
Using Dynamic Bayesian Optimization to
Induce Desired Effects in the Presence of

Motor Learning: a Simulation Study

GilHwan Kim1, Haider A. Chishty1, and Fabrizio Sergi1, 2, *

1Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
2Department of Biomedical Engineering, University of Delaware, Newark DE, 19713, USA

*Corresponding author: fabs@udel.edu

Keywords: Human-in-the-loop, Bayesian optimization, Motor learning, Machine
learning

1

mailto:fabs@udel.com

Abstract

Human-in-the-loop (HIL) optimization is a control paradigm used for tuning the
control parameters of human-interacting devices while accounting for variability
among individuals. A limitation of state-of-the-art HIL optimization algorithms
such as Bayesian Optimization (BO) is that they assume that the relationship
between control parameters and user response does not change over time. BO
can be modified to account for the dynamics of the user response by implementing
time into the kernel function, a method known as Dynamic Bayesian Optimization
(DBO). However, it is unknown if DBO outperforms BO when the human response
is characterized by models of human motor learning.

In this work, we simulated runs of HIL optimization using BO and DBO towards
establishing if DBO is a suitable paradigm for HIL optimization in the presence of
motor learning. Simulations were conducted assuming either purely time-dependent
participant responses, or assuming that responses would arise from state-space
models of motor learning capable of describing both adaptation and use-dependent
learning behavior.

Statistical comparisons indicated that DBO was never inferior to BO, and, after
a certain number of iterations, generally outperformed BO in convergence to optimal
inputs and outputs. The number of iterations beyond which DBO was superior to
BO occurred earlier when the input-output relationship of the simulated responses
was more dynamic. Our results suggest that DBO may improve the performance of
HIL optimization over BO when a sufficient number of iterations can be evaluated
to accurately distinguish between unstructured variability (noise) and learning.

2

1. INTRODUCTION

With the advent of the era of cyber-physical systems, there has been considerable and
growing interest in the use of automatic methods to measure, train, and/or augment
human sensorimotor function [8, 9, 28]. In this context, multiple approaches are being
explored such as: using smart activity sensors to measure repetitions, speed, accuracy,
timing, and in some cases forces of human movements [5, 24]; providing participants
different forms of feedback on motor performance [27]; and using active devices to
physically interact with human movements [23]. The latter class of devices is of particular
interest in this paper, and includes approaches such as wearable exoskeletons, functional
electrical stimulation, and smart perturbation systems that are overall used to assist,
augment, and improve human sensorimotor function. While the specific type of input
pursued in these approaches differ widely, the underlying principle of this class of methods
is to apply a physical stimulus to participants in order to induce a neuromuscular response
that would modify motor coordination in a desired way, which would ultimately enable
participants to accomplish the same task with less effort, or assist them to do more
complex/demanding tasks with the same effort.

A specific class of devices meant to interact physically with human movement is
that of wearable exoskeletons, which can assist walking by providing torques to one or
multiple joints of the lower extremity [29]. These assistive torques can be defined by
predefined control strategies based on position, force, or electromyography signals. How
these signals are specifically used to identify the degree of torque assistance either relies
on the designer/researcher intuition, or on the construction of input-output relationships
based on group-level responses [22], which do not guarantee optimal results at the
participant level, and can require specific, iterative tuning which can be exhaustive.
Furthermore, while increased customization is possible by increasing the number of input
control parameters, this modification also increases the complexity in determining the
optimal set of parameters that can induce a specific response from an individual.

Human-in-the-loop (HIL) optimization was introduced to account for variability
among individuals and tune control parameters in real-time [12]. Previous
implementations of HIL in gait training successfully induced significant changes in
participant response with different optimization methods. Recent implementations of
HIL with Bayesian optimization (BO) [7, 18] have demonstrated that BO is capable of
finding optimal control parameters in less time compared to other optimization methods
such as covariance matrix adaptation evolution strategy (CMA-ES) [34] and gradient
descent [19]. During HIL optimization, a relationship between control parameters and
a corresponding cost function based on the human response is built and updated every
iteration based on new measurements. Knowledge of this relationship allows the optimizer
to predict future outputs for specific inputs, and to use this information to understand

3

which inputs are more likely to optimize the cost function. However, a limitation of
this technique, specifically for applications involving motor learning and rehabilitation,
is that the optimizer assumes that the relationship between control parameters and cost
function will not change over time or in the presence of external interventions, such as
torque perturbations. This is a flawed assumption for training applications as human
participants will adapt to interventions during gait training, causing their responses to
the same input to change based on the history of their exposure to stimuli [25, 33].

Specifically, the human response changes to adapt to alterations in task dynamics.
Previous research has introduced motor adaptation models to describe how the internal
model used by the central nervous system induces changes in response during training
through error-based [10, 30] and use-dependent learning (UDL) [6]. These models are
generally based on a state-space formulation, where the state of the system is updated
based on the history of exposure of participants to an environmental stimulus, and the
state of the system modulates the input-output relationship.

These observations indicate that to accurately estimate the human response at specific
points of training, the history of training, and the corresponding responses, must be
considered. Therefore, to address the time varying aspects of human responses in training
with HIL optimization, an optimizer must be capable of considering time as a component
in the human response model.

A modified BO method (dynamic Bayesian optimization - DBO) has previously been
developed and validated to address time-varying systems, i.e., systems with explicit
time-dependency in the input-output equation [1, 2, 21, 26, 35]. Past studies have shown
that DBO performed better compared to existing optimization methods such as BO,
CMA-ES, and particle swarm optimization in finding the optimal input of predefined
dynamic problems such as 6-hump Camelback, Griewank, and Shekel functions [26].
While DBO has not yet been implemented nor simulated for HIL optimization, it may
improve upon BO as the human response can be treated as a general time-dependent
system in complete absence of a model of human neuromotor adaptation. However, the
applicability of DBO has not been tested in scenarios constructed to emulate human
adaptation, and so its feasibility for application in HIL optimization remains untested.

In this work, we implemented DBO in HIL simulations capturing key features of the
human response to robot intervention during training. The virtual human participant
response was constructed to reflect dynamic responses due to time-dependency or arising
from state-space models of motor learning. State-space models were based on a model
of the human response that incorporates features of adaptation and use-dependent
learning. For benchmarking of DBO, convergence speed and accuracy of the virtual
HIL optimization are compared between DBO and BO.

