
Nullspace Adaptive Model-Based Trajectory-Tracking Control for a
6-DOF Underwater Vehicle with Unknown Plant and Actuator

Parameters: Theory and Preliminary Simulation Evaluation

Annie M. Mao1 , Joseph L. Moore1,2 , and Louis L. Whitcomb1

Abstract— We report a novel model-based nullspace adaptive
trajectory-tracking control (NS-ATTC) algorithm for fully-
actuated 6-degree-of-freedom (DOF) underwater vehicles which
estimates unknown plant and actuator model parameters simul-
taneously. We provide a stability and convergence analysis with
proof of asymptotically stable tracking error convergence, as
well as a preliminary simulation study demonstrating 6-DOF
trajectory tracking. The NS-ATTC algorithm does not require
acceleration instrumentation and provides a stable online pa-
rameter estimate, enabling robust model-based autonomy.

I. INTRODUCTION

Accurate trajectory-tracking control (TTC) for underwater
vehicles (UVs) enables missions such as high-precision
seafloor surveying for oceanographic, commercial, and na-
tional security purposes to be performed with assured auton-
omy. As the desired applications and operating environments
of UVs become more complex, there is a need for increas-
ingly capable and robust TTC.

The inclusion of a dynamical vehicle model in TTC algo-
rithms has been shown to improve performance, but model
accuracy is crucial [14]. While the form (i.e model structure)
of UV plant models can be determined analytically through
first principles [4], [19], [24], parameters such as mass,
vehicle hydrodynamic added mass and drag parameters,
vehicle displacement and center of buoyancy (CB) param-
eters, control-actuator and control-surface parameters (e.g.
propeller thrust and torque and fin lift and drag coefficients)
must be determined empirically, and moreover are subject to
change over time due to vehicle and payload reconfiguration,
environmental conditions, or unexpected faults. Although a
substantial body of adaptive control research has addressed
plant parameter uncertainty, these methods generally assume
that actuator model parameters are known a priori.

We report a novel 6-degree-of-freedom (DOF) nullspace
adaptive trajectory-tracking control (NS-ATTC) algorithm,
which does not require exact knowledge of plant or actuator
parameters a priori. This differs from all previously reported
adaptive trajectory-tracking control (ATTC) approaches for
second-order mechanical systems, such as those for robot
arms [3], [22], [26] and UVs [15], [27], which adaptively
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identify plant parameters only. The NS-ATTC algorithm
referred herein is capable of online operation, is valid for
general fully-actuated 6-DOF UVs, and requires access to
position, orientation, and velocity signals but does not require
instrumentation of acceleration — a signal which is often
difficult to measure. By maintaining an online estimate of the
plant and actuator parameters that determine vehicle input-
output behavior, this control approach is inherently fault-
aware and fault-tolerant. NS-ATTC parameter estimation also
may enable other model-based autonomy subsystems such as
motion planning, state estimation, and fault detection.

To the best of our knowledge, the NS-ATTC approach
reported herein is the first indirect ATTC method to estimate
a full thruster allocation matrix simultaneously with plant
parameters and the first formulation of the ATTC problem
using a parameterization with nullspace structure. We also
present an analytical proof of locally asymptotically stable
convergence of trajectory-tracking error in the presence of
unknown plant and actuator parameters and stable parameter
estimation error. Finally, we report a simulation evaluation
demonstrating NS-ATTC on a UV model for reference
trajectories with simultaneous motion in 6-DOF.

II. RELATED WORK

Trajectory-tracking control (TTC) for UVs is challenging
due to their nonlinear and coupled dynamics. A conventional
model-free approach is to decouple the control problem,
apply linear proportional-integral-derivative (PID) control
approaches to subsystems or individual DOFs, e.g. as a
heading or depth autopilot, and treat unmodeled dynamics
as disturbances [4]. Comparative experimental evaluations
have shown that fixed (i.e. non-adaptive) model-based TTC
methods can provide improved performance over model-free
methods [13], [23], however these methods depend on a
priori knowledge of model parameters.

Adaptive control addresses the problem of parameter un-
certainty either directly through a control tuning algorithm
or indirectly through parameter estimation. There is a rich
body of work in ATTC methods for plants such as robot
arms [3], [22], [26]. Work on ATTC for UVs includes
parameter bound estimation methods [30], adaptive sliding
mode control [28], [27], and adaptive linearizing control [16],
[15]. ATTC for UVs has been shown to outperform PID
[31] and proportional derivative control (PDC) [16] in the
presence of plant model parameter error and disturbances.

