
Neuromorphic Electronics at BioCAS: A 20-year
Legacy of Sparking Technology Revolutions
Akwasi Akwaboah, Graduate Student Member, IEEE, Ralph Etienne-Cummings, Fellow, IEEE,

Abstract—Motivated by the parsimony and robustness of
the biological brain at computing, engineers have, over the
last four decades, been emulating neurophysiology in silicon,
i.e., neuromorphic engineering. The field has made significant
contributions to our understanding of biological learning with
accompanying implications in efficient sensing and artificial
intelligence. Over the last two decades, BioCAS has been a
conduit for disseminating research in neuromorphic engineering
and other related fields. In such a milestone anniversary, we deem
it appropriate to present a retrospective on the progress of the
field with emphasis on the various contributions in neuromorphic
electronics at BioCAS/CAS. At the risk of being inexhaustive,
we offer some historical perspectives and key contexts that have
shaped the community and the field as a whole. With the blessing
of hindsight, we proceed to make bold projections on the future
of the field.

I. INTRODUCTION

Neuromorphic engineering, as envisaged by Carver Mead,
Paul Mueller, Eric Vittoz and Andreas Andreou, to name a few
pioneers, has come far. What started as a sheer emulation and
analysis-by-synthesis of natural intelligence and neurophysi-
ology into transistor analog facsimiles has now pervaded the
digital domains with immense implications and applications in
artificial intelligence of today. From the earliest demonstration
of retinomorphic vision by Mahowald, Boahen and Mead [1]–
[3] and audition by Lyon and Mead [4]; interests and contri-
butions to the field have and continue to grow significantly.
The Circuits and Systems Society’s (CASS) machinery, be
it conference proceedings or journal transactions, has been
pivotal in exposing the IEEE community to this growth. Unlike
other dissemination venues, which focus more on completed
work, the CASS allows developing ideas to be presented and
vetted by its marketplace of ideas. Consequently, many far
reaching technologies were first published within its pages,
and are now ubiquitous in the scholarly lore and commercial
domains.

The genesis of neuromorphic electronics at BioCAS (i.e.
Biomedical Circuits and Systems) can be traced back to the
CASS itself. A topic area and working group that centered
on bio-inspired systems and circuits grew to a notable point,
it gave impetus for a full-fledged technical committee and
conference in the mid 2000s, with a focus on biomedical
and biomimetic systems. Tor Sverre Lande, Yong Lian and
Chris Toumazou led this initiative [5] as the first guest editors
for a special session on Biomedical Circuits and Systems in
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Fig. 1. Biblometric growth of neuromorphic publications. Generated by
google scholar search with keywords ”Circuits and Systems” neuromorphic
from 1989–2023

the IEEE Transactions on Circuits and Systems (TCAS) 2005.
On another front, independent annual workshops such as the
Telluride Neuromorphic Cognition Workshop and the Capo
Caccia Workshop Torwards Neuromorphic Intelligence have
provided avenues for neuromorphs to meet and collaborate
on pioneering projects, many of which found their ways
into CAS proceedings and transactions. Over the last 30
years, both workshops have assembled the brightest minds
in electrical and computer engineering, neuroscience, physics,
and related fields to tackle fundamental questions on how our
brains processing information and how that can be emulated
physically and algorithmically and in silicon to solve impor-
tant problems in information processing and understanding.
Perhaps the most successful products of this endeavor are in
vision, where monolithic image sensors (i.e. CMOS cameras),
motion tracking chips (i.e. optical mouse sensors) and event-
based cameras (dynamic vision sensors), to name a few, have
become part of the commercial landscape. Start-up companies,
as such Synaptics, Prophesee, INIvision and others, have
produced vision sensors that can be found in mobile devices
[6] and automobiles [7], [8] of today. These companies have
partnered, or have been acquired, by larger players in the field,
such as Sony, Samsung and Intel. In addition, neuromorphic
computing, at the algorithmic and hardware fronts, is driving
the third generation of neural networks – spiking neural
networks (SNNs). It is worth mentioning that an expanse of
papers on in-hardware learning and inference based on the
bio-inspired principles have been presented at CAS/BioCAS
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and the biblometrics continues to grow as shown in Fig.
1. With the renewed interest in AI hardware, there exists a
wealth of literature on neuromorphic design principles that
will inform the design of sustainable hardware solutions to
meet the ever-growing energy demands of modern AI. In this
paper, we look back in time on some notable literature on
neuromorphic electronics with emphasis on work presented
at CAS/BioCAS. This endeavor is by no means exhaustive.
Beyond this retrospective, we proceed to make informed
speculations on the future impact of the neuromorphics on
the artificial intelligence and medicine. We discuss several
opportunities where CAS/BioCAS can continue to lead this
frontier.