4

2. METHODS

2.1 Dynamic Bayesian Optimization

BO is a probabilistic approach to finding the optimal input value that induces a desired
outcome from a system based on data that is observed with measurement error [3].
Given a set of observations and a predefined covariance function accounting for the
statistical relationship between changes in input values and changes in the outputs,
BO will construct a Gaussian process (GP) model which estimates the responses for
unobserved values of the input. Based on the GP model, BO uses an acquisition function
to determine the input to be tested in the subsequent iteration: this acquisition function
provides higher scores for inputs that result in good predictions (exploitation) or high
prediction uncertainty (exploration). To inhibit overexploitation, which could lead to
the optimizer being trapped in local minima, an additional parameter known as the
exploration-exploitation ratio (e-ratio) is implemented. For a given GP model, the the
model variance at input u (σ2

m) is defined as the sum of the variance of cost function (σ2
g)

and additional noise (σ2) as:

σ2
m = σ2

g + σ2. (1)

The BO algorithm will flag overexploitation if the next test input unext satisfies

σg(unext) < e · σ(unext), (2)

where e is the e-ratio. Thus, when higher e-ratios are used, the optimizer is more
likely to flag inputs as overexploitation, and therefore select new inputs that offer greater
uncertainty (exploration). If overexploitation is still detected, hyperparameters in the
covariance function are adjusted, and the GP model is reconstructed.

In classical BO, observation time is not considered as it is assumed that the system is
stable over time. Therefore, repetitions of the same input values are expected to generate
similar observations. To account for the fact that a system response may change with
time, as is the case of neuromotor adaptation, BO needs to be modified.

To account for the time-varying response of individuals to a set of inputs, the
covariance function k(u, u′) between two sets of input parameters u and u′ can be
augmented by introducing the time variable t as k((u, t), (u′, t′)), where t and t′ are the
time instances when inputs u and u′ are applied, respectively. Previous research simplified
this covariance function by assuming separability to describe the time-component of
covariance function [2, 13]. Therefore, the overall covariance function can be described
as multiplication of a static component of the covariance function ku and a dynamic

5

component kt, as
k((u, t), (u′, t′)) = ku(u, u

′) · kt(t, t′) (3)

2.1.1 Static Component of Covariance Function

The static component of the covariance function ku used in a Gaussian process model
is only determined by input parameters u. In this work, we defined the static (i.e.,
input-dependent) component of the covariance function based on the most commonly
used squared exponential covariance function:

ku(ui, uj) = σ2 · exp

[
−

r∑
p=1

ũ⊤
p · ũp

2 · l2p

]
, (4)

where ui and uj are r-dimensional inputs at arbitrary time points i and j respectively, r is
the number of input/control parameters, and ũp is the difference between the p-th input
parameter of two input parameter arrays ui and uj (uip − ujp). lp is the p-th length scale
hyperparameter, which influences the function’s sensitivity to differences in parameter
inputs, and σ2 is the measurement variance.

2.1.2 Dynamic Component of Covariance Function

Considering the idea that two measurements collected with a larger time difference will be
less related to each other than two measurements collected with a smaller time difference,
the dynamic component of the covariance function kt is assumed to have a lower value
as the time difference between two data points increases. In this work, we defined the
dynamic (i.e., time-dependent) component of the covariance function kt between two time
points t and t′ consistently with previous research [2] as:

kt(t, t
′) = (1− α)|t−t′|, (5)

where α ∈ [0, 1) a hyper-parameter. Therefore, the overall covariance function used in
this work is

k((u, t), (u′, t′)) = σ2 · exp

[
−

r∑
p=1

ũ⊤
p · ũp

2 · l2p

]
· (1− α)|t−t′| (6)

2.2 Optimizer Testing on a Model with Explicit Time

Dependence

To assess the effect of incorporating the dynamic component in the covariance function
used in Gaussian process modeling for optimization, both versions of the optimizer were
compared using two virtual HIL simulations with predefined time-varying responses: 1)

6

a system with explicit time dependence and 2) a set of state-space models of neuromotor
adaptation.

Both processes used Expected Improvement as the acquisition method based on
previous research demonstrating its effectiveness in convergence with a similar problem
involving walking biomechanics [4, 17, 31].

2.2.1 Explicit Time Dependence Model

To include explicit dependency on time or iteration number in the input-output
relationship, we defined a process as a zero-order system, where the output would change
with iteration number in three ways: 1) the optimal output would change with time
as dictated by a decaying oscillating exponential function; 2) the output would deviate
from its optimal value quadratically based on the distance between the current input and
the optimal input; and 3) the optimal input would itself change with time. The input
(u)-output (y) equation for this system at each iteration (i) is defined as:

y = yopt(i) + (uopt(i)− u)2 +N(0, 0.12), (7)

yopt(i) = 5 + 5 · exp
[
− i+ 3

15
− 1

3
· sin π · (i+ 3)

5

]
, (8)

uopt(i) = 5 + 10 · exp
[
− i+ 3

15

]
+ 0.2 · sin π · (i+ 3)

5
, (9)

where i is the iteration number, and N(0, 0.12) is observation noise sampled from a normal
distribution with zero-mean and standard deviation equal to 0.1. uopt(i) is the optimal
input at the i-th iteration, and yopt(i) is the corresponding optimal response of the system
at the i-th iteration. The optimal value of input and response are shown in Fig. 1. This
type of system was selected due to its explicit time-dependence: the associated response
to a newer optimal input would be lower (i.e., more optimal) than a past optimal input.
Therefore, an ideal optimizer should rely more heavily on a recent estimation of the
optimal input to achieve the desired response (y = yopt).

2.2.2 Simulation Method

Both DBO and BO were implemented to simulate a virtual HIL experiment when the
input at each iteration was applied to the model, and the output was calculated using
Eq. (7)-(9). Both methods were implemented with different e-ratios within the range
[0.2:0.2:1]. A higher e-ratio resulted in an optimizer that favored exploration rather than
exploitation.

Based on the Gaussian process model generated at each iteration, each optimizer made
an estimation uestim(i) of the optimal input uopt(i) that minimized the response y(i) from
the system at each iteration. Obviously, the optimizer did not have any knowledge of

7

the structure of the system; however, knowledge of the true system equation was used
for benchmarking of the optimizers. Specifically, we quantified the output error as the
absolute deviation between the measured response y(i) and the optimal response yopt(i),
and the input error as the absolute deviation between the applied input u(i), and the
optimal input at that iteration uopt(i). Moreover, the accuracy of the model estimated by
the optimizers about the time-varying relationship between optimal input and optimal
output was assessed by quantifying the input estimation error as the deviation between
the true optimal input uopt(i), and the estimated optimal input uestim(i), as well as the
output estimation error, as the absolute deviation between the true optimal output yopt(i)
and the output estimated as the response associated with the estimated optimal input
f(uestim(i)).

Simulations were repeated following three initial inputs, selected randomly. For each
repetition, the same set of three initial input values and corresponding responses were
used in both DBO and BO to start HIL optimization. Each simulation was run for 100
iterations, not including the initial three inputs. To ensure wide enough input range
during optimization, bilateral saturation limits |u| < 15 were included.