A limitation of these ATTC methods, however, is that
with few exceptions they address uncertainty in the plant pa-
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rameters only. Indeed, most model-based control approaches
assume that a desired force/moment vector may be achieved,
e.g. [4], [13], [23], thus actuator model parameters must
be known a priori. Although a class of model-reference
adaptive controllers (MRACs) for linear plants considers
uncertainty in the input mapping [18], these results do
not apply to TTC for nonlinear plants. [15], [16] showed
that unmodeled thruster dynamics can destabilize parameter
adaptation and reported a two-step algorithm which estimates
subsets of parameters successively to increase robustness of
the parameter adaptation, but does not estimate the actuator
model parameters. [5] addresses uncertainty in the input
mapping for a 3-DOF UV, but only as a scalar multiplier. In
contrast, the NS-ATTC algorithm reported herein estimates
plant and actuator parameters simultaneously, exploiting the
nullspace structure of plants and actuator models which are
linear in the parameters. The authors reported a similar
approach to the related but distinct problem of nullspace
adaptive identification (NS-AID) [6].

An alternative category of model-free TTC approaches
uses neural networks (NNs) to learn complex control map-
pings from input-output data alone [25], [29]. Some hy-
brid approaches combine the advantages of physics-based
modeling with the approximation capabilities of NNs by
supplementing a known dynamics model with learned un-
known dynamics [2], [11]. In general, NN approaches may
be limited by the data and offline training time required for
generalizable performance and may lack online adaptation.
Moreover, the ability of NS-ATTC to estimate a physics
model of both plant and actuator behavior is useful not
only for the TTC objective, but in enabling more accurate
online model-based motion planning, state estimation [7],
fault detection [12], and other autonomy subsystems.

Another challenge of vehicle control with respect to a
world inertial frame is the choice of orientation repre-
sentation. Approaches using quaternions [1] or exponential
coordinates of rotation [16] avoid Euler-angle singularities.
Although the NS-ATTC algorithm utilizes Euler angles and
is thus subject to a bounded pitch assumption, this choice of
representation is not fundamental to the nullspace parameter
adaptation approach and is a potential area of future work.

III. MATHEMATICAL CONVENTIONS

For a vector x ∈ Rn, we denote the Euclidean (L2) norm
by ||x||2 and the maximum (L∞) norm by ||x||∞. For a
matrix A ∈ Rn×n, we denote the spectral norm by ||A||2
and Frobenius norm by ||A||F and make use of the fact
that ||A||2 ≤ ||A||F . When not specified, the || · ||2 norm is
implied for both vectors and matrices. For a positive-definite
symmetric (PDS) matrix P ∈ Rn×n, we denote minimum
and maximum eigenvalues as λmin(P ), λmax(P ).

We also make use of the diagonal matrix operator diag(·) :
Rn → Rn×n, Kronecker product ⊗, skew-symmetric opera-
tor (·)∧ : R3 → so(3), stacking operator vec(·) : Rn×n →
R(n∗n)×1 [20], and adjoint operator adse(3)(·) : R6 → R6×6,
which is defined ∀v = [νT ωT ]T ∈ R6 as

adse(3)(v) =

[
ω∧ 03×3

ν∧ ω∧

]
. (1)

IV. 6-DOF VEHICLE PLANT AND ACTUATOR MODEL

The commonly accepted second-order finite-dimensional
model of a submerged fully-actuated 6-DOF UV subject to
quadratic drag and gravitational forces, [4], [19], is

η̇ = J(φ)v (2)
Mv̇ + C(v)v +D(v)v − G(φ) = τ(ξ), (3)

where η(t) = [x⊤ φ⊤] ∈ R6 represents the position x ∈ R3

and orientation φ ∈ R3 of a body-fixed frame with respect
to an inertial frame of reference; v(t) = [ν⊤ ω⊤] ∈ R6

represents the body-frame linear velocity ν ∈ R3 and angular
velocity ω ∈ R3; v̇(t) ∈ R6 is the time derivative of the body
velocity (termed the “plant acceleration”); τ(ξ) ∈ R6 is the
vector of control-actuator forces and moments; and ξ ∈ R6

is the vector of control inputs. We represent the vehicle
orientation φ in Euler angles and assume that the pitch φ2 is
bounded to avoid the kinematic singularities arising therein.
The kinematic Jacobian J(φ) ∈ R6×6 described in Section
2.2 of [4], composed of the body-to-world rotation matrix
R(φ) ∈ SO(3) and the angular velocity transformation
matrix T (φ) ∈ R3×3, is