II. IMPACT STATEMENT ON ARTIFICIAL INTELLIGENCE

The recent widespread successes of AI especially in the
domains of large language modelling, computer vision and
reasoning are accompanied by elevated training and inference
costs by standard graphics processing units (GPU) hardware.
It costs several megawatts of power and several millions of
dollars to train state-of-the-art Generative Pre-trained trans-
former (GPT) network whose parameter counts (∼ 1012) [9]
are still well below the 1014 synaptic population of the human
brain [10]. The brain runs on a mere 20 watts! This in itself
foreshadows the inefficiencies of modern AI hardware. Our
brains process information in a distributed and asynchronous
manner. GPUs, while circumventing the von-Neumann bot-
tleneck to an extent, do so in a sub-optimal clocked man-
ner at gigahertz operating frequency scales compared to the
milliseconds timescales of its biological counterpart. This
paradox of speeds is yet another indication that our brains
have evolved to do more with less. Asynchronous compute-in-
memory (CiM) hardware such as IBM’s NorthPole [11] have
recently demonstrated an opportunity to transcend the GPU
capabilities using biologically plausible computing ideas on
state-of-the-art neural network models and datasets. On the
argument of biological plausibility, the vaunted backpropaga-
tion algorithm isn’t immediately obvious in our brains at least
in its vanilla form [12]. On both hardware and algorithmic
fronts, neuromorphs are developing more biorealistic learning
techniques that take advantage of local synaptic plasticity
rules for leveraging the spatiotemporal sparsities in activity
present in neuronal networks. Mechanisms like spike-timing-
dependent plasticity (STDP) are being extended to include a
host of third factors that modulate pre- and post- synaptic
activities, thus bridging the gap between traditional gradient
descent-based models and SNNs [13], [14]. As low hang-
ing fruits, there are also ongoing efforts to marry backprop
with SNNs as an alternative to traditional recurrent neural
networks (RNNs) as SNNs inherently leverage time and are
conducive for interfacing with event-based data. Prominent
among these efforts is the surrogate gradient approach [14].
This approach circumvents the dead neuron problem, i.e. non-
differentiability of spiking activity, by using softer membrane
voltage thresholding. There are promising efforts at software-
hardware codesign with this approach. An interesting one is

that by Cramer et al. [15] which combines pytorch (software)
integration with the BrainScaleS-2, an analog neuromorphic
hardware, on image and audio classification tasks.

On to the latest and greatest, large language models (LLMs)
have been phenomenal on a host of generative and reasoning
tasks. At the heart of LLMs are the multi-head attention units
in their transformer networks. These attention units allow the
network to form meaningful associations within the sequence
of word embeddings at the encoder and decoder ends. The
concept of attention in transformer networks isn’t entirely
novel especially in vision. Models of primate visual and audio
saliencies [16]–[20] have long been formulated and translated
into hardware [21] by neuromorphs and offer explainable
alternatives to the “black-box” LLMs. While there is still
ongoing debate on what attention in the brain really means,
the baseline consensus borders on some kind of information
filtering crucial to dedicating the limited biological resources
on processing. While LLMs aren’t as parsimonious as the
brain, they can extract salient context in sequential data
(be it audio, words in sentences, video or tokenized image
stream). The emphasis is on ‘sequence’. Somehow neural
processing heavily depends on time. Even static sensory data
are transduced into a temporal equivalent, i.e. spike encoding.
Our eyes during static scene viewing, constantly move in a
saccadic manner to generate some kind of temporal contrast.
And for data that are inherently temporal, e.g. audio and
motion, mechanisms like rate adaptation and refractoriness
allow for judicious processing. Why bother on a signal that
isn’t changing much? In other words, the nervous system
inherently handles entropy really well [16].

Finally, neuromorphic sensory electronics are today being
integrated with SNN learning circuitry to minimize the energy
and latency [22]. Such efforts will inform the next generation
of greener and reliable intelligent systems.

