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Abstract—FEdge computing has been developed as a low-latency
data driven computation paradigm close to the end user to maxi-
mize profit, and/or minimize energy consumption. Edge computing
allows each user’s task to analyze locally-acquired sensor data
at the edge to reduce the resource congestion and improve the
efficiency of data processing. To reduce application latency and data
transferred to edge servers it is essential to consider data sharing
for some user tasks that operate on the same data items. In this
article, we formulate the data sharing-aware allocation problem
which has as objectives the maximization of profit and minimization
of metwork traffic by considering data-sharing characteristics of
tasks on servers. Because the problem is NP — hard, we design the
DSTA algorithm to find a feasible solution in polynomial time. We
investigate the approximation guarantees of DSTA by determining
the approximation ratios with respect to the total profit and the
amount of total data traffic in the edge network. We also design a
variant of DSTA, called DSTAR that uses a smart rearrangement
of tasks to allocate some of the unallocated tasks for increased
total profit. We perform extensive experiments to investigate the
performance of DSTA and DSTAR, and compare them with a
representative greedy baseline that only maximizes profit. Our
experimental analysis shows that, compared to the baseline, DSTA
reduces the total data traffic in the edge network by up to 20%
across 45 case study instances at a small profit loss. In addition,
DSTAR increases the total profit by up to 27% and the number of
allocated tasks by 25% compared to DSTA, all while limiting the
increase of total data traffic in the network.

Index Terms—FEdge computing, data sharing, task allocation,
profit maximization, network load minimization.

. INTRODUCTION

DGE computing facilitates the operations of nearby
resource-limited mobile devices such as smartphones,
tablets, autonomous mobile robots, drones, and connected ve-
hicles at lower transmission latency compared to the cloud. In
fact, many data-driven applications running on mobile devices
need computational support to analyze locally-acquired sensor
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data (e.g., a video or an image from camera, an audio trace from
microphone). Typical tasks include face recognition [1], image
classification [2], and object tracking [3]. To offload a task, each
device must transmit all the data items to be analyzed (e.g., cam-
era frames) to one of the nearby available edge servers. On the
other hand, given the possibly large number of end-user devices
in the edge system and the even larger number of requests, it is
important to ensure the scalability of edge resources with respect
to the number of tasks and data being offloaded.

Task allocation in edge computing has been intensively stud-
ied during recent years. Due to the limited computing/energy
availability of end-user devices, a significant proportion of re-
lated work has focused on offloading task execution to edge
servers for lowering end-user energy consumption at amaximum
latency requirement [4], [5]. [6], [71. [81. [9], [10]. Some studies
have focused on maximizing the quality of service for end-users
via task offloading within edge resource constraints [11], [12],
[13], [14]. Other studies focus on maximizing the profit for
executing tasks on the edge servers [15], [16], [17], [18]. How-
ever, when allocating tasks to edge servers it is very important
to consider how much data is being transferred over the edge
network to avoid overloading. Our observation is that, in edge
computing systems, multiple tasks from end users may share
the same data, which can help reducing the total data traffic
in the network if those tasks are allocated to the same server. To
the best of our knowledge, there is no previous work studying
how to design task allocation algorithms in edge computing for
joint maximization of profit and minimization of total data size
being transferred on the network.

In this paper, we address this challenge by formulating the
sharing-aware task allocation problem in edge computing as a
bi-objective multi-linear mixed integer program and design two
ereedy task allocation algorithms, DSTA (Data Sharing-Aware
Task Allocation) and DSTAR (DSTA Reallocation), that solve
it. We consider two objectives for the problem, maximizing the
profit derived from the execution of tasks on the edge servers,
and minimizing the amount of data transferred through the
edge network. This paper is an extended version of [19] in
which we presented preliminary results on our DSTA algorithm.
Compared to a representative baseline that only focus on profit
maximization (i.e., P—Greedy), DSTA can reduce the total data
traffic in the network at a small profit loss. Different from our
previous work [19], in this paper we investigate the approxi-
mation guarantees of DSTA by determining the approximation
ratios with respect to profit and the amount of total data traffic
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in the edge network. In addition, we propose a new variant of
DSTA, called DSTAR, that analyzes the server utilization of
DSTA and then performs task reallocation to further increase
the total profit at a minimal increase in total data traffic in the
edge network.

This paper makes the following contributions:

* We formulate the data sharing-aware task allocation prob-
lem as a bi-objective mixed-integer multilinear program
that jointly maximizes the task allocation profit and min-
imizes the network load. We develop a novel analytical
maodel for capturing the sharing among fasks and use it to
derive the objective function that corresponds to the second
objective of the problem.

* The data sharing-aware task allocation problem is NP-
hard. Thus, in order to provide a feasible solution in poly-
nomial time, we design a greedy algorithm, called DSTA,
that considers the tasks™ data-sharing characteristics and
allocates them to edge servers to maximize the profit and
minimize the network load.

* We investigate the approximation guarantees of DSTA by
determining the approximation ratios with respect to total
profit and amount of data traffic in the network.

* We design a reallocation algorithm, called DSTAR, that
uses DSTA’s allocation and reallocates tasks on servers
to obtain higher total profit at a minimal increase of the
amount of data transferred in the network.

* Qur extensive experimental analysis shows that, compared
to the baseline algorithm (P — Greedy), DSTA reduces the
amount of data in the edge network at a small profit loss.
In addition, DSTAR increases the total profit and number
of allocated tasks while limiting the increase of the amount
of data in the network.

The rest of the paper is organized as follows. Section II de-
scribes the related work. Section III formulates the data sharing-
aware task allocation problem (DSTA). Section IV describes
the DSTA algorithm. Section V provides the approximation
guarantees of DSTA. Section VI presents DSTAR, a variant of
DSTA with reallocation. Section VII presents the performance
analysis of DSTA and DSTAR. Section VIII concludes the paper.

II. RELATED WORK

In the following, we discuss the related work on task allocation
in edge computing and in application-specific edge computing.

A. Task Allocation in Edge Computing

Task allocation in edge computing systems has been exten-
sively studied in the past. In some scenarios, edge servers or
nearby users may receive some form of profit for providing
edge resources for task offloading. Thus, studies have focused
on the topic of finding the best task allocation that maximizes
the profit of the edge system. Zhang et al. [15] introduced a
novel game-theoretic model with a a dynamic feedback incentive
mechanism for task allocation to maximize the performance of
edge computing devices. Zhang and Wang [16] introduced a
bottom-up game-theoretic model that allows the edge devices
to specify their task preferences in a way that maximizes their

profits. Kiani and Ansari [17] proposed a new hierarchical model
for cloudlets to maximize the profit using an auction-based
approach. Yuan and Zhou [ 18] proposed a task offloading model
to maximize the edge system’s profit by offloading usersé tasks
to a cloud data center layer and an edge computing layer. Chen
et al. [20] designed a task allocation scheme to maximize the
overall performance by introducing the concept of task impor-
tance in the edge system. Meng et al. [21] studied the online
deadline-aware task dispatching and scheduling problem in edge
computing to maximize the number of completed tasks. Most
of these studies simply consider the transmission time of data
items associated with each offloaded task on the total offloading
latency estimation.

Some studies provided a more accurate consideration of net-
work packet scheduling for allocating tasks to edge servers in the
context of data-driven transfer learning. Sahni et al. [22], [23]
studied the data-aware task allocation problem to minimize the
overall completion time of the application by jointly scheduling
tasks and network flows in collaborative edge computing. Zhang
et al. [24] designed a joint scheduling and containerization
scheme in edge computing to improve the efficiency of container
operations and enable efficient task execution. Li et al. [23]
proposed a combined optimal placement of data blocks and
scheduling of tasks to reduce the computation delay and re-
sponse time in edge computing. Breitbach et al. [26] proposed
a data management approach for edge computing environments
that decouples data placement from task scheduling to optimize
the trade-off between execution latency, data management over-
head, and response time.