J(φ) =

[
R(φ) 03×3

03×3 T (φ)

]
. (4)

M ∈ R6×6 is the positive definite symmetric (PDS) mass
matrix, C(v) ∈ R6×6 is the Coriolis matrix, D(v) ∈ R6×6 is
the positive semidefinite (PSD) drag matrix, and G(η) ∈ R6

is the force and moment vector due to gravity and buoyancy.
The model vehicle studied in this work is the Johns

Hopkins University (JHU) remotely operated vehicle (ROV),
a fully-actuated ROV actuated via 6 current-controlled direct-
drive brushless electric thrusters [10]. We use a simplified
steady-state thruster model in which thrust is proportional
to motor current input — a reasonable assumption when
vehicle advance velocity is small relative to thruster jet
velocity — representing the current inputs as ξ ∈ R6 and
the directionality, location relative to the center of gravity
(CG) in the vehicle body frame, and thrust coefficients of the
thrusters with a thruster allocation matrix A ∈ R6×6. Then
we can write the overall body-frame force/moment vector as

τ(ξ) = Aξ. (5)

A. Parameterization and Regressor Form
For this preliminary study, we assume that the body frame

is coincident with the vehicle CG and that M,D(v) are
diagonal. Since the parameters in (3) enter linearly, we can
factor a parameter vector from each of the terms in (3)
and factor the nonlinear terms as regressor matrix-valued
functions, described for each term in (3) as follows.

Under the diagonal mass matrix assumption, we define

θm ≜ [m1 m2 m3 m4 m5 m6]
⊤ ∈ R6 (6)

Wm(v̇) ≜ diag(v̇), (7)

which results in

Mv̇ = diag(θm)diag(v̇) (8)
= Wm(v̇)θm, (9)



where θm also parameterizes the Coriolis matrix

C(va)vb =

[
03×3 −(M11νa)

∧

−(M11νa)
∧ −(M22ωa)

∧

] [
νb
ωb

]
(10)

= adse(3)(vb)Mva (11)
= adse(3)(vb)Wm(va)θm. (12)

We distinguish between va ∈ R6, the argument to the
Coriolis matrix C(va), and vb ∈ R6, the outside argument.
Similarly for the diagonal drag matrix, we define

θd ≜ [d1 d2 d3 d4 d5 d6]
⊤ ∈ R6 (13)

Wd(va, vb) ≜ diag(|va|)diag(vb), (14)

which results in

D(va)vb = diag(|va|)diag(θd)vb (15)
= Wd(va, vb)θd. (16)

To factor the gravity/buoyancy term, we define

θG ≜ [g b⊤]⊤ ∈ R4 (17)

WG(φ) ≜

[
R(φ)⊤e3 03×3

03×1 (R(φ)⊤e3)
∧

]
, (18)

where e3 = [0 0 1]⊤; g = gc(m − ρ∇) ∈ R is the
net effective buoyant force with gravitational acceleration
constant gc, dry mass m, fluid density ρ, and displacement
volume ∇; and b = gcρ∇rcb ∈ R3 is the net righting torque
with vector rcb ∈ R3 from the CG to the CB. This results in

G(φ) = WG(φ)θG . (19)

Combining (9,12,16,19), we define the plant parameter
vector θp ∈ R16 and plant regressor matrix-valued function
Wp(v̇, va, vb, φ) ∈ R6×16 as

θp ≜ [θ⊤m θ⊤d θ⊤G ]
⊤ (20)

Wp(v̇, va, vb, φ) ≜


(
Wm(v̇) + adse(3)(vb)Wm(va)

)⊤

Wd(va, vb)
⊤

−WG(φ)
⊤


⊤

,

(21)

resulting in the following expression for the LHS of (3)

Mv̇ + C(v)v +D(v)v − G(η) = Wp(v̇, v, v, φ)θp. (22)

Stacking the rows of the thruster allocation matrix A, we
define the actuator parameter vector and actuator regressor
matrix-valued function

θa ≜ vec(A⊤) ∈ R36 (23)

Wa(ξ) ≜ I6×6 ⊗ ξ⊤ ∈ R6×36, (24)

so that the RHS of (3) may be written as

τ(ξ) = Wa(ξ)θa. (25)

