2024 1EEE International Conference on Metaverse Computing, Networking, and Applications (MetaCom) | 979-8-3315-1599-7/24/$31.00 ©2024 IEEE | DOI: 10.1109/MetaCom62920.2024.00036

2024 IEEE International Conference on Metaverse Computing, Networking, and Applications (MetaCom)

Trading Virtual Objects Quality for Al Performance
in Mobile Augmented Reality Apps

Niloofar Didar
Wayne State University (Detroit, Michigan, USA)

Abstract—Typical Mobile Augmented Reality (MAR) apps
include several compute-intensive tasks for rendering virtual
objects (AR tasks) and analyzing the real environment through
AI model inference (AI tasks). Unfortunately, most of the existing
research work overlooks the computational concurrency of AR
and Al tasks. In fact, increasing the total triangle count of
virtual objects may improve virtual object quality but reduce
Al inference performance (e.g., latency). In this paper, we design
MIR, a framework for MAR apps that dynamically regulates the
on-screen triangle count to trade off between the performance of
AR and Al tasks, leveraging locally-trained linear performance
models and an approximation algorithm. We have implemented
MIR on Android and tested it on real smartphones and users
against several baselines to prove it helps improve performance
with minimal resource usage overhead.

I. INTRODUCTION

MAR apps execute AR tasks to process the geometry of
virtual objects (i.e., meshes of polygons such as triangles)
for accurate rendering in the scene. In addition, they must
execute at least some basic Al rasks for seamless integration
of virtual and real objects, e.g., frame detection, tracking,
pose estimation, and light estimation [1]. Some apps may
include also extra Al tasks for specific features, such as
natural language processing to translate text or real object
classification to make a virtual dog jump on a real table.

Among various metrics used to monitor MAR app
performance, virtual object quality and Al inference
throughput (i.e., inferences per second and inversely
proportional to inference latency) have recently attracted
researchers’ attention. For example, previous work [2], [3]
have shown that the virtual objects quality and mobile device
energy consumption mainly depend on the current user-object
distance and object triangle count. Other studies focusing
mainly on Al task performance propose to offload Al tasks to
edge servers (e.g., [4]). However, offloading sensitive camera
images may lead to privacy concerns and depends on whether
the remote execution is beneficial in terms of energy and/or
latency. Thus, AI tasks of MAR apps may still need to run
on the mobile device concurrently with AR tasks.

In the attempt to address resource concurrency between Al
and AR tasks, Yi and Lee [5] have proposed a scheduling
method for a finer-grained GPU access control between Al and
AR tasks, but they assume virtual objects are rendered with
maximum triangle count, i.e., highest quality. In Section III we

This research was supported by the US National Science Foundation under
Grant CNS-2142406.

Marco Brocanelli
The Ohio State University (Columbus, Ohio, USA)

demonstrate that resource concurrency leads to performance
unbalance, e.g., high virtual object quality but poor Al per-
formance or vice versa. We also show that the performance
balance' can be controlled by manipulating the total triangle
count of virtual objects. To our best knowledge, no existing
work studies how to manage the concurrent mobile resources
usage of Al and AR tasks to trade off their performance.

In this paper, we design MIR, a framework for MAR apps
that dynamically regulates the on-screen total triangle count
to balance AR and Al task performance. MIR automatically
trains linear models of performance balance based on user
preferences for Al and AR task performance. This approach
ensures adaptability to diverse device models, apps, Al tasks,
and virtual objects. Then, it periodically analyzes the current
AR/AI task performance and finds the total triangle count
needed to maintain balance. Finally, it leverages an approx-
imation algorithm to distribute this total triangle count across
the virtual objects, thereby enhancing their quality.
Specifically, this paper has three main contributions:

« This is the first study to prove that MAR apps are affected
by performance unbalance because they render virtual
objects at their highest quality, reducing Al performance.

o We design MIR, which leverages runtime modeling and
an approximation algorithm to adapt the triangle count
for performance balance despite environmental changes.

« We have implemented and tested an Android prototype of
MIR on real smartphones and users, proving its ability to
maintain balance with minimal resource usage overhead.

The paper structure is as follows. Section II discusses the
related work. Section III provides background and motivations.
Section IV describes the MIR design. Section V presents
experimental results, and Section VI concludes the paper.

II. RELATED WORK

Improving rendering task energy efficiency and user
experience has been widely studied in the last two decades
(e.g., [6], [7]), but these studies focus on knobs such as screen
brightness or dynamic resolution scaling. These approaches
are orthogonal and complementary to manipulating virtual
object quality in MAR apps. Some studies focus on virtual
reality and mobile gaming apps (e.g., [8]). Most of these
solutions pre-render the near-future field-of-view images in
the edge/cloud to improve performance and lower GPU load.

'In the rest of the paper we use the keyword balanced to paraphrase having
a good trade off between AR and Al task performance.

979-8-3315-1599-7/24/$31.00 ©2024 IEEE 158
DOI 10.1109/MetaCom62920.2024.00036
Authorized licensed use limited to: The Ohio State University. Downloaded on January 09,2025 at 16:32:32 UTC from IEEE Xplore. Restrictions apply.

However, the camera frame in MAR apps constantly changes
with user movement in the real-world environment, making
pre-computation in edge servers impractical.

Some other studies [3], [2], [9] focus only on AR tasks
and trade off virtual object quality for lower energy usage
by dynamically manipulating virtual object triangle count.
Specifically, the approach proposed in [9] focuses on trading
off between quality of virtual objects and rendering latency
by changing the virtual object triangle count while LPGL [2]
focuses on headset devices, linking the user’s focal angle with
the choice of virtual object quality. Both these solutions do
not take into consideration an actual estimation of the virtual
object quality as perceived by the user. eAR [3] takes a step
further by leveraging image quality assessment to estimate the
virtual object quality score for energy optimization (see more
details in Section III-A). While we consider a similar approach
to estimate virtual object quality as eAR [3], none of them
consider the potential interference of virtual object rendering
tasks with Al task performance in MAR apps.

