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Abstract—Ensuring low battery degradation of Autonomous
Ground Robot (AGR) fleets operating in online scenarios
(e.g., delivery) through an efficient task and charge scheduling
strategy can significantly enhance their long-term sustainability.
Most existing studies are either based on offline methods, which
are unsuitable for online scenarios requiring instant decisions,
or concentrated on maximizing task allocation, resource usage,
and/or revenues without considering the battery health. To
overcome these limitations, this paper proposes a family of
two joint task allocation and charge scheduling algorithms
that activate at specific events to maximize the total revenue
while minimizing the battery degradation of the fleet in online
scenarios. Utility functions are defined to trade off revenues for
battery degradation while deciding, for all the AGRs in the fleet,
how to allocate tasks, charging stations, and idle periods. The
first algorithm is based on the Kuhn-Munkres approach that
makes decisions at each event optimally. The second algorithm
utilizes a greedy approach achieving a sub-optimal solution with
reduced computational overhead. Our results, obtained through
extensive simulations based on a real AGR against several
baselines, show that it is possible to achieve up to 20% longer
battery lifespan with minimal revenue losses.

I. INTRODUCTION

The presence of autonomous ground robots (AGRs) has
increased significantly in various sectors of our society, includ-
ing food and good deliveries. For example, recently Grubhub
has partnered with robot delivery companies such as Star-
ship [1] and Cartken [2] to deploy their full service in many US
university campus areas [3]–[6], which exponentially increased
the completed deliveries from 500K in 2020, 2M in 2021, to
5M in 2023 [1]. Different from offline cases where the tasks
to execute are known and fixed, such delivery (or similar)
scenarios have an online nature, where tasks characteristics
(e.g., value, pick-up/drop-off locations) are not known until
they arrive and require quick response time from the allocation
algorithm. To provide smooth operations, a vital component to
take care of for any AGR is its battery. In fact, the maximum
capacity of any rechargeable battery (i.e., maximum amount
of energy storable) decreases over time, with the battery
becoming unusable when its maximum capacity is signifi-
cantly reduced. Typically, a battery with an 80% remaining
capacity is considered at the end of its life owing to the
faster degradation after each subsequent use [7]. The battery
degradation is heavily influenced by how the AGR’s task and
recharge schedules are coordinated in the fleet. Without careful
usage, the increasing demand of AGRs in various aspects of
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our society could potentially lead to an unsustainable increase
in demand for new batteries. Thus, it is important to design
online algorithms that schedule tasks and AGR charging not
only to maximize the total revenues, but also to minimize the
impact on the battery health of the entire AGR fleet.

The majority of the existing works [8]–[15] mostly focus
on optimizing task allocation, which is similar to maximizing
the total revenue. However, these approaches are mainly
designed for offline scenarios where task characteristics and
other parameters are known in advance. A few other studies
concentrate on maximizing task allocation in online scenar-
ios [16]–[18]. However, they often overlook the long-term
impacts of the task scheduling decisions on the battery health.
Our previous studies (e.g., [19], [20]) consider the joint task
and charge scheduling problem focusing on both allocation
and battery health maximization. However, they only consider
offline scenarios and only use energy thresholds to reduce the
impact of allocation and charging decisions on the battery
health. In reality, different AGRs have different degradation
levels, which cannot be captured accurately by such threshold-
based approaches. Thus, none of the above works provide a
solution to the problem of online battery lifespan-aware task
and charge scheduling for AGR fleets, specially considering
the actual estimation of how scheduling decisions affect the
capacity degradation of each individual AGR over time.

In this paper, we present a family of online Battery
degradation-aware Task and Charge allocation algorithms,
BTC-X, that maximizes revenues and battery lifespan lever-
aging either an optimal but slower approach (BTC-M) or a
greedy but faster one (BTC-G) to make online decisions when
an event occurs (e.g., task arrival). In particular, we translate
the allocation problem into that of finding a maximum match-
ing between the edges of a bipartite graph, where the edges
connect each AGR to the available tasks, charging stations,
and idle vertices (in case an AGR is best left waiting for a
new task). We define the edge weights to evaluate trade-offs
between task revenues, the degradation of the battery incurred
to execute each task, or the degradation to schedule a recharge
to a specific charging station location. Then, either one of the
two variations, BTC-M and BTC-G, finds the optimal or sub-
optimal allocation for each AGR leveraging the Kuhn-Munkres
algorithm [21] or a greedy approach, respectively. We use our
prototype AGR to generate realistic simulation scenarios. Our
extensive results make the important contribution of proving
the possibility of embedding sustainability into the future
operations of AGR fleets with little revenue losses.
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Specifically, this paper makes the following contributions:
• We formulate the online sustainability-aware task and

charge allocation problem, and design a family of algo-
rithms called BTC-X to find a solution in polynomial time
at each event occurrence.

• We design two algorithms of the family to find a solution
to the formulated problem, BTC-M and BTC-G. The
former finds an optimal solution but can be slower than
the latter, which finds a sub-optimal solution leveraging
a greedy algorithm.

• We leverage a real AGR to generate realistic simulated
scenarios. Compared to several baselines, our extensive
evaluation shows that both BTC-M and BTC-G can
achieve up to 20% longer battery lifespan with minimal
losses in the generated revenues.

The rest of the paper is organized as follows. Section II
describes the related work, Section III presents the problem
formulation and the solution design. Section IV shows the
experimental results and Section V concludes the paper.

II. RELATED WORK

Maximizing Task Allocation. Jeon et al. [8] aimed at
maximizing the number of tasks completed by assigning each
task to the nearest AGR, thus minimizing travel distance.
Liu et al. [9] proposed two offline Multi-Agent Pickup-and-
Delivery (MAPD) algorithms for task and path planning of
AGRs based on the traveling salesman problem. In [10], [11],
task scheduling approaches are proposed for order picking and
moving tasks in a warehouse considering the tasks to maintain
a static order. Some solutions proposed a market-based task
allocation approach [12]–[15], providing decentralized and
distributed algorithms. Although they perform well to
maximize task allocation, they are better suited for offline
scenarios where task characteristics are known in advance.

