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Abstract—Detecting when road maps change is useful for
autonomous vehicles to drive safely and legally, for city planners
to make more educated decisions, and web maps to better
serve consumers. Many public vehicles drive around the city
on a regular basis and collect road data for security and safety
purposes through dash cams, yet few cities and companies have
considered this as a data source for city monitoring. We present
an automatic method and system for crosswalk change detection
at city intersections using a monocular camera on a city bus
and analyze longitudinal results over the course of a year. Using
images recorded by a bus two years ago as reference, multiple
city intersections are reconstructed, fitted for ground planes, and
labelled for crosswalks. Subsequent images from the bus are
imported and processed to detect if changes have occurred since
intersections were first seen by first localizing current images
with respect to the reference images, detecting for crosswalks,
and computing detection overlaps in the bird’s-eye-view. Our
method makes improvements upon baseline methods by checking
for crosswalk visibility and localization errors, is able to generate
results typically seen by using more expensive LiDAR sensors,
and has been successfully deployed live for one month.

I. INTRODUCTION

Maps have made everyday navigation easier and safer. More
recent advances in digital maps, such as Google Maps, include
semantic information at a given location such as lane directions
and nearby stop signs. While having this semantic knowledge
in a map is useful for humans, autonomous vehicles depend
on these maps for navigation. High definition (HD) maps
enable many autonomous vehicles (AVs) and include both
geometric and semantic information about crosswalks, lanes,
and driveable areas.

Currently, most AVs are geofenced inside areas that
are mapped to ensure safety. However, efficiently detecting
changes in an HD map is a challenge. Lambert et al. [1]
analyzed the frequency of map changes over a period of 5
months. Subdividing a city map into 30x30 meter square tiles,
they estimated that there is a probability of a changed lane
geometry or crosswalk in 7 out of 1000 map tiles in a 5-
month span. Applying these statistics to the city of Pittsburgh,
which has an area of 140 km?2, leads to an expected 7.4 tile
changes per day.
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Carnegie Mellon University’s Mobility21 National University Transportation
Center, which is sponsored by the US Department of Transportation.
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Fig. 1: 2D crosswalk detectors are used to analyze crosswalk changes
at intersections over time (top left). Detections are represented in
BEV (top right) by localizing images of reference images and query
images (bottom left) and transforming detections onto a ground plane.
Analysis of detected changes has been performed for the period of
one year (bottom right).

The challenge with change detection is that the location
and time of changes are unknown. Because road changes can
occur any day, the operational costs of deploying specialized
vehicles to perform daily mapping can be expensive. Crowd-
sourced photographs have recently shown success in mapping
and displaying changes in the environment [2]-[4]. In this
paper, we leverage a commuter bus that travels daily around
the city with camera and GPS sensors. In contrast to [2],
[3], which used photos scraped from the internet, images
from the bus provide regular crowd-sourced data. Though
a commuter bus travels a limited route and has a narrow
coverage of the city, the system requirements are minimal and
can work for other service vehicles like garbage trucks and
postal cars to expand the map coverage. Given the need for
regular monitoring of the environment, this research shows
how using a crowd-sourced vehicle-mounted camera can be
used to efficiently detect map-relevant changes in noisy and
high-traffic environments, as seen in Fig. 1. In this work we
argue that rather than relying on LiDAR data, a similar bird’s-
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Fig. 2: The pipeline for monocular change detection of crosswalks at intersections. First a reference map is created by collecting several
videos of images at a location (A). The scene is reconstructed using structure-from-motion (C), using an off-the-shelf panoptic segmentation
model to mask out 2D keypoints from dynamic objects (B). With 3D point clouds of the scene, a plane is fitted to the ground points (D).
Crosswalk labels (E) are created for the reference map, and they can either be from crosswalk detection models inferenced on the reference
images or hand-labeled in the BEV. Next, any subsequently recorded images (F) can be registered to the reference map (H) by first also
masking out 2D features of dynamic objects (G). Then, crosswalks can be detected in each image with an object detection model (I),
transformed into the BEV representation (J), and compared against the reference labels. The pipeline produces change predictions (K) at a

given time as well as longitudinal information of change (L).

eye view (BEV) analysis of road maps, specifically crosswalks,
can be done using only image data through the pipeline shown
in Fig. 2. Crosswalks trained and detected by off-the-shelf 2D
object detectors can be transformed into BEV; images can be
localized using structure-from-motion (SfM); and point clouds
of the scene can be obtained by triangulating points from
images to fit a ground plane in 3D. The contributions of our
paper are as follows:

« a monocular crosswalk change detection framework that
aggregates information across image frames and ad-
dresses localization and occlusion challenges;

o a new dataset of street view images spanning one year
with crosswalk changes to assess change detection con-
sistency and accuracy;

« a crowd-sourced data collection method to monitor cross-
walks with daily feedback;

o an extensible system that can be used for other road
markings and can be installed on other vehicles.