Several solutions [10], [4], [11] optimize accuracy and min-
imize energy consumption for Al tasks such as object/surface
detection offloaded to edge servers by considering a desired
maximum inference latency or throughput. While we also
consider achieving a good inference throughput (or latency),
these approaches do not consider virtual object triangle count
as an additional knob to control Al performance. In addition,
offloading camera images may raise privacy concerns for the
user and may not always be feasible depending on environ-
mental conditions (e.g., data transmission latency). The closest
work addressing the resource concurrency of AR and Al task is
Heimdall [5], which breaks down tasks into smaller computing
units for finer-grained mobile GPU scheduling, aiming to
improve system performance in terms of app framerate and
Al latency. However, it assumes virtual objects are always
rendered at their highest quality and does not address the
performance unbalance between Al and AR tasks. Thus, MIR
is orthogonal and complimentary to Heimdall. To our best
knowledge, this is the first work studying how to balance Al
tasks performance and virtual object quality.

III. BACKGROUND AND MOTIVATION
A. Background on MAR Performance Metrics

AR rendering tasks. While classic metrics such as screen
framerate or resolution have been widely studied, virtual
object quality in augmented environments has received limited
attention. Approaches that statically reduce the triangle count
at various distances (e.g., Level of Detail or LOD), may be
difficult to tune due to the heterogeneity of virtual object qual-
ity sensitivity to variations in triangle count and distance (see
next section) and do not balance with Al task performance. To
solve these issues, previous work [3] has shown the feasibility
of using Image Quality Assessment (IQA) to characterize
virtual object quality based on features (e.g., shape, size),
triangle count, and distance. They model the normalized
degradation error of a specific virtual object ¢ at time period &
as a factor of the decimation ratio Ry ; (i.e., selected triangle

159

Low M Med MHigh's Close @ Far...

Low M Med M High +" Closc @ Far...

=)

e
wn
User...Scer

Estimated...Quality

ATV Cabin Plant ATV Cabin Plant

Decimation...Ratio...D8cimation...Ratio...0..

(2) (b)

Comparing virtual object quality: Equation 1 vs. real users

Fig. 1.
count over maximum count) and user-object distance Dy, ;
d;
as Der'r‘ork_L = (aiR%’i + b,Rkl + Ci)/Dk,i’ where a;, bi, Ci,
and d; are parameters trained offline on a remote server [3].
We borrow this model to measure in period k the average
quality Q) across Ny virtual objects on screen as:
N
1 k

= 3 2 (1= Dervory,)

i=1

Qx (1)

To validate this model’s ability in characterizing virtual ob-
ject quality as perceived by users, we have conducted an IRB-
approved survey. To involve a large number of participants and
speed up the study, we have created an online survey where
we show high-resolution videos of the smartphone screen
while using an MAR app we have developed (see details in
Section V-A) with four virtual objects of varying complexity
and size at close and far distances. Each video shows two
versions of the same object side by side, one as the reference
high-quality version (decimation ratio 1) and the other as
the decimated version at ratios 0.8, 0.5, or 0.2, totaling 24
questions. Twenty-five participants have rated the decimated
object quality compared to the reference on a 5-point Likert
scale, where five means identical and one means much worse
perception of the decimated object compared to the reference.

Figures 1a and 1b show the collected data of virtual object
quality estimated using Equation 1 on the decimated object vs
the average user scores, respectively. Due to space constraints,
we show data for three objects and two decimation ratios. To
provide a meaningful comparison, we categorize estimated
and user scores into three quality classes, low, medium, and
high (shaded gray areas in figures). Then, we assess the
ability of the model to provide user-like virtual object quality
classifications by calculating the accuracy and micro-average
Fl-score. Despite some variance in user scores, across all
objects and distances the accuracy and Fl-score are 88.8%
and 83.3%, respectively. This proves a reasonable ability of
Equation 1 to capture users perception of virtual object quality.
Thus, we use it for runtime virtual object quality estimations.
Al tasks. Performance metrics for Al tasks are mainly de-
pendent on accuracy, throughput, and latency. Multiple Al
tasks may concurrently generate inference requests. However,
here we do not allow a specific task to generate a new
request before the previous one has been completed. Thus,
the achieved per-task throughput is calculated as the inverse
of its average latency (i.e., queuing plus inference time).
Furthermore, given that Al inference accuracy relies on model
design choices, which is beyond this paper’s scope, we use
TensorFlow Lite [12] pre-trained models, which are optimized

Authorized licensed use limited to: The Ohio State University. Downloaded on January 09,2025 at 16:32:32 UTC from IEEE Xplore. Restrictions apply.

Decimation...Ratio...03ecimation...Ratio...0.2

:»

Znl Original.__Objects g0 T
£ e B Rao
4 — 03 Decimation. Raio %
% ¥
-

= #] 065 Decinmton R

- I | mm03 Decimation. R

9 500 1000 =00l -
Sample it o s

(a) ®)

Fig. 2. (a) Decimating virtual objects can help improve AI performance but
(b) may affect virtual object quality.
for accuracy and efficient mobile inference. Thus, we focus on
AT task throughput (or latency equivalently) and leave as future
work trading AI model accuracy for virtual object quality.

