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INTRODUCTION

Corals have a long evolutionary history with their micro-
bial symbionts that has resulted in high levels of
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Abstract

Corals have complex symbiotic associations that can be influenced by the
environment. We compare symbiotic dinoflagellate (family: Symbiodinia-
ceae) associations and the microbiome of five scleractinian coral species
from three different reef habitats in Palau, Micronesia. Although pH and tem-
perature corresponded with specific host-Symbiodiniaceae associations
common to the nearshore and offshore habitats, bacterial community dis-
similarity analyses indicated minimal influence of these factors on microbial
community membership for the corals Coelastrea aspera, Psammocora
digitata, and Pachyseris rugosa. However, coral colonies sampled close to
human development exhibited greater differences in microbial community
diversity compared to the nearshore habitat for the coral species Coelastrea
aspera, Montipora foliosa, and Pocillopora acuta, and the offshore habitat
for Coelastrea aspera, while also showing less consistency in Symbiodinia-
ceae associations. These findings indicate the influence that habitat location
has on the bacterial and Symbiodiniaceae communities comprising the coral
holobiont and provide important considerations for the conservation of coral
reef communities, especially for island nations with increasing human popu-
lations and development.

influence the physiological flexibility of the coral holo-
biont, consisting of the coral host, photosynthetic endo-
symbiotic dinoflagellates (from the family
Symbiodiniaceae), and various fungi, protists and

microbiome assemblage cophylogeny, or shared phylo-
genetic history, with the coral host (Pollock et al., 2018;
Sunagawa et al.,, 2010) and has likely contributed to
host-specific microbiomes (Rohwer et al., 2002). Coral-
microbial associations play a crucial role in shaping the
physiology and phenotypic characteristics of corals
(Bourne et al.,, 2016). These associations may

microbes (Bourne et al., 2009). Consistent and specific
core microbial members are typically noted within
diverse coral species and habitats (Ainsworth
et al., 2015). These essential microorganisms play a
crucial role in maintaining the stability and metabolic
functionality of the coral holobiont, contributing to the
overall health and adaptability of coral communities.
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The identification of coral-associated microbes
(i.e., resident bacteria and dinoflagellate symbionts)
across different colonies, species, and environments is
therefore important in advancing our understanding of
the intricate microbial ecology of reef corals (Ainsworth
et al., 2015; Pollock et al., 2018). Additionally, under-
standing these interactions may contribute to coral
health and physiological stability. However, environ-
mental influences on microbial community composition
can be significant (Hernandez-Agreda et al., 2018) and
understanding these fluctuations may be crucial for elu-
cidating the resiliency of microbial processes important
to coral hosts. Gaining such knowledge is essential for
predicting how changing environments may affect the
overall physiology of coral holobionts.

Abiotic factors influence the membership of coral
microbial communities. Many coral microbiota are sen-
sitive to environmental stressors that can generate dys-
biosis or altered community states. Warming seawater
temperatures are causing more frequent local and
world-wide  bleaching events (Hoegh-Guldberg
et al., 2023), which continue to threaten coral reef diver-
sity and ecosystems (Hughes et al., 2018). In popu-
lated coastal areas, poor water quality from nutrient
pollution and runoff can disturb the diversity and com-
position of microbial communities on nearshore coral
reefs (Littman et al., 2011; Ziegler et al., 2016). Broad
changes in coral microbial communities can shift physi-
ological processes for acclimatisation to minimize the
effects of environmental stress (Epstein et al., 2019;
Kemp et al., 2023; Pantos et al., 2015; Vega Thurber
et al., 2009; Ziegler et al., 2017). For these reasons, it
is important to consider the environmental factors that
may be influencing the structure of coral microbial
communities.

The identity of the dominant Symbiodiniaceae spe-
cies, may also affect the composition of a coral’'s micro-
bial community (Bourne et al., 2013). Dinoflagellate
symbionts have a wide range of physiological abilities
(Abrego et al., 2008; Diaz-Almeyda et al., 2011; Hoad-
ley, Pettay, et al., 2021), which can exert various biotic
effects on the host environment. These effects may
influence and shape the composition of microbial com-
munities (Mcllroy et al., 2020). Constraints to host Sym-
biodiniaceae  associations, such as vertical
transmission of Symbiodiniaceae symbionts, may also
influence the role microbial communities have for local
acclimatisation of the holobiont (Botté et al., 2022).
Bacterial symbionts play a crucial role in maintaining
the stability of microbial communities and promoting
coral health by preventing harmful microbes from colo-
nizing the coral mucus (Krediet et al., 2013). While sig-
nificant strides have been taken in deciphering
microbial interactions and their relative importance to
the coral host, there remains uncertainty regarding how
life history traits and different associations with Symbio-
diniaceae might influence these relationships.

This study compares the diversity of eukaryotic and
prokaryotic symbionts across three reef locations in
Palau, Micronesia, each with varying seawater proper-
ties and proximity to land and urban development. By
leveraging natural differences in temperature and urban
proximity, this study examines the influence of these
reef locations on coral-Symbiodiniaceae and coral-
bacterial associations. High coral cover and many of
the same coral species occur throughout these different
reef environments (Barkley et al., 2015; Keister
et al., 2023). Five coral species were sampled from an
offshore barrier reef and two nearshore lagoon habitats
that are on average ~1.0 to 2°C warmer, and ~0.05 to
0.15 pH units more acidic, than the offshore reef due
to lower water turnover. The nearshore habitats were
further characterized by proximity to anthropogenic
development. For each sampled colony, the resident
dinoflagellate symbiont and the bacterial consortia were
characterized. This diversity was compared across host
species and habitats to determine the relative influence
of reef location and coral-Symbiodiniaceae association
had on the bacterial assemblages associated with each
coral colony. Though different Symbiodiniaceae associ-
ations were found across habitats within coral species,
multivariable models indicated that dominant Symbiodi-
niaceae association did not have significant influence
on the structure of coral microbial communities. How-
ever, microbial community distributions varied consider-
ably across sampled habitats, with the colonies
sampled near human developments having the largest
shifts in microbial community structure. These findings
indicate that, for some coral populations, lower pH and
increased seawater temperatures currently have less
influence on coral microbial community structure than
human proximity. Further, the discoveries from this
work emphasizes the importance of conserving coral
reef ecosystems, while offering considerations for
coastal land development near these habitats.