B. Task Allocation in Application-Specific Edge Computing

Task allocation and offloading has been investigated in various
application-specific edge computing settings such as Internet of
Things (IoT), Mobile Edge Computing (MEC), and Vehicular
Edge Computing (VEC).

In the area of 10T and MEC, Shao et al. [27] proposed a
replica selection and placement technique in IoT to reduce the
data access and response time. Xing et al. [28] minimized the
local userds computation latency by jointly optimizing the task
assignment and the power allocation in a multi-user coopera-
tive MEC system. Chen et al. [29] proposed an algorithm that
minimizes the total cost of a MEC system with a hybrid energy
supply by efficiently scheduling vehicle application tasks across
vehicles, edge servers, and the base station. However, they do
not study how to reduce the data traffic while minimizing the
Cost.

Some studies considered the dependencies between tasks, the
tasks" sizes, and the capacity of resources when developing task
offloading and scheduling algorithms that minimize the energy
consumption and the delay. Zhang et al. [8] proposed a vehicle
task offloading and scheduling approach in MEC to minimize
enercy consumption and the delay. Cui et al. [9] proposed a
multi-user fine-grained task offloading and scheduling method
in MEC where the task is considered to be a directed acyclic
graph (DAG) and the objectives are to minimize the energy
consumption and the delay.
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In the area of VEC, Cao et al. [30] investigated the mobility-
aware multi-objective task offloading within a digital twin en-
vironment, developing a five-objective optimization model. Tan
and Hu [31] proposed a deep reinforcement learning approach to
jointly optimize resource allocation of communication, caching,
and computing in VEC. They considered the mobility of vehicles
to improve caching and computing policies. Zhang et al. [32]
proposed a coordination graph-driven vehicular task offloading
scheme in VEC based on a multi-agent deep reinforcement
learning approach to minimize the offloading cost.

To the best of our knowledge, none of the existing solutions
have considered the fact that multiple tasks from the same user
may have to perform an analysis on the same data item. For
example, the same camera frame can be used by a task for
face recognition and by another task for object detection. Thus,
allocating those tasks to different servers without considering
that they share data items may lead to the necessity to send the
same data item to both servers. On the other hand, allocating
those tasks to the same server can help reduce the network
load since only one copy of that shared data item needs to be
transmitted.

ITI. DATA SHARING-AWARE TASK ALLOCATION PROBLEM

We consider an edge computing system composed of a
set §={51,5,...,5u} of M distributed servers, where
each server 5; has a limited capacity C; of computational
resources (i.e., CPU cycles). These edge servers serveaset T =
{T1,Ty,..., Ty} of N tasks originating from end-user devices.
The set of tasks 7 has an associated set of data items, D =
{D1,Ds,...,Dp}, that are needed to execute the tasks. We
denote the size of data item Dy, by d, where k =1,2, ..., D.
Each task T is characterized by a tple (ry, pi, [4]4, ), where ry
is the amount of computational resources required by T7, p; isthe
profit for executing T}, and [A], , is the ith row of the task-data
matrix, A. The fask-data matrix A is a N = D matrix, where
ay = dy, if task T; requires data item D, and 0, otherwise.
The tasks need to be allocated to the servers such that the total
profit obtained from executing the tasks is maximized and the
total amount of data transferred in the network is minimized.

We formulate the data sharing-aware task allocation problem
({DSTAP) as a bi-objective mixed-integer multi-linear program

M N
maximize: ZZ PiTyy

(1)

Jj=1i=1
M
minimize: Z {—1]“I|+1:IG‘IZHIij (2)
IeP(T) 7=11I
subject to:
N
Y iy <€y, Vie{l,...,M} @)
i=1
M
Y ry <1, Vie{l,...,N} @)
j=1

Ty € {0,1}, Wi, ¥y (3)

TABLEI
MNOTATION
Motation Description
T Set of tasks.
N Mumber of tasks.
T Task i.
Ty Requested amount of CPU resource by 15,
Pi Profit of task T;.
5 Set of servers,
M MNumber of servers.
5; Server 3.
oy CPU capacity of server 5.
n Set of data items.
o Mumber of data items.
Dy Drata item k.
dy Size of data item [y,
A Task-data matrix (g;; i =1,... , N:k=1,..., D).
o Sharing parameter,
T Zet of candidate tasks.
D= Set of candidate data which is assigned to servers.
Sk Sum of column & entries of matrix A
supp([Al. &) Support of column k in matrix A
4 6 0O xx,«-’\'l
|4 6 5 L :
o 6 5 &) By (2y
Fig. 1. Task-data matnx and its associated bipartite graph for a DSTAP

instance with three tasks, three data items.

The first objective (1) is to maximize the total profit. The
decision variable x,; is 1, if task T; is allocated to server Sj,
and 0, otherwise. The second objective (2) is to minimize the
total amount of data offloaded from user devices to the servers,
which depends on the decision variables x,; and on the data
sharing among tasks. Here, P(T), is the power set of the set of
indices of the tasks in T, and T is an element of the power set.
We define the sharing parameter, o1, as the total amount of data
shared among the tasks whose indices are in set 7.

In the next paragraph, we give more details on how the sharing
parameter is computed and explain how (2) captures the sharing
of data and gives the total amount of data in the network.
Constraint (3) ensures that the total allocated computational
requests to a server does not exceed the capacity of the server.
Constraint (4) ensures that each task is allocated to only one
server, while Constraint (5) guarantees the integrality of the
decision variables. Table | summarizes the notation of this paper.

To explain how the data sharing is captured in (2), we
use a small example consisting of a set of three tasks T =
{T1,T%,T5}. a set of three data items D = {Dy, Ds, D3}, and
a set of three servers S = {51, 53, S3}. For this example, we
consider that Ty needs [y, Do, T5 needs Dy, Da, D5, and
T3 needs Da, [5. The task-data matrix A and the associated
bipartite graph capturing the sharing for this example is given in
Fig. 1. One partition of the bipartite graph consists of vertices
corresponding to the tasks, while the other partition consists of
vertices corresponding to the data items. The sharing param-
eter o7 in (2) is the amount of data shared by the tasks whose
indices are in set 7. For our example, we have oy = 10, 72 = 15,
oy = 11, o1g = lﬂ, F13 = E, ooz = 11, and Tiag = 6. SIJPPD&E
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that Ty and T5 are allocated to S, Ty is allocated to Ss, and no
task is allocated to S5, then we have £y = T2y = 132 = 1 and
Iya = Iy = Igy = Igg = I3 = T3 = 0. .I]“.IS, Usiﬂg {2} we
have

3
Z (—1)(E+Y gy Z H Ty =

IEP(T) j=11€l

(+1) [e1(z11 + 12 + T13) + o2(z21 + T2 + T23)
+o3(z31 + 32 + T3:3)| +

(—1) [e1a(z11221 + T19T92 + T13T03)
+o13(T11 Ty + T1aT3 + T13Ta3)

+o93(za1T31 + Toazas + ToaTas)| +

(+1) [o123(z 11791731 + T1aT29T32 + T13Ta3Taz)].