We also note that new top-tier smartphones can leverage
multiple Al accelerators (e.g., GPU, NPU). Here, we mainly
leverage GPU inference because it is the most common
accelerator across users. In fact, the best-selling Android
phone in 2023, the Samsung Galaxy Al4 5G (MediaTek
Dimensity 700), mainly relies on GPU for Al acceleration.
Nevertheless, performance balance of AR/AI tasks remains
necessary even with other accelerators. Similar to Android’s
NN-API [13], recent studies (e.g., [14]) minimize inference
latency by distributing each Al operation of each task across
CPU, GPU, and/or NPU according to the current system load.
‘When the GPU load is low, an Al task execution can be divided
across NPU and GPU to reduce latency. However, as GPU
load increases due to larger triangle count, those Al operations
on the GPU either experience a longer queuing latency or
are moved to CPU/NPU, depending on compatibility, thereby
deteriorating the latency of all Al tasks due to increased
competition on fewer resources. Thus, AR tasks still affect AT
tasks (up to three times with NN-API in our tests on Galaxy
$22) even when more accelerators are used. We leave as future
work to jointly manipulate virtual object quality and Al task
allocation across accelerators for performance balance.

B. Motivation Study

To motivate our design, we use Samsung Galaxy S22, S10,
Google Pixel 7, and Oneplus 5 on Android OS, but show only
the S10 results due to trend similarity and space limitations.
Throughput vs Object Quality. In this experiment, we
analyze how virtual object quality impacts Al task perfor-
mance. We choose a representative pre-trained model for real
object classification MobileNet V2 from TensorFlow Lite [12]
(note, camera frames for Al inference do NOT include virtual
objects). We conduct three experiment sets using the same
sequence of on-screen virtual objects but at three different
decimation ratios of 1.0 (highest quality), 0.6, and 0.3. We
use the edge collapse algorithm to decimate objects to the
desired ratio while preserving as much as possible the initial
shape. Then, within each sampling period of two-seconds, we
benchmark the performance trade off by collecting multiple
inference throughput measurements as virtual objects are pe-
riodically added (f = 0 to ¢ = 600) and removed (¢ = 600 to
t = 1200) in the augmented environment.

As Figure 2a shows, highly decimated objects (0.3 deci-
mation ratio) minimally impact throughput compared to the

160

o
k-]
§ Performance User-Object Distance
© Monitor Prediction
Dg RE & Throughput
- Dedred Min Model Training
0a 0& (=
Object Applied
_____ S Triangle
: Count
Virtusl Object |
Decimation |1 1 Cache

Object Triangle
Distribution

Fig. 3. Highllevel system architecture.
higher-quality objects. For example, 20 decimated objects at
0.3 ratio degrade throughput by only up to 4 fps, while using
the highest-quality objects reduces throughput by up to 17 fps.
Thus, (Motivation 1) rendering virtual objects at a lower
decimation ratio can help improve Al performance at the cost
of a lower virtual object quality.

Object Sensitivity. Figure 2b illustrates the variation in virtual
object quality across the three case studies in this experiment
(we show only a few to improve visual clarity but similar
results were observed for the other objects). We estimate the
quality of each virtual object as described in Section III-A. We
can observe that, under the same decimation ratio, each object
has a specific sensitivity to triangle count reduction due to
different object characteristics (e.g., shape, size, max triangle
count) and distance to the user. For example, when the apricot
and the hammer are decimated to 0.3 ratio, the apricot’s qual-
ity is around 0.8 while hammer’s quality reduces to 0.4. This
experiment highlights that (Motivation 2) the sensitivity of the
virtual object quality to decimation is heterogeneous across
virtual objects and requires consideration during optimization.

IV. MIR DESIGN
A. System Architecture

As Figure 3 shows, MIR mainly includes model training,
performance balancer, and triangle distribution. The first one
trains system models used for control decisions based on
runtime data from the wuser-object distance prediction and
the performance monitor, ensuring runtime adaptability across
various apps and devices. The user-object distance is estimated
for the next period k+ 1 using the distance-prediction module
from [3]. The performance monitor measures the Al tasks
average throughput and estimates the average virtual object
quality (Equation 1) over the last control period.

The performance balancer (Section IV-B) uses the trained
model parameters to detect performance unbalance and
re-balance the system by regulating the total triangle count
(see Motivation 1) for the next control period. The calculated
total triangle count is then distributed among the virtual
objects on the screen by the object triangle distribution
module (Section IV-C). It incorporates (i) a virtual-object
priority assessment to capture how decimating each virtual
object affects their quality (see Motivation 2) and (ii) an
approximation algorithm to distribute the triangles across ob-
jects for improved quality. Finally, MIR accesses the app local
cache to redraw the required decimated objects on the screen.

Authorized licensed use limited to: The Ohio State University. Downloaded on January 09,2025 at 16:32:32 UTC from IEEE Xplore. Restrictions apply.

Cache Management. MIR employs both a local cache and
an edge server to fetch the decimated objects. The server also
runs virtual object decimation and quality profiling, which are
generally too heavy to run on the mobile device [3]. While
virtual objects are small in size (e.g., 1-15MB) and can be
downloaded within a few tens of milliseconds at modern net-
work speed, MIR mitigates network energy consumption and
cache size by limiting the selectable variations in decimated
objects for the object triangle distribution (Section IV-C).

B. Performance Balancer
Monitoring Performance Balance. The performance bal-
ancer finds the total triangle count on the screen that balances
the system performance in the next decision period k + 1
by defining the Relative Error (RE},) as performance balance
metric over the last period k. An RE = 1 indicates a balanced
performance between average Al throughout and AR virtual
object quality relative to their respective minimum desired
performance. To account for the variance in user scores of
virtual objects quality (see Figure 1b) and modeling errors,
we use a tunable upper and lower bound of relative error to
define a set of RE values where the system is considered to
be balanced. Specifically, we calculate the relative error RE}

over the last control period k as follows:
RE, — P]:lR _ Qk/sz'n
PI?I Hk/Hmzn

where PR and P{M are the relative performance of AR and
Al tasks in period k, respectively. P is obtained from the
estimated average quality of virtual objects in period k, i.e.,
Q. in Equation 1, over the minimum desired quality Q™.
P,;‘” is the measured average Al inference throughput Hy in
period k over the minimum desired throughput H™".