EXPERIMENTAL PROCEDURES

Reef locations and environmental
conditions

Three different reef habitats were selected based on
their proximity to human development and known sea-
water properties (Barkley et al., 2015; Kurihara
et al., 2021; Shamberger et al., 2014). A nearshore reef
found in Ngermid Bay (also referred to as Nikko Bay,
nearshore, 7° 19.470' N, 134° 29.634' E) with no adja-
cent development (~2 km to development; Figure 1)
was selected due to its known warmer temperatures
and more acidic seawater chemistry. In contrast, a
nearshore reef on Malakal Island (developed, 7°
20.192' N, 134° 27.546' E) was selected directly adja-
cent (<50m) to development including hotels,
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FIGURE 1 Map of sample habitats with habitat specific information. The reef crest is denoted with grey lines, the water is shown in light
blue, and dark green is land. The blue circle indicates the offshore habitat (Rebotel Reef), yellow circle indicates the developed habitat (Malakal
Island), and the red circle indicates the nearshore habitat (Ngermid Bay). Habitat parameters are the average + the standard deviation. Nitrate
and ammonium (mg L") were measured by authors in 2013 for the nearshore and offshore habitats, and in 2022 for the developed habitat.
Other habitat parameters were incorporated from Shamberger et al. (2014), Barkley et al. (2015), and Kurihara et al. (2021).

restaurants, a boat ramp, and marinas (Figure 1).
Finally, Rebotel Reef (offshore, 7° 14.930" N, 134°
14.149' E) was chosen as an offshore forereef habitat
that is ~28 km from human development (Figure 1) and
has cooler seawater temperatures and greater pH than
the nearshore reef habitats.

Temperature loggers were deployed in January
2022 and were recovered December 2023 from all reef
locations using HOBO Pro v2 underwater temperature
loggers (Onset Computer Corporation, Bourne, MA).
Loggers were set to sample every 10 min with a resolu-
tion of £0.2°C. Daily means from 1 year of data collec-
tion were used for temperature averages (Figure 1). In
2022, water samples from the developed reef habitat
were collected for ammonium (NH,") and nitrate
(NO3z™) analysis, to compare with 2013 offshore and
nearshore habitats and previously published water
chemistry from surrounding habitats (Barkley
et al, 2015; Kurihara et al.,, 2021; Shamberger
et al., 2014). Seawater for all habitats was collected
~1 m above the reef with sterile 50 mL falcon tubes. All
seawater nutrient samples were kept frozen until nutri-
ent analysis at the Center for Applied Isotope Studies

at the University of Georgia. Aragonite saturation state
and pH at sampled habitats were utilised from Sham-
berger et al. (2014), Barkley et al. (2015), and Kurihara
et al. (2021) for habitat characterisation but not subse-
quent analyses. All data for habitat characterisation are
included in Appendices S1 and S2 Palau Temperature
and Nutrients Data 2022.xls file. Maps were made
using QGIS 3.28.1-Firenze (https://qgis.org/en/site/)
from data collected during a benthic habitat mapping
project by the National Oceanic Atmospheric Adminis-
tration’s (NOAA) National Centers for Coastal Ocean
Science (NCCOS) (Anderson, 2007; Battista
et al., 2007).

Temperature and nutrient statistics were analysed
across habitats in R version 4.2.2. Temperature, NH,*
and NO3;~ were visualised with a histogram and tested
for normality with a Shapiro-Wilks test, while equal vari-
ance was tested with a Levene’s test. Temperature and
NO3;~ met both assumptions and were analysed with a
one-way ANOVA followed by a Tukey honestly signifi-
cant difference (HSD) test for pairwise comparisons.
NH," did not have a normal distribution, even after
transformations, so the non-parametric Kruskal-Wallis
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TABLE 1 Coral species information and sampling design.
Dinoflagellate
Species Sex System Reproduction Transmission
P. acuta  Hermaphroditic Brood Vertical
M. Hermaphroditic ~ Spawn Vertical (eggs)
foliosa
C. Hermaphroditic = Spawn Horizontal
aspera
P. Dioecious Spawn Horizontal
digitata
P. Dioecious Spawn Horizontal
rugosa

Habitats Dominant Symbiodiniaceae Symbiont

N, D D. glynnii

N, D D. glynnii, Cladocopium C15

N, D, O D. trenchii, D. trenchii & C. madreporum, C.
madreporum

N, O D. trenchii, C. patulum

N, O D. trenchii, C. patulum or Cladocopium C27 and
D. trenchii

Note: Symbiotic dinoflagellate transmission refers to Symbiodiniaceae symbiont acquisition by the host. Habitats are abbreviated as follows: nearshore (N),
developed (D) and offshore (O). If more than one dominant Symbiodiniaceae symbiont was found across habitats, then symbionts are listed in the same order as the
habitats where sampled. Sex system, reproduction mode, and dinoflagellate transmission were determined from the following publications: Penland et al. (2004),

Babcock et al. (1986), Kitchen et al. (2020).

test was used to assess significant differences across
all habitats, followed by the Dunn’s test with Bonferroni
correction for pairwise comparisons between habitats.

Sample collection

Five scleractinian coral species (Coelastrea aspera,
Montipora foliosa, Pocillopora acuta, Pachyseris
rugosa and Psammocora digitata), that represent a
variety of life history characteristics (Table 1), were
sampled on 3-15 June 2022, from the nearshore,
developed, and offshore habitats. C. aspera was sam-
pled at all habitats (Table 1, Figure 1). P. acuta and
M. foliosa were only sampled at the nearshore
and developed habitats, while P. digitata and P. rugosa
were sampled only from the nearshore and offshore
habitats (Table 1, Figure 1). Coral fragments were col-
lected (n = 4-5 colonies) at 1-5 m depth at the near-
shore habitats and 5-10 m depth from the offshore
habitat to ensure similar light conditions across habitats
as established by Hoadley, Pettay, et al. (2021). Frag-
ments were chiselled from the tops of wild colonies,
avoiding epibionts and new growth, placed in individual
whirl packs and were immediately flash frozen in liquid
nitrogen. Triplicate seawater samples (1 L) were col-
lected from ~1 m above each reef and were filtered
through a sterile 47 mm, 0.45 pm cellulose (Millipore)
filter before being flash frozen. The seawater was sam-
pled from the developed habitat on one occasion
(n = 3), while nearshore (n =4) and offshore (n = 6)
habitats were each sampled on two occasions, around
the same time of day during coral collections.