Plugging in the values of z,; and o7 in the above equation we ob-
tain: oy + o2 + o3 — o2 = 10+ 15+ 11 — 10 = 26. We can
easily check that the total amount of data offloaded to servers
is 26. Since Ty and T% are assigned to the same server Iy, Da,
and D4 need to be offloaded to server S and the amount of data
offloaded to 5y is 15. T3 is assigned to server Ss and it needs
Do and 4, thus the total amount of data offloaded to So is 11.
Therefore, the total amount of data offloaded in the system is 26.
The Knapsack problem is a special case of DSTAP, that is,
by removing the second objective from DSTAP, the problem
becomes the Knapsack problem. The Knapsack is a known NP-
hard problem [33] and since it is a special case of DSTAP, we
have that DSTAP is NP-hard. Thus, there is no polynomial time
algorithm that obtains an optimal solution of DSTAP, unless
P = NP. Therefore, in the next sections, we design two greedy
algorithms that find feasible solutions in polynomial time.

IV. D5TA ALGORITHM

We design a greedy algorithm, called DSTA, for solving
DSTAP. DSTA takes into account the data sharing character-
istics of the tasks when deciding which tasks to allocate on
the edge servers. That is, it iteratively selects a subset of tasks
that share the highest amounts of data with the tasks that are
already allocated. In each iteration, it establishes a greedy order
among these tasks, that is induced by a function which prioritizes
high-profit and light-workload tasks for allocation to the most
suitable edge server. DSTA is given in Algorithm 1. The input
of DSTA consists of the set of tasks, T; the set of servers, S;
and the task-data matrix, A.

Initialization {Lines 1-8); DSTA initializes the set of candi-
date tasks 7" and the set of candidate data items D to the empty
set, and the allocation matrix X to zero (Lines 1 to 3). Here, the
allocation matrix has as entries the variables =y, where ;; = 1,
if task T; is allocated to server S, and 0, otherwise. Next
(Line 4), it sorts the servers in non-increasing order of their
capacities. The ordering of the servers after sorting is given by
the permutation 3(7).

DSTA uses an array s, whose entries sy = Ef"r:l g, fork =
1,...,D. That is, s; is the sum of the entries of column k of

task-data matrix A. Since the column k of A corresponds to data
item k, sy, is the total amount of data item k needed by the tasks
without considering sharing. DSTA computes the entries of s in
Lines 6 to 8.

Allocation Strategy Overview: The while loop in Lines 9
to 39 is executed until the set of tasks T becomes empty. In
each iteration of the loop, the algorithm determines which data
item is the most shared and the tasks that share it, computes
the efficiency metric that is used to establish the greedy order
among those tasks, and allocates the tasks to servers in the order
given by the greedy order. In the following, we describe these
operations in more details.

Data Sharing Analysis (Lines 10-20): The algorithm uses
an additional array s whose entry s}, is set to 1 if a task in
the candidate set is using the data item [y and Dy has not
been assigned to a server yet (Lines 11 to 15). The algorithm
determines the support of the array s, denoted here by supp(s'),
which is defined as the set of all indices corresponding to nonzero
entries in s’ (Line 16). If the size of the support of &' is greater
than zero, there are data items that have not been assigned to
servers yel, thus the algorithm places in set K the indices of the
data items that have not been assigned yet and have the largest
value of 55 (Line 17). If the size of the support of s’ is equal
to zero, then no data item was allocated yet (i.e., this is the first
iteration of the while loop). Thus, DSTA places in set KO the
indices of the items that have the largest value of s (Line 19).
Next, DSTA determines the index & of the items in set X2 whose
comresponding column in the task-data matrix A has the largest
support, i.e., the item shared by the largest number of tasks
(Line 20).

Efficiency Function Evaluation and Task Selection (Lines 21—
24): In Lines 21 to 24, DSTA computes the gfficiency function,
which is used to establish the greedy order among the tasks. The
efficiency function is computed only for the tasks that share the
data item k, which is shared by the highest number of tasks and
that has the greatest corresponding total amount of data. Thus,
the efficiency function is computed only for the tasks that are
not allocated yet and have a,z # 0 (Line 23). The efficiency
function is defined by

B = —2 . (6)

=
2i=1Cj

The efficiency function for a given task can be viewed as a
density measure, computed as the profit obtained from executing
the task divided by the square root of the relative size of the
request. Here, the relative size of the request is with respect to
the total capacity of the servers in the system. This efficiency
function allows the algorithm to allocate the tasks in the order
of their highest profit density and therefore obtain high values
for the total profit gained from executing the tasks.

Allocation of the Selected Tasks (Lines 25-39): Once the
efficiency function is determined, DSTA sorts the tasks in non-
increasing order of E; (Line 25). The ordering of the tasks after
sorting is given by the permutation «(i). The algorithm goes over
the tasks with E; = 0 {i.e., the tasks with high data sharing for
which the efficiency metric was determined) in the order given by
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Algorithm 1: DSTA Algorithm.

Input: T set of tasks;
&: set of edge servers;
A: task-data matrix.
LT« 0
2D« 0
X «[0]
4: Sort servers in non-increasing order of capacity C,
Let Sﬁ[n.l 'S_ﬂ[ﬂ:lﬁ faay S_ﬂ[ﬂ'f:l be the order
505+ [0]
trfork=1,...,Ddo
7. fori=1,...,Ndo

8: Sp +— 5 + aqk
9: while |7| = 0 do
10: &« [0]

11: fori=1,...,Ndo

12: if T; € T then

13: fork=1,....Ddo

14: if Dy ¢ D° and ay,. = 0 then

15: s 1

16: if |supp(s")| = O then

17: K={kKYIle{l,...,D}: sis| < ses}}
18:  else

190 K={k|¥Vie{l,....D}: s; < s}
20: K « argmaxy . {|supp([A]. )}

21: fori=1,...,Ndo

22: E, 10
23 ifay #0and Ty € T then
24: E; +— i

Ti
E,-=,G#m
25: Sort tasks in non-increasing order of E;
Let Tuu:,,T&.[g}, - ,Tamr) be the order
26: fori=1,... Ndo
27: if Eggy > 0 then
28: forj=1,....M do

30: Cai3) + Caig) — Tain)
31: Iu[i},ﬂf[j) —1

32: T+ T {Tan}
33; T T\{Tagw}
34: break

35: else

36: if j = M then

37 T + T\{Taw}
38: DD u{D;}

39: s+ 0

40: output: X

permutation «(i) and attempts to allocate them to the available
servers. In Lines 28 to 37, the servers are considered for task
allocation in the non-increasing order of their capacities (given
by the permutation 5(3)). DSTA checks if the given server has
enough capacity to handle the request. If it has enough capacity,
the capacity of the server is decreased by the size of the request,
the entry corresponding to task T,,.,, and server Sg; in the

TABLE I
DSTA ExaMPLE PARAMETERS

Task |89 T T Ta T Ts
f 15 B 10 7 10 10
i 10 9 5 7 10 11

allocation matrix X is set to 1, the task is added to the set
of candidate tasks 7° and removed from the set of tasks T.
Once a task is allocated the algorithm exits from the for loop
in Line 34. If the server does not have enough capacity the
algorithm considers for allocation the next server in the order.
If none of the servers have enough capacity to allocate the task
then the task is removed from the set of tasks 7 (Lines 36 to 37).
Finally, at the end of each while loop iteration (Lines 38 and 39),
D5TA adds data item Dy to the candidate data set and sets =3
to 0, to avoid reconsidering data item D in the next iterations.

Complexity of DSTA : The while loop (Lines 9 to 39) deter-
mines the time complexity of DSTA which is O(N2(D + M)).
This is mainly due to the running time of the for loop in Lines
26 to 37, which takes Q({NM ), and the computation of k in
Line 20 which takes @(N D). In the worst case, the while
loop is executed (V') times, and thus the running time of the
while loop is @(N?(D + M)). Therefore, DSTA has a time
complexity of O(N2(D + M)).

The space complexity of DSTA is determined by the space
needed to store the input (i.e., @(N') for the tasks’ information,
QM) for the servers’ information, and Q[N IV} for the task-
data matrix A) and the allocation matrix X (i.e., O{NM)). The
amount of space required to store the other variables used in
the algorithm is dominated by the amount of space required to
store the input and the allocation matrix. Therefore, the space
complexity of DSTA is O(N[D + M)).