II. RELATED WORKS
A. Online Map Generation

Some recent works attempt to use deep learning networks
to generate maps and road semantics on the fly [5], [6]. They
both use surround view cameras and predict a BEV of the
road semantics directly. This is in contrast to our approach
of first learning features and objects in the image space and
then transforming them into BEV space through an inverse
perspective mapping [7]. Although directly learning the BEV
map is ideal, training data for this is particularly limited. As
of this writing, NuScenes [8] and Argoverse [9] are the only
datasets that contain bird’s-eye-view annotations of drivable
areas, crosswalks, and lanes paired with sensor data. Because
these datasets are only labeled for a few cities, the map
generation results are difficult to generalize to other locations
and environments. Meanwhile, 2D annotations of objects in

images like crosswalks are abundant, diverse, and easier to
obtain.

B. 2D Change Detection

Various groups tackle change detection through a learned
approach. Sakurada et al. [10] uses aligned omnidirectional
images of a scene to perform change detection before and
after a natural disaster. They use superpixel segmentations
and features encoded by a convolutional neural network for
change comparison. Alcantarilla et al. [11] uses deconvo-
lutional networks to perform pixel-wise change detection,
training a model that detects relevant structural changes such
as construction, building demolition and traffic signs between
aligned image pairs. One drawback of [10] and [11] is that they
only perform change detection at the image level and do not
aggregate change predictions across images, which our work
includes to address temporary occlusions of the scene from
something like an oncoming vehicle. In addition, in order to
generate aligned images, they need a time-consuming dense
reconstruction, where the dense point cloud is projected into a
virtual camera, an imperfect process that can generate artifacts.

C. 3D Change Detection

Matzen et al. [3] illustrates changes across billboards in
Times Square and performs accurate structure-from-motion
and grouping of 3D points in time, based on temporal and
spatial clustering. They reconstruct the scene from noisy
images taken from a large, crowd-sourced internet collection of
photos. Our work is similar; however, we provide an applica-
tion for change detection, and our method contains additional
semantic understanding of change events. For example, using
their methods, a crosswalk that is removed and repainted at the
same location might be considered a change, but ours would
not because the underlying meaning on the road stayed the
same. An example is shown in Fig. 3.
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Fig. 3: Change over time at a given location. The bottom left image
shows what the scene was in the beginning when the reference map
was made, with a crosswalk. The top left shows the scene after the
road was repaved before any paint was applied. The top right shows
when some road markings were painted in but not the crosswalk. The
bottom right shows all road markings painted in, and a crosswalk with
a different pattern from the original. Our change detection method
(middle) detects the change and also recognizes a crosswalk was
painted back at the same location and stops indicating a detected
change afterwards.

Lambert et al. [1] compares current sensor inputs and the
latest map information to predict if change has occurred. They
use LiDAR and RGB data, experiment with ego-view and BEV
viewpoints, and make a binary classification of change for a
given image. The drawback of this approach is that it relies
on an expensive autonomous vehicle’s sensor suite for change
detection, which would be difficult to crowd-source and relies
on precise localization of the vehicle. Another drawback is that
the method does not evaluate location of the changes in the
sensor data, the number of changes at each time, nor descrip-
tion of the change at each location. In our work, detectors
pinpoint locations in BEV where crosswalks have changed,
how many changed, and what kind of change occurred, i.e.,
added or removed. Furthermore, because they train their model
end-to-end, their model requires examples of change data,
which is hard to obtain and forces them to simulate change.
In our work, we rely on the ease of collecting 2D instance
segmentations of crosswalks in images to train our model.
Lastly, in their detection pipeline, they rely on rasterizing the
HD map into an image, but the rasterization process may not
represent the real scene correctly. For example, when road
markings are partially faded, there is a discrepancy between
the reference sensor data and the map which can lead to
false positive change detections because the map is an ideal
representation of the world and does not capture all edge cases.
In contrast, our work uses sensor detections at reference time
to compare with current detections; however, we also provide
hand-labeled BEV crosswalks as a baseline.

III. METHODS
A. Bus-mounted Camera

Data collected in this paper come from a metro commuter
bus running between downtown Pittsburgh and Washington,
Pennsylvania. A photo of the transit bus is shown in Figure
4. As of this writing, the bus has collected more than a year’s
worth of data, continues to collect data daily, and is therefore
a valuable means to deploy the proposed method for live
change detection. The bus makes at least two round-trips every
weekday and contains a computing and storage device to carry
out preliminary processing of data from its cameras and GPS

Fig. 4: The left four images show the commuter bus, an image of

the computer, the cabinet that contains the computer and electronics,
and one of the cameras. The right diagram shows the field of view of
each installed camera, where one faces forward and four side cameras
face opposite directions from each other.

sensor. The computer on the bus is an Intel Core 17-8700t CPU
at 2.40GHz with 16 GB RAM. Four waterproof cameras are
installed on the exterior four corners of the bus and one in the
interior positioned behind the windshield; however, only the
front center camera is used in this paper. Two cellular antennas
and two dual-band WiFi antennas exist for data transfer.