DNA extraction and sequencing

DNA was extracted from ~2 cm? of coral tissue (avoid-
ing as much skeleton as possible), or half of a 0.45 um

filter for seawater samples, using the ZymoBIOMICS™
DNA Miniprep kit (ZYMO) following manufacturer proto-
cols. Extracts were eluted in 50 pL of DNase/RNase
free water and DNA concentrations were quantified
using a Qubit™ dsDNA BR Assay kit on a Qubit 4 fluo-
rometer (Invitrogen). Amplicon library preparation and
paired-end sequencing of the 16S rRNA gene V4 vari-
able region was completed using the primers 515F and
806R (Caporaso et al., 2011) with a 50 K read depth
per sample on an lllumina Miseq following the manufac-
turer’'s guidelines (www.mrdnalab.com,
Shallowater, TX).

Palau corals maintain specific and stable Symbiodi-
niaceae associations through time with consistent
within colony homogeneity (Lewis et al., 2024). There-
fore, Symbiodiniaceae community composition was
determined with DNA extracts using Cladocopium and
Durusdinium genera-specific actin gene primer pairs
(McGinley, 2012) with quantitative PCR (gPCR) on a
QuantStudio 3 (Applied Biosystems) as described in
Gantt et al. (2023). Briefly, DNA was standardized to
10 ng/uL before gqPCR amplification, absolute quantifi-
cation (Mieog et al., 2009) was used to generate esti-
mates of community proportions, and genus-specific
standard curves were used to estimate the number of
Symbiodiniaceae cells per sample well. The abun-
dance of the Symbiodiniaceae symbiont by genera
(Cladocopium and Durusdinium) relative to total Sym-
biodiniaceae was calculated as in Gantt et al. (2023).
Sub-genus identification of dominant Symbiodiniaceae
community members were completed using internal
transcribed spacer 2 (ITS2) of the rRNA gene region
with ITS2intfor and ITS2rev primers
(LaJeunesse, 2002). Final ITS2 amplicons were
cleaned with the Exo-CIP™ PCR Cleanup kit and
sanger sequenced at the Heflin Center for Genomic
Sciences at the University of Alabama at Birmingham.
Final sequences were pairwise aligned using Geneious
Prime® version 2022.1.1. Sequences for symbiont ITS2
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identification are archived at GenBank accession num-
bers PP391597 — PP391614 and PP769353 -
PP769369.

16S rRNA amplicon sequence quality
control and initial processing

Initial 16S rRNA amplicon processing was completed
using the MR DNA ribosomal and functional gene analy-
sis pipeline (www.mrdnalab.com, MR DNA, Shallowater,
TX). During this processing, lllumina adapters were
removed from raw sequences and sequences <150 bp in
length or with ambiguous base calls were removed. Fur-
ther processing of amplicon libraries was completed in R
(version 4.2.2) as described in Kemp et al. (2021). Briefly,
the DADA2 package (version 1.26.0) (Callahan,
McMurdie, et al., 2016) was used to determine exact
amplicon sequence variants (ASVs) from raw reads, as
described by Callahan, Sankaran, et al. (2016). DADA2
was also used for quality filtering (removing ASVs with <3
counts per sample and that were present in <5 samples),
followed by dereplication, error estimation, ASV inference,
and merging of paired reads. Final assignment of taxon-
omy to ASVs was completed with the SILVA small subu-
nit ribosomal RNA database (v138). DADA2 was also
used with the ‘addSpecies’ command for ASV species
level assignment with 100% identity matching. The ASV
and taxonomy tables and the metadata were imported
into phyloseq version 1.42.0 (McMurdie & Holmes, 2013)
for visualisations and statistical analyses. Sequences not
identified as bacteria or archaea and sequences that
identified as chloroplasts or mitochondria were removed
from the dataset. One nearshore C. aspera and one near-
shore P. acuta were removed because their communities
did not rarefy. Additionally, one developed habitat
M. foliosa was identified as an outlier and was removed
after identification from Shannon-Weaver and Simpson
alpha diversity measures via boxplots and the Grubb’s
test (p <0.05) from the outliers package (Komsta &
Komsta, 2007). Microbial community sequences are
archived at SRA accession number PRINA1080224.

Microbial alpha diversity

Samples were rarefied to the lowest read count (3548
reads) before analyses. Simpson, Shannon-Weaver,
and Chao1 diversity indices were calculated with the
estimate_richness function from the phyloseq package
(McMurdie & Holmes, 2013). Normality of alpha diver-
sity data was assessed using histograms and Shapiro—
Wilks tests and equal variance with a Levene’s test. All
Shannon values were antilog transformed to achieve
normality. Significant differences in alpha diversity
across reef habitats for seawater and C. aspera sam-
ples was assessed with one-way ANOVAs followed by

ENVIRONMENTAL MICROBIO . 5 0f 16

post-hoc pairwise comparisons via Tukey HSD.
Kruskal-Wallis tests followed by post-hoc Dunn’s tests
with Bonferroni correction for multiple comparisons
were used for Simpson indices, which were not normal
after transformation but had similar distributions. For all
other coral species, which were sampled at two reef
habitats, significance was assessed with Student’'s t-
tests or non-parametric Mann—Whitney U-tests.

Microbial community composition (beta
diversity)

Rarified ASV count tables were centered log-ratio trans-
formed and used to generate Bray—Curtis dissimilarity
matrices for Principal Coordinate Analysis (PCoA). A
global permutational analysis of  variance
(PERMANOVA) was performed with adonis2 (999 per-
mutations, Euclidean distance) from the vegan package
version 2.6-4 (Oksanen et al., 2013) with the formula
beta diversity ~ coral species * habitat. Follow-up pair-
wise permutations were conducted with the function
pairwise.adonis2 to assess the association between
habitat and beta diversity of individual coral species or
seawater (Martinez Arbizu, 2020), with a Bonferroni cor-
rection to control for multiple pairwise comparisons.