III. A SURVEY OF CONTRIBUTIONS

By far, our brains offer a template to engineer efficient arti-
ficial intelligence (AI). This piece of tissue working in tandem
with the peripheral nervous systems coordinates a slew of
sensory information that arrive from our five senses in a fault-
tolerant manner. By adopting inherently sparse computation,
biological learning has evolved to focus on salient elements
in sensory data. This is evident by contrast and orientation
selectivity present in the retino-cortical processing of visual
input; the spatio-spectral mapping of auditory input along
the cochlea, to center-surround mechanism that aid in tactile
perception. Over the years, a number of contributions have
been made at CAS/BioCAS at building circuits and systems
that take advantage of such biological efficiencies. Here,
we review a number of significant papers at CAS/BioCAS
transactions and conference proceedings largely focusing on
subthreshold design, neuromorphic sensing, control, learning
and machine learning (ML) accelerators and applications in
robotics, prosthetics and neural implants and interfaces. While
we do our best to categorize the various contributions, there
exists significant overlap, by reason of shared applicability, in
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the various categories of circuits and systems, and thus we ask
the reader to pardon any potential repetitiveness.

A. Subthreshold Circuits

One of the most important observations made by early
neuromorphs was to see the similarities that existed between
neural biophysics and transistor physics particularly in the
subthreshold regime. Classical neural models, from Lapicque
to Hodgkin-Huxley, possess exponential dynamics (by means
diffusion of charge carriers) very similar to the current-voltage
(IV) dependence of the MOS transistor in subthreshold [1].
The advantages of this MOS regime include the low-power
operation – a minute gate voltage well below the device
threshold voltage, is capable of eliciting a small yet useful
amount of current (typically in the nano amperes regime or
lower), and cheaper arithmetic costs especially in current-
mode – by taking exploiting Kirchhoff laws and the translinear
(log-antilog) principles, operations like addition and multipli-
cation were significantly cheaper than their digital equivalents.
One of the earliest efforts at popularizing the design style
with an emphasis on silicon neural systems was presented at
ISCAS by Andreou in 1990 [23] and elsewhere [24], [25],
the fundamentals of the MOS subthreshold operation and
the translinear principle were presented along with a host of
applications in neural system circuits – winner-take-all (WTA)
circuit for realizing inhibitory competition, and a current con-
veyor circuit for implementing bidirectional electrical synapses
(i.e. gap junctions). Both circuits were then captured in an
extensive circuit (i.e. a cascade of silicon retina units) of
the outer-plexiform layer of the retina with an accompanying
demonstration of the Laplacian (Mexican-hat) center-surround
spatial filter. Several subthreshold circuit systems have since
followed at ISCAS and BioCAS with notable ones being [26],
[27] to mention a few.

B. Neuromorphic Vision

The earliest demonstration of neuromorphism was in
retinomorphic vision – Misha Mahowald’s retina pixel circuit
[1], [28] subsequently improved by Boahen [2] captured the
various intricacies of the primate retina – contrast detection,
local automatic gain control, spatiotemporal bandpass filtering
and adaptive sampling. Various improvements and derivatives
have since followed [29], [30] to what is now referred to
as event-based cameras. The fundamental principle behind
these sensors is to capture temporal contrast in a visual
scene instead of the absolute pixel intensities, as done in
classical CMOS active pixel imagers (APS). Through logarith-
mic compression of intensity changes, retinomorphic imagers
possess high dynamic range (HDR) at sub-microsecond time
resolutions useful for high-speed imaging. Here we discuss
some key contributions to neuromorphic vision, visual motion
estimation and tracking, among other related applications that
have appeared in the CAS/BioCAS venues.

We begin with Delbruck and Mead’s adaptive photoreceptor
circuit [31]. This well-adopted and compact circuit was com-
posed of a source-follower receptor (i.e. a photodiode placed