DSTA: Hiustrative Example. We use a small example to clar-
ify how DSTA works. Consider a set of six tasks 7 = {T},T5,
T3,T4,Ts, Te}, a set of six data items D = {Dy, Do, D, Dy,
D, Dg} with data sizes {200, 100,40, 20,30, 400}, respec-
tively. We also have a set of three servers S = {5}, 52, 53} with
capacities {25, 20, 12} in non-increasing order. The amount of
computational resource and the profit of each task is shown in
Table II. Tasks Ty and T share I}y and Dy, tasks T5 and T5
share data items Iy and Ds, and tasks T3 and T share data
items [o and 5. As a result, the task-data matrix A is

Iy Dy Ds Dy D Dg

n [200 0O 0 0 0 400

nl 0 0 0 2 3 o0

| 0 100 40 0 0 0

| 0 100 40 0 0 0 @
| 0 0 0 2 3 o0

™ [200 0 0 0 0 400.

In Line 8 of DSTA the entries of s, are calculated, which
indicates that the maximum amount of shared data is associated
with Dg (i.e., sg = 800). Ty and T; share Dg, thus DSTA
calculates their efficiency function (Line 24) and sorts them
{Line 25). Specifically, Ey > Ej, and thus, the allocation order
is Ty followed by Ti. The server with the highest capacity (i.e.,
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‘1 F

£, =25 €, = Oy =12

Fig. 2. DSTA illustrative example.

25) is 5;. Because it has enough capacity to host both T3 and T,
they are both allocated to 5y, whose capacity decreases from 25
to 4 (i.e., 25 — 10 — 11 = 4). Then, the allocation matrix X is
updated, and Ty and T}, are removed from the set of initial tasks T
(Line 33). After this, T = {75, T3, T3, T5 }. Before continuing
with another iteration of the while loop and allocate other tasks,
data item Dy is added to the set of candidate data items D*
(Line 38) and =g is set to 0, so that D is not considered in the
rest of the execution.

Since sy = 400 is currently the highest value entry of s, Iy
is the item selected in the second iteration of the while loop
{Line 20). On the other hand, only tasks T} and Ty use this
data item, thus the rest of the algorithm simply adds Iy to the
set of candidate data items T° and sets sy to 0. As a result,
in the third iteration of the while loop the highest value entry
in s is s = 200, thus all tasks requiring s, ie., T3 and T}y,
are selected for allocation. DSTA calculates their efficiency and
determines that By = Ey, thus T3 is allocated before Ty, The
remaining capacity of 5} is 4, which is not sufficient to host any
of the two selected tasks, thus Sa, whose current capacity is 20
is selected. Because S has enough capacity, both T and T
are allocated to it. Then, DSTA updates the capacity of S5 to 8
(i.e., 20 — 5 — 7 = 8). In the fourth iteration, 7 and D are
added to the set of candidate data items T°. In the last iteration,
data item Iy is selected for allocation. Both the unallocated
tasks T5 and T% use this dataitemand E's = E5. Thus, DSTA first
allocates T, to the only server able to host it, i.e., S3. However, Ts
requesting 9 units remains unallocated since none of the servers
have enough capacity (Cy =4, Cs =8, and O3 = 2). Fig. 2
shows the final allocation.

V. APPROXIMATION GUARANTEES OF DSTA

In this section, we determine the approximation ratios of
DSTA with respect to the total profit and the total amount of data
offloaded. An algorithm has an approximation ratio p, if for all
instances of the problem, it produces a solution whose value is
within p from the value of the optimal solution. Here, we follow
the standard convention that p < 1 for maximization problems,
and g > 1 for minimization problems. That is, for minimization
problems, p = 2 means that the value of the solutions obtained
by the algorithm is at most twice the optimal value. First, we
determine, cv, the approximation ratio of DSTA with respect to
the total profit and then, 5, the approximation ratio with respect
to the total data offloaded.

Theorem 1: The appmximalion ratio of DSTA with respect

T i
to total profit is & = 5, where T —W;’%

Proaf: To determine the approximation ratio of DSTA for the
maximization objective (e.g., maximizing the total profit), we
ignore the second objective and consider the worst case instance
for DSTA consisting of a set of tasks 7" and a set of servers
SW. The set of tasks 7" has the following characteristics:

i) There is no data sharing among any of the tasks.

ii) Task T; needs the largest data item I); only, while the

other tasks need smaller data items, one for each task,
e, VT € TV \{T;}. di < d;.
Task T has the largest request size r; while the other tasks
have smaller requests, i.e., VT, € 'wa \{T}ory<rp.In
addition, the sum of the requests of all the tasks in ™
except T is less than or equal to the request of T3, ie.,
Ei:']",- eTWy Ty} Tt =T

iv) Task T; has the minimum profit among the tasks, i.e.,
P; = Pmin, While the other tasks have the largest profit,
Pmax, 1€, YTy € TV \ {T;}, ot = Pmax-

The set of servers " has the following characteristics:

i) Server S; has a capacity C; = r;. That is, server 5
has enough capacity to execute task T; only, or all
the other tasks together, except T;. This is because
Dot TeTW W) T =7

ii) The other servers have capacities that are smaller than
the smallest task request, and thus, they cannot exe-
cute any of the tasks, ie., ¥VS; € SV \ {5}, C; <
nl'-“-lT ETW {rf}

Since the tasks do not share any data items and task T; has
the largest data item, DSTA allocates T; to server S;. The other
tasks are not allocated by DSTA because there is no capacity left
on server S;, and the other servers do not have enough capacity
to execute ﬁ)em Thus, the profit P obtained by DSTA is P =
#; = Pmin Which is the minimum profit among the tasks.

The optimal algorithm that maximizes the profit allocates all
the tasks except T; on server S;. This is possible because 5; has
enough capacity to execute all these tasks. Therefore, the profit
obtained by the optimal algorithm is

iii)

P'= % pi=(N—1)pma. (8)
CTETW
Thus,
P Prmin Pmin ©)
P* N —1)pmax N - pra

Letw = P:;:TT* then we have P = ﬁP‘ and the approximation
ratio of DSTA is & = = O
Theorem 2: The approximation ratio of DSTA with respect
to the total amount of data in the edge network is 5 = 2.
Proaf: To determine the approximation ratio of DSTA for
the minimization objective (e.g., minimizing the total amount
of offloaded data), we ignore the profit as a second objective.
To build the worst case instance with respect to this objective
for DSTA, we divide the N tasks into K proups, where each
group has common shared data with the following properties:
i) There is no data sharing across groups: ii) Each server has
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enough capacity to host all the tasks from the same group; and
iii) Each server does not have enough capacity to host all the
tasks of more than one group, but can host an additional task
from another group. An example of such case is given in the
task-data matrix in (7), where the three task groups {T},Ts}.
{T5,T:}, and {T3, Ty} do not share data with each other.
DSTA sorts all the servers in non-increasing order. We also
can sort the total amount of data of each group in non-increasing
order and consider the total amount of data of a group has a slight
difference of =, from its previous and next group. Thus, if the
total amount of data for group 1 is Dz, , then the total amount of
data for group 2 is D, — =, the total amount of data for group 3
is Dz, — 2= and s0 on. Considering this setup, DSTA picks tasks
from group 1 first and assigns them to the same server. Then it
picks tasks from the second group and assigns them accordingly.
Let the total amount of data obtained from an optimal solution
and DSTA bedenoted by D* and I, respectively. For the optimal
solution, since each server has enough capacity to host an entire
group, it assigns all tasks from the same group to the same server.
We have at most K = M groups so the total amount of data is
D* =M - Dg, — 22U DSTA assigns all tasks from the
first group to the first sever. According to the third property of
our server setup it can assign one task from the second group
to the first server. It assigns the remaining tasks of group 2 to
the second server along with one task from the third group and
continues the assignment of tasks to servers. We have at most
K = M groups, thus the total amount of data for DSTA is D =
(2M . Dg, — Dg,) — M(M — 1)z. Therefore, D < 2D* and
the approximation ratio with respect to the total amount of data
isg=2. O