Finally, we construct the combined plant and actuator
parameter vector from (20,23)

θ ≜ [θ⊤p θ⊤a ]
⊤ ∈ R52. (26)

and combined regressor matrix-valued function from (21,24)

W(v̇, v, v, φ, ξ) ≜
[
Wp(v̇, v, v, φ) −Wa(ξ)

]
(27)

so that, using (22,25), we can write the LHS and RHS of
the dynamic equation of motion (3) in regressor form

Wp(v̇, v, v, φ)θp = Wa(ξ)θa (28)

and using (26,27,28) obtain a nullspace relationship

W(v̇, v, v, φ, ξ)θ = 0. (29)

Thus the true parameters θ are not only a unique point
in parameter space, but members of a true parameter set
consisting of all vectors θ∗ that also belong to the persistent
nullspace of W(v̇, v, v, φ, ξ). This set P (θ) may be defined

P (θ) = {θ∗ : θ∗ ̸= 0, and W(v̇, v, v, φ, ξ)θ = 0 ⇐⇒
W(v̇, v, v, φ, ξ)θ∗ = 0}. (30)

For example, any scalar multiple of θ equivalently satisfies
(29). We note that, while we adopt a particular UV model
and parameterization for this preliminary study, the control
approach reported herein is applicable to any fully-actuated
second-order model that can be written in the form (3) or,
equivalently (29) — a broad class of systems including aerial
and marine vehicles, spacecraft, and robot arms.

V. NULLSPACE ADAPTIVE MODEL-BASED
TRAJECTORY-TRACKING CONTROL

A. Problem Statement
Given a smooth bounded reference trajectory in the world

inertial reference frame ηd(t), η̇d(t), η̈d(t) and unknown true
plant and actuator parameters θ (26), our task is to design
control inputs ξ(t) and a parameter estimate θ̂(t) with param-
eter estimate update law ˙̂

θ(t) to achieve asymptotically stable
trajectory tracking. We define the tracking error coordinates

∆η(t) ≜ η(t)− ηd(t) (31)
∆η̇(t) = η̇(t)− η̇d(t) (32)
∆η̈(t) = η̈(t)− η̈d(t), (33)

as well as the parameter estimate error coordinates

∆θ(t) ≜ θ̂(t)− θ. (34)

We will also refer to the plant part θ̂p ∈ R16 and actuator
part θ̂a ∈ R36 of the parameter estimate θ̂, with

Â ≜ vec−1(θ̂a)
⊤ (35)

∆A ≜ Â−A (36)

∆θa ≜ θ̂a − θa (37)

∆θp ≜ θ̂p − θp. (38)

We make the following assumptions:
• ηd(t), η̇d(t), η̈d(t) are smooth and bounded;
• η(t), ηd(t) are bounded in pitch φ2 ∈ [−π

4 ,
π
4 ] to avoid

the singularities arising from J(φ) at p = ±π
2 ;

• ω(t) is bounded by ωmax ≥ ||ω(t)||∞∀t ≥ t0;
• v(t) overall is bounded by vmax ≥ ||v(t)||∞∀t ≥ t0;
• θ is constant;



and denote mmax ≜ maxi mi, dmin ≜ mini di, dmax ≜
maxi di, kp,min ≜ mini kpi, kd,min ≜ mini kdi, kd,max ≜
maxi kdi, γmax ≜ maxi γi.

B. Adaptive Control Law and Parameter Update Law

We define a reference velocity signal and error coordinates

vd(t) ≜ J(φ)−1η̇d (39)

∆v(t) ≜ v(t)− vd(t). (40)

We note that vd is not the projection of η̇d onto the body
frame at ηd, but a reference signal related to η̇d, η̈d by

η̇d = J(φ)vd (41)

v̇d = J(φ)−1η̈d +
d
dt (J(φ)

−1)η̇d. (42)

Using (21,39,42), we define the desired force/moment vector

τ∗ ≜ Wp(v̇d, v, vd, φ)θ̂p − J(φ)⊤Kp∆η −Kd∆v (43)

with positive definite diagonal (PDD) gain matrices Kp ≜
diag([kp1, ..., kp6]⊤), Kd ≜ diag([kd1, ..., kd6]⊤). If the true
actuator parameters θa are known, then the control inputs
ξ∗ to achieve the desired force/moment vector τ∗ may be
computed as

ξ∗ = A−1τ∗. (44)

