by late August, only females remain (Cocroft et al. 2008; Sullivan-Beckers & Cocroft
131 2010). Females mate only once (Wood 1993; Sullivan-Beckers & Cocroft 2010), and begin to
132 aggregate to lay eggs in their host plants in late August. Females remain on the host plant until
133 they die with the first frost (Cocroft et al. 2008). The treehoppers overwinter as eggs, and the
134 flow of sap (depending on region, but typically around May) in the host plants triggers embryo
135 development (Cocroft et al. 2008). Nymphs develop in aggregations on their plant over ca. 4
136 weeks and reach adulthood by late May/early June (Cocroft et al. 2008). Because embryo
137 development and eclosion from eggs is determined by the phenology of the treehoppers' host

138 plants (Wood et al. 1990; Cocroft et al. 2008), life cycles are markedly synchronized for any one
139 species at any one site; e.g., most individuals in a population eclose from eggs and reach
140 adulthood within ca. one week of each other.

141 Most members of the complex have not been formally described. Nevertheless, they can
142 be distinguished by their host plant species, nymph coloration, and adult signal frequencies
143 (Cocroft et al. 2008; Hamilton and Cocroft 2009). We worked with the *E. binotata* species that
144 lives on *Viburnum lentago* (Adoxaceae) host plants in Wisconsin, has nymphs with gray-green
145 coloration, and adult male signal frequencies of ca. 165 Hz. Male signal frequency in this species
146 is under weak directional selection, with females preferring signals of ca. 185 Hz (Rodríguez et
147 al. 2013b, 2018; Fowler-Finn et al. 2017). We preserved all individuals used in the trials below
148 in 95% ethanol in the Rodríguez Lab collection.

149

150 *Manipulating maternal aggregation density during egg laying*

151

152 We collected mated females in September of 2020 at Cedarburg Bog (Saukville, WI). By this
153 time of the season, the majority of females have mated and no males remain in our population
154 (pers. Obs.; cf. Sullivan-Beckers 2008). These females were ca. 10 week-old adults (with
155 eclosion from egg around the first week of June and adult molt around the first week of July at
156 our site; pers. Obs.).

157 We collected females from several *V. lentago* trees across four large copses separated
158 from each other by ≥ 150 m, taking no more than 2 females from any one plant individual. As
159 females aggregate for egg laying from a much wider dispersion than during the mating season
160 (Cocroft et al. 2008), it is highly unlikely that any neighboring females were related.

161 We manipulated aggregation density for egg laying for these females in a climate-
162 controlled room at the University of Wisconsin-Milwaukee Greenhouse (temperature: day: mean
163 = 19.9, SD = 5.1; night: mean = 16.1, SD = 4.1; light cycle: 12:12 h). We placed females in 11 ×
164 29 cm plastic cups each fixed around a stem of a potted exemplar of their host plant (only one
165 cup per plant). This gave us a fixed extent of stem to manipulate aggregation density by
166 introducing different numbers of females. We standardized plant quality by using 2-3 year-old
167 exemplars of approximately the same size (ca. 0.7 m tall and 0.5-1cm at the base of the stem)
168 and vigour. We assigned females at random to one of three aggregation density treatments: high,
169 medium, or low (15, 8, and 3 females /aggregation, respectively). We based these treatments on
170 observed variation of adult groups in the field, with the medium density treatment approximating
171 field conditions (pers. obs). We created more replicates for the low density treatment to attempt
172 to even final offspring sample sizes (Table 1).

173 We allowed females to lay their eggs *ad libitum* within the experimental aggregations
174 throughout September and October. The range of egg masses laid by females in the experimental
175 aggregations (low: 6-43; medium: 40-103; high: 77-126) corresponds to the range observed in
176 the field (April 2024 survey at the UWM Field Station, adjacent the Cedarburg Bog collecting
177 site: 1-149 egg masses/stem).

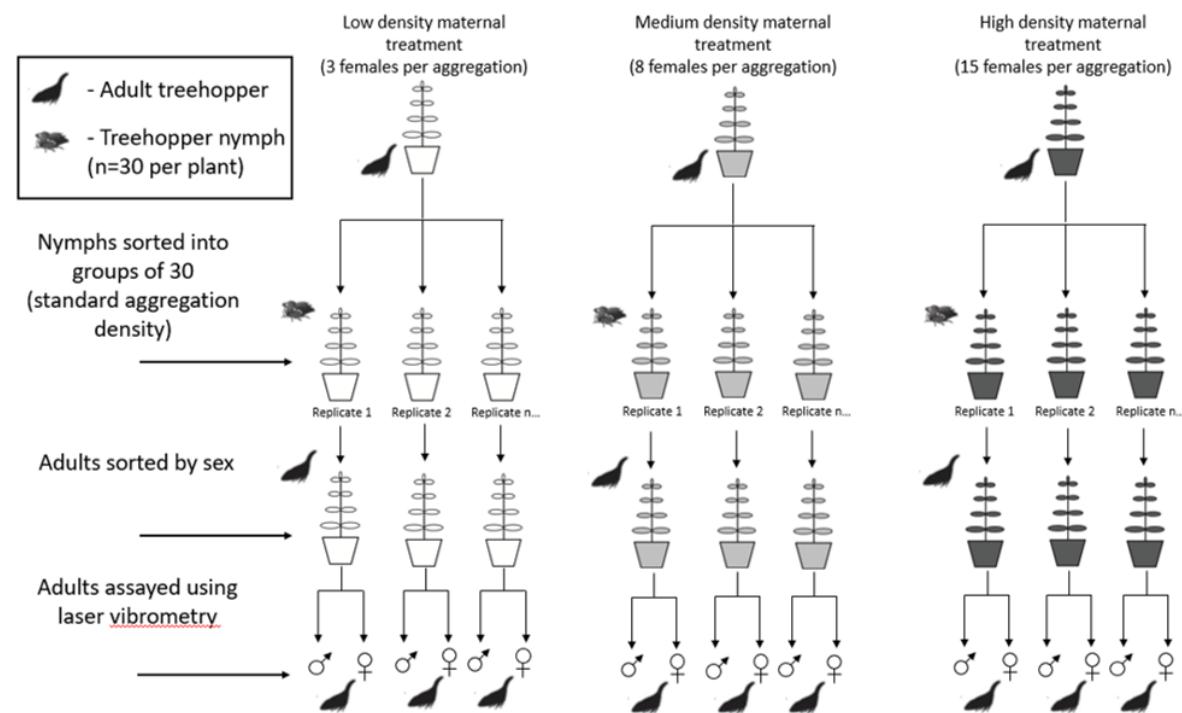
178 Once no female had laid eggs for 2 weeks, we brought the plants outside the greenhouse
179 to expose them to the cool fall temperatures and trigger plant and egg dormancy. We kept eggs
180 on the original plant, as females lay them under the epidermis of the plant and then cover them
181 with a waxy material (Cocroft et al. 2008). Further, eggs must remain in this position for embryo
182 development and nymph hatching to be triggered by the flow of phloem when plants exit
183 dormancy (Cocroft et al. 2008). Females died as in the field with the first frost (Cocroft et al.

184 2008). When dormancy set in 4 weeks later, we brought the plants into a cold storage room at the
185 greenhouse and kept them at 3-4 °C for overwintering.