VL DSTAR: DSTA REALLOCATION ALGORITHM

The DSTA algorithm does not consider that rearranging the
allocated tasks to the servers may free up enough capacity to
allocate some of the unallocated tasks for increased profit. For in-
stance, consider the illustrative example of DSTA in Section IV.
Task T remains unallocated even though, as we will show in this
section, a smart rearrangement of task allocation would allow
all the tasks to be allocated for increased total profit at the same
network data size. Note that increasing the number of allocated
tasks for higher profit may minimally increase the total data size
on the network compared to DSTA's allocation depending on the
sharing data characteristics of the unallocated tasks. However,
DSTAR guarantees that the data size on the network increases
only if more tasks are allocated or if a higher profit can be
obtained with same or fewer allocated tasks. In many cases,
as we will show in the evaluation section, DSTAR can even
maintain the total profit while decreasing the data size on the
network. To do so, the DSTAR algorithm compares the total
profit and total resource utilization of tasks allocated by DSTA
with those of the unallocated tasks and then re-allocates them in
groups without breaking the tasks-server coupling decisions of
DSTA. DSTAR is given in Algorithm 2. It has as input the set of
tasks T, the set of edge servers S, and the task-data matrix A,
as defined in the DSTA algorithm.

Algorithm 2: DSTAR Algorithm.

Input: T set of tasks;
& set of edge servers;
A: task-data matrix.

1: X « DSTA(T, S, A)

2 F =10

3G+
d:forj=1,....Mdo
5 E«0

6: fori=1,....Ndo
T:  if zg # 0 then
& £+ Eu{s}
g: Fi+—1

1 G+ GU{E}
Il:fori=1,...,N do
12: if F; = 0 then

13: G+ Gu{i}

14: Sort servers in non-decreasing order of capacity C;
Let Sﬁm,Sﬁ[g}, ---35gar) be the order
15:fors=1,...,|G| do
16: E, + —,&
D
E,-=1 Caii)
17: Sort task sets in non-increasing order of efficiency E,
I—:ﬂ gu[lja g&[?}:fdﬂtsa gr::[lﬂ'lll be the order

18: X 0

19:fors=1,...,|G| do

200 forj=1,...,Mdo

21: i Cgyy — Ekeca{,] i = 0 then
22: fori € Gy, do

Z: Cai « Cpip) —

24 Tya(y) + 1

25: break

26:i 0Ly gL wagpe < 20y XogL, Zyp then
2 X« X
28: output: X

Initialization (Lines 1-14): DSTAR initializes the allocation
matrix X by executing DSTA. Then, it initializes to 0 each
element of a flags array F', which indicates whether each task is
assigned to a server by DSTA. G in Line 3 is a set of task sets that
is initially empty and is then updated in Lines 4 to 13 according
to the allocation decisions of DSTA. Specifically, starting from
the first server (Line 4), DSTAR places the indexes of all the
tasks allocated by DSTA to this server into a set £ (Lines 5 to 9).
Then, in Line 10 the task set £ becomes a subset of G. Note
that in Line 9 the algorithm updates the array flag F, where
F; =1 if task T; has already been assigned by DSTA. This
flag is used in Lines 11 to 13 to add the remaining unallocated
tasks to & as subsets of cardinality one. As a result of executing
Lines 4-13, the vpdated set § is composed of subsets with
cardinality > 1, each one grouping the indexes of all the tasks
allocated to the same server by DSTA, or subsets of cardinality
1, each corresponding to an unallocated task. Next, DSTAR
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sorts the servers in non-decreasing order of their capacities
(Line 14). The ordering of the servers after sorting is given by
the permutation 3(7).

Efficiency Function and Task-Set Selection {Lines 15-27): In
Lines 15 to 16, DSTAR computes a new efficiency function E,
for each task set s € G as follows:

_ g, P

E, (1m)

DSTAR's efficiency function is calculated similarly to the effi-
ciency of DSTA, but the profit at the numerator and the resource
requests at the denominator are the aggregated profit and re-
source requests of all tasks in the subset s € G. This efficiency
function helps evaluate the efficiency of the set of allocated
tasks compared to that of the unallocated tasks. In Line 17,
DSTAR sorts the task sets in non-increasing order of efficiency
E;. The ordering of the task sets afier sorting is given by the
permutation o =). Finally, in Lines 18 to 25 DSTAR greedily
allocates the tasks in each set in the defined order. In particular,
starting from the task set with the highest efficiency, i.e., E‘a{l}
(Line 19), DSTAR finds the server with the smallest capacity
able to host all the tasks of the selected task set, which avoids
breaking tasks sharing data into different servers. If a server is
found, the tasks are allocated, the server capacity is updated,
and the loop is broken to allocate the tasks of the next task set
(Lines 20 to 25). DSTAR guarantees that the profit obtained
is at least equal or higher than the one obtained by DSTA by
overwriting X with its solution X in such cases (Lines 26 to 27).
As a result, if DSTA already allocates all the tasks, DSTAR
also maintains the guarantee of DSTA with respect to data.
However, if DSTA does not allocate all tasks the guarantee with
respect to the data might be violated since DSTAR increases the
number of allocated tasks. We will investigate this property in
the experimental results section.

Complexity af DSTAR: The time complexity of DSTAR is
determined by that of DSTA (Line 1), O(N?(D + M)), the
complexity of initializing the group of task sets G (Lines 4
to 10) which is OQ(NM), the complexity of sorting the
servers, (M log M), the complexity of sorting the task-
sets, (N log N'), the complexity of for loops in Lines 19
to 25, @(N M), and the complexity for comparing the profits of
DSTA and DSTAR in Lines 26 to 27, O(NM). Thus, DSTAR
has the same time complexity as DSTA. Considering the same
reasoning as in the case of DSTA, the space complexify of
DSTAR is the same as that of DSTA, i.e., O(N(D + M)).

DSTAR. NMustrative Example: We illustrate how DSTAR
operates by considering the same example we used for DSTA
in Section I'V. First, DSTAR uses DSTA to obtain the allocation
matrix X (Line 1). For our example, the matrix X returned
b}' DSTA]’IHSIH = Tg] = I32 = T42 = Igg = 1. Dﬂl}'lﬂSkTg
is not allocated by DSTA. In Lines 4 to 13, DSTAR uses the
allocation X to update the set G. In the first iteration of Lines
4 to 10, DSTAR adds the subset {1,6} to G, since both Ty
and T are allocated to server S, and updates the flag array
F to [1,0,0,0,0,1]. After two more iterations the loop in
Lines 4 to 10 ends and G = {{1,6},{3,4},{5}}. while the

1)

f3=12 Ly =20 Cy =25

Fig. 3. DSTAR illustrative example.

flag array F = [1,0,1,1,1, 1. Then, in Lines 11 to 13 DSTAR
adds the index of unallocated task T: to &G, which becomes
G= {{1: ﬁ}: {3: 4}: {5}: {2}}

Next, DSTAR sorts the servers in non-decreasing order of
their capacities, i.e., {Ss, 52,51 } (Line 14), and the four sets of
tasks in § in non-increasing order of their efficiency E (Lines 15
to 17). Using the task parameters from Table II, the server ca-
pacities Oy = 25, Cs = 20, and O3 = 12, and the task sets in G,
the non-increasing order of efficiency is Ey > By = E3 = E,.
As a result, DSTAR allocates the set of tasks {1,6} first, then
{3,4}, then {5}, and finally, {2}.