However, since only an estimate θ̂a is available, we choose
the NS-ATTC control law ξ computed using the estimate θ̂a

ξ = Â−1τ∗. (45)

With ξ (45) applied to the actuators (5), we have

τ(ξ) = AÂ−1τ∗. (46)

The NS-ATTC parameter update law is given by

˙̂
θ = −ΓW(v̇d, v, vd, φ, ξ)

⊤(∆v + ϵJ(φ)−1∆η), (47)

where ϵ ∈ R>0 and Γ ≜ diag([γ1, ..., γ52]⊤)is a
PDD matrix of adaptation gains with principal submatrices
Γm,Γd,ΓG ,Γa associated with θm, θd, θG , θa, respectively.

C. Error Dynamics

Equating (46) to (25), substituting this term into the RHS
of the plant dynamics (28) and using the identity AÂ−1 =
I −∆AÂ−1, the controlled plant takes the form

Wp(v̇, v, v, φ)θp = AÂ−1τ∗ (48)

Wp(v̇, v, v, φ)θp = (I −∆AÂ−1)τ∗ (49)

Wp(v̇, v, v, φ)θp = Wp(v̇d, v, vd, φ)θ̂p

− J(φ)⊤Kp∆η −Kd∆v −∆AÂ−1τ∗. (50)

From the control law (45), the fact that ∆A = vec−1(∆θa)
⊤

(36,37), and the regressor form of the actuator force/moment
vector (24,25), we have that

∆AÂ−1τ∗ = ∆Aξ (51)
= Wa(ξ)∆θa. (52)

Substituting (52) and θ̂p = θp +∆θp (34) into (50), we can
express the controlled plant as

Wp(v̇, v, v, φ)θp = Wp(v̇d, v, vd, φ)(θp +∆θp)

−Wa(ξ)∆θa

− J(φ)⊤Kp∆η −Kd∆v. (53)

Combining terms using (21,22) yields

Wp(∆v̇, v,∆v, 0)θp = −J(φ)⊤Kp∆η −Kd∆v

+Wp(v̇d, v, vd, φ)∆θp −Wa(ξ)∆θa, (54)

and we can use (27,34) to obtain

Wp(∆v̇, v,∆v, 0)θp = −J(φ)⊤Kp∆η −Kd∆v

+W(v̇d, v, vd, φ, ξ)∆θ (55)

M∆v̇ + [C(v) +D(v)]∆v = −J(φ)⊤Kp∆η −Kd∆v

+W(v̇d, v, vd, φ, ξ)∆θ. (56)

Thus the velocity error dynamics ∆v̇ may be written as

M∆v̇ =− [C(v) +D(v) +Kd]∆v − J(φ)⊤Kp∆η

+W(v̇d, v, vd, φ, ξ)∆θ. (57)

Using (2,32,41), we can express the tracking error dynamics

∆η̇ = J(φ)v̇d − J(φ)v̇ (58)
= J(φ)∆v, (59)

and, since the true parameters are constant (i.e. θ̇ = 0), the
parameter error dynamics are simply ∆θ̇ =

˙̂
θ (34, 47), thus

∆θ̇ = −ΓW(v̇d, v, vd, φ, ξ)
⊤(∆v + ϵ∆η). (60)

D. Stability and Boundedness Analysis
This section reports proofs of stability about the origin

of the full error system z ≜ [∆η⊤ ∆v⊤ ∆θ⊤]⊤, asymptotic
convergence of ∆η,∆v to 0, and boundedness of all signals.

We consider the Lyapunov function candidate

V (z) =
1

2
z⊤

 Kp ϵJ(φ)−⊤M 0
ϵMJ(φ)−1 M 0

0 0 Γ−1

 z, (61)

which is bounded below by

V (z) ≥ 1

2

(
λmin(Kp)||∆η||2 + λmin(M)||∆v||2

+
1

λmax(Γ)
||∆θ||2

)
− ϵ|∆η⊤J(φ)−⊤M∆v|, (62)

where, using properties of the spectral and Frobenius norms,

|∆η⊤J(φ)−⊤M∆v| ≤ ||∆η|| ||∆v|| ||J(φ)−⊤|| ||M ||
≤ ||∆η|| ||∆v|| ||J(φ)−⊤||Fλmax(M) (63)

≤ ||∆η|| ||∆v||tr(J(φ)−1J(φ)−⊤)λmax(M). (64)