A few other studies focused on online algorithms for
maximizing task allocation [16]–[18]. For example, Agarwal
and Sarkar [16] proposed an online task scheduling algorithm
to maximize the completion of tasks within soft deadlines
while minimizing penalties for late execution. However,
none of the above offline and online approaches consider the
recharge scheduling of the AGRs or the long term impact of
task scheduling decisions on the AGR’s battery lifespan.

Minimizing Battery Degradation. Considering the envi-
ronmental sustainability in battery-operated mobile computing,
several studies proposed various strategies aimed at extend-
ing the battery lifespan [22]–[25]. For example, some solu-
tions [22], [23] proposed algorithms that reduce the discharge
rate and leverage voltage scaling to alleviate battery degrada-
tion while meeting task deadlines. Kwak et al. [24] proposed
a task scheduling approach where the battery temperature is
controlled to minimize the degradation rate. He et al. [25]
developed a customized charging strategy that adjusts the
charging rates of mobile devices based on the availability of
the user’s time, which is mindful of the device’s need for
periodic relaxation to prolong battery life. In contrast to our
approach, these studies primarily concentrate on extending

battery life without addressing the coordination of AGRs for
both online task and charge scheduling, which is crucial for
optimizing both task performance and battery health.

Joint Task and Charge Scheduling. Focusing on the joint
task and charge scheduling problem, Chen and Xie [26] pro-
posed an approach that integrates task allocation, routing, and
charging to simultaneously reduce total energy consumption,
overall service time, and total energy charged. Shi et al. [27]
proposed an optimized charging schedule for robot fleets to
maximize their overall operational profit with the consideration
of the battery degradation, nonlinear charging profile, and
electricity cost. However, their model simplifies the scenario
by assuming that all tasks generate the same revenue and
consume the same amount of energy, which may not reflect
some real-world scenarios (e.g., AGR-based goods delivery).
Our previous works in [19], [20] presented offline joint
task and charge scheduling algorithms for AGRs. However,
they only consider energy thresholds to calculate the cost of
battery degradation while recharging or discharging without
considering the actual battery capacity degradation of each
AGR in the optimization problem. Thus, these approaches
cannot capture the actual battery degradation for a new or
older robot. In addition, these proposed solutions only consider
offline scenarios. To the best of our knowledge, this is the first
paper that provides a solution to the problem of online battery
lifespan-aware task and charge scheduling for AGR fleets.

III. PROBLEM FORMULATION AND SOLUTION DESIGN

We consider the scenario involving a fleet of AGRs that
carry out delivery tasks within a limited area. These tasks typi-
cally involve picking up goods from specified locations and de-
livering them to designated drop-off locations. The operational
area can be indoor or outdoor, with a fixed number of charging
locations. A central coordination system processes the delivery
task requests and assigns them to the AGRs. The AGRs
are considered to be homogeneous (same components) and
can navigate autonomously, following optimal routes which is
assumed to be calculated by a global navigation system and
are provided as inputs to the AGRs. The generation of these
efficient routes, however, is beyond the scope of this paper
and is extensively covered by other studies [9], [28], [29].

As a real life example of delivery using an AGR fleet,
many university campuses have a fleet of AGRs (e.g., 40
AGRs [30]) that deliver food from various locations around
campus to different buildings and residence halls. In this paper,
we propose to formulate the online battery lifespan-aware
task and charge scheduling problem as a utility maximization
problem, which jointly takes into account the total revenue
derived from the allocated tasks along with the battery degra-
dation of the AGRs due to either executing specific tasks or
charging at specific times and locations. In the rest of this
section, we briefly describe the general parameters of the
problem (Section III-A), how to calculate at runtime the energy
(Section III-B) and battery degradation (Section III-C) of
potential allocation choices to aid online decision making, and
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the proposed utility functions (Section III-D) before describing
the proposed algorithm (Sections III-E and III-F).

A. General Description of the Parameters
AGR Parameters. A generic AGR i in the fleet at a time

point k, i.e., Ri(k) ∈ R, where R is the set of AGRs, is
characterized by five parameters:

Ri(k) =< lri (k), ei(k), di(k), t
c
i , s

r
i (k) >

where lri (k) represents the AGR’s current location, ei(k) is
the current remaining energy stored in the battery, di(k) is
the current level of battery capacity degradation, tci (k) is the
current time elapsed from a charging request, and sri (k) is
the operational state of the AGR at time k. Specifically, each
AGR can be in any of the following four states: idle, busy,
charging, and waiting to recharge. The idle state indicates
that the AGR is currently neither charging, executing tasks,
or waiting to recharge. A busy state indicates that the AGR
is assigned and actively executing a task. A charging state
denotes that the AGR is currently recharging at a charging
station, while a waiting-to-recharge state implies that the AGR
is currently waiting in the recharge queue of a charging station.
While some of these parameters are easily obtainable from the
AGR, e.g., location, state, current energy, and time elapsed
from a charging request, some other parameters necessary
for online decision making such as the estimated energy and
the degradation due to potentially executing a certain task or
charging at a specific charging station are non-trivial to obtain.
We describe how to obtain them in Sections III-B and III-C.

Charging Station Parameters. Each charging station j,
i.e., Cj ∈ C, where C is the set of charging stations, is
characterized by two parameters:

Cj(k) =< lcj , s
c
j(k) >

where lcj is the location of the charging station (assumed to be
fixed), and scj(k) is the status of the charging station at time k,
which can be either occupied or free depending on whether
an AGR is charging or not at that station, respectively.