2.3 Optimizer Testing on a State-space Model of Learning

Motor adaptation models describe how the internal model used by our central nervous
system to control our movements changes in response to changes in task dynamics.
To describe how the central nervous system refines these models, error-based learning
models are widely used [15]. In an error-based learning model, the internal model is
updated by two processes: a feed-forward signal predicted from internal dynamics, and
an error-based component that updates the model based on the perceived error. Errors
are often calculated based on the difference between the actual and planned movement or
force. To address use-dependent effects in the human response, where individuals often
rely on past movements to decide the current movement, a UDL model was previously
introduced [6].

While a plethora of motor learning models have been proposed [14, 20], most of the
proposed motor learning models share the fact that they are iterative learning models,
where the state of the system is updated based on the history of exposure of participants
to an environmental stimulus. For these systems, the relationship between the stimulus
u and the output y is not explicitly time-dependent, but is rather dependent on the
value of a certain number of states, that may or may not be directly observable given a
characterization of the learner dynamics. A general form of such a state-space system is
provided below:

X(n+ 1) = A ·X(n) + B · u(n), (10)

8

y(n+ 1) = C ·X(n+ 1) +D · u(n+ 1), (11)

where X(n) = [x1(n), . . . , xp(n)]
⊤, A ∈ Rp×p, B ∈ Rp×r, C ∈ Rq×p, and D ∈ Rq×r,

u ∈ Rr, and y ∈ Rq.

2.3.1 Modified Use-dependent Learning Model

Even for a linear system, the number of open parameters scales dramatically with
the order p of the state space equations, making exhaustive analysis of all model
configurations intractable. However, our own previous research indicates that a modified
UDL model, an instance of a 2nd order linear state model of motor adaptation, was
a sufficiently accurate and parsimonious model for describing the effects of exoskeleton
inputs on propulsion mechanics [16]. This model offers a more accurate representation of
human response than the time-varying response tested in Sec. 2.2 as generated responses
are based not only on inputs but also on past responses.

The modified UDL model is formulated by introducing an update equation for the
reference state x0 in the existing UDL model, to account for the possibility of after-effects
of training. In this model, the state x0 is a reference movement in absence of any
stimulus, the state x is the planned movement, the input u is the applied stimulus (i.e.
torque/force), and the output y is the participant response. All state parameters (x0, x,
u, and y) are updated at every iteration n as:

x0(n+ 1) = a · x0(n) + (1− a) · y(n), (12)

x(n+ 1) = b · x(n) + c · y(n) + (1− b− c) · x0(n), (13)

y(n+ 1) = x(n+ 1) + d · u(n+ 1), (14)

where a is the retention parameter for the reference state bounded on [0 1], b is the
previous movement retention parameter, c is the use-dependent learning term, and d

determines the sensitivity of the human response changes to robot-applied input u(n).
Based on the previous movement y(n − 1), the reference movement x0(n) is updated,
affecting the planned movement x(n) at the current iteration n. The standard state-space
form for the modified UDL model with state vector X(n) = [x0(n), x(n)]T is

X(n+ 1) = A′ ·X(n) + d ·

[
1− a

c

]
u(n), (15)

y(n+ 1) =
[
0 1

]
·X(n+ 1) + d · u(n+ 1), (16)

where A′ =

[
a 1− a

1− b− c b+ c

]
. Four parameters (a, b, c, and d) define this modified UDL

model.

9

Different combinations of parameters a, b, c, and d allow the modified UDL model
to account for different amounts of adaptation, use-dependent learning, and remaining
after-effects following training. For example, we define a positive learning model as a
model that continuously increases the response in the presence of a positive stimulus. In
contrast, a negative learning model continuously decreases response in the presence of
a positive stimulus. These two models, as well as four others, were selected for virtual
human-in-the-loop simulation experiments, and can be seen in Fig. 2, where responses in
the presence of 200 iterations of continuous stimulus and 100 iterations without stimulus
are shown (as well as an initial 100 iterations of no stimulus).

A specific instance of the modified UDL model highlighting its behavior is shown in
Fig. 3. The states x and x0 as well as the output y increase when positive inputs u are
continuously applied (positive learning); in contrast, response y decreases when negative
inputs u are continuously applied. When no inputs are applied, state and response values
are maintained.

2.3.2 Simulation Method

HIL simulations were conducted using the state-space models described in Sec. 2.3.1 as
virtual human responses. Responses were influenced by the history of the inner states (x
and x0), response (y), and input (u). However, during simulation, only the response was
provided to the optimizer; i.e., the optimizers were unaware of the state-space structure
of the system. Therefore, to induce desired responses during simulation, the optimizers
needed to estimate the relationship between input and system responses by properly
weighing the relevance of previous observations, subject to the effects of hidden states
x(n) and x0(n).

Simulations were conducted using both versions of the optimizer, using e-ratios that
provided the best convergence and estimations of optimal inputs/outputs for the HIL
simulations described in Sec. 2.2 (i.e., 0.2 and 0.4). Each simulation was performed
over 50 repetitions; all repetitions had the same three initial inputs (stimulus) - selected
randomly - consistent across optimizers. 200 iterations were simulated via optimization to
achieve a response of y = 1 (i.e., to minimize the cost function g = (y−1)2). Observation
noise was added to the output y as a random variable sampled from N(0, 0.12), i.e., a
normal distribution with zero-mean and 0.1 standard deviation.

HIL simulations with both optimizers were performed assuming that the virtual
human response would result from the six model types described in Sec. 2.3.1 and Fig.
2. Parameter values for each model were decided upon using participant-specific fitting
results from previous research [22], and the capability of describing a wide range of
adaptation behaviors. Model parameters and the objective responses are seen in Table
1. Bilateral saturation limits |u| < 3 were included when simulating Models 1, 2, and 5;

10

Table 1: Coefficient Parameter Values and Objective Response of Neuromotor Adaptation
Models

a b c d yobj

Model 1 0.9202 1.001 -0.02 1 1
Model 2 0.7 0.9977 -0.02 1 1
Model 3 0.6 0.99 -0.02 1 1
Model 4 0.6 1.089 -0.02 1 1
Model 5 0 1 0 1 1
Model 6 1 1 -0.02 1 1

for Models 3, 4, and 6 saturation limits were instead |u| < 10.
At each iteration i, the response from the modified UDL model depends on the system

states x(i−1) and x0(i−1), on the output y(i−1), and input u(i). Therefore, the optimal
input uopt(i) that achieves the target response yobj at iteration i is calculated as:

uopt(i) =
yobj
d

− b

d
· x(i− 1)− c

d
· y(i− 1)− 1− b− c

d
· x0(i− 1). (17)

Similar to the simulation using the model with explicit time dependency, input error,
output error, input estimation error, and output estimation error were collected from
simulation results to validate whether each optimizer was able to dynamically adjust
their input based on the observed learning effects to achieve the desired constant response
during simulation.