at the source of a feedback MOS transistor) combined with
an amplification stage with feedback via a capacitive divider
branch and a novel adaptive element. The feedback transistor
contends with the transduced photovoltage and effectively
clamps the voltage. The purpose of this circuit was to impute
the simultaneous ability of the retina to adapt to slow and rapid
changes in illumination. The magic of this circuit occurs in
the adaptive element, which at a simplified level is a parallel
combination of two diodes of opposite polarities (in detail
composed of an MOS-bipolar transistor combination). This
creates a variable resistance that is high for small signal
changes and low for rapid large signal swings. The adaptive
element interacts with a storage capacitor to impute a corre-
sponding variable time constant set by the rate of change in
the incident photocurrent. This work subsequently evolved into
the well-known dynamic vision sensors (DVS) [32]. Another
biomorphic silicon retina implementation was that by [33]–
[35]. This implementation mimicked the phototransduction in
the octopus retina, i.e. direct conversion of light intensity into
spike output unlike other retinal pathways that first represent
luminous intensity as analog signals e.g. cones and rods in
primate retinae output analog potentials that traverse the outer
and inner plexiform layers to the ganglion cell layer where
spikes are emitted. This implementation also included an
event-based communication protocol, i.e. address event repre-
sentation (AER), for arbitrating and routing the various spike
outputs in an array of the silicon retina pixels. For an extensive
coverage of event-based vision sensors, the reader may refer
to an earlier ISCAS comprehensive survey on this subject
matter [29]. Other exotic designs include a hybrid active pixel
sensor (APS)-DVS imager by [36] (TBioCAS 2017) for color
imaging and an application in neural (GCaMP6f - calcium)
imaging. Speaking of color, the reader may also find an earlier
infrared imager work by Pouliquen et al. [37] presented at
ISCAS 2000. Finally, a number of competing pixel designs
can be found in [30], some of which have been presented or
demoed at ISCAS/BioCAS – [38]–[40] while others have been
commercialized.

From phototransduction, we move to preprocessing; sig-
nificant preprocessing occur at various layers of the retina.
The outer plexiform layer through horizontal cells performs
spatiotemporal filtering. This filtering behavior has been em-
ulated in silicon by Serrano-Gotarredona et al. [41]. This
work demonstrated, by simulation, an event-based filtering for
any convolutional kernel that can be decomposed into (x, y)
components similar to 2D-to-1D modification of the Adelson
and Bergen’s model by [42]. Serrano-Gotarredona et al. [41]
adopted various current-mode principles for spatial filtering.
An extension of this work with chip results can be found
in TCAS 2006 [43]. A related work is that by Lopich and
Dudek [44] – an asynchronous Single Instruction/ Multiple
Data (SIMD) cellular processor.

Next, we explore the space of visual motion estimation and
tracking. Early works in this direction were mostly focused on
emulating the fly visual system for reasons of its biological
simplicity as compared to others like that of primates, i.e. an
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ommatidia count of only ∼4000, a relatively lower resolution
sensory machinery. With such limited pixel density, the fly
is able to navigate obstacles very quickly. Emulation of
this phenomenon holds clear implications for robotic, drone
and automobile navigation. The classic Hassentein-Reichardt
model [45]–[47] captured these intricacies in a spatiotempo-
ral correlation model for elementary motion detection at its
introduction well before the 1980’s. This model has since
formed the basis for most motion detection implementations
in VLSI. We discuss a few of such emulations. One of the
earliest atttempts at ISCAS is by [48]. This current mode
subthreshold MOS circuit realized retinal functions like spatial
filtering using center-surround mechanism, delay and gain
control via a translinear multiplier. Authors demonstrated a
positive correlation between velocity input (as a current) and
an output current. Other early works include that by [42],
which presented a VLSI implementation of a modified version
of the Adelson and Bergen’s model with two 1D (instead of
the typical 2D) motion detectors. The same authors preceded
this with a silicon implementation of a Reichardt-like motion
detector [49] and succeeded it with the dual imaging and
centroid motion localization chip [50]. Indiveri [51] in TCAS
‘99 also presented an analog VLSI (aVLSI) sensor for visual
tracking. At the base of the sensor is the earlier-mentioned
adaptive photoreceptor [31], interfaced with spatial derivative,
edge polarity detection, WTA and position-to-voltage stages
(in a bottom-up order). The work proceeded to integrate the
sensor on a robot and clearly was one of the earliest attempts
at embodied neuromorphic intelligence. Etienne-Cummings
et al. [52] also demonstrated a foveated silicon retina for
visual tracking. This vision chip was composed of two sensor
clusters – a dense packing of 9×9 centroid pixels for smooth-
pursuit tracking and 19×17 peripheral (larger) pixels for sac-
cadic target acquisition. Shih-Chi Liu [53] also demonstrated
an aVLSI implementation of fly motion computation using
adapted version of [31] as photodetector. A noteworthy VLSI
implementation of motion processing presented elsewhere is
that by Sarpeshkar et al. [54]. Another effort also presented
elsewhere in 1996 that saw commercial success was the optical
motion-tracking chip designed by Arreguit, van Schaik and
co. [55]. This neuromorphic design made it in the Logitech
TrackMan Marble mouse [56] which is still on the market
after nearly 3 decades [57]. Recent vision work at BioCAS
include work by [58] involving a convolutional neural network
integration with the ATIS event-based camera for low latency
object recognition in an FPGA. In a similar light, [59] at
BioCAS 2014 presented an FPGA implementation of event-
based processing for CNNs (composed of a cascade of 2D
Gabor kernels) on event streams from a DVS chip. [60]
demonstrated 2D visual motion sensor (with an effective
sampling rate of 1 kHz) synthesized from a 20×20 silicon
retina and a 16-bit DSP PIC microcontroller.