Task Parameters. Each task h, i.e., Th ∈ T , where T is
the set of tasks, arriving at a certain time has six parameters:

Th(k) =< lph, l
d
h, vh, ah, fh, s

t
h(k) >

where lph and ldh represent the pick-up and drop-off locations
of task Th, respectively, vh is the valuation of the task (e.g.,
the revenue to successfully execute it), ah denotes the arrival
time, fh is the absolute deadline by which the task needs
to be allocated to any AGR, and sth(k) is the task status at
time k, which can be active when it arrives, allocated when
it is being executed by an AGR, or timed-out if it cannot be
allocated within its deadline. Due to the online nature of the
considered scenarios, all these parameters are only known
when a task actually arrives. In addition, in this paper we do
not make any prediction of future demand, thus the designed
algorithm is independent from any shape of task arrival over
time. It is in our future work to embed demand prediction in
the task and charge scheduling choices.

B. Estimating Energy Consumption

In order to make informed decisions on how tasks and
charging choices can affect an AGR battery degradation, it
is of primary importance to estimate how a specific task
or charging decision would vary the AGR’s battery state-of-
charge, i.e., the percentage of remaining energy stored. For
the charging decisions, we need to consider the energy spent
for the AGR to travel from its current location to a specific
charging station location, and then the rate of charge. To
simplify the problem, we do not consider the effect of variable
charging rates on the battery degradation, which is a comple-
mentary branch of research, but assume an average charging
rate r̄. While we can easily profile the power consumption of a
real AGR for different speed and CPU/GPU frequency levels,
making informed scheduling decisions require the employment
of an energy model. Thus, we leverage the following well-
established model to estimate the energy consumption E [31]:

E = (p+mgs̄max{sinϕ, 0})δ (1)

where δ is a period of time (e.g., to travel from the current
location to the task pick-up and then drop-off locations), p is
the average power consumption of the AGR while traveling
at an average speed s̄ using the highest CPU/GPU frequency
on a flat surface, m is the mass of the AGR, g is the gravity
acceleration, and ϕ is the average ground inclination angle of a
specific traveling path. We assume that the ground inclination
angle ϕ and the specific route of a task or the one to go
to a charging station is known at decision time. In addition,
in our experiments with a real AGR (shown in Figure 2)
we found that the energy consumption while going downhill
does not change much compared to that of going on flat
surface, which is why we take the maximum between sinϕ
and 0 to calculate the additional energy consumption due to
inclination. Note that, in real-life, each task may lead to low-
level variations in energy consumption due to variations in
speed and route conditions while traveling a specific path.
However, considering these factors in the allocation algorithm
increases the problem complexity. Instead, it is in our future
work to decompose the problem by handling these low-
level variations on each AGR after an allocation decision, by
executing the task while maximizing the AGR speed within a
task energy budget, which is used for allocation decisions.

Using this energy consumption model and knowing the
charging rate r̄, we can now estimate at decision time what
is the variation in state of charge of the battery due to the
potential allocation of a specific task or to travel to a charging
station and then recharge until the state of charge reaches
a certain level (e.g., 80% to preserve health). If an AGR
remains idle for a period of time, we consider the energy of
the AGR to be equivalent to that of its computing node (i.e.,
zero speed). The historic variation of the energy stored in an
AGR battery concatenated with a potential energy variation
due to a scheduling choice is then used to make informed
optimization decisions on which task or charging station to
allocate for each AGR in the fleet.
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C. Estimating Battery Degradation

A rechargeable battery capacity degrades due to cycle and
calendar aging. Cycle aging accounts for the specific charge
and discharge cycles during usage, while calendar aging occurs
due to the passing of time. Key factors influencing degradation
include the average State-of-Charge (SoC), the variance in
SoC as measured by the standard deviation, the depth of
discharge (DoD), and the operating temperature. There have
been extensive studies to model the battery degradation of a
specific chemistry. Proposing a new model falls outside of the
scope of this paper. Thus, to assess the battery degradation of
the AGRs, we use the model proposed in [32], which leverages
linear and non-linear cycle and calendar aging models and
the rainflow counting algorithm to analyze the amount of
capacity faded due to a specific SoC trace of a lithium-
ion battery, typical for AGRs. Due to the limited space, we
leave out the description of these models and algorithm and
remind the interested reader to the details provided in [32]. On
the other hand, in our algorithm we abstract the degradation
algorithm proposed in [32] through a generic function D(·),
which takes as parameters the AGR’s unique ID and the
candidate task/charging station to be allocated to execute
the following steps: (1) use the energy model described in
Section III-B to estimate the change in SoC due to the potential
allocation of a specific task or charging station, (2) concatenate
such estimated trace to the historically recorded AGR SoC
trace, thereby generating an augmented SoC trace, (3) run the
rainflow algorithm [32] using the augmented SoC trace, and
(4) return the estimated battery capacity degradation. Since we
use the function D(·) as a plug in in our algorithm, any other
degradation model (e.g., for a different battery chemistry) can
also be used without any major changes.

D. Utility Functions

In order to find a solution to the online battery lifespan-
aware task and charge scheduling problem, we propose to
translate it into the problem of finding a maximum weighted
matching between the edges of a bipartite graph. Specifically,
we define a set of utility functions to be used as weights of
the edges of a bipartite graph that has, on one bi-partition, one
vertex for each AGR in the idle state at the time of an event
(e.g., the arrival of a task), while, on the other bi-partition,
it has one vertex for each active task, one vertex for each
free charging station, and one idle vertex for each idle AGR.
The utility of a task allocation decision (i.e., the weight of
the edge from an AGR vertex to a task vertex) evaluates the
value of allocating a tasks to an AGR against the cost of
the estimated battery degradation. The utility of a charging
decision (i.e., the weight of the edge from an AGR vertex
to a specific charging station vertex) determines the desired
time to start charging and the charging station to minimize the
AGR battery degradation. In addition, to account for situations
where an AGR does not have tasks to execute and does not
need a recharge, for example due to high SoC, we also include
a utility for remaining in the idle state.