2.4 Statistical Analysis

For both optimization problems, the simulation outcomes input error, output error,
input estimation error, output estimation error, as defined previously (see Table 2)
were subject to statistical analysis to establish whether they were different across
optimizers. Specifically, we constructed iteration-specific two-way ANOVA models with
factors Optimizer type (two levels: BO and DBO), and Optimizer E-Ratio (two settings:
0.2 and 0.4), and ran the analysis of a full factorial two-way ANOVA model separately
at each iteration (1-200). In presence of significant effects or interactions, post-hoc t
tests were implemented. Given the nature of this dataset fully resulting from numerical
simulations and with arbitrary sample size, model effects were reported at an uncorrected
significance level punc < 0.05, for each iteration.

To facilitate analysis and comparison of effects across outcomes, we classify the
outcomes into two types: one set, describing the accuracy by which the optimizer
estimates the optimal inputs/outputs (estimation outcomes, i.e., input estimation error
and output estimation error), and one set describing the accuracy of the current inputs
and outputs relative to the currently optimal ones (implementation outcomes, i.e., input

11

Table 2: Simulation outcomes and description

Simulation Outcomes Equation
Input error |uopt(i)− u(i)|

Input estimation error |uopt(i)− uestim(i)|
Output error |yopt(i)− y(i)|

Output estimation error |yopt(i)− f(uestim(i))|

error and output error).

3. RESULTS

3.1 Optimizer Testing on a Model with Explicit Time

Dependence

Results from simulations using an explicitly time-dependant system as the predefined
response are seen in Fig. 4, where absolute differences between the optimal input and
output (uopt and yopt respectively) are compared to those implemented (u or y) or those
estimated (uestim or yestim) by each optimizer. As shown by the shaded regions in Fig.
4, the two-way-ANOVA demonstrated that DBO is continuously superior to BO after a
certain number of iterations: these significant differences occur following iterations 12,
11, 13, and 13 for input error, input estimation error, output error, and output estimation
error respectively.

Significant effects of e-ratio, or of its interaction with optimizer type, were present
in the early stages of training, with e-ratios of 0.4 outperforming those of 0.2, primarily
for the DBO optimizer. Post-hoc analyses over this significance region (estimated to be
between iterations 10-30) indeed confirmed that there was no significant effect of e-ratio
within the BO optimizer (only one iteration showed significantly different input error and
output error), while for DBO, e-ratio had a significant effect in 81% (input error), 76%
(input estimation error), 71% (output error), and 86% (output estimation error) of the
iterations tested between iterations 10 to 30. In these cases, DBO results with an e-ratio
of 0.4 were superior to e-ratio of 0.2 in all cases except two iterations on input error,
one iteration on input estimation error, and two iterations on output estimation error.
Except one iteration for the input error outcome, no significant effects of e-ratio were
measured past iteration 37.

Example results from a single trial are seen in Fig. 5. As can be seen, DBO
outperformed BO over all outcomes, with both implemented and estimated inputs of
DBO with an e-ratio of 0.2 converging to the optimal values soon after iteration 30, and
with DBO with an e-ratio of 0.4 converging with some error. BO was unable to capture
changes in the system, although BO with an e-ratio of 0.4 did trend towards to the

12

optimal near the end of simulation.

3.2 Optimizer Testing on a State-space Model of Learning

Results of the virtual human-in-the-loop simulations interacting with the state-space
model of learning are reported in Fig. 6, 7, S2, S3, S4 and S5 for the six tested model
types. Results associated with Models 3 and 4 (fast positive and negative learning) are
discussed below in greater detail as these models have a faster dynamics, and thus DBO
is expected to more accurately model the input-output relationship.

Overall, results from the two fast learning models indicate that statistical differences
associated with different optimizers were not as continuous beyond a certain number
of iterations as in the explicitly time-dependent model, but a clear pattern emerged
where DBO optimizers were superior to BO as iteration number progressed. Similarly,
differences due to the e-ratio were prominent in the early stages of training, but some
occurrences of e-ratio effects were also observed in later stages of training.

Specifically, for Model 3 (Fig. 6), a two-way ANOVA demonstrated that DBO is
superior to BO in 90% of the iterations past iteration 12 for input estimation error and
output estimation error. For Model 4 (Fig. 7), the two-way ANOVA revealed that DBO
is superior to BO in 100% of iterations past iteration number 44.

Less continuous trends are observed for the implemented outcomes, where DBO only
achieves superiority in 80% of iterations following iterations 147 and 149 for input error
and output error, respectively in Model 3 (Fig. 6), and following iteration number 152 for
both outcomes in Model 4 (Fig. 7). Moreover, the patterns of errors are distinct between
the two optimizers: while errors seem to grow indefinitely for BO in both models, average
DBO errors decrease after a certain number of iterations for Model 3, while they appear
to remain roughly constant for Model 4.

Significance due to e-ratio or its interaction with optimizer type was very sparse within
Model 3 (Fig. 6). There were only a few iterations showing a significant effect of e-ratio
within the BO optimizer, and all below the false-positive rate of 0.05 (10 iterations per
outcome). Similarly for the DBO optimizer, the largest number of iterations where a
significant effects of e-ratio was measured was for input error, where the optimizer with
e-ratio of 0.4 significantly outperformed the one with 0.2 in 7 out of 10 iterations.

In Model 4, significance due to e-ratio was sparse for outcomes input error and output
error, but almost continuous in certain iteration regions for input estimation error and
output estimation error. Post-hoc analyses showed that there were only two iterations for
both input error and output error that showed significant effect of e-ratio within the BO
optimizer. Within the DBO optimizer, 7 iterations for both input error and output error
and 28 iterations for both input estimation error and output estimation error showed
a significant effect of e-ratio, the latter above the false positive rate of this test. Input

13

estimation error showed significant e-ratio effects in 59% of iterations between iterations
10 and 50, with 0.4 outperforming 0.2, and 10% of iterations between iterations 110 and
150, with 0.2 outperforming 0.4 instead. For output estimation error, 56% of iterations
between iteration 10 and 50 exhibited significant difference due to e-ratio, where 0.4
outperformed 0.2, and 12% of iterations between 110 and 150 exhibited this significance,
where 0.2 outperformed 0.4.