Differential abundance testing of
microbial taxa

Differential abundance was determined across coral
species via the microbiome multivariable associations
with linear models (MaAsLin2) package (Mallick
et al., 2021), a robust and consistent method for ana-
lysing differential abundances (Nearing et al., 2022), in
R (version 4.2.2). MaAsLin2 tests were run with rarified
counts after zero ASVs were removed for each level of
analysis (Phylum, Family and Genus). Analysis was
conducted using the NEGBIN method and counts were
Trimmed Mean of M component (TMM) normalised. No
transformations were performed with the analysis, a
minimum prevalence of 0.10 was used along with
a minimum abundance of 20, the Benjamini-Hochberg
(BH) method for bias correction of false discovery rate
was applied with a maximum significance g-value of
0.05. To identify ‘habitat-associated’ coral taxa that
changed between reef habitats in a similar manner
across all coral species examined, MaAsLin2 was used
while adjusting for coral species as follows: offshore
versus nearshore habitats, adjusting for coral species
(C. aspera, P. digitata, P. rugosa), and developed ver-
sus nearshore habitats, adjusting for coral species
(C. aspera, M. foliosa, P. acuta), with the nearshore
habitat as the reference for each comparison. To deter-
mine habitat effects within a given sample type, sepa-
rate follow-up MaAsLin2 models were run for seawater

A “9 ‘PTOT ‘6TTTYSLI

:sdny wouy papeoy

sdy) SUOMPUOD) puE SuIDL oY) 998 “[pZ0Z/11/97] U0 ATeIqr] auIuQ AS[iAy “ATe1qrT aXemeiad JO ANSIOATN Aq [S00L"6ZTZ-8SL1/1111°01/10p/w00 Ko[im A eaqrjoun[uo-

pue-suua)woo Kajiav Aeiqijour

3SUIOIT SUOWWO)) dANear)) d[qearjdde ay) Aq paurdA0S aIe SA[AIIE YO SN JO I[N 10] ATRIqIT AUIUQ A3[IAN UO (Suont


http://www.mrdnalab.com

ENVIRONMENTAL MICROBIOLOG

Community Proportion
© © © 0 © 9 © © ©o o =
O =~ N W » O O N 0 © o

Nearshore

GANTT ET AL.

Offshore

Developed

FIGURE 2 Real-time PCR estimates of genus-level Symbiodiniaceae community relative proportions by coral individual. Data are organized
by sampled habitat and then coral species. Coral species are as follows: C. aspera (Ca), M. foliosa (Mf), P. acuta (Pa), P. rugosa (Pr), P. digitata

(Pd). Bars represent distinct coral genets (n = 4-5) from each habitat.

samples and each coral species with reef habitat as the
fixed effect.

RESULTS

Reef habitat temperature, nitrate, and
ammonium comparison

Temperature differences across habitats were significant,
with each habitat significantly distinct from the others
(One-way ANOVA and Tukey HSD, all p < 0.001). NH;*
significantly differed across habitats (Kruskal-Wallis,
p = 0.013), and was four times greater at the developed
habitat (0.059 + 0.023 SDmgL~", Figure 1) than the
nearshore habitat (0.014 + 0.005 SD; Dunn’s test,
p = 0.036, Figure 1) and offshore habitat (0.014 + 0.011
SDmgL~"; Dunn’s test, p=0.019, Figure 1). NH,"
(Dunn’s test, p = 1.00) was statistically similar between
the offshore and nearshore habitats. NO3;™~ did not signifi-
cantly differ across habitats (One-way ANOVA,
p = 0.4112), even though the highest average concentra-
tions were at the developed habitat (0.02 + 0.001
SD mg L~"; Figure 1) rather than the nearshore (0.014
+0.005 SD mg L™, Figure 1) or offshore habitats (0.017
+0.009 SD mg L~ "; Student's t-test, p = 0.012, Figure 1).

Symbiodiniaceae identification and
community composition

Almost all offshore coral species had Cladocopium
spp. symbionts, except for two P. rugosa colonies that

had mixed communities of D. trenchii and Cladoco-
pium patulum (Butler et al. (2023), previously known
as type C3u, Figure 2, Table 1). Durusdinium spp.
were the dominant symbionts associated with all indi-
viduals across all coral species at the nearshore habi-
tat. Specifically, D. glynnii associated with P. acuta
and M. foliosa, while D. trenchii was found in
C. aspera, P. digitata, and P. rugosa. At the devel-
oped habitat, M. foliosa associated with Cladocopium
C15, C. aspera associated with either Cladocopium
madreporum or D. trenchii, and P. acuta associated
with D. glynnii.

Microbial alpha diversity

There were no consistent associations among habi-
tats and alpha diversity across coral species. The
Simpson diversity index differed significantly across
C. aspera microbial communities from all habitats
(Kruskal-Wallis test, p = 0.0369, Table 2), and was
driven by significant differences between the off-
shore and developed habitats (Dunn’s test,
p = 0.0346), which had the lowest and highest indi-
ces, respectively (Table 2). Microbial diversity was
similar for C. aspera when comparing the near-
shore and offshore and the nearshore and devel-
oped habitats (Dunn’s test, p = 0.2536 and 1.000,
respectively). Microbial diversity was greater for
nearshore P. acuta than at the developed habitat
(Mann-Whitney test, p =0.0286, Table 2). Only
P. rugosa had significant differences in Chaof1,
which was greater in nearshore than offshore
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TABLE 2 Mean + standard deviation of microbial alpha diversity across habitats.
Coral species
Alpha diversity Habitat P. digitata P. rugosa C. aspera M. foliosa P. acuta Seawater
Chao1 Offshore 587 + 161 456 + 63.9 384 £ 224 - - 427 3034
Nearshore 494 + 76.6 586 + 83.7 526 + 102 354 + 38.1 314 £229 280 + 88.6°
Developed - — 600 + 282 467 + 184 283 + 234 560 + 49.4¢
p-Value 0.2742" 0.0246" 0.35182 0.2113" 0.8004" 0.00212
Shannon-Weaver Offshore 40+13 3.9+0.9 26+23 - - 2.8+0.2"
Nearshore 3.7+1.1 42+05 42+0.7 42+0.1 45+0.2 3.2+0.0°
Developed - - 5.0+0.1 3.8+0.7 3.9+0.6 35+03°8
P-value 0.4073" 0.4314" 0.05612 0.2017" 0.1474' 0.00212
Simpson Offshore 0.86 £ 0.2 0.86 £ 0.1 055+05% - - 0.77+£0.0
Nearshore 0.84+0.2 0.92+0.1 0.91+0.178 0.95+0.0 0.97+£0.0 0.82+0.0
Developed — - 0.98+00°B 0.86 £ 0.1 0.94+0.0 0.88+ 0.1
p-Value 0.4206° 0.5476° 0.0369* 0.1429° 0.0286* 0.0587°

Note: Bold p-values indicate significance. ‘- indicates no samples collected at this habitat. Superscript letters indicate significant groupings based on Tukey HSD

pairwise comparisons for C. aspera and seawater.
Student’s t-test.