186

187 *Offspring rearing*

188


189 To start embryo development, we brought the plants with eggs back into the greenhouse room in
190 February of 2021, and gradually increased the temperature over a month to the above conditions.
191 This brought the plants out of dormancy, and the movement of phloem brought the treehopper
192 embryos out of diapause (Cocroft et al. 2008). Nymphs hatched in March within ca. 1 week of
193 each other.

194 We transferred 2nd instar nymphs to fresh potted exemplars of their host plant that we had
195 brought out of dormancy starting 1 month before the plants with egg masses (Figure 1). We
196 waited until the 2nd instar stage to establish the rearing aggregations due to concerns that 1st
197 instars might be too small and delicate to move without hurting them. This introduced a potential
198 confound into the experiment, as the nymphs briefly experienced different aggregation densities
199 (corresponding to their mothers' egg-laying density treatments), which can influence signals and
200 mate preferences (Fowler-Finn et al. 2017). A related potential concern applies to embryos in the
201 eggs. We have no experimental way to tease apart these potential effects from that of mothers'
202 egg-laying density treatments. However, we consider that they do not represent serious problems
203 (see Discussion).

204 We spread nymphs from any one maternal treatment replicate plant onto several different
205 rearing replicate plants. All nymph aggregations had starting densities of 30 nymphs per plant,
206 except for two replicate aggregations from the maternal low density treatment and one replicate

207 aggregation from the maternal medium density treatment. For these replicates, the two low
 208 density replicates were $n=7$ and $n=25$ and the medium density replicate was $n=7$ (removing
 209 these replicates did not affect the significance of our results; see below). Upon the adult molt in
 210 April, we sorted the offspring by sex, transferring females onto fresh plants and leaving the
 211 males on the original plants to prevent mating and courtship experience (Figure 1).

212 To account for potential confounds in development stemming from our maternal
 213 treatments, we monitored nymph survivorship, the proportion of adults who became sexually
 214 receptive, sex ratio, and adult mass. We found no differences in these variables between
 215 treatments (see supplemental for details).

217 Figure 1. Outline of the experiment testing for effects of the maternal social environment with
 218 *Enchenopa* treehoppers. We randomly assigned females to replicated aggregation density
 219 treatments during egg laying. We then reared their offspring at a standard aggregation density.

220 Upon the adult molt, we sorted the treehoppers by sex on separate rearing plant replicates, to
221 prevent them from experiencing courtship experience and mating.

222

223 *Recording and analyzing male advertisement signals*

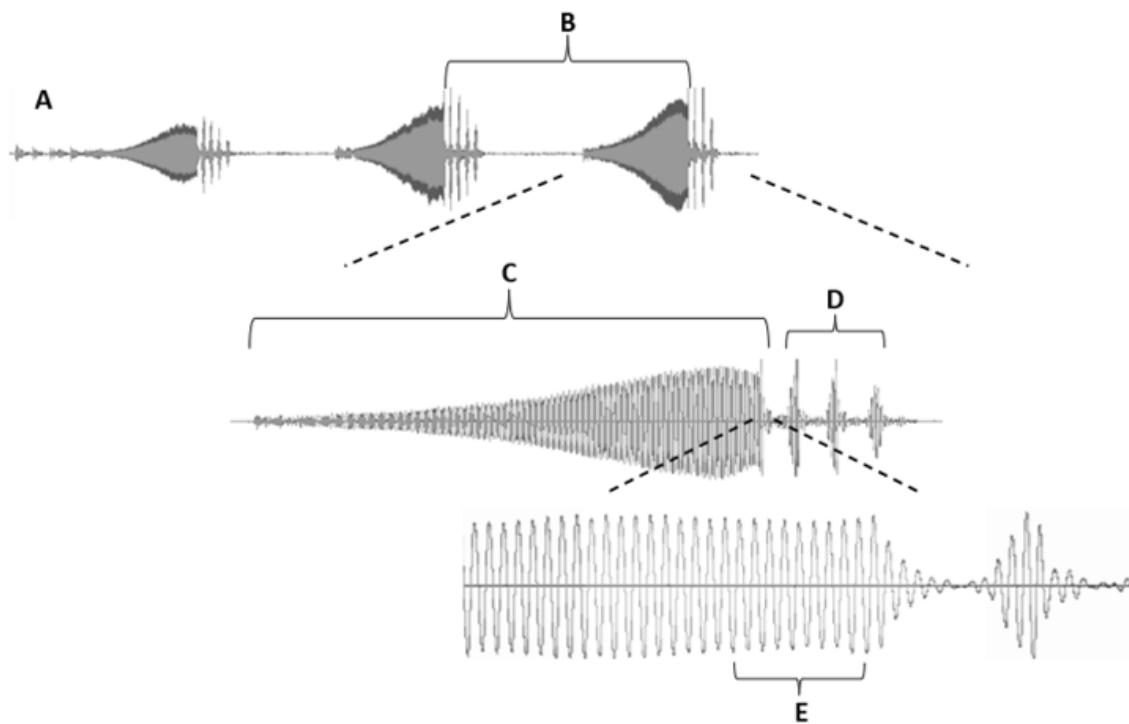
224

225 To record male signals, we took advantage of their natural tendency to signal spontaneously
226 when placed on a stem of their host plant (which mimics arrival on a new plant in their natural
227 mate-searching behavior) (Cocroft et al. 2008). Drawing haphazardly from the different replicate
228 rearing plants, we placed each male on a potted exemplar of their host plant (henceforth, the
229 recording plant). We used a single plant for recording males (and testing females; see below) to
230 avoid any potential confounding effects due to differences in the signal transmission features of
231 different plant individuals (Cocroft & Rodríguez 2005). We placed all males at a standard
232 position on the plant stem, ca. 5 cm above the recording laser dot (see below). We monitored the
233 air temperature near the position of the male (within 40 cm) with a thermometer (catalog number
234 14-648-26, Fisher Scientific, Hampton, NH, USA). The mean recording temperature while
235 recording males was 24.5C (SD = 0.66; range = 23.5-26.5C).

236 We recorded male signals using a laser doppler vibrometer (Polytec CLV 2534; Polytec
237 Inc., Auburn, MA, USA) which allowed us to record vibrations transmitted along the recording
238 plant without direct contact with, or disruption of, the substrate. We focused the beam of the
239 laser vibrometer on a small piece of reflective tape (ca. 2 mm²) attached to the stem of the plant.
240 We sent the output from the vibrometer to a frequency filter (40–4000 Hz; Krohn-Hite 3202;
241 Krohn-Hite Corporation, Brockton, MA, USA) and oscilloscope (1MB mixed signal

242 oscilloscope; HMO 1002; Rohde and Schwarz; Munich, Germany) and then to a MacBook Pro
243 laptop computer (Apple; Cupertino, California) through a USB audio interface (Edirol USB
244 Audio Capture UA-25; Roland, Hamamatsu, Japan). We recorded the signals on this computer
245 with the program AUDACITY (v. 2.1.2; <http://audacity.sourceforge.net/>) at a sampling rate of
246 44.1 Hz. To isolate the recording set-up from building vibrations, we placed the recording plant
247 on a pad of shock-absorbing sorbothane (Edmund Scientifics, Tonawanda, NY) on top of a
248 135kg iron plank resting on partially inflated inner tubes on a table. The legs of the table were on
249 rubber pads.