We assume the user/app developer can easily decide the
desired minimum quality Q™™ ¢ [0, 1] and throughput H™™",
which normalize the two different metrics over a relative
desired value and allow us to compare them with each other
for performance balance evaluation. If the inference results
should be displayed on screen within a certain delay, the
developer can simply specify the desired latency to calcu-
late H™™ In alternative, H™™ could be chosen to be equal
to UPTef H™e® where H™%® is the average throughput across
the Al models measured without virtual objects on the screen
and UP™®f € [0, 1] is the desired minimum performance factor.
This approach is in line with pgevious research [10], [11].

Figure 4 shows real-time

2

measurements of RE, PAR, £us -MMMWMW 1-5?5:

and PAT in our experi- £ |0 %‘Jﬂ_ A

ment (same setup as in Sec- = . LOF:E

tion 1B, with both Q™ £ e "M M- o
3 -

and UP*"/ set to 0.7). From 5
t = 0 to 200, 20 virtual
objects are gradually placed
on the screen, with a two-second sampling period for Al
throughput data averaging. Then, an auto decimate function
reduces object’s decimation ratio by a factor of 0.2 every
20 seconds from ¢ 200 to ¢ = 250. We can observe

100 200

Sample

300

Fig. 4. Relative performance vs RE.

161

that before ¢ = 200, PA! decreases due to increased total
triangle count, while PA% remains constant with objects at
the highest quality, leading to a rise in RE from 1.2 to 1.7.
After t = 200, as objects are decimated, PA% decreases due
to lower average object quality, leading to an increase in P4/
and a significant reduction in RE. An RE value close to one
(indicating balance) could be achieved for a specific triangle
count on the screen at time period 240s.

Triangle Count Control. MIR uses a proactive control to
decide the triangle count for performance balance in next pe-
riod k+1. This is to ensure that any required decimated objects
are locally available when needed, aligning with predicted
user-object distances as the user moves in the augmented
environment. In order to implement this approach, we need
to model what is the effect of the predicted distance and
chosen total triangle count on the AI task throughput and
relative error. To simplify control design, we choose to use
two linear models that can be easily trained at runtime with
little overhead. For the relative error model, we know from
Equation 2 and Figure 4 that it depends on the specific Al
models’ load (i.e., encoded into the average throughput H),
on the total triangle count, and user-object distance (due to
OpenGL culling [15]). Thus, we model the relative error
estimated for next period RE k41 as:

REj41 = arTi% + apDpy1 +apHe +¢ (3)

where T}, is the total triangle count in period k1, Djyq is
the estimated average distance between user and all objects on
the screen, ar, ap,ap,(are parameters trained at runtime.
However, the average throughput H k+1 of the Al tasks in the
taskset also depends on the triangle count (see Figure 2a) and
predicted distance (OpenGL culling), thus we model it as:

Hiy1 = prTi% + ppDyyr + 6 4
where pr, pp and § are parameters dynamically estimated for
each device. By keeping these two models separate, we find
it easier to achieve a lower modeling error by pinpointing
the specific parameters that need retrain at runtime. By
substituting Equation 4 in Equation 3 and considering
a desired relative error equal to one in the next period
(ie., REL+1 = 1), we extrapolate the estimated total triangle
count necessary to have performance balance as a function
of predicted user-object distance and model parameters:

1 — (ap + amgpp)Dyy1 — ((+apd))
ar + agpr
If the evaluated RE) is outside the desired region for a
few consecutive times (e.g., five to eliminate false positives
due to noise) and the modeling error of Equations 3 and 4
is sufficiently small, the performance balancer calculates
the triangle count using Equation 5. However, if the
modeling error is higher than a selected threshold (e.g.,
10%), MIR locally re-trains the model parameters through
linear regression before using Equation 5, which allows to
achieve an average 5% error in our experiments. Finally, we
guarantee solution existance for the triangle distribution by

bounding T}%, between the maximum and minimum triangle

tot __
Tk+1 -

Authorized licensed use limited to: The Ohio State University. Downloaded on January 09,2025 at 16:32:32 UTC from IEEE Xplore. Restrictions apply.

count of all virtual objects on screen using the highest and
lowest decimation ratio available for each object, respectively.

C. Object Triangle Distribution

Here, following Motivation 2 in Section III-B, we describe
how MIR efficiently distributes the total triangle count from
the balancer across the virtual objects on screen. For simplic-
ity, in this section we omit k£ and refer to a generic period.

Triangle Distribution Problem Statement. Given n virtual
objects characterized by triangle counts Ty, 75,..., T),, the
maximum allowable total triangle T%°* set by the balancer,
a coarse-grain decimation ratio R, e.g., R = {1,0.8,...,0.1},
and the associated quality values Q; ; € [0, 1], with 1 being
highest quality, for each object i € [1,n] at each decimation
ratio R;, where j € [1,|R|]. The goal of the triangle distri-
bution is to select a decimation ratio for each object i that
maximizes the average virtual object quality while ensuring
that the total triangle count is less than T'°'. This multiple-
choice Knapsack Problem is known to be NP-hard [16].
Thus, we design a polynomial-time approximation algorithm
called Object Triangle Distribution (OTDA) to find a solution.
Next, we introduce some concepts used in OTDA, and then
discuss the algorithm and its approximation guarantees in
Sections IV-C1 and IV-C2, respectively.