20One-way analysis of variance (ANOVA).
3Mann-Whitney U-test.

“Kruskal-Wallis test.
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FIGURE 3 PCoA of Bray-Curtis dissimilarities of coral microbial communities by coral species and across habitats. The microbial
community comparisons are as follows: (A) all corals, (B) P. acuta only, (C) M. foliosa only, (D) C. aspera only, (E) P. rugosa only, and

(F) P. digitata only. Coral species are indicated as follows: P. acuta (diamond), M. foliosa (circle), C. aspera (square), P. rugosa (upward
triangle), and P. digitata (downward triangle). The habitats are indicated as follows: developed (D, yellow), the nearshore (N, red), and the
offshore (O, blue). Values indicate significance of groupings by habitat with permutational analysis of variance (PERMANOVA) for panel A and
pairwise PERMANOVAs for panels (B)—(F). M. foliosa did not have enough individuals from the developed habitat for ellipse creation.

habitats (Student’s t-test, p =0.0246, Table 2).
Microbial diversity of seawater differed significantly
by habitat for Shannon-Weaver diversity (One-way
ANOVA, p = 0.0021, Table 2) and Chao1 (One-way
ANOVA, p =0.0021, Table 2). Significant differ-
ences in Chao1 for seawater were found between
all habitat pairwise comparisons (Tukey HSD,

Offshore:nearshore p = 0.0054; nearshore:devel-
oped p=0.0002; and offshore:developed p=
0.0169), while the offshore habitat drove significant
differences in  Shannon-Weaver diversity for
the nearshore (Tukey HSD, p = 0.0478) and devel-
oped (Tukey HSD, p = 0.0018) habitat
seawater comparisons.
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(A) Corals Developed to Nearshore
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INFLUENCE OF REEF HABITAT ON CORAL MICROBIAL ASSOCIATIONS

Microbial community composition (beta
diversity)

Microbial communities significantly differed by coral
species (PERMANOVA, p=0.001, R?=0.1915,
Figures 3A and S1), habitat (PERMANOVA, p = 0.001,
R? = 0.0800, Figure 3A, R? =0, Figure S1), and the
interaction of these factors (PERMANOVA, p = 0.001,
R? = 0.1173, Figure 3A). Microbial community compo-
sition significantly differed between the developed and
nearshore habitats for P. acuta (pairwise PERMA-
NOVA, p=0.026, R?=0.0.2836, Figure 3B) and
M. foliosa (pairwise PERMANOVA, p=0.021,
R? = 0.3800, Figure 3C). No differences in microbial
community composition were detected between the off-
shore and nearshore habitats for C. aspera (p = 0.082,
R? =0.1706), P. rugosa (p = 0.263, R?=0.1214),
and P. digitata (p = 0.508, R? = 0.1050) by pairwise
PERMANOVA (Figure 3D—F). Coelastrea aspera did
not have significant differences in microbial community
structure between developed and nearshore habitats
(pairwise PERMANOVA, p=0.234, R?=0.1602,
Figure 3D), but did have significant differences
between developed and offshore (pairwise PERMA-
NOVA, p =0.007, R?=0.2085, Figure 3D) habitat
comparisons. Seawater microbial community composi-
tions (Figure S2) differed between the developed habi-
tat and the nearshore (pairwise PERMANOVA,
p = 0.028, R? =0.5518) and offshore habitats (pair-
wise PERMANOVA, p = 0.032, R? = 0.3080), with no
differences detected between the offshore and near-
shore habitats (pairwise PERMANOVA, p = 0.072,
R? = 0.2336).

Differential abundance of microbial taxa
across habitats

Developed Habitat to Nearshore Habitat Coral Compar-
ison. The phyla Acidobacteriota, Pseudomonadota
(previously known as Proteobacteria) and Planctomy-
cetota were significantly lower across all coral species
(C. aspera, M. foliosa and P. acuta) at the nearshore
than developed habitat (MaAsLin2, g = 0.044, <0.001
and <0.001, respectively, Figure 4A), while the phyla
Campylobacterota, Desulfobacterota, and Bacillota
were significantly higher across all nearshore coral spe-
cies (MaAsLin2, g =0.002, <0.001 and 0.041,

ENVIRONMENTAL MICROBIO . 90f 16

respectively, Figure 4A), as indicated by multivariable
MaAsLin2 models, adjusted for reef habitat and coral
species. Thirty-six families also significantly differed
across all coral species, with 17 families having signifi-
cantly higher prevalence nearshore than at the devel-
oped habitat, while 41 genera also significantly differed
across all coral species between nearshore and devel-
oped habitats (Figure 4A). The genus Endozoicomonas
was significantly lower in C. aspera colonies in the
developed habitat than in the nearshore habitat
(MaAsLin2, g = 0.005, Figure S4).

Offshore Habitat to Nearshore Habitat Coral Com-
parison. Across all coral species, the phylum Cyano-
bacteria was significantly less abundant offshore than
nearshore (MaAsLin2, g < 0.001 Figure 4B). Seventeen
families varied across the offshore to nearshore habitat
comparison, with 4 families more abundant offshore
(MaAsLin2, g < 0.02, Figure 4B) and 13 families lower
in abundance offshore than at the nearshore habitat
(MaAsLin2, q < 0.045, Figure 4B). The family Endozoi-
comonadaceae and genus Endozoicomonas had sig-
nificantly higher abundances for offshore P. rugosa
(and trends of higher abundances for C. aspera) than in
the nearshore habitat (MaAsLin2, ¢g<0.001,
Figure 4B). The genera Altererythrobacter, Alteromo-
nas, Endozoicomonas, Halomonas, Idiomarina, and
Limimaricola were more abundant offshore than near-
shore across all coral species (MaAsLin2, q < 0.002,
Figure 4B). The genera Candidatus Amoebophilus,
Ascidiaceihabitans, Brevundimonas, Catalinimonas,
Lysobacter, Mastigocladopsis, Methyloceanibacter,
Pird4 lineage, Pleurocapsa, Qipengyuania, and Soliba-
cillus were more abundant nearshore than at the off-
shore habitat (MaAsLin2, g < 0.02, Figure 4B).