By direct computation, we have that tr(J(φ)−1J(φ)−⊤) =
6. Thus for diagonal Kp,M,Γ, combining (62,64) and
defining z̄ ≜ [||∆η|| ||∆v|| ||∆θ||]⊤ yields

V (z) ≥ 1

2
z̄⊤

 kp,min −6ϵmmax 0
−6ϵmmax mmin 0

0 0 1
γmax

 z̄, (65)



and by choosing ϵ < 1
6mmax

√
kp,min

mmin
, we ensure that V (z) is

positive-definite in z. Furthermore, V ∈ C1, is equal to zero
if and only if z = 0, and is radially unbounded, satisfying
the requirements for a Lyapunov function. Taking the error
dynamics (59,57,60) and the time derivative of (61), we have

V̇ (z) =∆η⊤Kp∆η̇ +∆v⊤M∆v̇ +∆θ⊤Γ−1∆θ̇

+ ϵ
[
∆η⊤J(φ)−⊤M∆v̇ +∆η̇⊤J(φ)−⊤M∆v

+∆η⊤ d
dt (J(φ)

−⊤)M∆v
]

(66)

=− ϵ∆ηKp∆η −∆v⊤[D(v) +Kd − ϵM ]∆v

− ϵ∆η⊤
[
J(φ)−⊤[C(v) +D(v) +Kd]

− d
dt (J(φ)

−⊤)M
]
∆v, (67)

which, defining D̄(v) ≜ D(v) +Kd, is bounded above by

V̇ (z) ≤− ϵλmin(Kp)||∆η||2

−
[
λmin(D̄(v))− ϵλmax(M)

]
||∆v||2

+ ϵ|∆η⊤
[
J(φ)−⊤[C(v) + D̄(v)]

− d
dt (J(φ)

−⊤)M
]
∆v|, (68)

where the last term is further bounded above by

|∆η⊤
[
J(φ)−⊤[C(v) + D̄(v)]− d

dt (J(φ)
−⊤)M

]
∆v|

≤
(
||J(φ)−⊤|| ||C(v) + D̄(v)||
+ || ddtJ(φ)

−⊤|| ||M ||
)
||∆η|| ||∆v|| (69)

≤
(
||J(φ)−⊤||F ||C(v) + D̄(v)||
+ || ddtJ(φ)

−⊤||F ||M ||
)
||∆η|| ||∆v||. (70)

Term-by-term from (70), we have
• by direct computation,

||J(φ)−⊤||F = tr(J(φ)−1J(φ)−⊤) = 6; (71)

• from Proposition 5.11 in [21] and the skew-
symmetricity of C(v),

||C(v) + D̄(v)||2 ≤ 2 sup
||y||=1

|y∗(C(v) + D̄(v))y| (72)

≤ 2λmaxD̄(v); (73)

• by direct computation for bounded pitch φ2 ∈ [−π
4 ,

π
4 ],

|| ddtJ(φ)
−⊤||F = tr( d

dt (J(φ)
−1) d

dt (J(φ)
−⊤)) (74)

= φ̇⊤B(φ)φ̇ (75)

≤ ||ω||2||T (φ)⊤B(φ)T (φ)||F (76)

≤ 38ω2
max, (77)

where

B(φ) ≜

3 + c2φ2 0 −2sφ2

0 3 0
−2sφ2 0 2

 ; (78)

• and for the PDS matrix M , ||M ||2 = λmax(M).
Thus the last term of (68) is bounded above by

|∆η⊤
[
J(φ)−⊤[C(v) + D̄(v)]− d

dt (J(φ)
−⊤)M

]
∆v|

≤
(
12λmax(D̄(v)) + 38λmax(M)ω2

max

)
||∆η|| ||∆v||.

(79)

Since M,D(v),Kp,Kd are assumed to be diagonal, their
minimum and maximum eigenvalues are their minimum and
maximum diagonal elements. We note that

λmin(D̄(v)) = kd,min (80)
λmax(D̄(v)) = dmaxvmax + kd,max (81)

and abbreviate

d̄max ≜ 6(dmaxvmax + kd,max) (82)

m̄max ≜ 19(mmaxω
2
max). (83)

Then the upper bound on V̇ (z) in (68) can be written as

V̇ (z) ≤ −z̄⊤
[

G 012×52

052×12 052×52

]
z̄ (84)