Upon the occurrence of an event (see Section III-E for a list
of the events we consider), a utility matrix U of size |AR| ×
(|AT | + |AC | + |I|) is initialized to 0 and is then filled for
allocation decisions. The |AR| rows correspond to the idle
AGRs, the first |AT | columns correspond to the available task
vertices yet to be allocated, the |AC | columns correspond to
the free charging station vertices, and the last |I| columns
correspond to the idle vertices (one for each idle AGR). Next,
we define the utility functions and describe the algorithm.

Task Utility. We propose to calculate the utility Uih(k) for
allocating task Th to the AGR Ri at time k as:

Uih(k) =

{
vh − β1 ·D(Ri(k), Th(k)), if ei(k) ≥ ereqh

NULL, otherwise.
(2)

where vh is the valuation of task Th normalized over an
estimated maximum task value. D(Ri(k), Th(k)) is the
amount of battery degradation incurred if AGR Ri performs
task Th (see Sections III-B and III-C for details of how
we estimate it), which is normalized to the end-of-life
capacity degradation, e.g., 20%. β1 is a multiplicative factor
used to adjust the relative importance of preserving battery
degradation compared to task revenue maximization. ereqh is
the energy necessary to successfully carry out a specific task
Th (calculated as described in Section III-B). If the AGR
energy is not enough, that utility is set to NULL, removing the
edge between that AGR and that task in the bipartite graph.

Charge Utility. We propose to calculate the utility Wij(k)
for scheduling AGR Ri to charge at station Cj at time k as:

Wij(k) =

{
β2 · (1−D(Ri(k), Cj(k))) · V (Ri(k)), if ei(k) < α

NULL, otherwise.
(3)

where D(Ri(k), Cj(k)) is the normalized amount of battery
degradation if AGR Ri goes to recharge at charging station Cj ,
considering the estimated variation in SoC to go to the
charging station location and then recharge to a maximum SoC
(same for all AGRs). We use 1 − D(Ri(k), Cj(k)) because
we want the allocation algorithm to minimize degradation by
maximizing the total utility. β2 is another multiplicative factor
used to give more or less importance to the objective of charg-
ing or task allocation. V (Ri(k)) is a function that decreases
linearly from 1 to a sufficiently small value (e.g., 0.05) as
the SoC increases. This utility function thus helps considering
three prioritization factors for charging allocation decisions,
including (1) charging decisions that minimize degradation,
(2) charging AGRs at a shorter distance to a charging sta-
tion (considered through the degradation estimation), and (3)
charging first AGRs at higher depth of discharges, i.e., with
higher V (·) values due to a lower SoC at the event time. To
prevent unnecessary recharges when an AGR’s energy level
exceeds a configurable value α, the charging utility is set to
NULL, removing the edge between that AGR and any free
charging station in the bipartite graph. In such cases, the AGR
is either allocated a task or remains idle awaiting a task.

Idle Utility. For each AGR Ri, the utility of the idle

14

Authorized licensed use limited to: The Ohio State University. Downloaded on January 09,2025 at 16:56:19 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. High level logic of the proposed online BTC-X family of algorithms.

vertex Zi at time k is simply set to a sufficiently small value λ:

Zi(k) = λ (4)

This choice ensures that if an AGR’s energy exceeds the
threshold α, it will remain in the idle state when there are
no tasks available. Additionally, if the energy falls below the
threshold α and there are neither tasks nor available charging
stations, the AGR will also remain in the idle state.

As explained next, after the elements of the utility matrix
are determined using the above utility functions, the matrix is
used to find the best allocation for the AGRs at the occurrence
of a certain set of events.

E. Overview of the BTC-X Family of Online Algorithms

In this section, we provide a detailed description of our
family of online Battery degradation-aware Task and Charge
allocation algorithms, BTC-X, which leverages either an op-
timal but slower approach or a greedy but faster one to make
decisions. Due to the online nature of the scenarios considered,
BTC-X activates at the occurrence of certain scenarios that
may require task and charge reallocation. We propose to focus
on four main events: (E1) the arrival of a task, (E2) the
completion of a task by an AGR, (E3) the completion of
recharge by an AGR (by reaching a tunable max SoC level),
and (E4) an AGR’s SoC is too low to execute any tasks.

Figure 1 shows the high-level overview of the BTC-X
during each event. The core of BTC-X is the allocation Algo-
rithm 1, which makes (optimal or greedy) decisions on how to
allocate tasks and/or charging stations to AGRs. We provide
the details of this algorithm in Section III-F. There are three
main ways for the triggering events to require execution of
Algorithm 1. First, a new set of tasks arrives (i.e., E1). Second,
an AGR completes the execution of a task (i.e. E2) and there

are tasks still available for allocation. This can happen when
previous executions of Algorithm 1 left tasks unallocated due
to several reasons, including the lack of idle AGRs or a rela-
tively low task valuation compared to a high degradation of the
currently idle AGRs. In such cases, the task remains in the set
of available tasks until its deadline (and removed afterwards),
waiting for a new AGR to become idle through events E2 or
E3. This practice is supported in real scenarios such as food
delivery (e.g., when requests may not find any drivers) and
also in related work on online task allocation [17], [33].

On the other hand, Algorithm 1 can also be executed when
there are no tasks to be allocated and the newly idle AGRs
have a sufficiently low energy level, i.e., below a threshold α
to avoid unnecessary charges at high SoC (e.g., 70%). In such
cases, BTC-X checks the energy remaining in the batteries of
the idle AGRs to determine which ones could be scheduled for
recharge, which can occur in Figure 1 through events E2, E3,
or E4. Because multiple AGRs may need to recharge and mul-
tiple charging stations could be free, each combination leading
to a different battery degradation, BTC-X makes charging
allocation decisions by evaluating the utility function values
through Algorithm 1. Note that, for such events, unavailability
of free charging stations would simply lead the AGRs to (1) re-
main idle, or (2), if their energy level is critical (i.e., ≤ elowest,
which is enough to guarantee safe travel to any charging
station and to wait for recharge), reach the nearest charging
station to wait in a queue for a recharge when E3 occurs.