C. Neuromorphic Audition

While neuromorphic sensing has been dominated over the
years by vision, the auditory domain has also been ex-

plored extensively. Since pioneering work by [4] that modeled
cochlear fluid-dynamic wave propagation as a cascade of
filter responses, a wide variety of work has followed. [61],
[62] in TCAS ’97 & ’98 presented sensory preprocessing
silicon implementations to extract salient audio features via
zero-crossing detection and computation of multispectral band
energies. Beyond transduction, Cauwenberghs and others have
innovated several VLSI systems for auditory computation.
These include subthreshold circuits for audio processing [63],
[64], low-power gradient flow acoustic localization [65], a the-
oretical demonstration of an independent component analysis-
based blind source separation approach of monoaural acoustic
signals which leads to electronic implementations [66]. van
Schaik [67] presented an aVLSI model of an inner hair cell,
i.e., a sensory neuron of the cochlea that feeds ganglion cells
to transduce travelling sound waves into spikes. The logistic
relationship between the input displacement (captured as a
voltage in the model) and the output response (as a current)
was reproduced. van Schaik and Liu [68] presented AER EAR
at ISCAS 2005. This project spawned several publications
at CAS – [69]–[71] The AER EAR was composed of a
pair of matched silicon cochleae whose readout interface was
facilitated by the AER protocol. The protocol is a standard
communication protocol used by most event-based sensory/
processing array to circumvent the cost of explicit dense
point-to-point wiring. This is achieved by arbitrating and
multiplexing communication of events in time. The principle
was developed at the beginning of the field of neuromorphic
engineering and is still useful to date [72]–[76]. Other early
work in audition includes the design of a cochlea implant by
Lande et al. [77]. Recent auditory work at BioCAS includes
that by [78] – an FPGA implementation of a Cascade of
Asymmetric Responses (CAR) model and [79] fusion of
event-based visual and audio sensory data (from DVS and
FPGA-based electronic cochlea) for localization and collision
avoidance.

D. Other Sensory Modalities

Though comparatively fewer efforts have been made outside
of vision and audio, there are several promising works to
emulate tactile and olfactory perceptions in silicon. Such
works are very recent and include that by Bartolozzi & co.
[80], [81] and Thakur & co. [82], [83] and have in recent
times heralded an interest in touch and even pain. Bartolozzi’s
tactile sensor [81], [84] leverages the change detection of
the DVS for the pressure transducing piezoelectric-oxide-
semiconductor field effect transistor (POSFET), instead of the
photodiode/ phototransistor used in most retinomorphic vision
sensors. This system was also equipped with an AER readout
to facilitate an asynchronous tactile event recording at the
array level. This DVS-like integration points to the versatility
of neuromorphic sensory systems. The potential to repurpose
these electronics in other domains is telling and yet to be fully
tapped. Event-based tactile sensing has been integrated with
the iCub humanoid robot [85], [86] . A roadmap to include
other event-based perception towards engineering modern-
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day embodied neuromorphic intelligence has been provided
by [87]. Thakur’s group took a different approach that was
geared much more towards clinical neurorehabilitation; they
designed e-dermis [83], a tactile sensing sheet of piezoresistive
material patterned with conductive trace material and covered
on both sides with a rubber material. Transduction into the
spike domain involved feeding the pressure output of the e-
dermis into an Izhikevich neuron [88]. Through transcutaneous
electrical nerve stimulation in an amputee, they could extract
stimulus parameters that elicited innocuous and noxious tactile
perceptions.