In slow learning models (Models 1 and 2), effects of optimizer type were qualitatively
similar as those measured in the fast learning models, but the improvements achieved
with DBO were quantitatively smaller. Specifically, no simulation outcomes showed
consistent significant difference prior to iteration 150; however, DBO was superior to
BO continuously for outcomes (input estimation error and output estimation error) at
the end of simulation (beyond iteration 150).

Simulation outcomes using only adaptation (Model 6) showed significantly greater
DBO performance for estimation outcomes in most iterations from iteration 54 to the
end.

Simulations assuming a constant response (Model 5) did not show significant difference
for optimizer type or e-ratio for all outcomes in most iterations (number of iterations
where a significant effect of optimizer type was detected was below the false-positive rate
of 0.05). In all analyses conducted for Models 1, 2, 5, and 6, the effect of e-ratio was
minor, and significant at a rate below the false-positive rate of the statistical test.

Fig. 8 shows single trial results using a negative learning model (Model 4). Results
from this trial indicate more exploration from DBO in the later phase of simulation (Fig.
8 - Top and Bottom left); further, results show that DBO is able to estimate optimal
inputs/outputs better (Fig. 8 - Top and Bottom right).

4. DISCUSSION

Towards the goal of establishing if dynamic Bayesian optimization is a suitable paradigm
for human-in-the-loop optimization in the presence of a learning agent (such as human
participants adapting to interventions during gait training), DBO was used in HIL
simulations where virtual participant responses were constructed to reflect dynamic
responses due to time dependency in the model, or due to lack of information about
state variables provided to the optimizer. Results of these simulations were compared
to simulations done using conventional BO, and convergence speed and accuracy were
compared between the two optimizers.

Across the time-varying responses described in this paper used for HIL simulations,
DBO consistently performed better than BO if the response was highly dynamic (such
as in a model with explicit time-dependence, or in the case of state-space models of fast
neuromotor adaptation). This is characterized by significantly lower absolute differences

14

when comparing both the implemented and estimated outcomes at the final stages of
simulation with the those from BO; further, two-ways ANOVAs demonstrated that DBO
converged to mostly continuous significant improvement over BO after a certain number
of iterations, occurring fairly early when the virtual response was based on an explicitly
time-dependent model (iterations 11 to 13). In the case of the fast state-space models, this
significant difference again occurred early for the estimated outcomes input estimation
error and output estimation error (occurring at iterations 12 and 44 for Models 3 and 4
respectively).

The differences in optimizer performances can be attributed to the evaluations
associated with new observations: specifically, when a new input-output observation
is acquired, BO will adjust uncertainty to take into account the new observation along
with all past observations; in contrast, DBO will aim to separately fit two sources of
variance between measurements, one due to measurement/process noise, and one due to
the fact that responses are measured at different time points and are naturally bound to
be different due to that.

This rationale is consistent with the results of simulations using other state-space
models. Using the faster, 1st order, purely adaptation state-space system (Model 6),
DBO superiority is achieved after a small number of iterations. Meanwhile, in the slower
dynamic models (Models 1 and 2), DBO superiority is achieved much later. Finally, in
the essentially stationary constant response model (Model 5), no DBO superiority is ever
achieved, but the dynamic optimizer performs just as well as its BO counterpart.

Regardless of the difference in nature of an explicit time-dependent response and fast
state-space models with hidden states, there are a number of similarities in simulation
results. Namely, all simulations experience heavy transience early on, as the optimal input
changes drastically during early states of simulation. Following this early transience,
DBO begins to improve over BO, specifically in estimation outcomes where significant
differences appear early and remain mostly continuous over the rest of simulation. For
both of the fast state-space models, this continuous significance for implemented outcomes
begins later, as the optimizers continue to explore unseen parameters in attempts to
maintain or improve estimation accuracy.

Results of HIL simulations using BO do differ based on which system is used for
the virtual human response, as outcome errors do eventually decrease with iteration
when the response is based on the explicit time-dependent system - this is due to the
implemented decay of the optimal output with iteration, which drives BO to value newer
observations, and the relatively stationary optimal input-output relationship in the latter
half of simulation, which allows BO to begin to converge to the optimal input. In contrast,
BO is unable to capture the non-stationarity of the state-space responses, and instead
fixates on optimal inputs found early on in simulation, causing outcome errors to increase
with iteration.

15

DBO and BO were tested with different e-ratios in all model cases: since the
e-ratio heavily affects how the optimizers select subsequent inputs, we hypothesized that
optimizers with different e-ratios will result in different simulation results. No significant
differences in simulation results were found using different e-ratios in BO; in contrast,
different e-ratios affected the accuracy of simulated DBO runs, primarily in the early
iterations (i.e., before iteration 30). The statistical comparisons described in detail
were only conducted using e-ratios of 0.2 and 0.4, as they demonstrated DBO’s best
performance when simulating using the explicitly time-dependent model as shown in Fig.
S1.

As described above, HIL simulations using faster, time-varying responses indicated
that DBO generally outperformed BO as simulation iterations proceed, across outcomes;
however, as indicated previously, statistical significance of the between-optimizer
comparisons were not always consistent across outcomes. Specifically, implementation
and estimation outcomes are affected differently by the ratios of exploration vs.
exploitation that the optimizers maintain at different stages of optimization. From
single-trial visualizations (Fig. 8), it is possible to observe that DBO exhibits greater
levels of exploration compared to BO, especially later through the simulation. As such,
while estimation outcomes typically indicated continuous DBO superiority at some point
during simulation, this continuity was not as strong in implementation outcomes; in fact,
DBO’s greater exploration resulted in greater variability of these outcomes, thus reducing
the signal-to-noise ratio of between-optimizer comparisons.

The exact number of iterations needed to observe a substantial difference between
DBO and BO will depend on the speed of the learning process, as evidenced by fast and
slow dynamic models exhibiting this difference at different points of simulation. Other
aspects, such as the signal-to-noise ratio of the observations, possible process errors, the
range of inputs, and the number of input parameters may also affect how many iterations
are needed. These application-specific variables need to be considered accurately when
selecting whether to use DBO or BO for a specific problem. To this aim, it is important
to note that our analysis did not identify any condition where DBO was inferior to BO,
with the exception of only the very first few iterations in some of the runs.

Practical considerations need be made to translate these simulation-based outcomes
into practice. Fatigue is obviously a critical concern for the real implementation of HIL
optimization algorithms, as fatigue would set an upper bounds on the iteration number,
requiring optimizers to converge to desired solution in a quite limited amount of time.
Previous work showed that HIL optimization can improve outcomes such as metabolic
cost compared to baseline by 17.4% in only 20 iterations [7] - our analysis does not indicate
that DBO is superior to BO for in this early iteration range. Instead, we propose that
DBO may be advantageous in HIL optimization cases where greater numbers of iterations
are achievable, such as those that target biomechanical outcomes that are quantifiable

16

in less time than metabolic outcomes, and those where learning effects may be more
relevant.