InLines 18to 27, DSTAR allocates one set of tasks at the time.
The first setis {1, 6}, i.e., T and Ty. The first server considered
is 53, which has a total capacity of 12. Because the total request
for the two tasks is 21 (10411 according to Table II), S5 could
host only one of the two tasks in the set. However, DSTAR is
not allowed to break tasks from the same set to avoid increasing
the data size on the network. Thus, DSTAR checks the other two
servers to see if they have enough capacity to allocate T and Tf.
5 has enough capacity, thus both T} and T, are allocated to S .
A similar procedure is followed for the second set {3, 4}, 1.e., T3
and Ty. DSTA previously allocated these tasks to S3. However,
doing so left T, unallocated. In particular, DSTAR finds that
server Sa, the first one checked for capacity, is the one with
minimum capacity able to hold T and T'y. Thus, these tasks are
allocated to S3, which leaves the three servers with capacities
) =4, Cy =20, and C3 = 0. The only server able to allocate
the remaining two sets of tasks is Sy since its capacity 20 is
larger than the requested demand of both the remaining sets,
ie.. T demands 10 and T5 demands 9 for a total of 19. As a
result, in the last two iterations, first T and then T5 are allocated
to server Sa.

Finally, DSTAR checks whether the new allocation has im-
proved the total profit compared to that of DSTA. Since DSTAR
has allocated one more task compared to DSTA, its profit is
higher and its allocation is placed in X . Fig. 3 shows the final
allocation of tasks by DSTAR.

VII. EXPERIMENTAL ANALYSIS

In this section, we investigate the performance of the proposed
algorithms, DSTA and DSTAR, and a baseline algorithm that
only maximizes profit. We implement the algorithms in Java
and run the simulation experiments on a system with 4 cores,
Intel (R) Core(TM) i5-8365U at 1.60 GHz, 8 GB of memory,
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Algorithm 3: P — Gresdy Algorithm.
Input: T set of tasks;
&S: set of edge servers.
1: X « [0]
2: Sort servers in non-increasing order of capacity C}.
Let Sﬁ[n, S_ﬂ[ﬂ:l* P Sﬂ[ﬂ'f:l be the order.
3: while |7| = 0 do
& T={i|lVIe{l,....N}: p <p}
5: i+ argmin, {r}
6: forj=1,...,Mdo
T if Cgyyy —1; = 0 then
& T « T\{T;}
9 Cstn) + Cpiy — 1

10: Ty € 1

11: break

12: else

13: if j = M then
14: T+« T\{T;}
15: output: X

and 250 GB 55D of storage. First, we describe the baseline
algorithm used for comparison and how we generate the taskset
and data sharing characteristics. Then, we analyze the results.

A. Baseline Algorithm

The proposed DSTA and DSTAR algorithms jointly maxi-
mize the total profit and minimize the network data load by
considering the data sharing characteristics of the tasks. Thus,
for comparison purposes, we define the P—Greedy baseline
algorithm that, similarly to existing work [15], [16], [17], [18],
allocates tasks with the objective of maximizing the profit with-
out considering the network data load. Other possible baseline
algorithms that can be considered include Round-Robin and
Random algorithms. The Round-Robin algorithm allocates tasks
to servers in a circular order until all the tasks are allocated.
However, Round-Robin does not focus on profit maximization,
and thus, high-profit tasks may not get the appropriate resources,
leading to sub-optimal profit. The Random algorithm assigns
tasks to servers randomly. It promotes load balancing and is
simple to implement, but it does not consider the profit asso-
ciated with each task when making allocation decisions. This
can lead to situations where high-profit tasks are assigned to
less capable servers or delayed unnecessarily. The P — Greedy
algorithm prioritizes tasks based on their profit, ensuring that
the most profitable tasks are processed first. This direct focus on
maximizing profit is better aligned with the objective of the task
allocation problem considered here than either Round-Robin or
Random. Thus, in our experiments, we consider only P— Greedy
as the baseline algorithm.

P — Greedy is given in Algorithm 3. It has as input the set of
tasks and the set of edge servers. First, it initializes the allocation
matrix X (Line 1), which is also the output of the algorithm
(Line 15). Then, it sorts the servers in non-increasing order
of capacity (Line 2) and allocates one by one the tasks to the
available servers (Lines 3 to 14). Specifically, in each iteration of

= /Zn—n;i\
EI Medium
o Zone 1 /  RequestSige %, Zoned
£ | Medium Efficigngy  Medium Profit  Low Efficiency
= Low Request Size High Request Size
'g Low Profit High Profit
£
-™
_—-""f.f’f \“ﬂ"'-—_

w=3a p—2o po p  pro ptlo ptidc

Fig. 4.

size.

Mormal distribution zones used for generating task profit and request

allocation P — Greedy extracts the subset of tasks with the highest
profit (Line 4) and, among them, selects the one with the lowest
computational requirement (Line 5). Then, it finds the server
with the highest available capacity to allocate the selected task
and, accordingly, updates the server capacity and the allocation
matrix entries (Lines 6 to 11). If there is no server with enough
capacity, the selected task is left unallocated (Lines 12 to 14).

Server Capacity and Taskset: We determine the capacity of
the servers based on the total number of instructions that can
be executed in a certain amount of time. We define the demand
ratio, p, tocharacterize the relationship between the total amount
of requests from users and the total capacity of the servers as
follows:

N
_ E{:l T
==,
2_1:1 G.‘F

Based on the demand ratio, we consider three different cases:
i) low demand (0.8 < p < 1.2), when the total requested ca-
pacity is approximately equal to the total available capacity of
the edge servers; if) medium demand (1.8 < p < 2.2), when the
total requested capacity is about two times the total available ca-
pacity of the edge servers; and {ii) high demand (2.8 < p < 3.2)
when the total requested capacity is almost three times the total
capacity available on the edge servers.

In order to generate the task sets, we first fix the desired
demand ratio to (.89, 2.0, and 2.87, comresponding to low,
medium, and high demand cases. Second, as we discuss in the
next paragraphs, we generate the task request r, and profit p,
considering ¥ = 100 tasks and normal distribution N™(u, &) for
each case. Finally, we determine the number of servers and their
capacities. To do so, we increase the server count by one unitata
time and draw its capacity from the uniform distribution within
the interval [min(ry), max(r;)], where min(r;) and max(r;)
are the minimum and maximum request size of the generated
tasks, respectively. We keep increasing the server count until
the desired demand ratio (11) is satisfied.

In order to highlight the differences between DSTAR and
DSTA, as shown in Fig. 4, we divide the normal distribution into
three efficiency zones (according to (6)), i.e., Zone 1 medium
efficiency, Zone 2 high efficiency, and Zone 3 low efficiency.
As we notice from the figure, most of the N tasks fall into
Zone 2 (i.e., high efficiency). Because the efficiency of each task
depends on its request size and profit, we need to determine how
to automatically generate task sets according to the cross-zone

p (11)
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TABLE III

DISTRIBUTIONS AND PARAMETERS USED FOR EVALUATION
Parameter Distribution/ value
Temand Ratio g .88 (low), 2.1 (medium), 2.57 [Mgh)
Request Size Nipr = 20,00 = 6)
Profit Mg = 30,05 = 1.5)
Sharing Degree ¢ 02 {Iﬂwﬁ, 0.5 {medium), 0.9 (high)
Task set Instances 45

Tasks per Instance | 100

Drata iterns 100

Image hile size pixel count: random | 100, #00] width, height
bit depth: random][1, 64] bit

Video file size frame size: random|[5, 1000] byte
frame rate : random|[12, 60) fps
time: random[1, 20] seconds

Audio fle size bit depth: random][1, 64] bit

sample rate: random(1, 16004)] He
audio length: random[10, 1000] seconds
channels: random|1, 12] mono, steres, quad

efficiency relationship, i.e., high probability for tasks in Zone 2
to have the highest efficiency and for those in Zone 3 to have
the lowest efficiency. To do so, we draw the task requests sizes
from the normal distribution with mean p, = 20 and standard
deviation o = 6 (Fig. 4). Then, we assign request sizes and
profits starting from Zone 3 tasks. In particular, requests between
Thigh = ftr + o and max(r; ) are assigned to Zone 3. To assign
the profit values for these tasks, we use a normal distribution
for each zone. The profit for tasks in Zone 3 is drawn from
the normal distribution with mean pp, . = 30 and standard
deviation op = 1.5.