Object Prioritization. To prioritize triangle distribu-
tion across objects, we define sensitivity S; and triangle
share Tfh”e. As shown in Section III-B, under the same
decimation ratio each object ¢ has a distinct sensitivity to
triangle count reduction due to the object’s characteristics and
distance from the user. The triangle share is defined as the
current contribution of object i to the total triangle count T,
Given that OTDA calculates the priority of each virtual object
to preserve higher quality, higher priority should be given to
a virtual object that is extremely sensitive to decimation and
has a low triangle count compared to the total triangle count
on screen. Thus, the virtual object priority P; is calculated as:

_ S 1Qi—Qi,)/[Ti(1-R,)]
Tishare Ti/TtOt

where @Q; and Qi are the normalized quality of virtual
object 7 with current triangle count 7;, and at a reference
decimation ratio R,., respectively, with r being a fixed index.

For example, if we calculate the priority of two similar
objects with the same triangle count (i.e., same T3ha7¢)
at two different distances, the farther object has a lower
priority compared to the closer one since the larger distance
makes quality reduction less perceivable. Thus, OTDA can
reduce the triangle count of the farther object more than the
closer one. For triangle distribution decisions we sort the n
objects on screen in non-increasing order of P; and assume
that Py (1), Pa2)s - - - » Pa(n) 18 the order.

Triangle Distribution. MIR leverages a recursive func-
tion to find the object decimation ratio assignment given
the heuristically-decided object’s priority. We define a profit
function F,(;),; to be the cumulative maximum object quality
for the first ¢ highest-priority objects obtained by assigning

P

(©)

162

the j** decimation ratio in R to object a(4). This is calcu-
lated as the sum of max,(Fy(i—1),s) and Qq;),;» Which are
respectively, the maximum average quality of the first ¢ — 1
highest-priority objects and object « (i) quality with ratio R;:

Fa@y,; = m?‘X(Fa(ifl),s) + Qagiyg | Tl = TZZ? 7

where s, j € [1: |R|] are indexes of the array R, and j should
be selected such that the remaining triangle count after assign-
ing decimation ratio R; to object (%), i.e., Tg‘(jl’;“ I is greater
or equal to the minimum total triangle count needed for the n—
1 remaining objects, i.e., T(Z’Ef” This condition guarantees that
there are enough triangles left to assign at least the lowest
decimation ratio to the rest of un-assigned objects. Starting

from 7!, the remaining triangle count is calculated as:

(g = Ta(imyy,; — (Ta - 1) ®)
where T7¢™M

a(a1),j is the remaining triangle count after
assigning the first ¢ — 1 highest-priority objects, and ey
is the maximum triangle count of object «(%) at the highest
quality. The minimum total triangle count required to find
a solution for the remaining n — 7 objects using at least the
minimum decimation ratio R|g| is calculated as:

> I By
h=i+1

1) OTDA Algorithm Design: OTDA assigns triangles
following the sorted priority order and the minimum triangle
count for each object as defined by Equation 9. OTDA first
selects the highest priority object «(1) and determines, for
each decimation ratio j, its profit as F,(1) j = Qq(s),; for those
instances that leave enough triangles for the rest of the objects
(see Equation 7). The profit remains zero if such condition
is not verified. Then, OTDA selects the second virtual object
in the order, i.e., «(2), and finds the highest ratio j € [1, |R|]
for «(2), and maximum s € [1, |R|] for (1), such that (a)
the total profit Equation 7, i.e., Fiy(2),; = Fa(1),s + Qa(i),j> 18
maximized and (b), the remaining triangles are enough for the
rest of the objects. The algorithm then follows these steps for
the rest of the objects, storing each time the combination of
ratios for the selected object () and the object with higher
priority a(i — 1) that lead to the highest combined profit.

When Equation 7 has been evaluated for each virtual object
and each ratio in the order, OTDA finds the combination
of decimations giving the maximum cumulative value for
Equation 7. This combination is then used to redraw each
object from the local cache, as described in Section IV-A.
When all objects have been redrawn, OTDA returns the actual
total triangle count applied to the model training module of
MIR for local model training (see end of Section IV-B).
Complexity of OTDA. Objects are first sorted based on the
priority factor with time complexity O(nlog(n)). Then, for
each object, the algorithm executes |R|? times to find the sub-
optimal decimation ratio. However, the number of |R| ele-
ments is fixed, thus the algorithm complexity is O(n log(n)).
Overhead. The CPU carries the majority of MIR’s execution
overhead. We experimentally find that setting the control

min __

ali) = €)

Authorized licensed use limited to: The Ohio State University. Downloaded on January 09,2025 at 16:32:32 UTC from IEEE Xplore. Restrictions apply.

period to 2s and the size of coarse grain decimation ratio
list | R| to 6 leads to a sufficiently short average execution time
of 20.2ms and good performance. Additionally, the GPU over-
head due to extra draw calls for decimated objects is largely
outweighed by the long-term workload reduction (12% on
average) due to the lower triangle count, which also leads to a
substantial reduction (44% on average) in main memory usage.

2) Approximation Guarantees of OTDA: Theorem 1 de-
fines the approximation ratio of OTDA, which finds a solution
to the triangle distribution problem defined in Section I'V-C.
An algorithm has an approximation ratio 1 if, for all problem
instances, it finds a solution whose value is within 7 from the
optimal value, with 7 < 1 for maximization problems.