F. Algorithm 1: Allocation

As mentioned in the previous section, the allocation Algo-
rithm 1 is executed for several reasons that require evaluating
the trade off between battery degradation and task revenues
when certain conditions occur through the defined events, in-
cluding the arrival of tasks (E1), AGRs completing tasks (E2),
or recharge (E3). In general, the algorithm first updates the
system parameters of the available tasks, AGRs, and charging
stations, by querying them through network communications
(Lines 2-6 of Algorithm 1). If there are idle AGRs (Line
7), i.e., waiting to be allocated to task or charging station,
the algorithm first updates the utility matrix as described in
Section III-D (Lines 8-24). We use two hash functions σ(·)
and ρ(·) to map each row index i and column j of the utility
matrix U to the respective unique AGR ID in the set AR, task
ID in the set AT , charging station ID in the set AC , and idle
vertex ID in the set I (Lines 9-10). The bipartite graph’s edge
weights, i.e., utility values of the matrix, are then calculated
according to Equations 2, 3, and 4 (Lines 11-24).

At this point, the SELECTION() function (described in
details in the next paragraph) analyzes the utility values to
finalize the allocation choices (Line 25). It returns a set X
of tuples indicating an allocation of an AGR to a selected
task, charging station, or idle vertex. If an AGR is allocated
to a task (Lines 27-31), then the status of the AGR sr is
updated to Busy, the status of the selected task is updated
to Allocated, and the respective AGR ID and task ID are
removed from the sets AR and AT , respectively. If an AGR
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Algorithm 1 Allocation
1: Upon Arrival of tasks N T (E1), AGRs completing tasks (E2),

and/or charging stations becoming free (E3) do
2: Query energy e, location lr , time tc, status sr from AGRs
3: Query status of charging stations
4: Update AR ▷ set of idle AGRs
5: Update AC ▷ set of free charging stations
6: AT ← AT ∪N T ▷ set of active tasks
7: if AR ̸= ∅ then
8: U|AR|×(|AT |+|AC |+|I|) ← 0 ▷ Utility matrix
9: Let σ(i) be a function that maps i = 1, . . . , |AR| to an

AGR ID ∈ AR

10: Let ρ(j) be a function that maps j = 1, . . . , |AT |+|AC |+|I|
to either an ID of a task ∈ AT , charging station ∈ AC , or
idle vertex ∈ I

11: for i = 1, . . . , |AR| do
12: for j = 1, . . . , |AT |+ |AC |+ |I| do
13: if ρ(j) ∈ AT then ▷ task vertex
14: if eσ(i) is sufficient to complete ρ(j) then
15: Ui,j = vρ(j) − β1D(σ(i), ρ(j))
16: else
17: Ui,j = NULL
18: else if ρ(j) ∈ AC then ▷ charge vertex
19: if eσ(i) > α then ▷ α is energy threshold
20: Ui,j = NULL
21: else
22: Ui,j = β2(1−D(σ(i), ρ(j)))V (σ(i))

23: else ▷ idle vertex
24: Ui,j = λ

25: X ← SELECTION(U ) ▷ X is a set of tuples
26: for each (σ(i), ρ(j)) ∈ X do
27: if ρ(j) ∈ AT then
28: srσ(i) ← Busy
29: stρ(j) ← Allocated
30: AR ← AR \ {σ(i)}
31: AT ← AT \ {ρ(j)}
32: else if ρ(j) ∈ AC then
33: if eσ(i) ≤ elowest or tcσ(i) ≥ tmax then
34: srσ(i) ← Charging
35: scρ(j) ← Occupied
36: AR ← AR \ {σ(i)}
37: AC ← AC \ {ρ(j)}

is allocated to a charging station (Lines 32-37), the algorithm
sets the AGR status to Charging to the selected charging
station, which changes status to Occupied, and the sets AR

and AC are updated accordingly. However, it may occur that
the allocation algorithm, due to lack of tasks, allocates an AGR
to a charging station even though a new task may be coming
shortly thereafter. Unless the AGR’s energy level is critical,
rather than relying on demand predictions we propose to
implement a deferred start of charging approach that monitors
the time elapsed from an AGR first request for a charging tcσ(i).
If no task arrives before the end of such configurable period
tmax (Line 33), then it will be allocated for charging at the re-
quested charging station (following the same path as E4 in Fig-
ure 1). Otherwise, the AGR remains idle and can be included
for another allocation round at a subsequent task arrival.

SELECTION(): Optimal and Greedy. The SELEC-
TION() function takes as input the bipartite graph defined

Algorithm 2 GREEDY SELECTION()
1: Input: Utility matrix U of size |AR| × (|AT |+ |AC |+ |I|)
2: Tuple set X ← ∅
3: A|AR| ← 1
4: B|AT |+|AC |+|I| ← 1

5: while
∑|AR|

i=1 Ai ≥ 1 do
6: (i∗, j∗) = argmax

i=1,...,|AR|;
j=1,...,|AT |+|AC |+|I|

{Ui,j | Ai = 1 & Bj = 1}

7: X ← X ∪ {(i∗, j∗)}
8: Ai∗ ← 0
9: Bj∗ ← 0

10: Output: X

by matrix U after calculating all the edge weights (described
in Algorithm 1). It returns a set of X tuples of AGR and
the selected task, charging station or idle vertex that maxi-
mizes the total sum of the selected utilities. To design the
SELECTION() function, we have used two algorithms that
define the two algorithms that are members of the BTC-
X family, BTC-M and BTC-G. The former is the weighted
matching algorithm based on the Kuhn-Munkres approach [21]
(called WEIGHTED MATCHING() here), which finds the
optimal allocation for the current event but it might incur larger
overhead, particularly in large-scale scenarios. For the latter,
corresponding to BTC-G, we propose a new algorithm called
GREEDY SELECTION(), which utilizes a greedy approach
to provide a sub-optimal allocation with reduced overhead.