250 We allowed each male 5 min to signal after placing him on the recording plant. If a male
251 did not signal halfway through the allotted time, we played a primer of a male signal followed by
252 a female response in an attempt to elicit a call (see below). If the male did not signal within the 5
253 min interval, we returned him to his plant and tried again on a subsequent day. We excluded
254 males that did not signal in three such attempts. In total, we recorded 120 males (Table 1). We
255 did not keep track of whether the proportion of males that required a primer to induce signaling
256 varied across treatments. However, we do not expect this to introduce a confound. Prior research
257 has found that the immediate social male-female signaling environment does not alter the
258 features of male signals on which we focus here (mainly signals/bout and signal frequency; see
259 below), although it may influence signal rate (Rebar & Rodríguez 2016), which did not vary
260 across our treatments (see below).


261 Following recording, we assessed male signal features using the program AUDACITY.
262 In terms of the signal-preference relationship, the most relevant signal feature is dominant
263 frequency; this is the most distinctive signal feature across species in the *E. binotata* complex,
264 and the one for which females have the strongest mate preferences (Rodríguez et al. 2006,

265 2013a; Cocroft et al. 2010). However, as possible adjustments to the level of sexual competition
 266 in the social environment most often involve signaling effort, we also assessed variation in other
 267 signal features (Figure 2).

268 The features of *E. binotata* male advertisement signals vary along signal bouts (e.g.,
 269 increasing amplitude and length, slightly decreasing frequency) (Cocroft et al. 2010). To account
 270 for this variation, we took measurements from a standard "landmark" position along the recorded
 271 signal bouts: the third signal of the first bout. If a bout contained less than three signals, we
 272 measured the last signal.

273

274

275

276 *Figure 2.* Male *E. binotata* advertisement signal features examined in this study. **A:** Signals per
 277 bout. **B:** Inter-signal interval. **C:** Whine length. **D:** Pulse number and pulse rate (pulse

278 number/interval between first and last pulse). **E**: Dominant frequency (estimated from the length
279 of 9 wave cycles at the end of the whine, which is the section of highest amplitude).

280

281

282 *Vibrational playbacks and describing female mate preferences*

283

284 Describing variation in mate preferences requires several trials with each individual (see below),
285 and with too many trials females may become unresponsive. We therefore focused on mate
286 preferences for only one signal feature: the dominant frequency of male signals. These are the
287 strongest mate preferences in the *E. binotata* complex, and signal frequency is the most
288 distinctive adult phenotype among species in the complex (Rodríguez et al. 2006, 2013a; Cocroft
289 et al. 2008, 2010).

290 To assess mate preferences, we took advantage of the natural behavior of *Enchenopa*
291 females of selectively duetting with males they find attractive (Rodríguez & Cocroft 2006;
292 Cocroft et al. 2008). A mate-searching male that does not receive a duetting response from a
293 female will not be alerted about her presence and will fly off to another plant to signal. By
294 contrast, a male that is engaged in duetting by a female will remain on the plant, search for the
295 female, and continue duetting until mating begins—*Enchenopa* females control which males
296 they encourage to court them and which remain ignorant of their presence. *Enchenopa* female
297 selective duetting thus provides a realistic and convenient assay of their response to signals
298 (Rodríguez et al. 2004, 2006, 2013a; Cocroft et al. 2008).

299 We presented females with synthetic vibrational playback stimuli varying in frequency.

300 We generated the stimuli and controlled their presentation from an iMac desktop computer
301 (A1208; Apple; Cupertino, CA) with custom MATLAB (version 7.5.0.338; MathWorks, Natick,
302 MA; <http://www.mathworks.com>) scripts. We calibrated the amplitude of the playback stimuli to
303 0.15 mm/s using the oscilloscope. We imparted the stimuli onto the recording plant with a DC
304 unit connected to a piezo controller (MDT694A; Thorlabs, Newton, NJ) that drove a
305 piezoelectric stack attached to the stem of the plant with accelerometer wax (Model 32227
306 mounting wax, Endevco, San Juan Capistrano, CA, USA). We recorded the playback stimuli and
307 female response signals with the laser vibrometer as described above.

308 To begin a playback trial with a female, we placed her on the recording plant at a
309 standard position on the stem, ca. 5 cm above the laser dot, and allowed her 2 min to settle. We
310 drew haphazardly from the different replicate rearing plants. We tested whether the female was
311 sexually receptive with a primer playback (a recording of a male signal approximating mean
312 population features). If the female did not duet with this, we put her back on her rearing plant
313 and tested her another day. We excluded females that did not duet in three such attempts.

314 We presented sexually receptive females with 18 playback stimuli in random sequence,
315 ranging in signal frequency from 140-250Hz. This frequency range slightly exceeds the range of
316 signal frequencies in the species, in order to capture the full shape of the preference (Kilmer et
317 al. 2017). All the other features of the stimuli were set to the population mean: each stimulus had
318 3 signals/bout; inter-signal duration of 3170 ms; whine length of 700 ms; four pulses per signal;
319 and pulse rate of 17.4 pulses/sec (Desjonquères et al. 2023).

320 We recorded the vibrational playbacks and female duetting responses using the above
321 laser vibrometry set up, with the program AUDACITY on the MacBook Pro. We monitored the
322 air temperature near the position of the female (within 40 cm) with the thermometer. The mean

323 recording temperature while recording females was 24.6C (SD = 0.50; range = 23.5-25.5C). We
324 completed playback trials for 192 females (Table 1).

325 Our assay of female response was the number of duetting responses that females
326 produced to each of the playback stimulus bouts (ranging from 0-3; i.e., from responding to none
327 to responding to all 3 signals in the playback bouts; see above). We noted female responses to
328 the playbacks from the waveform of the playback recordings with the program AUDACITY.

329

330

331 *Statistical analysis*

332

333 Females in the *E. binotata* complex mate only once (Wood 1993; Sullivan-Beckers & Cocroft
334 2010). Consequently, each female's offspring in the egg-laying and nymph-rearing host plant
335 replicates constitute a full-sibling family, mixed in with the offspring of the other females in the
336 replicate. This introduced an element of non-independence in the data that was impossible to
337 account for, as we had no way to track egg and offspring families along the experiment. One
338 concern is that, as treatments consisted of different numbers of egg-laying females (Table 1),
339 they may have varied in the degree of mixing of related individuals and corresponding data
340 dispersion. For example, there may be genetic variation in survivorship, or in how survivorship
341 varies with aggregation density.

342 We attempted to deal with such potential problems in two ways. First, we reared all
343 nymphs at the same aggregation densities to attempt to mitigate any affect caused by juvenile
344 density. We also attempted to equalize final sample sizes by creating more replicates for the low
345 maternal aggregation density treatments (see supplemental). Thus, the mixtures of related and

346 unrelated individuals in each replicate and treatment were likely similar, and unlikely to bias the
347 results. Additionally, we accounted for plant replicate identity in the analyses with random terms
348 (see below), which partly covers non-independent sibling data points. We therefore consider
349 that the problem of non-independence was likely weak and diluted similarly across the
350 treatments in our experiment, and that it only suffered from an unavoidable but low level of
351 pseudoreplication that was unlikely to strongly force spurious significance in the analyses.