Within coral species across habitat comparisons,
the phyla Acidobacteriota and Chloroflexota had
species-specific differences with C. aspera and
P. digitata having greater abundances of this phyla off-
shore than nearshore (MaAsLin2, g < 0.04, Figure 4B),
and lower abundances within P. rugosa communities
offshore (MaAsLin2, q < 0.04, Figure 4B). At the family
level, increased abundances of Rhodobacteraceae and
Sphingomonadaceae were found within P. digitata
communities at the offshore habitat, while P. rugosa
had greater abundance of Rhodobacteraceae and
lower abundances of Sphingomonadaceae offshore
(MaAsLin2, q <0.02, Figure 4B) than nearshore. The
genus Erythrobacter was more abundant for P. rugosa

FIGURE 4 Heat maps of microbial taxa from MaAsLin2 results that significantly differed by coral species with the nearshore habitat as the
reference. Taxa are broken up by taxonomy level analysis with results shown for all corals and within each coral species across that habitat
comparison. (A) Microbial taxa that were differentially abundant in developed habitat compared to nearshore habitat corals, (B) microbial taxa
that were differentially abundant in offshore habitat compared to nearshore habitat corals. Red indicates taxa that are more abundant than at the
nearshore habitat (reference), white indicates no difference in abundance, and blue indicates taxa that are less abundant than at the nearshore
habitat. FDR controlled g-values greater than 0.05 are not included in the figure for clarity, while g-values lower than 0.001 are indicated

with ‘<0.001".
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at the nearshore habitat (MaAsLin2, ¢q<0.04,
Figure 4B) with similar trends observed for C. aspera.

C. aspera comparison across habitats. The only
coral that was sampled across all three habitats was
C. aspera (Figures 1 and S4), and microbial community
composition significantly differed between the offshore
and developed habitats (pairwise PERMANOVA,
p = 0.044, Table 2). In particular, the phylum Acidobac-
teria was significantly higher near human development
than nearshore (Figure S4), while Pseudomonadota
was significantly lower in C. aspera microbial communi-
ties offshore than at the nearshore habitat (Figure S4).
Ten families varied in abundance across habitats for
C. aspera, with 6 families significantly lower at the
developed habitat than nearshore (Figure S4) and
4 families with higher abundances near the developed
habitat than nearshore (Figure S4). The genus Endo-
zoicomonas was significantly more abundant within
nearshore communities than at the developed habitat
(Figure S4). Most taxa identified as significantly differ-
ent across habitats at the genera level were due to
large differences in the microbial communities between
C. aspera colonies from the nearshore and developed
habitats (Figure S4).

Seawater comparisons. Few taxa varied signifi-
cantly by habitat within the seawater microbial commu-
nities. Two phyla significantly differed across habitats
with Bacteriodota having higher abundance and Actino-
mycetota having lower abundance at the developed
habitat than offshore or nearshore habitats (Figure S3).
A total of 11 families significantly varied across habi-
tats, with 7 families having higher abundance near-
shore and offshore than at the developed habitat
(Figure S3). The genera Candidatus Actinomarina and
Synechoccus were significantly higher nearshore than
at the developed habitat (MaAsLin2, g < 0.001,
Figure S3). HIMB11, Marinoscillum, NS42b marine
group, and NS4 marine group had significantly higher
abundance at the developed habitat than nearshore
(MaAsLin2, g < 0.05, Figure S3). The genera Clade Ib,
Cyanobium, OM60, and the Sva0996 marine group had
lower abundance nearshore than within the developed
habitat (MaAsLin2, g < 0.05, Figure S3).

DISCUSSION

Environmental factors and biotic interactions play a cru-
cial role in shaping the composition of dinoflagellate
symbionts and bacterial communities within coral colo-
nies. Sampling colonies from multiple coral species
across distinct habitats highlights how factors like tem-
perature, acidity, and the influence that human devel-
opment has on seawater can shape animal-microbe
associations. We confirm previous findings that coral
colonies in nearshore reefs of Ngermid Bay, which
acquire their Symbiodiniaceae through horizontal

transmission, predominantly associate with Durusdi-
nium trenchii, while conspecific colonies found offshore
at Rebotel Reef primarily associate with Cladocopium
spp. (Hoadley et al., 2019; Kemp et al., 2023; Lewis
et al,, 2024). While seawater temperatures and pH
seemed to influence the dominance of Symbiodinia-
ceae symbionts between Ngermid Bay and Rebotel
reef colonies, they did not influence the bacterial com-
munities. Interestingly, the direct proximity to develop-
ment and enriched ammonium of the developed reef
habitat (based on specific bacteria taxa) correlated
more with changes to the composition of coral associ-
ated bacterial communities (Figures 2—4). At the devel-
oped habitat bacterial community membership was
greatly influenced, with more similarity in bacterial com-
munities observed across coral genera within this habi-
tat than to conspecifics from other habitats. In contrast,
the bacterial communities of colonies from Ngermid
Bay and Rebotel Reef remained consistent and rela-
tively host-specific across nearshore and offshore habi-
tats, likely due to prolonged exposure to these
conditions and minimal influence from human develop-
ment. Our findings indicate that environmental condi-
tions at each habitat differentially influenced the
Symbiodiniaceae associations and bacterial communi-
ties of these corals.