Furthermore, there are possible consequences of DBO that may not be fully captured
in our simulations: as visible in single trial results (Fig. 8), DBO leverages exploration
more than BO in latter portions of the simulation - such drastic exploration results greater
variance of sequential inputs applied to the user. From the motor learning literature, we
know that variance in environmental dynamics - be it task variability or external stimulus
- affects human adaptation behavior [25]. For example, participants exposed to a highly
unpredictable perturbation will use co-contraction to increase joint stiffness and reject a
perturbation, while participants exposed to a predictable stimulus may be able to respond
by adapting their forward model to take advantage of the changed task dynamics [11, 32].
Such input-variance dependent behavior is not captured by our state-space model, and
thus it is possible that such highly variable sequential inputs may affect user performance
in ways that we are unable to model via our simulations.

In conclusion, we evaluated the capability of DBO in implementing HIL optimization
towards inducing desired changes in participant responses. Both DBO and BO estimated
system responses and attempted to converge to optimal inputs. Seven different models
including one time-explicit system and six neuromotor adaptation models were tested
in virtual HIL simulations. Overall, results indicate that DBO performs better than
BO in estimating optimal input and subsequent system response, and may improve the
performance of HIL optimization over BO when a sufficient number of iterations can be
evaluated to accurately distinguish between unstructured variability and learning.

5. DISCLOSURE STATEMENT

The authors have no competing interests to declare.

6. FUNDING

This work is supported in part by National Science Foundation under grant
NSF-CMMI-1934650; and in part by National Institutes of Health under grant
NIH-R01HD111071.

17

References

[1] Virginia Aglietti et al. “Dynamic causal Bayesian optimization”. In: Advances in
Neural Information Processing Systems 34 (2021), pp. 10549–10560.

[2] Ilija Bogunovic, Jonathan Scarlett, and Volkan Cevher. “Time-varying Gaussian
process bandit optimization”. In: Artificial Intelligence and Statistics. PMLR. 2016,
pp. 314–323.

[3] Eric Brochu, Vlad M Cora, and Nando De Freitas. “A tutorial on Bayesian
optimization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning”. In: arXiv preprint arXiv:1012.2599 (2010).

[4] Adam D Bull. “Convergence rates of efficient global optimization algorithms.” In:
Journal of Machine Learning Research 12.10 (2011).

[5] Roberto De Fazio et al. “Wearable sensors and smart devices to monitor
rehabilitation parameters and sports performance: an overview”. In: Sensors 23.4
(2023), p. 1856.

[6] Jörn Diedrichsen et al. “Use-dependent and error-based learning of motor
behaviors”. In: Journal of Neuroscience 30.15 (2010), pp. 5159–5166.

[7] Ye Ding et al. “Human-in-the-loop optimization of hip assistance with a soft exosuit
during walking”. In: Science Robotics 3.15 (2018), eaar5438.

[8] Bruce H. Dobkin. “A Rehabilitation-Internet-of-Things in the Home to Augment
Motor Skills and Exercise Training”. In: Neurorehabilitation and Neural Repair 31.3
(2017). issn: 15526844. doi: 10.1177/1545968316680490.

[9] Jessilyn Dunn et al. “Wearable sensors enable personalized predictions of clinical
laboratory measurements”. In: Nature Medicine 27.6 (2021). issn: 1546170X. doi:
10.1038/s41591-021-01339-0.

[10] Andria J Farrens and Fabrizio Sergi. “Identifying the neural representation of fast
and slow states in force field adaptation via fMRI”. In: 2019 IEEE 16th International
Conference on Rehabilitation Robotics (ICORR). IEEE. 2019, pp. 1007–1012.

[11] Andria J Farrens et al. “Concurrent contribution of co-contraction to error reduction
during dynamic adaptation of the wrist”. In: IEEE Transactions on Neural Systems
and Rehabilitation Engineering 31 (2023), pp. 1287–1296.

[12] Wyatt Felt et al. “Body-In-The-Loop: Optimizing Device Parameters Using
Measures of Instantaneous Energetic Cost”. In: PLOS One 10.8 (2015), e0135342.

[13] Tilmann Gneiting, Marc G Genton, and Peter Guttorp. “Geostatistical space-time
models, stationarity, separability, and full symmetry”. In: Monographs On Statistics
and Applied Probability 107 (2006), p. 151.

18

https://doi.org/10.1177/1545968316680490
https://doi.org/10.1038/s41591-021-01339-0

[14] James C Houk, Jay T Buckingham, and Andrew G Barto. “Models of the cerebellum
and motor learning”. In: Behavioral and brain sciences 19.3 (1996), pp. 368–383.

[15] Mitsuo Kawato, Kazunori Furukawa, and Ryoji Suzuki. “A hierarchical
neural-network model for control and learning of voluntary movement”. In:
Biological cybernetics 57 (1987), pp. 169–185.

[16] GilHwan Kim and Fabrizio Sergi. “Modeling Neuromotor Adaptation to
Pulsed Torque Assistance During Walking”. In: accepted for presentation, IEEE
RAS/EMBS Conference on Biomedical Robotics and Biomechatronics (BioRob
2024), pre-print available on bioRxiv (2024), pp. 2024–02. doi: https://doi.
org/10.1101/2024.02.19.580556.

[17] GilHwan Kim and Fabrizio Sergi. “Using bayesian optimization to identify optimal
exoskeleton parameters targeting propulsion mechanics: A simulation study”. In:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2021, pp. 6225–6231.

[18] Myunghee Kim et al. “Human-in-the-loop Bayesian optimization of wearable device
parameters”. In: PloS one 12.9 (2017), e0184054.

[19] Jeffrey R Koller et al. “Body-in-the-Loop Optimization of Assistive Robotic Devices:
A Validation Study.” In: Robotics: Science and Systems. 2016, pp. 1–10.

[20] John W Krakauer et al. “Motor learning”. In: Compr Physiol 9.2 (2019),
pp. 613–663.

[21] Remi Lam, Karen Willcox, and David H Wolpert. “Bayesian optimization with a
finite budget: An approximate dynamic programming approach”. In: Advances in
Neural Information Processing Systems 29 (2016).

[22] Robert McGrath, Barry Bodt, and Fabrizio Sergi. “Robot-aided training of
propulsion during walking: Effects of torque pulses applied to the hip and knee
joints during stance”. In: IEEE Transactions on Neural Systems and Rehabilitation
Engineering 28.12 (2020), pp. 2923–2932.

[23] Franco Molteni et al. “Exoskeleton and end-effector robots for upper and lower
limbs rehabilitation: narrative review”. In: PM&R 10.9 (2018), S174–S188.