WEIGHTED MATCHING(). The weighted matching algo-
rithm solves the problem of maximum weight matching in the
bipartite graph defined by the utility matrix U in Algorithm 1,
where the rows and the columns refer to the two distinct
sets (bi-partitions) of vertices in the bipartite graph. This
algorithm leverages the Kuhn-Munkres algorithm (also known
as the Hungarian method) to find the maximum matching in
a weighted bipartite graph so that the total weight (utilities)
among the matched edges is maximized. At first, the algorithm
subtracts the smallest value in each row from all other values
in the same row and repeats the same for each column to
reduce the matrix. After that, it tries to use the fewest possible
lines (horizontal or vertical) to cover every zero element in the
matrix. If all the zeros are not covered, it tries to adjust the
uncovered elements by finding the smallest uncovered element,
subtracting it from all uncovered ones and then adding it to
the elements that are covered two times (the elements where
two lines intersect). These steps are repeated until each row
element is matched with an unique column element ensuring
the sum of the selected edge weights is maximized.

Time Complexity of BTC-M. The core of our BTC-
X algorithm is the Algorithm 1 Allocation(). The major
steps for executing Algorithm 1 first involve the computa-
tion of the utility matrix elements by executing Lines 11-
24 which takes O(|AR| · (|AT | + |AC | + |I|)). After
that the SELECTION() function in Line 25 is executed,
which uses the WEIGHTED MATCHING() algorithm with
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TABLE I
SIMULATION PARAMETER VALUES

Parameter Value Parameter Value

CPU Frequency 2.26GHz SoC Threshold (α) 50%
AGR Speed (s̄) 1.6m/s Task Relative Deadline 5min
AGR Mass (m) 15kg Util. Weights (β1, β2) [0.1, 10]
Ground Angle (ϕ) [-3, 3]◦ Max Charge Delay (tmax) 3min
Power Consumption (p) 38W Max SoC Recharge 80%

a running time O((max{|AR|, |AT | + |AC | + |I|})3). Fi-
nally, it takes O(|AR|) to execute the allocation decisions
in Lines 26-37. Hence, the total running time of BTC-M is
O((max{|AR|, |AT |+ |AC |+ |I|})3).

GREEDY SELECTION(). The pseudo-code of the greedy
selection approach is provided in Algorithm 2. It considers a
greedy method to find a sub-optimal allocation decision that
maximizes the total utility of the edge weights of the input
bipartite graph. To do so, the algorithm first initializes the
tuple set X to the empty set in Line 2. Then, it initializes the
elements of two arrays A and B to 1 in Lines 3-4. Array A is
used to keep track of the row indices (AGRs) that have been
matched. Array B is used to keep track of the column indices
(tasks, charging stations or idle vertex) that have already been
matched. The algorithm then proceeds by continuously finding
the maximum element of the matrix (highest edge weight).
Once identified, the corresponding row and column indices
(i∗, j∗) are added to the tuple set X (Line 7). In addition, it
sets the indices i∗ and j∗ in the array A and B, respectively,
to zero (Lines 8-9), which eliminates them from the following
rounds of selection. This process is repeated until every
element i (i.e., every AGR) in array A has been matched.

Time Complexity of BTC-G. BTC-G executes Algo-
rithm 1 where the SELECTION() function in Line 25 uses
GREEDY SELECTION() (given in Algorithm 2) which has
a running time O(|AR|2 ·(|AT |+|AC |+|I|)). Earlier we, have
shown that the running time to execute Algorithm 1 without
the SELECTION() function is O(|AR| · (|AT |+ |AC |+ |I|)).
Thus the execution time of BTC-G is O(|AR|2·(|AT |+|AC |+
|I|)), i.e., lower than that of BTC-M.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

For our experiments, we use simulations to feasibly run
multi-year tests for battery degradation evaluations. However,
we have used our AGR prototype in Figure 2 to profile the
power consumption for different speed and CPU frequency
levels of the computing board ensuring realistic simulations.
It features a ROS-based navigation stack running on an
NVIDIA Jetson AGX Xavier, two 250W hoverboard motors,
a 36V 20Ah Li-ion battery, a Slamtec RPLidar S1 lidar, an
Arduino Mega 2560, and two INA3221 and INA260 power
sensors. We have used the measured power consumption at
highest frequency and 1.6 m/s speed to estimate the AGRs’
energy consumption in our simulations. Table I shows the
rest of the parameters used for our experiments.

Fig. 2. Our prototype used to profile
an AGR power consumption.

Fig. 3. Hourly distribution of delivery
orders for a day [34].

Experiment Scenario. To make the experiments realistic,
we have designed a practical scenario simulating the delivery
of food orders across a university campus using AGRs.
Typically, the operation area of such deliveries is limited.
Thus, we have considered an area of 1km2 divided in squares
of 1m2. The task arrival, representing food delivery requests,
typically has peaks during lunch and dinner hours [34], as
Figure 3 shows. In addition, we have introduced variability
in the hourly distribution while maintaining the overall trend
in order to simulate the task arrivals over multiple years.

For each task, we randomly (uniform distribution) generate
pick-up and drop-off locations from the cells within the
area and measure the Manhattan distance, select an average
slope between -3 to 3 degrees, and assign a task valuation
from the range [$10, $100] denoting the potential revenue
for completing the task. We also randomly generate 2-4
charging locations, each with multiple charging stations
based on a given station-to-AGR ratio (0.5 unless stated
otherwise). Initially, each AGR’s current location is generated
randomly and the SoC is set to 90%. We also consider a
heterogeneous level of battery capacity degradation for each
AGR in the beginning of each simulation, ranging from 0
to 10%, depending on their prior operational history. This
degradation level is computed using the historical SoC data
of each AGR, which we assume is accessible to the fleet
manager. The simulator, developed in Python, was tested on
a system with an Intel Core i7-8750H CPU at 2.20GHz and
24GB DRAM. The source code is available on GitHub [35].