Theorem 1. Considering n > 2 virtual objects, a reference
decimation ratio R, =1, and a quality difference 0 < €1 < 1
between the two highest-priority objects, the approximazion
ratio of OTDA with respect to total profit is n = m , where
= Qaq),r + €1 and w3 = Qo (1),
Proof. We find the approximation ratio by analyzing the
profit difference for the instance in which OTDA gives the
worst-case solution against the optimal solution. The instance
consists of a set O of n > 2 objects sorted based on priority
(Equation 6) through permutation «(4), a quality matrix Q,
a maximum triangle count To%n’ and a set of coarse-grain
decimation ratio R {1,1}. Specifically, the instance has
the following assumptions:
(i) Object (1), 1.e., Oy(1), has the largest max triangle count
among all objects, i.e., Vi € [2,n], TR < THY.
In addition, the sum of total triangle count of all objects
except Oy (1) is equal to Ty e, > 2 T(%“)Z =T
(i) Oqq1y at ratio R, [has the minimum quality,
ie, Vi € [2,n],Qa1),r < Qa(i),r- The other ob-
jects increase in quality by a factor ¢;, ie., Vi €
[2,n], Qa(i),r = Q(,(l)ﬂn + €;—1, such that:
@) 0<e <6 <. . <éepo1 <1;
®) €1 < Qo)D)
(c) The current objects’ quality before executing OTDA
is 1, i.e., Q;=1, the reference ratio is R, = [, and Vi S

2.1), Quqryr > 1~ eia/ |1~ (T /s)|

(iii) Oq(1) has the highest priority among all objects, 1.e.,
Vi € [Q,nLPa(i) < Pa(z‘fl)'

(iv) The target triangle count 7" is equal to T3 + Ty,
which is enough to either assign the highest decimation
ratio 1 to the highest priority object O,(1y and the lowest
decimation ratio [to other objects, or to assign ratio 1 to
all objects except O (1)

Under the above assumptions OTDA assigns the highest
ratio to object Oq(1), wWhich has the highest triangle share
and lowest profit, leaving T;’E‘f)zl remaining triangles to be
distributed across the n—1 objects. Because of assumptions (i)
and (iv), these objects are necessarily assigned to ratio [. It
is relatively easy to show that such solution is feasible due
to assumption (ii.c), so we omit it for space reasons. Thus,
given assumption (ii) on object qualities relation, knowing that

163

Z?:2 €1 > (n — 1)61, and that 1 > ¢ + Qa(l),r’ OTDA
obtains a profit F' as follows:
n
F=1+ Z(Qa(l),r +eim1) > nQu),r +ner (10)
i=2
On the other hand, assumption (ii.b) guarantees that an optimal
triangle allocation with profit /”* > F' would select ratio [for
object O (1) and ratio 1 for all the other n — 1 objects. The
only way to further improve F* would be to select ratio 1
also for object Oy (1). However, this is not possible because
by assumptions (i) and (iv) there are not enough triangles left.
Thus, the optimal allocation leads to the following profit:

F* = Faqyr + ZFa(1= Qo +(n—=1)(1) (D
We can now write the ratio F'/F* as:
B nQ(y(l) r T ney Qaqy,r +€1 (12)
Qa(l)r (n—1) " Qatur 4
Let my = Qa(l),,« + €1 and T2 = Qq (1), then F' > W;TjrlF*
and the approximation ratio of OTDA is n = % O

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We tested MIR on several devices including Samsung
Galaxy S22, S10, Oneplus 5, and Pixel 7. The trend results
across these devices are similar, thus due to limited space we
only show those of the S10 (middle performance device). Due
to the lack of real open-source MAR apps with large virtual
object datasets, related studies develop example apps with
either a few (e.g., [2] uses only Stanford bunnies) or simplistic
(e.g., [5] uses bounding boxes, emojis, body joints) virtual ob-
jects, which are not enough for our target scenarios. Thus, we
develop an education/entertainment Android app that includes
several virtual objects and Al features (see results for details).

To the best of our knowledge, there are no state-of-the-art
works to balance Al throughput and virtual object quality?.
Hence, we define two baselines for comparison as follows.
Quality Oriented (QO) represents the current practice of
Android where the virtual objects are always maintained at the
highest quality level, which may lead to poor Al performance.
Throughput Oriented (TO) has a similar target as [10], [11]
since it maintains the Al throughput above a given threshold.
However, they leverage offloading and do not consider AR
tasks. To have a baseline that leverages triangle count for Al
performance control, TO progressively reduces virtual objects
quality until the throughput is above the threshold. Thus, it up-
holds Al performance without ensuring performance balance.

B. Benchmarking MIR Performance

We benchmark the performance of MIR for various com-
binations of virtual objects and Al models. Here, we show
the results for one of the tested scenarios where we vary the
number of virtual objects on screen from 0 to 21, each one
of different size, location, and a triangle count between 2,324
and 146,803. We periodically add one virtual object at a time

2Two baselines could be [5] or [2], but the former does not provide source
code while the latter focuses on energy and is only applicable to headsets.

Authorized licensed use limited to: The Ohio State University. Downloaded on January 09,2025 at 16:32:32 UTC from IEEE Xplore. Restrictions apply.

~16 9 10°
60{ —— Measured Estimated Boundary g Measured — — - Estimated—— Boundary 23 ——-MIR...(Total...Count...from... Balafcc - 3?'4"‘03;“7-12 - P:f““f,ﬂz 94
2z | T T4 x x x A I RS MIR...(Applied...Count...from...OTD N plant_d2.24 = plane_d1.89
£55 | il £ £ Max...Count 10°
2 h‘uhﬂ' "‘V ““W‘ WA\"”\WIMH “,‘ ‘%‘*‘\“'“1“ s | | ER ax...Coun .
£ sop ol NI f Al "!" " e < x £,
£ L H # | : 7 210
Fas{ | m y £10 ”,M,.\:'j_y” f { u | g A =
= { Ehaiad ‘wﬂ‘ﬁﬂw‘u‘\“‘ ‘)/Mu,l | L) £1 4 : -
=40] N M W TR £ b~ X
T i, v ‘m"wl ! E i h‘"“-.! ., <l 10 p
35 J R TS
0
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Sample Sample Sample Sample