Although research into olfactory electronics is still nascent,
we can envisage that the neuromorphic sensing mechanism
will not be too different. As long as some form of change
detection can be captured in chemosensors, the problem might
be half-solved. VLSI attempts at this include that by Koickal
et al. [89] and Beyeler et al. [90]. Chakrabartty et al. [91] have
provided some fundamental ideas on how to realize bioinspired
olfaction with an emphasis on discriminating high-dimensional
odor mixtures and background odor suppression.

E. E. Neuro-dendro-synaptic Circuits and Arrays

At the foundation of cortical processing are the diverse
neural dynamics. Single-neuron electrophysiology has been
modeled to varying degrees of biological plausibility and
computational efficiency [92]. Considering decades-old in-
terests in the implementation of artificial neural networks
(ANNs), it comes as no surprise that silicon neurons have
seen numerous VLSI implementations. At the outset of the
field, Mead in his Analog VLSI and Neural Systems book [1]
introduced the axon hillock neuron. This simple integrate-and-
fire (IF) neuron circuit took advantage of positive capacitive
feedback to elicit a spike once the ‘membrane potential’ cross
a threshold. Mahowald and Douglas [93] followed this up
with a more biorealistic silicon neuron that integrated sodium
and potassium current in its dynamics. Three decades on, an
expanse of silicon neuron designs has followed, a number
of which have appeared at CAS/BioCAS. As in previous
sections, we outline a selection of such sequels. An impres-
sive review of single silicon neuron implementations can be
found in [94]. Thus, we waste no time on this, other than
mentioning those that have appeared at BioCAS – NeuroDyn
(Hodgkin-Huxley neuron with synaptic dynamics) [95]–[98],
Mihalas-Niebur (MN) (generalized linear IF) neuron [99], a
conductive-based neuron [100], bifurcative approach to silicon
neuron design [101] (which ultimately informed Neurogrid
[102], an array implementation), digital (FPGA) [103] and
analog [104] implementation of the Izhikevich Neuron, the
Fitzhugh-Nagumo neuron [105], digital (FPGA) realization
of the Wilson neuron [106] among others. We also list a
number of synaptic, dendritic, and array implementations. At
the array level, Yu et al. [107] at BioCAS 2012 as part of the
HiAER-IFAT project presented an array of 65k IF neurons
with accommodation for synaptic routing via AER. They
followed this up with [108]. Molin et al. [18] presented an
array of MN neurons synthesized from leaky integrate-and-fire

(LIF) neurons. Cassidy et al. at BioCAS 2007 [109] and 2008
[76] presented an array of LIF neurons in an FPGA and an
approach to interconnecting these neurons via a wireless AER
respectively. Wang and Liu [110] presented a programmable
dendritic and neuron array on a single chip. The dendritic
units possessed excitatory (AMPA, NMDA) and inhibitory
(GABA) receptors. On the scalability front, Morella et al.
[111] demonstrated a modular asynchronous routing scheme
for neuron arrays. Other array implementation works that have
appeared in BioCAS include an optical flow estimation method
using the IBM TrueNorth chip (an asynchronous neurosynaptic
chip with a million neurons, a precursor to the more recent
NorthPole chip) and DVS sensor [112] and Frenkel’s ODIN
[113] and MorphIC [114] chips (both of which are digital
multicore SNN implementations with learning capabilities).

F. Neuromorphic Learning

There have been attempts at translating bioinspired learning
algorithms in silicon; which is an obvious progression if one
manages to engineer such expressive computational engine
as neurosynaptic arrays. Though the structure of modern AI
models such as ANNs appears to be biologically motivated, the
training and inference techniques used are quite disparate from
their biological counterparts, not to mention the inefficiencies
of the hardware on which they run. Learning is the pinnacle of
any intelligent system; neuromorphic systems have been built
over the years to do so at brain-level efficiency. Several of such
learning electronics have been presented at CAS/BioCAS.
We outline some of them here. Early works include that by
Andreou and Cohen [115], [116] – a current mode imple-
mentation of the Herault-Jutten autoadaptive network (ISCAS
‘93), Cauwenberghs’ A/D converter chip with reinforcement
learning (ISCAS ‘97), Cohen et al. [117] mixed-mode VLSI
realization of adaptive resonance theory algorithm. Presented
elsewhere but worth mentioning here is Cauwenberghs’ Ker-
neltron [118] – VLSI implementation of the support vector
machine algorithm with a sequel by [119]. Besides these, most
learning efforts have been biased towards Hebbian learning.
morphIC [114] and ODIN [113] made accommodation for
learning via STDP. Similar in-circuit/on-chip learning has been
demonstrated by [120]–[123]. An interesting demonstration of
generative learning relevant to current wave of AI research, is
that by Pedroni et al. [124] (BioCAS 2016). There, authors
through a Restricted Boltzmann Machine (RBM) approach
running on the TrueNorth hardware demonstrated the gener-
ative pattern completion task. Other learning work includes
that by Donati et al. [125] involving the use of the DYNAP-SE
neuromorphic chip for training a surface EMG signal classifier.