352

353 *Testing for effects of the maternal social environment on male adult offspring advertisement*
354 *signals*

355

356 To analyze variation in male signals, we first examined whether the different signal traits we
357 measured (Figure 2) were strongly related to each other with Pearson correlations. The purpose
358 of this preliminary analysis was to assess the risk of spurious significance from testing with
359 many highly correlated traits (cf. Rice 1989). We found that most correlations were weak and
360 non-significant ($r \leq 0.22$, $P \geq 0.05$) and one was significant and of moderate effect size (the pulse
361 rate-pulse number correlation: $r = -0.42$, $P < 0.001$). This suggests that the risk of spurious
362 significance from including all signal traits in the analyses detailed below is low.

363 We therefore tested for maternal effects on signals with separate linear mixed models for
364 each signal trait. Each model had the following explanatory terms: treatment and recording
365 temperature as fixed effects; and plant replicate nested within treatment as a random term. As
366 each male contributed a single data point for each signal trait, the models did not have a random
367 term for individual identity. We ran these analyses in R using the package glmmTMB (version
368 1.1.8) and correlation (version 0.8.4).

369

370 *Testing for effects of the maternal social environment on female adult offspring mate preferences*

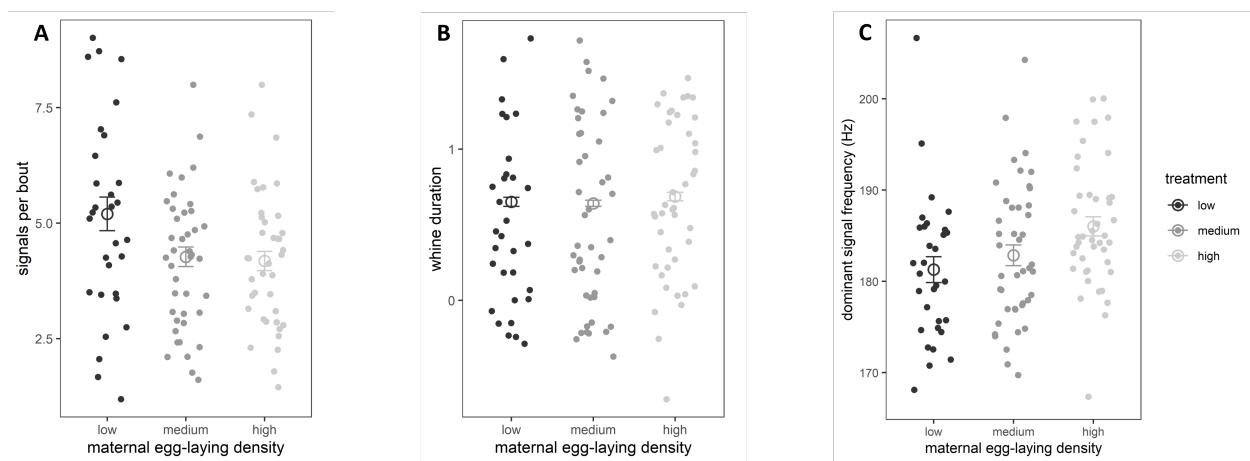
371

372 We analyzed variation in female mate preference functions with a function-valued approach
373 (Ritchie 1996; Meyer & Kirkpatrick 2005; Fowler-Finn & Rodríguez 2012a,b; Stinchcombe et
374 al. 2012; Kilmer et al. 2017). We used a generalized linear mixed model with the number of
375 responses (0-3) of each female to each stimulus as the dependent term (modeled as an ordinal
376 variable with a Poisson error distribution using the glmmTMB package in R). We included the
377 following fixed explanatory terms in the model: treatment; linear and quadratic components for
378 stimulus frequency; the interactions between treatment and these linear and quadratic stimulus
379 frequency terms; and recording temperature. We also included random terms for rearing plant
380 replicate (nested within treatment); and female identity (nested within treatment and replicate, as
381 each female contributed multiple data points across her response curve to the stimuli).

382 In this model, the main term for treatment tests was for overall differences in intercept (or
383 elevation) between mate preferences across treatments. The main terms for stimulus frequency
384 (linear and quadratic) test for overall linear slope and curvilinear shape components in the mate
385 preferences. The interactions between treatment and the stimulus frequency terms (linear and
386 curvilinear) test for differences in the shape of the mate preferences across treatments (i.e.,
387 differences in slope with the linear term, differences in curvature with the quadratic term).

388 We assessed the effect size of significant terms (Cohen 1988; Nakagawa & Cuthill 2007)
389 with the measure partial eta squared (η^2_p), which we estimated following Lakens (2013). We also
390 converted η^2_p to a measure of effect size (r) that is bounded between 0-1 and has intuitive
391 standard categories of small ($r < 0.30$), medium ($0.30 < r < 0.50$), or large ($r > 0.50$) magnitude
392 (Cohen 1988; Nakagawa & Cuthill 2007), thus: $r = \sqrt{\eta^2_p}$ (cf. Lakens 2013).

393


394 **Results**

395

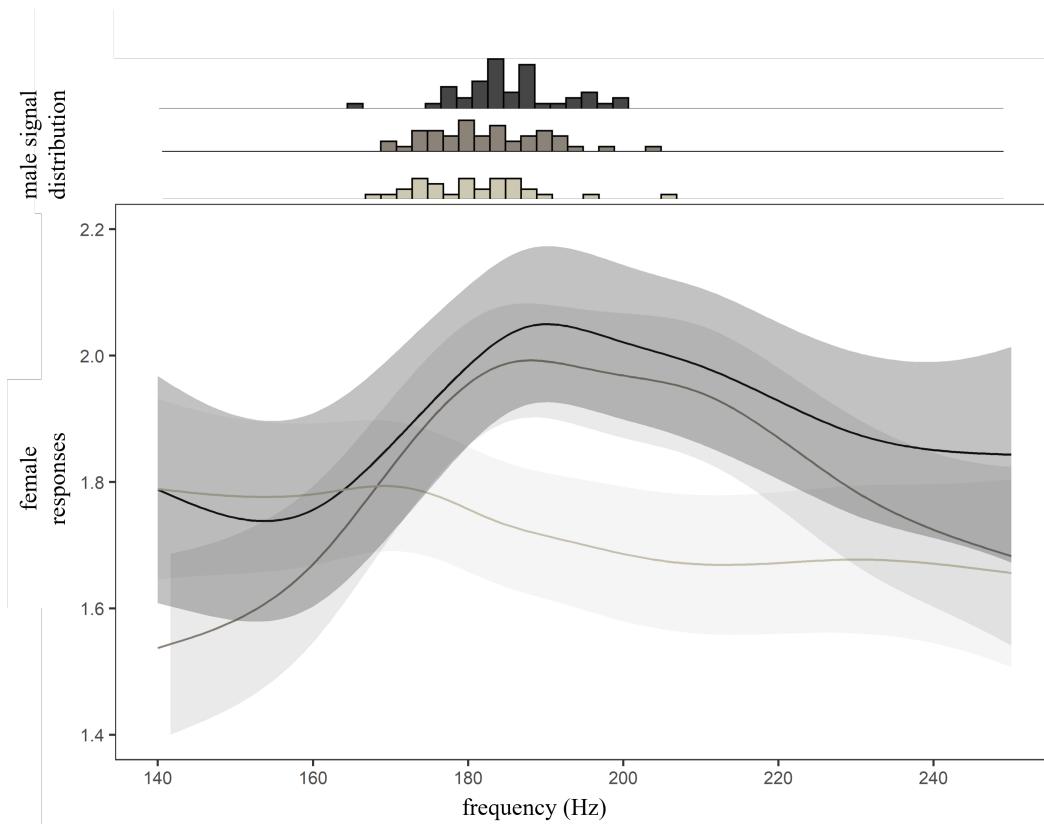
396 *Effects of the maternal social environment on male offspring advertisement signals*

397

398 The number of signals/bout varied significantly across treatments (Table 1), with males whose
 399 mothers experienced lower density aggregations during egg laying producing more signals/bout
 400 (Figure 5). This represents a large difference across treatments (effect size of main treatment
 401 term: $\eta^2_p = 0.287$; $r = 0.54$). None of the other signal traits varied significantly across treatments
 402 (Table 1; Figure 3).