B. Taskset and Data-Sharing Characteristics

Tasks in Zone 1 are characterized by a medium efficiency.
Thus, requests between min(r;) and rjg = pr — o are as-
signed to Zone 1. In addition, the profit of these tasks is drawn
from the normal distribution with mean pp,  so that pp, =

Bpyipn ;"ﬁlﬂ:: and the same standard deviation o as that used

for Zone 3, which allows to maintain cross-zone efficiency
relationship. Finally, tasks in Zone 2 are characterized by a high
efficiency. Thus, requests between oy and rpgyn are assigned
to Zone 2, which have a mean request size rpeq = pr. The
profit of these tasks is drawn from the normal distribution with

mean iy, sothatpp . > pp,,., :.'I“Tj and the same standard

deviation 7y of Zone 3. Table 11l summarizes the parameters used
in the evaluation section.

Data Items and Data Sharing: For the data items and their
sizes, we consider three typical data types that can be offloaded
to the edge servers for analysis: image, video, and audio files.
We use the set of parameters listed in Table III for each data type
to calculate their sizes [34]. The table also shows the ranges for
each of those parameters. Using those random data sizes, we
generate tasksets of N = 100 tasks and I} = 100 data items to
allocate on servers.

We leverage the Erdos-Rényi random graph model [35] to
generate the bipartite graph characterizing the data sharing
pattern for the generated taskset. In the Erdtis-Rényi model, fora
graph with n vertices and m edges, the probability of generating

each edge is given by: #™(1 —H}{;}"“. The parameter #
[0,1], called the sharing degree here, characterizes the sharing
among tasks. Larger values of # correspond to higher number
of edges in the graph, i.e., a larger number of tasks share data
items with each other. We implement the Erdos-Rényi model
using the igraph R package. We generate instances for three
different cases: ) low sharing (0 < # < 0.3), where only a few
tasks share data items; if) medium sharing (0.2 < # <2 0.6); and
iif) high sharing (0.6 < § < 1), where a laree number of tasks
share data items. Fig. 5 shows examples of randomly generated
bipartite graphs for three different cases with 10 tasks and 10
data items (low sharing, # = 0.2; medium sharing, # = (0.5; and
high sharing, & = 0.9).

The data sharing cases considered are realistic and resem-
ble settings such as those presented in [36] and [37]. These
references provide real-world examples of application-specific
tasks sharing the same data. For example, typical tasksets of
autonomous vehicles, as shown in [36], include various tasks
that use a camera frame as input for obstacle detection, lane
detection, segmentation, and localization. Depending on the
scenario, such autonomous vehicles could also execute addi-
tional tasks based on those same camera frames. For example,
an autonomous police car could analyze license plates in real
time or analyze nearby pedestrians to find a suspect. Similarly,
in [37] the authors describe tasksets of modern mobile aug-
mented reality apps, which must include camera-based tasks
for surface recognition, object detection, image classification,
and pose estimation, as well as other app-specific tasks such as
face recognition or natural language processing (e.g., Google
Translate). Thus, these example tasksets from [36] and [37]
currently require tens of tasks periodically analyzing the same
camera frames. Considering that our entire dataset includes
N = 100 tasks coming from several different users, the low
data sharing cases match the current numbers of tasks sharing
the same data since they could come from the same user's
device, e.g., the same autonomous vehicle or a smartphone
executing an augmented reality app. Furthermore, to analyze
the performance of our algorithms for future tasksets executing
even more tasks on the same input data, we test also the case of
medium and high sharing. Finally, the example data inputs from
Table III (e.g., image file size) represent the typical input data
sizes of real-world applications. These considerations support
the relevance and validity of our dataset in practical settings.

C. Experimental Results

To analyze the performance of the proposed algorithms, we
consider nine different cases according to the demand and
sharing ratios: (low, medium, high) demand = (low, mediom,
high) sharing. Each task has a certain resource demand and profit
generated as discussed in the previous section. For conciseness,
Table IV shows the labels used in the figures to refer to each
one of the nine cases. For each of the nine cases (e.g., low
demand low sharing) the tasksets and data sharing characteristics
are penerated five times using the same distribution settings of
Table III. The results are then averaged for each case and
presented in Table V. The results are in terms of i) profit ratio,
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(a)

Fig. 5.
sharing, and (c) high data sharing.

TABLE IV
MNoranon FoR CASE STUDIES

T
Low demand low sharing.

LDMS Low demand medium sharing,

LDHS Low demand high sharing,

MDLS Medium demand low sharing,

MDMS Medium demand medium sharing.

MDHS Medium demand high sharing,

HDLS High demand low sharing.

HIDMS High demand medium sharing.

HDHS High demand high sharing.

TABLEY
PerFORMANCE Comparison BETwEEN DSTAR ann DSTA
e Profit Ratio Task Allocation ¥ Datasize Ratio
DSTAR ISTA DSTAR [STA

LDLS 0.88 0.72 BEA% T32% 1.1&
LDMS 087 072 86.9% TI.6% 1.19
LDHS (LB5 0.7 B5.6% T2.2% 111
MDLS 0.48 0.44 50.2% 46.3% 102
MDOMS 049 045 50.8% 47.2% 106
MDHS 05 043 51.4% 45.9% 1.1
HIMLE 0.35 032 36.8% 3M1% 0.99
HDMS 036 033 7T 35.6% 1.03
HDOHS 037 0234 38.6% 3e.4% 1.04

defined as the profit normalized over the maximum achievable
profit; ii) task allocation percentage, representing the percentage
of allocated tasks over all tasks; and iii) datasize ratio, which is
the average total data size ratio of DSTAR relative to DSTA.
Further details on the comparison between the algorithms are
discussed below.

Profit Analysis: Fig. 6(a) shows the average profit ratio ob-
tained by DSTAR, DSTA, and P — Greedy for the nine demand-
sharing cases, which is calculated here as the total profit of each
algorithm over the maximum profit achievable if all tasks of the
taskset could be allocated.

DSTA reduces the data size by up to & times at a minimal
profit loss for task sets with demand ratio p < 1, as we have
analyzed in [19], i.e., total task set demand is at most similar
to the total server capacity. Here, we explore the scenarios for
generally higher demand ratios 0.8 < p < 3.2, i.e, the total task
set demand is penerally higher then the total servers capacity.
Compared to P— Greedy, DSTA reduces data size by up to 205

e)

Examples of bipartite graphs (10 tasks and 10 data items) generated using the Erdis-Eényi random graph model: (a) low data shanng, (b) average data

with a profit reduction of 14%. On the other hand, we observe
that DSTAR outperforms both algorithms in terms of profit for
all the nine cases, by up to 22.84% and 13.9% compared to DSTA
and P — Greedy, respectively. This is because DSTAR improves
the initial allocation decision from DSTA and runs an efficiency
analysis that allows to achieve a more efficient capacity usage
that leads to profit increases. As we will discuss in the next
paragraph, the increase in profit for DSTAR is mostly due to a
larger number of tasks being allocated, which sometimes comes
with a slightly larger network data size. Note that for all the
three algorithms the profit decreases with the increase in demand
ratio because of the lower number of allocatable tasks for higher
demand instances.