Coral-Symbiodiniaceae combinations can differ
across small spatial scales affected primarily by the
prevailing light and temperature conditions of a given
habitat (Bongaerts et al., 2010; Kriefall et al., 2022;
LadJeunesse et al., 2004). Coral colonies from the near-
shore Ngermid Bay and offshore habitats of Palau
maintained different Symbiodiniaceae associations, but
there were no significant differences in microbial com-
munity structure or diversity associated with these dif-
ferent dominant symbionts (Figure S5). Psammocora
digitata and Pachyseris rugosa both predominantly
associated with Cladocopium patulum (previously type
C3u, Butler et al., 2023) at the offshore habitat, with
one P. rugosa associated with Cladocopium C27, and
Durusdinium trenchii at the nearshore Ngermid Bay
habitat, while Coelastrea aspera associated with Clado-
copium madreporum (Butler et al. (2023), previously
known as type C40) at the offshore habitat and
D. trenchii at the two nearshore habitats (Ngermid Bay
and Malakal Island). Pocillopora acuta and Montipora
foliosa both associated with Durusdinium glynnii at the
nearshore Ngermid Bay habitat. Dominance of Durusdi-
nium spp. in Ngermid Bay corals may be due to
increased temperatures and more acidic conditions, as
D. glynnii and D. trenchii tend to be more tolerant to
physiological stress (Hoadley et al.,, 2019; Kemp
et al., 2023; Turnham et al., 2023). Meanwhile,
M. foliosa colonies near urban development associated
with an undescribed species from the C15-radiation of
Cladocopium, a lineage likely specific to Montipora
hosts (Lewis et al., 2024). Most of the corals sampled
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INFLUENCE OF REEF HABITAT ON CORAL MICROBIAL ASSOCIATIONS

had homogenous Symbiodiniaceae associations, which
is observed for some Indo-Pacific coral species that
maintain relatively stable Symbiodiniaceae associa-
tions over several years (Lewis et al., 2024). These pat-
terns in host-symbiont combinations are consistent with
established knowledge that habitat also strongly influ-
ences the dominance of particular Symbiodiniaceae
taxa  from among a small subset  of
Symbiodiniaceae species that are compatible with a
specific coral host (LaJeunesse, 2020). Thus, variation
in Symbiodiniaceae associations observed across the
sampled habitats of the current study are an ecological
response to prevailing environmental factors (tempera-
ture, light, etc.), involving symbionts adapted to particu-
lar host taxa and the physical conditions of the habitats
where these colonies were obtained.

Coral microbial community composition and struc-
ture often shift when exposed to elevated temperatures
or changes in pH (Maher et al., 2020; Meron
et al., 2012; Morrow et al., 2014). Such fluctuations in
temperature or pH possibly modify the chemical com-
position of the coral’'s mucus (Lee et al., 2016), thereby
altering the microbial community and likely holobiont
functioning as well. Similar to how Symbiodiniaceae
associations differ between the offshore habitat and the
warmer, more acidic nearshore habitat, we expected
microbial associations to differ as well; however, no
consistent differences in alpha or beta microbiome
diversity were found within or across coral species for
these two habitats. Nearshore and offshore coral colo-
nies in Palau are therefore likely able to maintain
homeostasis and the stability of their microbial associa-
tions through acclimatisation or adaptation. For exam-
ple, these same coral populations possess similar
skeletal density, linear extension, and calcification rates
(Barkley et al., 2015), and maintain similar energy
reserves (Keister et al., 2023) across the disparate
environmental characteristics of the nearshore and off-
shore habitats. Colony growth and energy reserves at
these habitats may, therefore, mitigate the influence of
environmental characteristics through holobiont plastic-
ity and acclimatisation. However, coral populations
adjacent to human development were the only colonies
found to have unique microbiomes and differed consid-
erably from conspecifics at the nearshore (Ngermid
Bay) and (for C. aspera) offshore habitats, including
microbial taxa such as Allorhizobium, Staphylococcus,
and Halomonas. Notably, the environmental conditions
associated with the habitat near human development
had higher ammonium concentrations than the other
locations which corresponds with human-induced nutri-
ent enhancement. Although these findings are from a
single sampling timepoint, the concentrations are four
times greater than previously sampled conditions found
in Ngermid Bay and Rebotel Reef and what has been
reported in the literature for surrounding habitats
(Barkley et al., 2015; Kurihara et al., 2021; Shamberger
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et al., 2014). Our findings suggest that colonies may
have greater coral-bacterial microbiome stability and
structure to moderately increased temperatures
and acidity at the nearshore habitat, but these proper-
ties are disrupted when colonies are directly adjacent
to urban development. Therefore, local anthropogenic
stressors may pose an immediate threat to coral reefs
that are also facing anthropogenic climate change in
the coming decades.

Coral microbial taxa shifts across offshore
and nearshore habitats

There were a few taxa-specific shifts in abundances
within coral microbial communities across the near-
shore and offshore habitats. The phyla Cyanobacteria
was lower in abundance within offshore colonies than
nearshore Ngermid Bay colonies. The differences in
Cyanobacteria abundance (across all corals) among
reef populations could be due to higher prevalence of
these taxa at the nearshore habitat (Figure S3), or may
indicate different feeding preferences for picoplankton,
as observed in thermally stressed corals (Hoadley,
Hamilton, et al., 2021; Meunier et al., 2019; Tong
et al.,, 2021). The genus Altererythrobacter was
enriched in nearshore P. rugosa. Altererythrobacter are
known to proliferate and can inhibit other bacteria at
higher temperatures (Guo et al., 2022; Li et al., 2021).
Brevundimonas (class Alphaproteobacteria), was also
in higher abundance within nearshore than offshore
colonies, with significant enrichment in P. rugosa (near-
shore), M. foliosa (nearshore), and C. aspera
(nearshore and developed) microbial communities. Pre-
viously, Brevundimonas has been found associated
with acroporids (Littman et al., 2009) and is linked to
environmental nutrient cycling, so this species may pro-
vide avenues for nutrient cycling within coral microbial
communities.

A common coral symbiont that can co-evolve with
the host (Pollock et al., 2018), Endozoicomonas, often
maintains species-specific associations with corals
(Hochart et al., 2023). Recent work suggests this genus
may synthesize vitamins and amino acids for the coral
holobiont that are not made by the host coral (Hochart
et al.,, 2023; Maire et al., 2023). Additionally, higher
Endozoicomonas abundance is positively correlated
with coral growth, but also positively correlated with
increased disease susceptibility (Epstein et al., 2023)
and reduced holobiont phenotypic plasticity (Pogoreutz
et al., 2018; Pogoreutz & Ziegler, 2024). Endozoicomo-
nas had significantly higher abundances in offshore
than nearshore corals. Since coral microbial community
diversity, richness, and structure shifted only slightly
across the disparate environments of the nearshore
and offshore habitats, these holobionts likely can miti-
gate or limit the influence of increased acidity and
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seawater temperatures on their microbial symbionts
through phenotypic plasticity and local acclimatisation.