() (b) (©) (@)
Fig. 5. Analysis of MIR’s response to virtual object addition (¢ < 126s) and removal (¢ > 126s). MIR activates to restore balance at ¢ = 100 (AR
over-performing), t = 270 (AI over-performing), and ¢ = 370 (Al over-performing).

reaching up to 2 million triangles. When all objects are placed,
we then remove them one by one. Among the ten pre-trained
Al tasks from the TensorFlow Lite repository [12] included in
our app (e.g., for image segmentation, object detection, image
classification, gesture detection), we also run an instance of
mobilenet-v1 [17] for image classification. We set the desired
minimum throughput to 65% (i.e., 37fps) of the maximum one
measured without virtual objects on screen and the minimum
average virtual object quality to 70% of the highest quality.
Using a maximum modeling error threshold of 10% (see end
of Section IV-B), we measure an average modeling error of
4.3% for throughput and 4.5% for relative error, which we
consider satisfactory. The upper and lower bounds of desired
relative error are 1.2 and 0.8, respectively.

Performance Balance Analysis. Figures Sa to 5d show the
measured and estimated AI model throughput, relative error,
total triangle count on screen compared to the maximum
triangle count with objects at maximum quality, and the
virtual object priorities, respectively, as virtual objects are
periodically added from ¢ = 0 to ¢ 126 and removed
after ¢ = 126. There are three points in time (red crosses
in Figure 5b) when the measured relative error stays out of
boundaries, thus triggering the execution of the performance
balancer and OTDA. For example, between time 0 and 100,
the average quality of objects remains at its highest level,
but the throughput drops significantly as more virtual objects
are added. Around ¢ = 100, the relative error exceeds the
upper bound and the system is deemed unbalanced. Thus,
the performance balancer decreases the total triangle count
from 1.48 millions to about 453,000. The final applied triangle
count by OTDA is around 450,000, with only a negligible
left-over triangles caused by the limited set of decimation
ratios considered. After the reduction in total triangle count
at t = 100, the throughput raises from 38fps to 53fps while
the average quality decreases from 1 to 0.84, which are both
above the desired values. Thus, MIR brings the system back
within the desired balanced region of relative error.

On the other hand, as virtual objects are removed starting
at t = 126, the average throughput increases due to the lower
triangle count, leading again to unbalance at ¢ = 270, with
the relative error dropping below the lower bound. Thus, MIR
activates to increase the total triangle count and, subsequently,
re-balance the relative error. A similar situation occurs at time
t = 370. These results show that MIR maintains performance
balance despite changes in the augmented environment by
dynamically adjusting the objects’ triangle count.

164

Triangle Distribution Analysis. Figure 5d shows the pri-
ority comparison among four virtual objects in the experiment
(we omit the other 17 for clarity). Some objects’ lines such
as plane_d1.89 (i.e., a plane virtual object at distance 1.89
meters from the user) might be shorter in the figures compared
to others due to object addition and removal over time. The
order of the object’s priority follows that of the sensitivity and
triangle share. For instance, plant with the lowest initial tri-
angle count is more sensitive than other objects. Additionally,
splane_dl1.12, plane_d1.89, and plane_d2.94 have the same
triangle share but splane is smaller in size. Hence, despite be-
ing the closest, splane’s sensitivity changes less than the larger
planes, even with the same reference decimation ratio (e.g.,
50%). Thus, before t = 100, the splane_dl.12 has the lowest
priority due to its lowest sensitivity, plane_d1.89 has higher
priority than plane_d2.94 because of its closer distance to the
user, and plant_2.24 holds the highest priority due to its higher
sensitivity at a lower triangle count. Following this priority or-
der at ¢t = 100, MIR reduces the quality of low-priority objects
plane_d2.94 and splane_dI.12, which naturally increases their
sensitivity and priority after £ = 100. Similar considerations
can be done at the other MIR activation points. These results
show how OTDA efficiently distributes triangle count among
objects based on their varying priority factor.

C. Performance Comparison

We have tested MIR with many different scenarios of
Al models, virtual objects, and desired performance. Since
we observe similar trend results across scenarios, for space
reasons here we show the results for one of the scenarios where
the user moves in the environment comparing MIR with TO
and QO. The user adds 23 virtual objects from sampling time
t = 0 to t = 265. Then, at t = 265 the user starts moving
closer and at ¢ = 330 starts moving away from the objects.
Figures 6a to 6¢c compare the throughput, relative error, and
virtual object quality of the three schemes, respectively. We
set H™™ for MIR and TO to be 35fps, which is shown with
a bold horizontal line in the figure. We can observe that by
t=265, the throughput of TO and QO decreases up to 32%
and 43% compared to MIR. TO decimates objects uniformly
to guarantee a throughput above the reference bound. Although
it gives a better throughput compared to QO, which maintains
the highest quality, it is not as efficient as MIR because finding
the best throughput bound without uncontrollably deteriorating
virtual-object quality remains challenging. For example, at
time ¢ = 210, TO reduces objects’ decimation ratio to 0.8 to
maintain throughput performance, which only slightly reduces

Authorized licensed use limited to: The Ohio State University. Downloaded on January 09,2025 at 16:32:32 UTC from IEEE Xplore. Restrictions apply.