403

404 *Figure 3.* Variation in *Enchenopa* male signal traits across treatments in the experiment testing
 405 for effects of the maternal social environment. Here we show results for the signal traits that we
 406 discuss in terms of signaling effort and the signal-preference relationship: signals/bout (A);
 407 whine length (B); and dominant frequency (C). Open symbols with error bars indicate means \pm 1
 408 SE. (Note that the top 6 values for signals/bout in the low density treatment correspond to 4
 409 different replicates.)


410

411 *Effects of the maternal social environment on female offspring mate preferences*

412

413 We found differences in the shape of female mate preferences across treatments (Table 2:
414 significant treatment \times quadratic stimulus frequency interaction), with daughters of mothers that
415 experienced low density egg-laying aggregations having lower selectivity; i.e., their preferences
416 were broader and flatter in shape and had a lower overall elevation (Figure 4). This difference
417 across treatments was of small effect size ($\eta^2_p = 0.0041$ and $r = 0.06$ for the treatment \times quadratic
418 stimulus frequency interaction term, which tests for differences in the preference function
419 curvature). Females whose mothers experienced low density aggregations during egg laying also
420 appeared to have a shift in peak preference towards a lower frequency (Figure 6). However,
421 when we tested only those females we found no significant slope or curvature (linear and
422 quadratic stimulus frequency terms: $F \leq 1.31$, $P \geq 0.25$; same generalized linear mixed model as
423 in Table 2 but excluding the high and medium density treatments). Thus, females whose mothers
424 experienced low density aggregations during egg laying are best viewed as having "flatter"
425 preference functions rather than lower peak preferences.

426

427

428 *Figure 4.* Treatment-level *Enchenopa* female mate preference functions and male signal
 429 frequency (histograms) in the experiment testing for effects of the maternal social environment.
 430 Black: high-density; dark grey: medium-density; light grey: low-density. Ribbons: standard error
 431 of the functions.

432

433 **Discussion**

434

435 We manipulated the aggregation density of egg-laying females to determine whether the
 436 maternal social environment could influence the sexual traits of their offspring. We found that
 437 adult offspring male signals and female mate preferences varied according to the maternal egg-
 438 laying density treatments. (Our manipulation of the aggregation density of egg-laying females

439 extended to the social environment experienced by embryos and briefly by very young nymphs,
440 introducing a potential confound. We discuss below why we consider it does not present a
441 serious problem.)

442 We based our expectations for the form of these changes on theory regarding experience
443 of competitors and mating partner options in the recent/immediate social environment. These
444 mainly concern male investment in competition (e.g., signaling effort) and female selectivity. We
445 had no expectation regarding the form of the effect of the maternal social environment on adult
446 male offspring signaling effort, as increased effort under conditions indicating likely high or low
447 competition may be advantageous (Bretman et al. 2011; Parker et al. 2013; Rebar et al. 2016).

448 We found that sons of mothers that experienced conditions that might indicate low availability of
449 mates (low egg-laying aggregation density) showed increased signaling effort (signals/bout,
450 albeit not signal length). This may make males more likely to succeed in finding and attracting
451 scarce mates under conditions of low density (cf. Rebar et al. 2016). In the *E. binotata* complex,
452 female mate preferences for signals/bout are weaker than for signal frequency, but females do
453 favor higher signal numbers (Rodríguez et al. 2006; although we have not characterized this
454 preference for our study species). Further, males that produce more signals/bout may also engage
455 in higher overall mate searching efforts and thus benefit in low population densities.

456 We had a stronger rationale regarding the form of the effect of the maternal social
457 environment on adult female offspring mate preference selectivity. We expected that maternal
458 egg-laying conditions that might indicate low likelihood of the presence of preferred mate types
459 (i.e., low egg-laying aggregation densities) should result in decreased selectivity. This was the
460 form of our finding: daughters of mothers that experienced low egg-laying aggregation densities
461 showed decreased mate preference selectivity. This may help females balance the search for

462 preferred mate types with the need to secure a mating (cf. Fowler-Finn & Rodríguez, 2012a,b;
463 Rodríguez et al. 2013c; Desjonquères & Rodríguez 2023). Lower selectivity preferences were
464 also less "responsive" overall (lower mean curve elevation; Figure 4). However, those females
465 were nevertheless producing nearly 2 duetting signals in response to each stimulus (Figure 4).
466 Thus, they would still secure approach by males, just being less selective about which males
467 receive more responses.

468 The above interpretations assume that the maternal social environment is at least
469 somewhat predictive of the conditions adult offspring will face in mate searching and mate
470 choice, as is often the case for young offspring across animal groups (Mousseau & Fox 1998;
471 Marshall & Uller 2007; Bentz et al 2013; Bestion et al. 2014; Storm et al. 2010; Ensminger et al.
472 2018). For *Enchenopa*, there is evidence that is at least partly the case. *Enchenopa* treehoppers
473 do not disperse very much during development, and reach the adult molt on the plant (and likely
474 stem) where their mothers laid eggs (Cocroft et al. 2008). Further, as mate-searching adults they
475 do fly from plant to plant, but not across large distances, with flights occurring often from one
476 part of the plant to another (Cocroft et al. 2008). It will be interesting to ask whether the maternal
477 social environment is broadly predictive of the conditions of adult offspring, and whether this
478 shapes the evolution of maternal and intergenerational effects (Moore et al. 1997).

479 We were also interested in whether the intergenerational effects we detected might
480 influence selection on male signals due to mate choice. We detected no change in male dominant
481 signal frequency and no change in female peak preferences for this trait, which are the most
482 divergent phenotype among adults in the *E. binotata* complex, and the signal trait for which
483 females have the strongest mate preferences (Rodríguez et al. 2006, 2013a; Cocroft et al. 2008,
484 2010). Thus, the effects of the maternal social environment that we detected did not alter the

485 form of the signal-preference relationship and seem unlikely to alter the form of selection on
486 signals stemming from mate choice. However, they seem likely to affect the strength of
487 assortative mating and the maintenance of variation in signals. With males becoming potentially
488 more effective at mate location and attraction (regardless of the main trait under choice, signal
489 frequency), and females becoming less selective under conditions of low density, the effects we
490 detect may weaken both the strength of selection on signals due to mate choice and assortative
491 mating. This may in turn help maintain phenotypic and genetic variation in male signals (cf.
492 Chaine and Lyon 2008; Morris et al. 2010; Fowler-Finn & Rodríguez 2012a,b; Rodríguez et al.
493 2013c; Desjonquères & Rodríguez 2023). This does not rule out the possibility that in other
494 animals maternal/intergenerational effects may alter the form of sexual selection (Jennions &
495 Petrie 1997; Bailey & Moore 2012; Rodríguez et al. 2013a; Rosenthal 2017; Desjonquères &
496 Rodríguez 2023). We hope our results will provide motivation for such exploration.