G ≜

[
ϵkp,min −ϵ

(
d̄max + m̄max

)
−ϵ

(
d̄max + m̄max

)
kd,min − ϵmmax

]
. (85)

If the gains satisfy

mmaxkp,min + (d̄max + m̄max)
2 > 0 (86)

ϵ <
kp,minkd,min

mmaxkp,min + (d̄max + m̄max)2
, (87)

then G > 0 and V̇ (z) is negative-definite in ∆η,∆v and
negative semi-definite overall. Thus by choosing

0 < ϵ < min

{
1

6mmax

√
kp,min

mmin
,

kp,minkd,min

mmaxkp,min + (d̄max + m̄max)2

}
, (88)

then V (z), V̇ (z) satisfy the requirements of a Lyapunov
function to show that the error system (57,59,60) is uniformly
stable about the origin and that ∆η,∆v,∆θ are bounded.

From the boundedness of ∆θ (34) and constant θ, θ̂ is
bounded. Since ∆η (31) is bounded and ηd is assumed
bounded, η is bounded, as well as J(φ) under the bounded
pitch assumption. Then bounded ∆v implies bounded ∆η̇
(59), and together with the boundedness assumption on η̇d,
this implies that η̇ is bounded. Furthermore vd, v̇d (39,42) are
bounded from the boundedness of η, η̇d, η̈d, J(φ)−1, J̇(φ)−1.
We have already assumed that v is bounded.

To show that v̇ is bounded, we must first verify the
boundedness of τ(ξ) (46) and thus that Â−1 exists and
is bounded. As a consequence of Corollary 5.6.16 in [8],
Â−1 = (A+∆A)−1 is invertible if

||∆A||F < ||A−1||−1
F . (89)

We can verify by direct computation that ||∆A||F =
||∆θa||2, which is bounded above from the definition of V (z)
(61) and the positivity of its error terms,

V (z) ≥ 1

2
λmin(Γ

−1
a )||∆θa||2. (90)



Furthermore, since V̇ ≤ 0 (84), V (z(t)) is bounded above
by its initial value V (z(t0)), and we have

||∆θa||2 ≤ 2λmin(Γ
−1
a )−1V (z(t)) (91)

≤ 2λmax(Γa)V (z(t0)). (92)

Thus from (89), Â(t) remains invertible ∀t ≥ t0 if√
2λmax(Γa)V (z(t0)) < ||A−1||−1

F . (93)

From (43,46), we see that all other signals in τ(ξ) have
been shown to be bounded, so that v̇ and consequently ∆v̇ =
v̇ − v̇d are bounded from the boundedness of (3).

Regarding convergence of the trajectory-tracking error, we
can verify from (61,84) that [∆η⊤∆v⊤]⊤ ∈ L2 ∩L∞. By a
corollary of Barbalat’s Lemma [9], this implies that

lim
t→∞

∆η(t) = 0 (94)

lim
t→∞

∆v(t) = 0. (95)

thus achieving the NS-ATTC goal. We can further conclude
from (94,95) and the boundedness of all signals in (47) that

lim
t→∞

˙̂
θ = 0. (96)

It is an open problem, however, to guarantee convergence
of θ̂ to P (θ) (30). In [6], the authors showed that a
persistence of excitation (PE) condition is sufficient for such
convergence in the context of nullspace adaptive identifica-
tion, a distinct task sharing the same nullspace parameteriza-
tion. Potential application of such PE conditions to parameter
convergence in NS-ATTC is the subject of future work.

VI. SIMULATION EVALUATION

This Section reports a preliminary simulation evaluation
of the NS-ATTC algorithm applied to a 6-DOF model of
the JHU ROV [10]. The world-frame reference trajectory
consisted of a sinusoid for each DOF, whose amplitude and
period are each given in Table I. Table II gives the NS-
ATTC algorithm gains. The simulated true parameter values
were adapted from those reported in [17]. The true parameter
values and initial estimate values are given in Table III.