Problem Instances. To evaluate our algorithm’s perfor-
mance we have conducted a series of experiments across var-
ious problem instance sizes. For small instances, we consider
2-5 AGRs, 20-100 tasks per day, and 2 charging locations.
For medium sized instances, we increase the number of AGRs
from 5 to 20 and the number of tasks per day between 100 to
400, accompanied by 3 charging locations. For large instances,
we further vary the number of AGRs between 20 to 45, number
of tasks per day from 400 to 900, and consider 4 charging
locations. Most of the experiments are simulated over 2 years
to properly evaluate the battery degradation trends.

Baselines. Because previous studies have not focused on
online algorithms that take into account the long-term impact
of task allocation and recharging decisions on battery lifespan,
we have implemented two representative baselines to evaluate
the performance of our proposed approach. The first baseline,
REV, is similar to the state-of-the-art approaches that solely
focus on maximizing the number of allocated tasks [16]–[18],
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Fig. 4. Comparison of the State-of-charge (SoC) of the AGRs among the baselines (a) REV, (b) DEG, and the proposed (c) BTC-G, and (d) BTC-M
considering a sample experiment with four AGRs where AGR 0 and 3 have older and AGR 1 and 2 have almost new batteries.

which can be translated into purely maximizing the total
revenue generated without considering battery lifespan. To
further help maximize the obtained revenues, REV considers
as task value the ratio of task revenue over the travel
distance. The second baseline, DEG, prioritizes minimizing
battery degradation while allocating tasks to the AGRs
without focusing on high revenue generation. We implement
both baselines using our proposed framework. However,
they calculate their task utilities either with only the value
maximization target (for REV) or only with the degradation
target (DEG). For charging decisions, REV charges only
when an AGR energy level reaches the minimum elowest

to maximize task allocation, while DEG limits the depth of
discharge by charging AGRs when they reach a minimum
threshold of 20% SoC. Decisions are then made using the
weighted matching approach (i.e., optimal) described in
Section III-F with input the baseline-specific utility matrix.
We compare the performance of these baselines with the two
variants of our proposed approach, BTC-M, and BTC-G.

Performance Metrics. To evaluate and compare the perfor-
mance of our algorithm with the baselines, we have considered
three performance metrics. The Generated Revenue is calcu-
lated as the percentage revenue generated from allocating tasks
over the total revenue of all arrived tasks. The Battery Degra-
dation is calculated as the average percentage of battery capac-
ity lost across AGRs over the 2-years simulated time. However,
a small reduction in battery degradation can significantly ex-
tend the lifespan, defined as the number of days taken to reach
a reference battery degradation level. We use the degradation
level reached by DEG, which typically results in the lowest
degradation, as our reference. Since REV leads to highest rev-
enue and degradation, we thus quantify the Increase in Lifes-
pan as the percentage increase in number of days with respect
to (w.r.t.) REV for the sustainability-aware schemes (BTC-X
and DEG) to reach the defined reference battery degradation.

B. Example Case Study

In this section, we provide a detailed description of the
operation of the baselines, REV, DEG and our proposed
algorithms BTC-M and BTC-G on an example case study. We
consider a sample experiment with 4 AGRs, 80 tasks per day,
and 2 different charging locations each having two charging
stations. Here, we have considered AGRs with almost new
(AGR 1 and 2) and older (AGR 0 and 3) batteries, thus they

have different degradation levels in the beginning of the sim-
ulation. We run this experiment for a duration of two years to
be able to better evaluate the evolution of the battery capacity
degradation of the AGRs. For enhanced clarity, we show the
SoC profiles in a single day of the AGRs with each approach in
Figure 4. REV (Figure 4a), since it maximizes task allocation,
continues to assign tasks to the AGRs until their energy level is
critically low and need to recharge. Although this strategy can
generate better revenue by allocating more tasks, it leads to
significant battery degradation, particularly when AGRs with
older batteries (e.g,. AGR 0) are recharged at a higher depth of
discharge. Conversely, DEG (Figure 4b) prioritizes allocating
tasks to AGRs solely based on minimal battery degradation,
disregarding potential revenue gain. The AGRs are recharged
when their SoC drops below 20% (similar to [19], [20]) to
prevent further degradation. Despite achieving higher battery
lifespan, it may result in substantial revenue losses.

On the other hand, our proposed approaches BTC-G (Fig-
ure 4c) and BTC-M (Figure 4d), incorporate considerations of
both revenue generation and battery degradation into their task
or charge allocation choices. This balanced approach prevents
deep discharge cycles by scheduling recharges for AGRs with
older batteries (such as AGR 0 and 3 in Figure 4d) at higher
SoC levels and thus, may generate higher revenue while keep-
ing the battery degradation lower. BTC-M aims for an optimal
solution at a certain decision event where as BTC-G finds
a sub-optimal solution, leading to slightly different allocation
choices as seen in the figures. Upon analyzing the performance
of these four approaches we have found that while REV
achieves the highest generated revenue of 86%, DEG yields
the lowest at 77%. On the other hand, BTC-G and BTC-M
achieve 80% and 83% revenue ratio, respectively (reported as
part of next section, 80 tasks case in Figure 5d). Furthermore,
we have shown the trend in battery capacity degradation of
AGR 0 over two years for these four approaches in Figure 5a.
We can see that with DEG, AGR 0 reaches a reference battery
degradation of 13.7% after 720 days (2 years), while with REV
it reaches 15% after the same number of days. With both of our
approaches, the capacity degradation over two years is similar
to that of DEG. In other words, we observe that REV reaches
the reference battery degradation for AGR 0 after only 600
days, compared to the 720 days of BTC-G and BTC-M,
with the optimal BTC-M leading to higher revenue than
BTC-G at same time. Thus, our approaches lead AGR 0
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Fig. 5. (a) Battery degradation of AGR 0 from the experiment shown in Figure 4 over 2 years. (b) average battery degradation after 2 years, (c) lifespan
increase with respect to REV of AGR batteries across DEG and proposed BTC-G and BTC-M, and (d) generated revenue, for an increasing task demand.
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Fig. 6. Comparison of the (a) generated revenue and (b) average capacity degradation of AGR batteries after 2 years. (c) Revenue loss vs battery lifespan
increase for three battery weight values (β1 in Equation 2) with BTC-M relative to REV. (d) Execution time per allocation decision across the schemes.

to a 20% increase in lifespan w.r.t. REV, which shows how
small gains in battery degradation of 1-2% can lead to a
substantially longer lifespan.