Network Data Load Analysis: Fig. 6(b) shows the average
data size ratio of DSTAR over DSTA and P —Greedy, which
is calculated as the ratio between the total data size on the
network considering the task allocation decision of DSTAR
over that of each of the two baselines. In addition, Fig. 6ic)
shows the percentile increase in the number of tasks assigned
by DSTAR relative to DSTA and P—Greedy (i.e., a negative
increase in the standard deviation bar would mean DSTAR
allocates similar/fewer tasks). As it can be seen, in most of the
demand-sharing cases, the total size of data corresponding to the
allocation obtained by DSTAR is larger than that corresponding
to DSTA and P — Greedy. However, we can observe that DSTAR
can increase the profit while limiting the total data size for higher
data-sharing cases. For example, considering the high demand
cases HDLS, HDMS, and HDHS, the data size ratio of DSTAR
over P—Greedy is 1.12, 1.04, and 1.0, respectively. Yet, as
Fig. 6(c) shows, DSTAR increases the number of allocated tasks
compared to P—Greedy in the same high-demand scenarios
between 12% and 17%, which leads to an increase in profit,
as discussed in the previous paragraph. Compared to DSTA, in
a few instances such as MDLS and HDLS, DSTAR also helps
reduce the data size while increasing the profit and the number
of allocated tasks. The reduction in data size is due to allocating
tasks with higher profit and lower data size in place of some
other tasks previously allocated by DSTA.

Referring to Fig. 6(c), one can notice that DS TAR succeeds to
obtain an increase in total amount of assigned tasks compared to
DSTA. The increase is more significant for low-demand cases
since there is a higher chance for DSTAR to utilize a larger set of
available servers versus high-demand cases where the available
servers are limited in terms of count and capacity. On the con-
trary, we observe that DSTAR performs better in high-demand
cases compared to P— Greedy. The reason is that P—Greedy

Authorized licensed use limited toc The Ohio State University. Downloaded on January 00,2025 at 186:42-43 UTC from |EEE Xplore. Restrictions apply.



26 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 1, JANUARY 2025

L&

LDy EEDETAR L
EIDETA L2

CIP~Greody g
j 061 L0
RS
2 0.4 J
& ﬂ X5
.21 4
0_1.

LX)

SRR

Fig. 6.

[ DETARDSTALT] DETAR Pelireedy

PSS IS

b
=

I D5 TAR= DSTALT DETAR- Prendy

ki

IS SIS

(e}

L
=

Increase in
Allscated Tasks (%)

T

{a} Average relative profit ratio normalized over the maximum profit and (b) average total data size ratio of DSTAR relative to DSTA and P — Greedy and

(c) relative percentage increase in allocated tasks of DSTAR compared to DSTA and P-Greedy for varous combinations of workload demand and data sharing

characteristics across offloaded tasks.

=

Profit Ratlo (PR}
&

EL]

Fig. 7. The best and worst cases of DSTAR compared to DSTA in terms of:
(a) profit and (b) data size for various combinations of workload demand and
data sharing charactenstics across offloaded tasks.

assigns the tasks with higher profit first and, according to our
input data-set discussed in Fig. 4, the tasks with larger profit
have also larger request size. Hence, P — Greedy allocates the
server's capacity to the tasks in Zone 3, thereby running out
of the available capacity faster with lower amount of assigned
tasks. In summary, considering the average of the nine demand-
sharing cases, DSTAR increases the profit by up to 22.84% and
13.9% compared to DSTA and P — Greedy, respectively. This is
achieved by allocating more tasks, which leads to an increase
of up to 16.6% and 12.5% of the data size on the network,
respectively.

These results show that the network manager could employ
DSTA toreduce network data size at a small profit loss or employ
DSTAR to increase the total profit while limiting the increase of
network data size.

Best Case and Worst Case Analysis: Here, we compare more
in depth DSTAR with DSTA. Specifically, Fig. 7 shows two
special cases for profit ratio (PR}, which is defined here as the
profit of DSTAR over DSTA, and data ratio (DR), defined as
the data size of DSTAR over DSTA, among the 45 instances
evaluated in previous sections. Fig. 7(a) shows that the best case
PR is 1.27 with a corresponding DR of 1.21. The reason for
the increase in profit and data size is due to a 25% increase in
the number of allocated tasks. For the worst case in terms of
profit, PR and DR are both equal to 1, which means that, in
the worst case from the profit point of view, DSTAR does not
degrade the DSTA’s solution. Note that we manually verified
that this result is not due to Lines 26 to 27 of DSTAR. In fact, in

[ DSTARCT DSTALC ) P-Greedy

s 8

Execution Time (ms)
(]
=

e

Fig. 8. The execution time of the algonthms for different combination of
demand and sharing scenanios.

all the evaluated instances DSTAR never lowers the total profit
compared to DSTA. Fig. 7(b) shows the best and worst cases
from the point of view of data size. For the best case DSTAR
leads to DR = 0.86 with a PR = 1, which means that DSTAR
is able to find a solution with similar profit and a lower total
data size. In the worst case, DR = 1.29 and PR = 1.26. These
increases are due to a 24% increase in the allocated tasks.
Execution Time Analysis: Fig. 8 shows the execution time
of the three algorithms. As expected, the algorithm with the
lowest execution time is P —Greedy. However, as discussed in
the previous paragraphs, this baseline leads to a lower profit
compared to DSTAR and to a much higher data size on the
network at similar profit compared to DSTA. The execution time
of DSTAR is largely affected by that of DSTA and the execution
of the reallocation algorithm in Lines 2 to 27 of DSTAR. On
the other hand, the increase in execution time of DSTAR over
DSTA due to the reallocation is minimal with an average of
2.2 ms overhead. For both DSTAR and DSTA, higher demand
cases show a lower execution time. This is because, for higher
demands there exist a lower chance for the tasks to be assigned
to the servers, which lowers the number of allocatable tasks and
the algorithms” execution time. In addition, the execution time
decreases with larger data-sharing instances, which is due to
the higher number of tasks allocated in each allocation round in
Lines 26 to 37 of DSTA. These results show that DSTAR is able
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to improve the solution of DSTA at a minimal execution time
overhead.

VIIL. Coxcrusion aND FUTURE WORK

In this paper, we studied the data sharing-aware problem in
edge computing systems, which we formulated as a bi-objective
mixed-integer multilinear program that maximizes the profit
derived from executing tasks on edge servers and minimizes
the network traffic load by taking into account the data sharing
characteristics of tasks. We designed DSTA, a greedy algorithm
that considers the task data sharing characteristics to decide
which tasks to allocate on the edge servers. In each iteration,
DSTA maximizes the profit by prioritizing high-profit/light-
workload tasks for allocation to the most suitable edge server. To
equip DSTA to resource awareness for each task assignment we
designed a reallocation algorithm called DS TAR, which receives
the output of DSTA to find a better allocation that maximizes the
total profit. Our experimental analysis showed that, compared
to a representative greedy baseline that only maximizes profit,
DSTA reduces network data size by up to 20% across 45 case
study instances at a small profit loss. In addition, in the best-case
scenario, DSTAR enhances DSTA, increasing the total profit by
27% and the number of allocated tasks by 25%, while limiting
the increase of the total data traffic in the network.

In our future work, we plan to extend the proposed algorithms
to consider constraints such as network and storage capacity,
which make the data sharing-aware allocation problem a bi-
criteria version of the multi-dimensional knapsack problem.
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