TABLE I
NS-ATTC REFERENCE TRAJECTORY

DOF Ampl. Period
x1 (North) 1 m 300 sec
x2 (East) -1 m 240 sec
x3 (Down) 0.5 m 120 sec
φ1 (Roll) 1.5◦ 60 sec
φ2 (Pitch) 3◦ 60 sec

φ3 (Heading) 180◦ 300 sec

TABLE II
NS-ATTC GAINS

Gain Value
Γm,Γd 1e4 I6×6

ΓG diag([1;1;1;2e3])
Γa 5 I36×36

Kp 60 I6×6

Kd 1000 I6×6

ϵ 0.05

Figure 1 shows the reference trajectories, actual trajecto-
ries and corresponding tracking error versus time for 900
seconds of numerically simulated closed loop motion under
the NS-ATTC control law (45) and parameter update law
(47). Consistent with the analytical stability and convergence
results (94,95) derived in Section V, the world position and
orientation tracking error ∆η(t) and body velocity tracking
error ∆v(t) converge quickly to zero. Consistent with (96),
Figure 2 shows that the parameter estimate error magnitude
||∆θ(t)|| converges to an approximately constant value.
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9 = Â!1= $

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

Time (s)

-1

0

1

P
o
si
ti
o
n
(m

)

World Position
Reference vs. Actual Trajectory

xd1

x1

xd2

x2

xd3

x3

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

Time (s)

-0.02

0

0.02

P
os
it
io
n
E
rr
o
r
(m

)

World Position
Tracking Error

"x1

"x2

"x3

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

Time (s)

-180

0

180

E
u
le
r
A
n
gl
e
(d
eg
)

World Orientation
Reference vs. Actual Trajectory

'd1

'1

'd2

'2

'd3

'3

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

Time (s)

-2
-1
0
1

E
u
l.
A
n
g
le

E
rr
or

(d
eg
) World Orientation

Tracking Error

"'1

"'2

"'3

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

Time (s)

-0.04
-0.02

0
0.02
0.04

V
el
o
ci
ty

(m
/
s)

Linear Body Velocity
Reference vs. Actual Trajectory

8d1
81
8d2
82
8d3
83

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

Time (s)

-0.02

0

0.02

V
el
o
ci
ty

E
rr
or

(m
/
s)

Linear Body Velocity
Tracking Error

"81
"82
"83

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

Time (s)

-2
0
2
4
6

V
el
o
ci
ty

(d
eg
/s
)

Angular Body Velocity
Reference vs. Actual Trajectory

!d1

!1

!d2

!2

!d3

!3

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

Time (s)

-5

0

5

V
el
o
ci
ty

E
rr
o
r
(d
eg
/s
) Angular Body Velocity

Tracking Error

"!1

"!2

"!3

Fig. 1. The left column shows the reference and actual world position and
orientation xd, x, φd, φ and body linear and angular velocities νd, ν, ωd, ω
versus time. The right column shows error in world position and orientation
∆η = [∆x;∆φ] and body velocity ∆v = [∆ν;∆ω] versus time.

0 100 200 300 400 500 600 700 800 900
Time (s)

69

70

71

P
ar

am
.
E
rr

or
jj"
3
(t

)jj

NS-ATTC - Total Parameter Estimate Error jj"3(t)jj
_̂
3 = !!W ( _vd; v; vd; '; 9)("v + 0J(')!1"2)

Fig. 2. The parameter estimate error magnitude ||∆θ(t)|| versus time

VII. CONCLUSION

NS-ATTC is a novel approach for TTC of fully-actuated
UVs in the presence of unknown plant and actuator pa-
rameters. We report the NS-ATTC algorithm derivation, an
analytical proof of asymptotically stable trajectory-tracking
error convergence and stable parameter estimation, and a
preliminary simulation evaluation using a 6DOF UV model.
Future work includes experimental evaluation with compar-
ison to other TTC methods and study of control feasibility,
generalization to non-UV platforms, and investigation of pa-
rameter convergence and the case of underactuated vehicles.

TABLE III
NS-ATTC TRUE PARAMETER AND INITIAL ESTIMATE VALUES

Group True Parameters θ Init. θ̂(t0)
θm [996.9; 1275; 1378; 308.7; 322.3; 467.4] θm*0.97
θd [347.8; 433.9; 497.6; 244.2; 55.34; 157.9] θd*0.98
θG [21.77; 5.966; -0.9802; 342.8] θG*1.05
a1,i [-15; 15; 0; 0; 0; 0] a1,i*0.95
a2,i [0; 0; -15; 15; 0; 0] a2,i*1.03
a3,i [0; 0; 0; 0; -15; -15] a3,i*1.05
a4,i [0; 0; -3.371; -4.44; 0; 0] a4,i*0.94
a5,i [1.794; -1.794; 0; 0; 12.37; -11.08] a5,i*0.9
a6,i [-8.565; -8.565; 0; 1.665; 0; 0] a6,i*1.1
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