[24] Lucas Medeiros Souza do Nascimento et al. “Sensors and systems for physical
rehabilitation and health monitoring—A review”. In: Sensors 20.15 (2020), p. 4063.

[25] Lewis M Nashner. “Adaptation of human movement to altered environments”. In:
Trends in neurosciences 5 (1982), pp. 358–361.

[26] Favour M Nyikosa, Michael A Osborne, and Stephen J Roberts. “Bayesian
optimization for dynamic problems”. In: arXiv preprint arXiv:1803.03432 (2018).

19

https://doi.org/https://doi.org/10.1101/2024.02.19.580556
https://doi.org/https://doi.org/10.1101/2024.02.19.580556

[27] Georg Rauter et al. “When a robot teaches humans: Automated feedback selection
accelerates motor learning”. In: Science robotics 4.27 (2019), eaav1560.

[28] Dhruv R. Seshadri et al. Wearable sensors for monitoring the internal and external
workload of the athlete. 2019. doi: 10.1038/s41746-019-0149-2.

[29] Di Shi et al. “A review on lower limb rehabilitation exoskeleton robots”. In: Chinese
Journal of Mechanical Engineering 32.1 (2019), pp. 1–11.

[30] Maurice A Smith, Ali Ghazizadeh, and Reza Shadmehr. “Interacting adaptive
processes with different timescales underlie short-term motor learning”. In: PLoS
biology 4.6 (2006), e179.

[31] Niranjan Srinivas et al. “Gaussian process optimization in the bandit setting: No
regret and experimental design”. In: arXiv preprint arXiv:0912.3995 (2009).

[32] CD Takahashi, Robert A Scheidt, and DJ Reinkensmeyer. “Impedance control
and internal model formation when reaching in a randomly varying dynamical
environment”. In: Journal of neurophysiology 86.2 (2001), pp. 1047–1051.

[33] David A Winter. “Human balance and posture control during standing and
walking”. In: Gait & posture 3.4 (1995), pp. 193–214.

[34] Juanjuan Zhang et al. “Human-in-the-loop optimization of exoskeleton assistance
during walking”. In: Science 356.6344 (2017), pp. 1280–1284.

[35] Lei Zuo, Yang Shi, and Weisheng Yan. “Dynamic coverage control in a time-varying
environment using Bayesian prediction”. In: IEEE transactions on cybernetics 49.1
(2017), pp. 354–362.

20

https://doi.org/10.1038/s41746-019-0149-2

1 10 20 30 40 50 60 70 80 90 100
Simulation Iteration

4

6

8

10

12

14

Vi
rt
ua

l I
np

ut

uopt

1 10 20 30 40 50 60 70 80 90 100
Simulation Iteration

5

6

7

8

9

10

Vi
rt
ua

l R
es
po

ns
e

yopt

Figure 1: (Top) Optimal input value uopt that results in the optimal response yopt at every
iteration (x-axis). (Bottom) Optimal response yopt at every iteration. x-axis indicates simulation
iteration number, all occurring after three initial inputs.

21

0 100 200 300 400
Iteration

-3

-2

-1

0

1

2

3

Re
sp
on

se

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Torque intervention

Figure 2: Response (y) from different modified UDL models when 100 iterations of null input,
followed by 200 iterations of constant input (u=1), and 100 iterations of zero input are applied
(Model 1: slow negative learning, Model 2: slow positive learning, Model 3: fast positive
learning, Model 4: fast negative learning, Model 5: no learning and no adaptation, Model
6: only adaptation).

22

101 150 200 250 300
-2
0
2

y

101 150 200 250 300
-1
0
1

x

101 150 200 250 300
-1
0
1

x 0

101 150 200 250 300
Iteration

-2
0
2

u

Figure 3: States (x and x0) and output (y) of the modified UDL model with positive learning
at different iterations when different inputs u are applied (50 iterations of 1, 50 iterations of -1,
50 iterations of 0, and 50 iterations of 1). The states and output change even when a constant
(or null) input is applied

23

Input Error

1 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

|u
op

t-u
|

DBO e:0.2
DBO e:0.4
BO e:0.2
BO e:0.4

80 90 100
0

2

4
Input Estimation Error

1 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

|u
op

t -
 u
es
ti
m
|

80 90 100
0

2

4

Output Error

1 10 20 30 40 50 60 70 80 90 100
Simulation Iteration

0

20

40

60

|y
op

t -
 y
| 80 90 100

0
5
10

Output Estimation Error

1 10 20 30 40 50 60 70 80 90 100
Simulation Iteration

0

20

40

60

|y
op

t -
 f(
u e

st
im
)|

80 90 100
0
5
10

Figure 4: Optimizer performance on the selected model with explicit time dependence. The
x-axis indicates the number of iterations during optimization (i.e., after three random inputs are
initially applied). In all plots, the blue/cyan and red/crimson indicate simulation results using
DBO with e-ratio of 0.2/0.4, and BO with e-ratio of 0.2/0.4, respectively. Solid lines indicate
median and shaded regions of same color extend from the 20th to the 80th percentile across 100
repetitions at each iteration. Optimizer performance is quantified based on input error (top
left), input estimation error (top right), output error (bottom left), and output estimation error
(bottom right). A zoomed-in insert is provided in each panel to help visualize differences in
the last 20 iterations. The gray shaded region indicates the presence of significant differences
(punc < 0.05) between simulation results using different optimizers at each iteration. Asterisks
at the top of each figure indicate a significant effect of the e-ratio, and red circles indicate a
significant interaction between e-ratio and the optimizer on the outcome at each iteration.

24

1 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

u

Input

1 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

u e
st
im

Input Estimation

1 10 20 30 40 50 60 70 80 90 100
Simulation Iteration

0

20

40

60

y

Output

1 10 20 30 40 50 60 70 80 90 100
Simulation Iteration

0

20

40

60

f(
u e

st
im
)

Output Estimation
DBO e:0.2
DBO e:0.4
BO e:0.2
BO e:0.4
Optimal

Figure 5: Simulation results of single trial using selected model with explicit time dependence
as the virtual human response. In all plots, the blue/cyan and red/crimson indicate simulation
results using DBO with e-ratio of 0.2/0.4, and BO with e-ratio of 0.2/0.4, respectively. Black
dash lines indicate optimal input or output at each iteration.