Coral microbial taxa shifts across
developed and nearshore habitats

Some members within the phylum Planctomycetota
engage in nitrogen cycling through anaerobic ammonia
oxidation or annamox (Kartal et al., 2012; Strous
et al, 1999) and are critical for carbon cycling
(Glockner et al., 2003). The genus Allorhizobium (family
Rhizobiaceae) also has known nitrogen fixers and is
found associated with tropical legumes (de Lajudie
et al., 1998; Kuykendall & Dazzo, 2015). Both of these
taxa were enriched across the coral microbial commu-
nities near human development unlike those sampled
at the nearshore Ngermid Bay habitat. While not well-
documented within the coral microbiome, the genus
Allorhizobium was exclusively enriched within coral
microbial communities rather than in the seawater from
the developed habitat. High prevalence of Marinobacter
(family Alteromonadaceae) was found across coral
species within the developed habitat. This genera can
associate  with  dinoflagellate  cultures  (Maire
et al., 2021) and deep-water corals, where it has the
ability to tolerate and degrade hydrocarbons
(Thompson & Gutierrez, 2021) commonly found in
water runoff and this occurrence may be the result of
the close proximity of a boat ramp and marina fuel
docks only a few meters from the sampled colonies at
the developed habitat (MacKenzie, 2008; Richmond
et al., 2019).

Across all coral species at the developed habitat
there were shifts in abundances of known disease miti-
gating microbial symbionts. For example, Exiguobac-
terium (family Bacillaceae), a highly versatile genera
with members that thrive in a wide range of pH, salinity,
and temperatures (Zhang et al., 2021), was enriched
within the developed coral microbial communities
(Krediet et al., 2013). The significantly increased abun-
dance of the known hydrocarbon degrader (Silva
et al, 2021) and disease mitigating (Pereira
et al., 2017) genus Erythrobacter, along with the lower
abundances of the phylum Actinomycetota, known to
form defensive symbioses with hosts (van Bergeijk
et al., 2020), were noted within M. foliosa and P. acuta
microbial communities near human development.
There was also increased abundances of Rhodobacter-
aceae near development for these coral species.
Increased prevalence of taxa from the family Rhodo-
bacteraceae has been found associated with diseased
coral tissues (Roder et al., 2014; Séré et al., 2014) and
is connected to the effects of sedimentation and sew-
age waste on coral microbial communities (Ziegler
et al., 2016). The genus Pseudoalteromonas was lower
in all colonies and specifically within C. aspera and

GANTT ET AL.

M. foliosa at the developed habitat compared to the
nearshore habitat. The genera Pseudoalteromonas has
been linked to antimicrobial activity within the coral
holobiont (Shnit-Orland et al. 2012), is a suspected cue
for coral metamorphosis (Alker et al., 2020), and has
been hypothesized to remove cadmium from host tis-
sues (Sabdono, 2011). Within developed habitat sea-
water there was increased presence of Vibrio spp.,
known to cause coral diseases (Munn, 2015;
Rosenberg & Falkovitz, 2004), and higher prevalence
of the genus Stappia, linked to black band disease
(Henao et al., 2017). While these colonies showed no
signs of disease at the time of sampling, there are likely
limits to how much shifts in microbial communities can
buffer against anthropogenic and climactic stressors
without compromising holobiont health, especially
given the differences in seawater conditions at the
developed reef.

Influence of life history characteristics

Life history characteristics are another factor that
affects host-symbiont specificity and likely influences
the composition of the resident bacterial communities
in different environments (Maire et al., 2024; Turnham
et al.,, 2021). Among colonies of the corals sampled,
P. acuta and M. foliosa, bacterial taxa beta diversity
varied significantly across habitats. Coral colonies in
close proximity to human development had large differ-
ences in microbial community structure relative to con-
specifics sampled from the nearshore habitat.
However, M. foliosa was associated with D. glynnii at
the nearshore habitat and Cladocopium C15 at the
developed habitat, while P. acuta maintained the same
association across these habitats; indicating coral
species-specific differences in Symbiodiniaceae and
bacterial community associations across the nearshore
and developed habitats. Because, P. acuta and
M. foliosa, vertically transmit their Symbiodiniaceae
symbionts (and some bacterial symbionts) to their eggs
(Babcock et al., 1986; Kitchen et al., 2020; Penland
et al., 2004), there is an increased chance of environ-
mental mismatch for these coral species that may
encourage dependence on their microbial communities
for local acclimatisation (Botté et al., 2022). These two
coral species also belong to families that are often
more susceptible to disease (Acroporidae and Pocillo-
poridae) than others (Diaz & Madin, 2011; Palmer
et al., 2010; Willis et al., 2004) and have many traits
that increase their disease risk, such as complex
growth forms, shallow depth range, large geographic
range (Diaz & Madin, 2011), and low innate immunity
(Palmer et al., 2010). Together, these factors combined
with our results, highlight the importance of studying
the acclimatisation potential of at-risk coral species
across a range of habitats (especially to anthropogenic
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stressors) to better understand stable and disturbed
community dynamics for corals with high local microbial
community acclimatisation.

Conclusions

Across the three habitats explored in this study, colo-
nies from the offshore and nearshore habitats exhibited
few differences in microbial community structure,
despite the nearshore habitat being warmer and more
acidic than the offshore habitat and corals maintaining
different Symbiodiniaceae associations across these
habitats. These findings indicate that the coral holo-
biont can sustain stable symbiotic microbial relation-
ships across varied environments. This resilience is
likely achieved through the prolonged adaptation and
acclimatisation of both the host and symbionts to local
environmental conditions. An important exception to
this pattern was observed in coral microbiomes near
human development, where there were more pro-
nounced disruptions in community structure than
observed at the offshore and nearshore habitats.
Numerous microbial taxa exhibited similar shifts in
abundance across coral species from nearshore to
developed habitats. These shifts may be linked to the
fourfold increase in NH4", which, while anecdotal, is
commonly observed in urbanized areas, as well as
higher NO3;™ levels observed at the developed habitat.
Other unmeasured anthropogenic factors associated
with the developed habitat may also contribute to these
changes. These findings suggest that for some coral
communities, local anthropogenic factors may drive
larger shifts in coral microbial associations than lower
pH and increased seawater temperatures. Although
Palau’s inner bays are seen as potential refuges from
climate change for Pacific corals (van Woesik et al.,
2012), these observed changes in microbial communi-
ties and the impact of human proximity call for further
investigation into how nearshore coral communities will
be affected by continued climate change.
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