G. Neuromorphic ML Accelerators

Today’s ML models require a large number of multiply-and-
accumulate operations that CPUs cannot readily provide. This
has led to an overreliance on GPUs. While GPUs have opened
the frontier for faster training on larger batch size of data, their
energy efficiencies are poor. Training costs of LLMs at scale
easily run into megawatts and millions of dollars [8]. In what
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is a tale of prescience, neuromorphs have been in the business
of engineering accelerator hardware for a while now. An early
work is the charge-based vector-matrix multiplier chip by
Genov and Cauwenberghs [126]. Recent work includes an
embebbed CiM hardware for learning and inference at the edge
by Mendat et al. [127] (ISCAS 2023), which reported phenom-
enal energy metrics such as 1-bit MACs at 45fJ/Op and 8-bit
operations at 1.47pJ/Op and a mere 30mW power consumption
on a character recognition task. At ISCAS 2016, Sanni et al.
[128] also presented a charge-based vector-vector multiplier
chip in 65nm that recorded 68.27pJ/Op. Chakrabartty and
Cauwenberghs [129] recently presented arguments on the
performance walls in ML and neuromorphic systems. They
point out the promising potential of resonant adiabatic CiM
hardware, which surprisingly supersedes the human brain in
energy efficiency (i.e. 1 aJ/MAC in FDSOI vs 1fJ/SynOp in
the brain). Another exciting frontier is that of memristive and
spintronic CiM – Wan et al. [130] and Sengupta et al. [131].
Other efforts include the DeltaRNN accelerator by Gao et
al. [132], RAMAN accelerator by [133], [134] and Frenkel’s
convolutional accelerator [135].

H. Neuromorphic Control, Prosthetics, Robotics and Im-
plantable Electronics

Significant contributions have also been made in the realms
of control, robotics, and neurorehabilitation. One prominent
subject here is locomotion – by modelling the central pattern
generators in the vertebrate spinal cord, Etienne-Cummings
and co. in a series of BioCAS papers [136]–[138] demon-
strated the restoration of lost gait function. Other limb pros-
theses research are that by Tang et al. [139] involving the use
of the DVS in aiding grasp in upper limb prostheses. On an-
other front, Turicchia and Sarpeshkar [140] have demonstrated
aVLSI circuits of the vocal tract specifically modelling the
constriction in the glottis and supraglottis. Cochlear implant
work has also burgeoned with efforts by Germanovix and
Toumazou [141] – a current-mode analog cochlear implant,
Lande et al. [77], among others. Hageman et al. [142]
have also demonstrated a VLSI realization of a multichannel
vestibular implant with in-vivo testing for restoring vision-
and posture-stabilizing reflexes. Etienne-Cummings, Tapson
and co. [143], in an interesting demo of the color glove
at BioCAS 2008, showed how the visually impaired could
perceive color via haptic feedback. Meanwhile, developments
in brain-machine interfaces continues unabated – Corradi and
Indiveri’s [144] event-based neural recording platform with
learning capabilities that demonstrated massive data compres-
sion at the sensor front by passing only rapid signal changes.

IV. OUTLOOK

The CAS/BioCAS community continues to be major players
in the early development of technologies that are central to
the search for artificial intelligences that can match their
natural counterparts. We have so far focused mainly on the
synthesis of biology in silicon integrated circuits, but this is
now changing. Instead, we are now witnessing much more