C. Effect of Increased Demand

We are also interested to see the performance of our ap-
proach for increased demand. Thus, we run other experiments
where keep the number of AGRs fixed at 4 while increasing
the daily tasks from 50 to 250. Figure 5b illustrates the average
battery capacity degradation among AGRs under increased
task demands. The capacity degradation slightly increases with
a larger volume of tasks, likely due to the AGRs not always
being recharged at the ideal SoC to meet the higher task
execution demand. However, both of our BTC-M and BTC-
G approaches manage to achieve a percentage decrease in
capacity degradation of 4% compared to REV, which in turn
leads to a 20% increase in lifespan (see Figure 5c), even under
higher task demands. This degradation is only less than 1%
higher than that achieved by DEG leading to only a 3% lower
lifespan compared to it as seen in Figure 5c.

Although DEG manages to exhibit a slightly higher lifes-
pan, it generates only 45% revenue at 250 tasks per day
while BTC-M and BTC-G generate 20% (similar to REV) and
10% higher revenue than DEG, respectively, as observed in
Figure 5d. The slight under-performance of BTC-G compared
to BTC-M is due to employing a greedy sub-optimal approach.

These experiments demonstrate our approaches can
substantially extend battery lifespan with minimal revenue
loss despite increasing task demands.

D. Performance Comparison with Different Problem Instances

To comprehensively evaluate the performance of our ap-
proaches, we have conducted further experiments considering
small, medium, and large problem instances (outlined in the

experimental setup). Figure 6a and 6b show the results of
those experiments with the red bars indicating the standard
deviation. It is observed from Figure 6a that the revenue
generated by our BTC-M and BTC-G methods consistently
exceeds that of DEG by 7%, 7.2% and 10% on average, for
small, medium, and large instances, respectively. While the
revenue from REV is marginally higher by 1%, 2% and 1.5%
for these cases, this slight increase in revenue is accompanied
by significantly higher battery capacity degradation. As
seen from Figure 6b, the average capacity degradation of
AGR batteries is increased by around 5% in case of REV
compared to our approaches. It is important to note that this
seemingly small improvement in capacity degradation leads
to a substantially longer lifespan (see Figure 5b and 5c). We
further show this by discussing the revenue loss vs increase in
lifespan with respect to REV for a small instance of 4 AGRs.

Results with Different Weight Factors. The task utility
(Equation 2) of our proposed approaches use a configurable
parameter β1 to weight the maximization of revenues over
minimization of battery degradation. Here, we explore how
reducing or increasing this parameter value can lead to differ-
ent trade offs between these two objectives. We use a 2-year
experiment with 4 AGRs at different initial degradation levels
and three weight values, small (more revenues), medium,
and large (longer lifespan). Figure 6c shows the results. We
calculate the revenue losses and increased lifespan of BTC-M
relative to REV. While a much better lifespan can be achieved
for larger weight values, the increasing revenue losses may
become unattractive to industry. However, even just accepting
small revenue losses can lead to substantial improvements
in the sustainability objective. For example, a loss of 2.5%
revenues can lead to 6-9% increase in the battery lifespan of
the AGRs. Additionally, if the focus is more on sustainability,
accepting 9% revenue loss can lead to 16-21% increase in the
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battery lifespan. We hope that these findings can push industry
to consider sustainability in the operations of AGR fleets.

Comparison of Execution Time. As our proposed ap-
proaches and the baselines are implemented for online so-
lutions, we evaluate the execution time for each allocation
decision across these methods in Figure 6d. Notably, the
execution time for all of the approaches increase with the size
of the problem instance. REV exhibits the shortest execution
times, ranging from 0.006 seconds to 0.05 seconds. This
efficiency stems from REV’s simpler operational logic, which
does not require analyzing augmented SoC traces to estimate
battery degradation and primarily relies on fixed rules for
recharging. Conversely, DEG incurs a slightly longer time,
from 0.009 to 0.08 seconds, due to the fact that it has to
analyze the SoC trace to estimate the degradation level while
allocating tasks. Our approaches, BTC-M and BTC-G require
more time to make allocation decisions because of the two-
objective considerations as well as the integration of both task
and recharge decisions. However, it only takes 0.21 seconds
for BTC-M and 0.16 seconds for BTC-G to provide each
allocation decision even in scenarios involving 45 AGRs and
900 tasks per day, which is reasonable for online scenarios.

These results prove the effectiveness of our sustainability-
aware allocation algorithms in real-world scenarios.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a family of two online joint task
allocation and charge scheduling algorithms that allocate tasks
across AGRs in a fleet for maximized revenue and minimized
battery degradation. While one of the proposed algorithms
finds optimal allocations, the other algorithm uses a greedy
approach to find sub-optimal solutions with shorter execution
times. We leveraged a real-world inspired simulation setup and
conducted extensive simulations based on a real AGR. Our
simulation results demonstrated the possibility of achieving
up to 20% longer battery lifespan with minimal revenue losses
compared to the state-of-the-art inspired baselines. In future,
we plan to extend our work to include statistical prediction
of task arrivals while making allocation decisions along with
the consideration of heterogeneous AGR components.
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