497 All together, we interpret our results as providing tentative support for effects of the
498 maternal social environment on adult offspring mating signals and female mate preferences.
499 Several aspects of our study may have made it difficult to detect the effects we were interested
500 in, however. First, as we assembled the rearing aggregations with 2nd instars (see above), the
501 offspring in our experiment briefly experienced differences in aggregation density corresponding
502 to their mothers' egg-laying density treatments. Thus, our manipulation of the maternal social
503 environment is confounded by the offspring's own very early social environment. We consider,
504 however, that this confound was weak if at all present. Prior work has found that variation in
505 social aggregation density along juvenile development does not influence adult male signals and
506 influenced adult female peak preference but not preference selectivity (Fowler-Finn et al.
507 2017)—i.e., the reverse of what we find in the present study, thus the potential confound is

508 unlikely to have forced our results. Second, a related potential concern is that the embryos in the
509 eggs may have experienced cues of the aggregation density of their mothers. We also consider
510 this unlikely, as females do not produce any substrate-borne signals during the egg-laying season
511 (indeed, not since after mating) (Cocroft et a. 2008; D. W. Little unpublished). Egg-laying
512 females do produce aggregation pheromones (Cocroft et al. 2008) but those are unlikely to reach
513 through the waxy covering and plant epidermis to reach the eggs. Third, the effects of the
514 maternal social environment on adult offspring traits may be expected to be subtle. Studies in
515 other species suggest that the strength of such effects may dwindle over the lifetime of offspring,
516 and perhaps not even be noticeable in adult offspring (Lindholm et al. 2006). Thus, although our
517 sample sizes provided statistical power to detect some effects, power may nevertheless have been
518 limited. Fourth, effects from the maternal social environment likely interact with additive and
519 non-additive components of direct and indirect genetic variation in mothers and offspring (i.e., as
520 formalized in interacting phenotypes theory: Moore et al. 1997; Wolf et al. 1998; Radwan 2008;
521 Bailey & Moore 2012; Bailey et al. 2018; Rodríguez et al. 2019). These effects may further
522 interact with non-genetic paternal effects (e.g., Crean & Bonduriansky 2014; Crean et al. 2014;
523 Simmons & Lovegrove 2019), which may themselves involve social components (Crean &
524 Bonduriansky 2014). However, we expect that our manipulation of the maternal post-mating
525 social environment is unlikely to have coincided with such potential effects. Finally, due to our
526 experimental design, we were unable to address our hypothesis while also tracking egg and
527 offspring families. As a result, there was an element of data non-independence. Accounting for
528 such possible effects and interactions may facilitate detecting the (likely subtle) effects of
529 maternal environments on adult offspring, albeit at the cost of requiring more complex
530 experimental designs and larger sample sizes.

531 Our results raise questions about the mechanism(s) that may be responsible for the effects
532 we observed. Our manipulation of mothers' social density may have influenced their endocrine
533 system, ultimately influencing their offspring's behavior. Such an effect may involve
534 pheromones that mothers may deposit in their eggs. For instance, it may have involved hormones
535 circulating in the mothers' bodies at the time of the production or laying of their eggs, as in
536 *Pogonomyrmex rugosus* ants, where caste determination involves an interplay of different
537 hormones within the body of the queen prior to laying (Libbrecht et al 2013). Alternatively, it
538 may have involved hormones deposited in the waxy secretion with which females cover their egg
539 masses (Cocroft et al. 2008). If this is true, these pheromones may also act as a cue for females.
540 Exploring the mechanisms involved in the effects we observe should help understand their
541 regulation and adaptive value (if any), as well as perhaps point the way to more powerful
542 manipulations.

543 In short, we find that the maternal social environment can have far-reaching
544 intergenerational effects, existing even to male mating signals and female mate preferences in
545 adult offspring. Exploring such effects across animals may also help understand variation in the
546 form and strength of natural and sexual selection and in patterns of reproductive isolation; as
547 well as potential adaptive evolution of plasticity arising from multiple aspects of the social
548 environment.

549

550

551

552

553

554

555

556
557
558
559
560
561
562
563
564

Table 1. Analysis of variation in *Enchenopa* male offspring advertisement signals in the experiment testing for effects of the maternal social environment. We report Wald Chi-square tests for the fixed effects (see full description of the linear mixed models in main text). Significant terms highlighted in bold. (Recording temperature did not differ between treatments: $P = 0.74$) (Random terms not shown.)

<i>Signal trait</i>	<i>Term</i>	<i>df</i>	χ^2	<i>P</i>
Frequency	Treatment	2	0.95	0.62
	Temp	1	27.99	<0.0001
Inter-Signal Interval	Treatment	2	0.16	0.91
	Temp	1	0.01	0.89
Pulse Rate	Treatment	2	1.85	0.39
	Temp	1	2.09	0.14
Pulse Number	Treatment	2	1.34	0.50
	Temp	1	1.32	0.25
Whine Length	Treatment	2	1.78	0.40
	Temp	1	7.08	0.007
Signals/Bout	Treatment	2	7.75	0.02*
	Temp	1	1.76	0.18

565
566
567 *removing the low sample size replicates (see above) did not later the significance of this term ($P= 0.02$)
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611

Table 2. Analysis of variation in treatment-level *Enchenopa* female preference functions in the experiment testing for effects of the maternal social environment. We report the Wald Chi-square test p-values for the fixed terms (Random terms not shown.)*

Term	df	χ^2	P
Treatment	2	9.37	0.91
Linear stimulus frequency (freq)	1	3.00	0.08
Quadratic stimulus frequency (freq ²)	1	2.96	0.08
Treatment × freq	2	9.39	0.009
Treatment × freq ²	2	8.87	0.01 **

612
 613

614 * We also ran a model as in this table but also including interactions between temperature and the linear and quadratic stimulus
 615 frequency terms, to account for a potential effect of temperature on the shape of the preferences: temperature × freq: $P = 0.11$;
 616 temperature × freq²: $P = 0.14$. The result for the treatment × freq² term ($P = 0.01$) and treatment × freq term ($P = 0.007$) did not
 617 change with inclusion of those terms. It did, however, affect the main treatment term which became marginally significant ($P =$
 618 0.09).

619
 620 **removing the low sample size replicates (see above) did not later the significance of this term ($P = 0.01$)
 621
 622
 623
 624
 625
 626
 627
 628

629

630 **Citations:**

631

632 Bailey, N.W., Gray, B. & Zuk, M. (2010). Acoustic experience shapes alternative mating tactics

633 and reproductive investment in male field crickets. *Curr. Biol.* 20: 845–849.

634 Bailey, N. W., Marie-Orleach, L., & Moore, A. J. (2018). Indirect genetic effects in behavioral

635 ecology: does behavior play a special role in evolution? *Behavioral Ecology*, 29(1), 1-11.

636 Bailey, N. W., & Moore, A. J. (2012). Runaway sexual selection without genetic correlations:

637 social environments and flexible mate choice initiate and enhance the Fisher process.

638 *Evolution*, 66(9), 2674-2684.

639 Bentz, A. B., Navara, K. J., & Siefferman, L. (2013). Phenotypic plasticity in response to

640 breeding density in tree swallows: an adaptive maternal effect? *Hormones and behavior*,

641 64(4), 729-736.