scrutiny of the material science of the components used to
realize neuromorphic computation because we are now able
to implement nanoscale computing elements that are even
more similar to their biological counterparts than transistors.
The nanoscale devices are grouped in the general term of
“memristive devices.” Memristors will continue to push the
development of new architectures for large scale neural sys-
tems, machine learning and AI accelerators. Beyond emulation
of biological systems with inorganic materials, we are also
entering an era where the line between organic and inorganic
intelligences are beginning to fade [145]–[149]. Our ability to
culture organoids with all the computational machinery of the
nervous system, to interface them to computational electronics
and to use them to participate in real-time computation will
open the door to mixes of in-vivo and in-vitro processors
that will completely revolutionize artificial intelligences. We
will be able to guide the development of the organoids using
in-silico electronics and take advantage of the vast number
of variables that exist in the organic matter, most of which
cannot be emulated in-silico, mainly because we do not know
how they operate. What we learn from these hybrids will also
dictate how we design the next generation of brain-machine
interfaces, and how we help the human condition through
healthcare applications. Again, the CAS/BioCAS community
has already been seeding this path and will be central to the
technologies that are to come.

ACKNOWLEDGMENT

We would like to acknowledge support from the NSF EFRI
BRAID Award #10074989 to REC, as well as a NeuroPAC
Fellowship support (grant NSF 5236962) to AA. We are
grateful for discussions at the Telluride Neuromorphic Cog-
nition Workshops and the Capo Caccia Workshops Towards
Neuromorphic Intelligence that influenced this work.

REFERENCES

[1] M. Carver, Analog VLSI and neural systems. Addison-Wesley, 1989.
[2] K. A. Boahen, Retinomorphic vision systems: Reverse engineering the

vertebrate retina. California Institute of Technology, 1997.
[3] C. Mead, “Neuromorphic engineering: In memory of misha mahowald,”

Neural Computation, vol. 35, no. 3, pp. 343–383, 2023.
[4] R. F. Lyon and C. Mead, “An analog electronic cochlea,” IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. 36,
no. 7, pp. 1119–1134, 1988.

[5] T. Lande, Y. Lian, and C. Toumazou, “Guest editorial for tcas-i
special issue on biomedical circuits and systems: A new wave of
technology,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
PART 1 FUNDAMENTAL THEORY AND APPLICATIONS, vol. 52,
no. 12, pp. 2511–2514, 2005.

[6] Prophesee, “Prophesee launches event-based vision evaluation kit
based on new imx636es hd sensor realized in collaboration
between sony and prophesee,” 2022, accessed: 2024-06-24. [Online].
Available: https://www.prophesee.ai/2022/04/13/new-sony-imx636es-
hd-sensor-realized-in-collaboration-between-sony-and-prophesee/

[7] P. De Tournemire, D. Nitti, E. Perot, D. Migliore, and A. Sironi,
“A large scale event-based detection dataset for automotive,” arXiv
preprint arXiv:2001.08499, 2020.

[8] E. T. Staff, “Mercedes applies neuromorphic computing in ev
concept car,” EE Times, 2024, accessed: 2024-09-04. [Online].
Available: https://www.eetimes.com/mercedes-applies-neuromorphic-
computing-in-ev-concept-car/

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 09,2025 at 17:48:28 UTC from IEEE Xplore.  Restrictions apply. 



[9] J. A. Baktash and M. Dawodi, “Gpt-4: A review on advancements
and opportunities in natural language processing,” arXiv preprint
arXiv:2305.03195, 2023.

[10] B. Pakkenberg, D. Pelvig, L. Marner, M. J. Bundgaard, H. J. G.
Gundersen, J. R. Nyengaard, and L. Regeur, “Aging and the human
neocortex,” Experimental gerontology, vol. 38, no. 1-2, pp. 95–99,
2003.

[11] D. S. Modha, F. Akopyan, A. Andreopoulos, R. Appuswamy, J. V.
Arthur, A. S. Cassidy, P. Datta, M. V. DeBole, S. K. Esser, C. O.
Otero et al., “Neural inference at the frontier of energy, space, and
time,” Science, vol. 382, no. 6668, pp. 329–335, 2023.

[12] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hin-
ton, “Backpropagation and the brain,” Nature Reviews Neuroscience,
vol. 21, no. 6, pp. 335–346, 2020.

[13] F. Zenke and S. Ganguli, “Superspike: Supervised learning in multi-
layer spiking neural networks,” Neural computation, vol. 30, no. 6, pp.
1514–1541, 2018.

[14] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks,” IEEE Signal Processing
Magazine, vol. 36, no. 6, pp. 51–63, 2019.

[15] B. Cramer, S. Billaudelle, S. Kanya, A. Leibfried, A. Grübl,
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