=
S

_ —MIR TO) ——MIR—— Boundary -~~~ TO—— QO 2 — MR -==-TO ——-QO
2 — MIR-TO...Boundary——- QO =20 \ = — MIR...Boundary
< 601 g el ot 3
£ 50 5 smf‘?“‘"l'm& W s
£ HL aadel b e :
Ef 2 Lok T A A :
£ 40 ! T £ L v & 0381
= A iy B0 < 1.0 4
NS P i i & :
30 el VvaV""M“"" <
0.5 x x x 0.6
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Sample Sample Sample

(a) (b) (c)
Fig. 6. Comparison of MIR with baselines in terms of performance (a-c). Virtual objects were added periodically until ¢ = 256. The user moves closer to

the objects from ¢ = 256 to ¢ = 330, and then moves farther.

the average quality. We also tested TO using H™" above and
below 35fps, which uncontrollably lead to much lower and
higher virtual object quality, respectively. Instead, MIR acti-
vates four times at ¢ = 130, 203, 208, and 260 and can find a
better trade-off between throughput and virtual object quality,
using the desired performance as guideline. In fact, it reduces
the average quality without exceeding the Q™™ = 0.7 desired
bound, which results in higher Al performance compared to
TO. As Figure 6b shows, MIR maintains balance 92.8% of
the time while TO and QO only maintain balance for 27.5%
and 26.3% of the time, respectively. These results show the
usefulness of maintaining performance balance through MIR.

D. User Study

We conduct a study to assess
the system balance based on user
scores of perceived object quality,
by comparing the relative error of
MIR with that of QO and TO. To = |
speed up the study, we recorded Fig. 7. Real Users Test.
the smartphone screen while a user moves around 14 virtual
objects. The app also runs image segmentation inferences
(devconv [18]) with Q™" = 0.7 and H™** = 41 fps. For TO,
we set as desired throughput the maximum achievable without
virtual objects (i.e., 41fps) to see the effect of enforcing highest
Al performance on virtual object quality. For MIR we set
Urerf = (0.7 to allow for a better trade-off exploration. We
then asked 25 anonymous participants to assess the virtual ob-
ject quality with MIR and TO compared to QO (high-quality)
on a 5-point Likert scale, with 1 to 5 indicating much worse
to identical quality. Figure 7 presents the average relative error
for each experiment calculated using the provided user scores.
Notably, the average user score of MIR is 3.71 with an average
throughput of 34.56 fps and an average relative error of 0.81,
falling within the defined boundary for system balance (0.8-
1.2). However, QO and TO lead to a high (5 by definition) and
low (1.81) user score of virtual object quality, respectively,
resulting in an average relative errors of 1.36 and 0.35,
respectively, which highlights high performance unbalance.

This experiment shows with real users the ability of MIR
to trade off between Al throughput and virtual object quality.

EQO0 EmMR @TO

n

Relative...Enr...(0-1)
& =

14

VI. CONCLUSIONS
In this paper, we demonstrated that high quality virtual
objects impact the Al inference throughput in MAR apps

165

and cause performance unbalance. Thus, we proposed MIR,
a framework for MAR apps to balance the performance of Al
and AR tasks. MIR leverages accurate runtime linear model
training of performance to manipulate the total triangle count
and employs an approximation algorithm that assigns object
triangle count across virtual objects for an enhanced object
quality. We evaluated MIR with real users and against several
baselines that either provide high virtual object quality or good
throughput, proving its ability to dynamically keep a good
trade-off between the two metrics.

REFERENCES

Android. (2023) ARCore Fundamental concepts. Android. [Online].
Available: https://developers.google.com/ar/develop/fundamentals

J. Choi, H. Park, J. Paek, R. K. Balan, and J. Ko, “Lpgl: Low-power
graphics library for mobile ar headsets,” in MobiSys, 2019.

N. Didar and M. Brocanelli, “ear: An edge-assisted and energy-efficient
mobile augmented reality framework,” IEEE Transactions on Mobile
Computing, vol. 22, no. 7, pp. 3898-3909, 2023.

Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orchestrator
for mobile augmented reality,” in INFOCOM, 2018.

J. Yi and Y. Lee, “Heimdall: Mobile gpu coordination platform for
augmented reality applications,” in MobiCom, 2020.

V. Setlur, Y. Xu, X. Chen, and B. Gooch, “Retargeting vector animation
for small displays,” in MUM, 2005.

S. He, Y. Liu, and H. Zhou, “Optimizing smartphone power consumption
through dynamic resolution scaling,” in MobiCom, 2015.

S. Shi, V. Gupta, M. Hwang, and R. Jana, “Mobile VR on edge cloud:
A latency-driven design,” in MMSys, 2019.

D. Narayanan and M. Satyanarayanan, ‘“Predictive resource management
for wearable computing,” in MobiSys, 2003.

J. Ahn, J. Lee, D. Niyato, and H. S. Park, “Novel qos-guaranteed
orchestration scheme for energy-efficient mobile augmented reality
applications in multi-access edge computing,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 11, pp. 13631-13 645, 2020.

E.Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions
on Wireless Communications, vol. 19, no. 1, pp. 447-457, 2019.
TensorFlow Lite, “Hosted models for image classification,” https://web.
archive.org/web/20210225170007/https://www.tensorflow.org/lite/guide
/hosted_models, 2021.

Google Android, “Neural networks api,” https://developer.android.com/
ndk/guides/neuralnetworks, 2022.

J. S. Jeong, J. Lee, D. Kim, C. Jeon, C. Jeong, Y. Lee, and B.-G.
Chun, “Band: Coordinated multi-dnn inference on heterogeneous mobile
processors,” in MobiSys, 2022.

learnopengl. (2023, Jan) Face culling. learnopengl. [Online]. Available:
https://learnopengl.com/Advanced-OpenGL/Face-culling

H. Kellerer, U. Pferschy, and D. Pisinger, Multiple Knapsack Problems.
Springer Berlin Heidelberg, 2004, pp. 285-316.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv, 2017.

TensorFlow Lite, “Portrait-segmentation,” https://github.com/anilsathy
an7/Portrait-Segmentation, 2023.

[1]

Authorized licensed use limited to: The Ohio State University. Downloaded on January 09,2025 at 16:32:32 UTC from IEEE Xplore. Restrictions apply.