642 Bestion, E., Teyssier, A., Aubret, F., Clobert, J., & Cote, J. (2014). Maternal exposure to

643 predator scents: offspring phenotypic adjustment and dispersal. *Proceedings of the Royal*

644 *Society B: Biological Sciences*, 281(1792), 20140701.

645 Bretman, A., Gage, M.J.G. & Chapman, T. (2011). Quick-change artists: male plastic

646 behavioural responses to rivals. *Trends Ecol. Evol.* 26: 467–473

647 Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A.,

648 Skaug, H. J., Mächler, M., & Bolker, B. M. 2017. glmmTMB balances speed and

649 flexibility among packages for zero-inflated generalized linear mixed modeling. *R*

650 *Journal* 9:378–387.

651 Callander, S., Kahn, A.T., Hunt, J., Backwell, P.R.Y. & Jennions, M.D. (2013). The effect of

652 competitors on calling effort and life span in male field crickets. *Behav. Ecol.* 24: 1251–

653 1259.

654 Chaine, A. S., & Lyon, B. E. (2008). Adaptive plasticity in female mate choice dampens sexual
655 selection on male ornaments in the lark bunting. *Science*, 319(5862), 459-462.

656 Cirino, L. A., Gallagher, I. D., Desjonquères, C., & Rodríguez, R. L. (2023). Robust mate
657 preferences despite means and opportunity for mate choice copying in an insect. *Animal
658 Behaviour*, 200, 137-146.

659 Crocroft, R. B., & Rodríguez, R. L. (2005). The behavioral ecology of insect vibrational
660 communication. *BioScience*, 55(4), 323-334.

661 Crocroft, R. B., Rodríguez, R. L., & Hunt, R. E. (2008). Host shifts, the evolution of
662 communication, and speciation in the Enchenopa binotata species complex of
663 treehoppers. *KJ Tilmon*, 88-100.

664 Crocroft, R. B., Rodríguez, R. L., & Hunt, R. E. (2010). Host shifts and signal divergence: mating
665 signals covary with host use in a complex of specialized plant-feeding insects. *Biological
666 Journal of the Linnean Society*, 99(1), 60-72.

667 Cohen, J (1988). Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence
668 Erlbaum Associates, NJ

669 Crean, A. J., & Bonduriansky, R. (2014). What is a paternal effect? *Trends in Ecology &
670 Evolution* 29, 554-559.

671 Crean, A. J., Kopps, A. M., & Bonduriansky, R. (2014). Revisiting telegony: offspring inherit an
672 acquired characteristic of their mother's previous mate. *Ecology Letters* 17, 1545-1552.

673 Danchin, E., Giraldeau, L.-A., Valone, T. J., & Wagner, R. H. (2004). Public information: from
674 nosy neighbors to cultural evolution. *Science*, 305(5683), 487-491.

675 Desjonquères, C., & Rodríguez, R. L. (2023). The direction and strength of social plasticity in
676 mating signals and mate preferences vary with the life stage of induction. *Animal*
677 *Behaviour*.

678 Desjonquères, C., Speck, B., Seidita, S., Cirino, L., Escalante, I., Sergi, C., Maliszewski, J.,
679 Wiese, C., Höbel, G., Bailey, N. W., & Rodríguez, R. L. (2023). Social plasticity
680 enhances signal-preference co-divergence. *American Naturalist* (in press).

681 Ensminger, D. C., Langkilde, T., Owen, D. A., MacLeod, K. J., & Sheriff, M. J. (2018).
682 Maternal stress alters the phenotype of the mother, her eggs and her offspring in a wild-
683 caught lizard. *Journal of Animal Ecology*, 87(6), 1685-1697.

684 Fowler-Finn, K. D., & Rodríguez, R. L. (2012a). Experience-mediated plasticity in mate
685 preferences: mating assurance in a variable environment. *Evolution*, 66(2), 459-468.

686 Fowler-Finn, K., & Rodríguez, R. (2012b). The evolution of experience-mediated plasticity in
687 mate preferences. *Journal of Evolutionary Biology*, 25(9), 1855-1863.

688 Fowler-Finn, K., Cruz, D., & Rodríguez, R. (2017). Local population density and group
689 composition influence the signal-preference relationship in Enchenopa treehoppers
690 (Hemiptera: Membracidae). *Journal of Evolutionary Biology*, 30(1), 13-25.

691 Hamilton, K., & Cocroft, R. (2009). Establishing the identity of existing names in the North
692 American Enchenopa binotata species complex of treehoppers (Hemiptera:
693 Membracidae). *Entomological News*, 120(5), 554-565.

694 Hebets, E., & Sullivan-Beckers, L. (2010). Mate choice and learning.

695 Höbel, G. (2015). Socially mediated plasticity of chorusing behavior in the gladiator frog
696 *Hypsiboas rosenbergi*. *Acta Ethol.* 18: 145–152.

697 Hunt, R. E. (1994). Vibrational signals associated with mating behavior in the treehopper,
698 Enchenopa binotata Say (Hemiptera: Homoptera: Membracidae). *Journal of the New
699 York Entomological Society*, 102(2), 266-270.

700 Jennions, M. D., & Petrie, M. (1997). Variation in mate choice and mating preferences: a review
701 of causes and consequences. *Biological Reviews*, 72(2), 283-327.

702 Kasumovic, M.M., Hall, M.D., Try, H. & Brooks, R.C. (2011). The importance of listening:
703 juvenile allocation shifts in response to acoustic cues of the social environment. *J. Evol.
704 Biol.* 24: 1325–1334.

705 Kilmer, J., Fowler-Finn, K., Gray, D., Höbel, G., Rebar, D., Reichert, M., & Rodríguez, R.
706 (2017). Describing mate preference functions and other function-valued traits. *Journal of
707 Evolutionary Biology*, 30(9), 1658-1673.

708 Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a
709 practical primer for t-tests and ANOVAs. *Frontiers in psychology*, 4, 863.

710 Libbrecht, R., Corona, M., Wende, F., Azevedo, D. O., Serrão, J. E., & Keller, L. (2013).
711 Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates
712 maternal effects on polyphenism in ants. *Proceedings of the National Academy of
713 Sciences*, 110(27), 11050-11055.

714 Lindholm, A. K., Hunt, J., & Brooks, R. (2006). Where do all the maternal effects go? Variation
715 in offspring body size through ontogeny in the live-bearing fish Poecilia parae. *Biology
716 letters*, 2(4), 586-589.

717 Marshall, D. J., & Uller, T. (2007). When is a maternal effect adaptive? *Oikos* 116, 1957-1963.

718 Meyer, K., & Kirkpatrick, M. (2005). Up hill, down dale: quantitative genetics of curvaceous
719 traits. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 360(1459),
720 1443-1455.

721 Moore, A. J., III Brodie, E. D., & Wolf, J. B. (1997). Interacting phenotypes and the evolutionary
722 process: I. Direct and indirect genetic effects of social interactions. *Evolution*, 51(5),
723 1352-1362.

724 Morris, M. R., Rios-Cardenas, O., & Brewer, J. (2010). Variation in mating preference within a
725 wild population influences the mating success of alternative mating strategies. *Animal
726 Behaviour*, 79(3), 673-678.

727 Mousseau, T. A., & Fox, C. W. (1998). The adaptive significance of maternal effects. *Trends in
728 ecology & evolution*, 13(10), 403-407.