25

Input Error

1 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

|u
op

t -
 u
|

DBO e:0.2
DBO e:0.4
BO e:0.2
BO e:0.4

180 190 200
0

1

2
Input Estimation Error

1 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

|u
op

t -
 u
es
ti
m
|

180 190 200
0

1

2

Output Error

1 20 40 60 80 100 120 140 160 180 200
Simulation Iteration

0

1

2

3

4

5

6

|y
op

t -
 y
| 180 190 200

0

1

2
Output Estimation Error

1 20 40 60 80 100 120 140 160 180 200
Simulation Iteration

0

1

2

3

4

5

6

|y
op

t -
 f(
u e

st
im
)|

180 190 200
0

1

2

Figure 6: Virtual HIL simulation results using UDL model with positive learning (Model 3) as
the virtual human response. The x-axis indicates the number of iterations during optimization
(i.e., after three random inputs are initially applied). In all plots, the blue/cyan and red/crimson
indicate simulation results using DBO with e-ratio of 0.2/0.4, and BO with e-ratio of 0.2/0.4,
respectively. Solid lines indicate median and shaded regions of same color extend from the 20th

to the 80th percentile across 50 repetitions at each iteration. Optimizer performance is quantified
based on input error (top left), input estimation error (top right), output error (bottom left),
and output estimation error (bottom right). A zoomed-in insert is provided in each panel to
help visualize differences in the last 20 iterations. The gray shaded region indicates the presence
of significant differences (punc < 0.05) between simulation results using different optimizers at
each iteration. Asterisks at the top of each figure indicate a significant effect of the e-ratio, and
red circles indicate a significant interaction between e-ratio and the optimizer on the outcome
at each iteration.

26

Figure 7: Virtual HIL simulation results using UDL model with negative learning (model 4)
as virtual human response.

1 20 40 60 80 100 120 140 160 180 200
-10

-5

0

5

10

u

Input

DBO e:0.2
DBO e:0.2 optimal
BO e:0.2
BO e:0.2 optimal

1 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

u e
st
im

Input Estimation

1 20 40 60 80 100 120 140 160 180 200
Simulation Iteration

-2

-1

0

1

2

3

4

y

Output

1 20 40 60 80 100 120 140 160 180 200
Simulation Iteration

-2

-1

0

1

2

3

4

f(
u e

st
im
)

Output Estimation

Figure 8: Simulation results of single trial using UDL model with negative learning (Model 4) as
virtual human response. Blue and red solid line indicate result from DBO and BO respectively.
Dashed line is optimal input or output during simulation.

27

7. Supplementary Materials

Figure S1: DBO optimizer performance on the selected model with explicit time dependence.
The x-axis indicates the number of iterations during optimization (i.e., after three random inputs
are initially applied). In all plots, solid lines indicate median and shaded regions of same color
extend from the 20th to the 80th percentile across 100 repetitions at each iteration. Optimizer
performance is quantified based on input error (top left), input estimation error (top right),
output error (bottom left), and output estimation error (bottom right). An zoomed-in insert is
provided in each panel to help visualize differences in the last 20 iterations.

28

Input Error

1 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

|u
op

t -
 u
|

DBO e:0.2
DBO e:0.4
BO e:0.2
BO e:0.4

180 190 200
0

1

2
Input Estimation Error

1 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

|u
op

t -
 u
es
ti
m
|

180 190 200
0

1

2

Output Error

1 20 40 60 80 100 120 140 160 180 200
Simulation Iteration

0

1

2

3

4

5

6

|y
op

t -
 y
| 180 190 200

0

1

2
Output Estimation Error

1 20 40 60 80 100 120 140 160 180 200
Simulation Iteration

0

1

2

3

4

5

6

|y
op

t -
 f(
u e

st
im
)|

180 190 200
0

1

2

Figure S2: Virtual HIL simulation results using UDL model with slow negative learning
(Model 1) as the virtual human response. The x-axis indicates the number of iterations during
optimization (i.e., after three random inputs are initially applied). In all plots, the blue/cyan and
red/crimson indicate simulation results using DBO with e-ratio of 0.2/0.4, and BO with e-ratio
of 0.2/0.4, respectively. Solid lines indicate median and shaded regions of same color extend from
the 20th to the 80th percentile across 50 repetitions at each iteration. Optimizer performance
is quantified based on input error (top left), input estimation error (top right), output error
(bottom left), and output estimation error (bottom right). An zoomed-in insert is provided in
each panel to help visualize differences in the last 20 iterations. The gray shaded region indicates
the presence of significant differences (punc < 0.05) between simulation results using different
optimizers at each iteration. Asterisks at the top of each figure indicate a significant effect of
the e-ratio, and red circles indicate a significant interaction between e-ratio and the optimizer
on the outcome at each iteration.

29

Input Error

1 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6
|u
op

t -
 u
|

DBO e:0.2
DBO e:0.4
BO e:0.2
BO e:0.4

180 190 200
0

1

2
Input Estimation Error

1 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

|u
op

t -
 u
es
ti
m
|

180 190 200
0

1

2

Output Error

1 20 40 60 80 100 120 140 160 180 200
Simulation Iteration

0

1

2

3

4

5

6

|y
op

t -
 y
| 180 190 200

0

1

2
Output Estimation Error

1 20 40 60 80 100 120 140 160 180 200
Simulation Iteration

0

1

2

3

4

5

6

|y
op

t -
 f(
u e

st
im
)|

180 190 200
0

1

2

Figure S3: Virtual HIL simulation results using UDL model with slow positive learning (Model
2) as the virtual human response.

Input Error

1 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

|u
op

t -
 u
|

DBO e:0.2
DBO e:0.4
BO e:0.2
BO e:0.4

180 190 200
0

1

2
Input Estimation Error

1 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

|u
op

t -
 u
es
ti
m
|

180 190 200
0

1

2

Output Error

1 20 40 60 80 100 120 140 160 180 200
Simulation Iteration

0

1

2

3

4

5

6

|y
op

t -
 y
| 180 190 200

0

1

2
Output Estimation Error

1 20 40 60 80 100 120 140 160 180 200
Simulation Iteration

0

1

2

3

4

5

6

|y
op

t -
 f(
u e

st
im
)|

180 190 200
0

1

2

Figure S4: Virtual HIL simulation results using UDL model with constant and no learning
(Model 5) as the virtual human response.

30

Figure S5: Virtual HIL simulation results using UDL model with only adaptation (Model 6)
as the virtual human response.

31

	INTRODUCTION
	METHODS
	Dynamic Bayesian Optimization
	Static Component of Covariance Function
	Dynamic Component of Covariance Function

	Optimizer Testing on a Model with Explicit Time Dependence
	Explicit Time Dependence Model
	Simulation Method

	Optimizer Testing on a State-space Model of Learning
	Modified Use-dependent Learning Model
	Simulation Method

	Statistical Analysis

	RESULTS
	Optimizer Testing on a Model with Explicit Time Dependence
	Optimizer Testing on a State-space Model of Learning

	DISCUSSION
	DISCLOSURE STATEMENT
	FUNDING
	Supplementary Materials