729 Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical
730 significance: a practical guide for biologists. *Biological Reviews*, 82(4), 591-605.

731 Parker, G. A. (1974). Courtship persistence and female-guarding as male time investment
732 strategies. *Behaviour*, 48(1-4), 157-183.

733 Parker, G. A., Lessells, C. M., & Simmons, L. W. (2013). Sperm competition games: a general
734 model for precopulatory male-male competition. *Evolution* 67(1), 95-109.

735 Radwan, J. (2008). Maintenance of genetic variation in sexual ornaments: a review of the
736 mechanisms. *Genetica*, 134(1), 113-127.

737 Rebar, D., Barbosa, F. & Greenfield, M.D. (2016). Acoustic experience influences male and
738 female pre- and postcopulatory behaviors in a bushcricket. *Behav. Ecol.* 27: 434–443.

739 Rebar, D., & Rodríguez, R. L. (2016). Males adjust their signalling behaviour according to
740 experience of male signals and male–female signal duets. *Journal of Evolutionary
741 Biology*, 29(4), 766-776.

742 Rice, W. R. (1989). Analyzing tables of statistical tests. *Evolution*, 43(1), 223-225.

743 Ritchie, M. G. (1996). The shape of female mating preferences. *Proceedings of the National
744 Academy of Sciences*, 93(25), 14628-14631.

745 Rodríguez, R. L., Sullivan, L. E., & Cocroft, R. B. (2004). Vibrational communication and
746 reproductive isolation in the Enchenopa binotata species complex of treehoppers
747 (Hemiptera: Membracidae). *Evolution*, 58(3), 571-578

748 Rodríguez, R. L., & Cocroft, R. B. (2006). Divergence in female duetting signals in the
749 Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae).
750 *Ethology*, 112(12), 1231-1238.

751 Rodríguez, R. L., Ramaswamy, K., & Cocroft, R. B. (2006). Evidence that female preferences
752 have shaped male signal evolution in a clade of specialized plant-feeding insects.
753 *Proceedings of the Royal Society B: Biological Sciences*, 273(1601), 2585-2593.
754 doi:doi:10.1098/rspb.2006.3635

755 Rodríguez, R. L., Boughman, J. W., Gray, D. A., Hebets, E. A., Höbel, G., & Symes, L. B.
756 (2013a). Diversification under sexual selection: the relative roles of mate preference
757 strength and the degree of divergence in mate preferences. *Ecology Letters* 16, 964-974

758 Rodríguez, R., Hallett, A., Kilmer, J., & Fowler-Finn, K. (2013b). Curves as traits: genetic and
759 environmental variation in mate preference functions. *Journal of Evolutionary Biology*,
760 26(2), 434-442.

761 Rodríguez, R. L., Rebar, D., & Fowler-Finn, K. D. (2013c). The evolution and evolutionary
762 consequences of social plasticity in mate preferences. *Animal Behaviour*, 85(5), 1041-
763 1047.

764 Rodríguez, R. L., Rebar, D., & Bailey, N. W. (2019). Indirect Genetic Effects. In: *Encyclopedia
765 of Animal Behavior* (2nd ed.). Elsevier (Choe J, ed.), p 49-55

766 Rodríguez, R. L., Wojcinski, J. E., & Maliszewski, J. (2018). Between-group variation in
767 juvenile signaling in *Enchenopa* treehoppers (Hemiptera: Membracidae). *Ethology
768 Ecology & Evolution* 30, 245-255.

769 Rosenthal, G. G. (2017). *Mate choice: the evolution of sexual decision making from microbes to
770 humans*: Princeton University Press.

771 Simmons, L. W., & Lovegrove, M. (2019). Nongenetic paternal effects via seminal fluid.
772 *Evolution Letters* 3-4, 403-411.

773 Stinchcombe, J. R., & Kirkpatrick, M. (2012). Genetics and evolution of function-valued traits:
774 understanding environmentally responsive phenotypes. *Trends in Ecology & Evolution*,
775 27(11), 637-647.

776 Storm, J. J., & Lima, S. L. (2010). Mothers forewarn offspring about predators: a
777 transgenerational maternal effect on behavior. *The American Naturalist*, 175(3), 382-390.

778 Sullivan-Beckers, L. (2008). The ecology of mate choice: identifying the agents of sexual
779 selection on mating signals in *Enchenopa* treehoppers. Unpublished PhD thesis,
780 University of Missouri–Columbia.

781 Sullivan-Beckers, L., & Cocroft, R. B. (2010). The importance of female choice, male–male
782 competition, and signal transmission as causes of selection on male mating signals.
783 *Evolution*, 64(11), 3158-3171.

784 Valone, T.J. & Templeton, J.J. (2002). Public information for the assessment of quality: a
785 widespread social phenomenon. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 357: 1549–
786 1557.

787 Verzijden, M. N., ten Cate, C., Servedio, M. R., Kozak, G. M., Boughman, J. W., & Svensson, E.
788 I. (2012). The impact of learning on sexual selection and speciation. *Trends in Ecology &*
789 *Evolution* 27(9), 511e519.

790 West-Eberhard, M. J. (1983). Sexual selection, social competition, and speciation. *The Quarterly*
791 *Review of Biology*, 58(2), 155-183.

792 Wolf, J. B., Brodie III, E. D., Cheverud, J. M., Moore, A. J., & Wade, M. J. (1998). Evolutionary
793 consequences of indirect genetic effects. *Trends in Ecology & Evolution*, 13(2), 64-69.

794 Wood, T. K., Olmstead, K., & Guttman, S. (1990). Insect phenology mediated by host-plant
795 water relations. *Evolution*, 44(3), 629-636.

796 Wood, T. K. (1993). Diversity in the new world Membracidae. *Annual Review of Entomology*,
797 38(1), 409-433.

798

799

800

801

802

803

804

805 **Data availability**

806 Data has been submitted and accepted to Dryad. (<https://doi.org/10.5061/dryad.bcc2fqzk8>)

807 **Author contributions**

808 D.L. and R.L.R. conceived and designed the study. D.L. conducted the experiment and collected
809 the bioacoustic data. D.L. and K.L. extracted the data from the recordings. D.L. and R.L.R.
810 conducted the statistical analyses. D.L. and R.L.R. wrote the manuscript. All authors contributed
811 to revising the manuscript.

812 **Conflict of interest**

813 The authors declare no conflict of interest.

814 **Acknowledgments**

815 We thank Paul Engevold for his expertise and help in rearing our host plants at the UWM
816 greenhouse. We thank Lauren Cirino and Sara Seidita for their help in both maintaining the
817 plants in the greenhouse as well as in insect collection and assaying. We thank Peter O'Dunn,
818 Linda Whittingham, Gerlinde Höbel, Emily Latch, Filipe Alberto, Madi Rittinger, Lauren Cirino,
819 Sara Seidita, Sage Delong, and Ariel Rodríguez for comments and feedback during the design,
820 execution, and writing of this project. We also thank Dr. Jason Wolf for their comments
821 regarding a previous version of this manuscript.

822 **Funding**

823 This study was funded in part by NSF Grant IOS-1855962 to RLR and C. Desjonquères. KL was
824 supported by a UWM Stipends for Undergraduate Research (SURF) fellowship.

825 **AI statement**

826 This manuscript and all analyses and research associated with it were generated without the use
827 of AI or AI assisted technologies

828