B. BEV Crosswalk Change Detector

Previous works [10], [11], which used camera sensors, only
performed change detection in the image plane. Other works
[1], which performed BEV change detection, had the benefit of
LiDAR sensors and detailed surface estimates to obtain BEV
images. Our work combines the advantages of each to perform
BEV change detection with only camera sensors, and there
are four components to our method: structure-from-motion,
learning-based object detection, ground plane fitting, and BEV
comparison.

o Structure-from-Motion (SfM): The COLMAP [12], [13]
software is used to perform structure-from-motion, to
reconstruct scenes in 3D point clouds and to estimate
poses of images taken. Having information of an image’s
pose provides information as to what is visible in the
scene and how to back-project detections or semantic
segmentations from the image plane onto a ground plane.

o Learning-Based Object Detection: Models provided by
the Detectron2 [14] library were used to create masks
for dynamic objects, detect crosswalks, and segment
ground points. The panoptic segmentation model [15]
trained on MS COCO [16] was used to output masks for
dynamic objects like vehicles, pedestrians, and clouds,
while also outputting a mask for the ground. A separate
Mask-RCNN model [17] with a 50-layer ResNet network
[18] and a Feature Pyramid Network [19] backbone was
used to detect zebra crosswalks, and was trained on the
Mapillary Vistas Dataset [20] and additional Pittsburgh
data to detect crosswalks.

¢ Ground Plane Estimation: A ground plane is fitted by
RANSAC to the 3D ground points whose 2D correspon-
dences lie in the ground mask for each image. In some
cases, where there is a slope, the ground plane was fitted
only in the location where crosswalks existed, by using
3D crosswalk points.
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o BEV Comparison and Change Detection: Once crosswalk
detections and labels are in the BEV representation, they
can be compared against each other by the metric of
intersection over union (IoU) to determine if crosswalks
are still present or have been added or removed.

Using the above components, the change detection pipeline
is as follows. A reference map is generated through SfM
using images taken at the time of reference, i.e., the starting
time. A large enough collection of images is required to
produce an accurate reconstruction. In the case of the bus, this
meant using images from the bus’ center camera at different
times that the bus visited a given location. Because images
are taken at different times, dynamic objects (e.g., vehicles,
pedestrians, and the sky) appear differently in images in one
day versus another. The dynamic object segmentation model
creates masks so that features contained inside these areas
are ignored. This helps the SfM converge. Once the scene is
reconstructed, the ground plane estimation occurs, where the
ground segmentation model is used per image to determine
which 3D points lie in the ground and can be fitted against.
Next, in all of the images the crosswalk object detector is
applied, and each instance segmentation of a crosswalk is
transformed out of the image plane onto the ground plane
through a homography transformation. Each detection is ac-
cumulated across frames. Each BEV detection is verified in
three or more frames as a multi-frame consistency check to
reduce false positives. For detections with an overlapping IoU
of 0.1 or greater, non-maximum suppression is applied. This
process creates the reference “map.”

Subsequent “query” images that are recorded after the ref-
erence map is made are registered to the reference reconstruc-
tion and localized by matching 2D features and minimizing
reprojection errors. In this registration, dynamic objects are
similarly masked out. For each image, crosswalks are similarly
detected and transformed out of the image plane onto the
ground plane. Note that the reference images and query images
could undergo the SfM process together; however, creating a
pre-computed reconstruction of the scene and a pre-computed
ground plane saves time for each query input and ensures
that new query images do not influence the geometry of the
reference map.

Finally, the change prediction is made by comparing the
query detections and the reference detections or labels by their
IoU. If there is an IoU of 0.1 or greater, then that reference
label is a confirmed “no change”. If there is no IoU of 0.1
or greater in either of the reference or query images then a
removed or added prediction is made, respectively. Though an
IoU of 0.10 is low, it allows for flexibility in the detection
location since the road is not exactly a planar surface and this
approximation can lead to small inaccuracies in the 2D to 3D

mapping.
C. Live Deployment
We follow the works of Gabriel [21], [22] in combining

edge computing with servers for low-latency, same-day change
results. The data flow follows the same pattern: an edge

Crosswalks per Intersection

Fig. 5: Top: Locations of 17 zebra crosswalk locations regularly
observed by the bus. Most occur in downtown Pittsburgh with one
occurring in Washington County. Bottom: Images of the 17 locations
and the diversity of each. They are grouped by the number of
crosswalks at each intersection.

computer exists on an edge device where data are collected,
filtered, and transferred to a remote server reserved for com-
putationally intensive tasks. First, information is recorded by
sensors on the edge device and then processed by a filter on
the edge computer, i.e., the bus computer. This filter on the
bus finds relevant data and reduces the amount of data needed
to be sent to the server, thereby saving network bandwidth. In
this paper, the filter on the bus determines images to be saved
by its GPS proximity to intersections of interest. Saved images
have an intersection label assigned to them. The images are
grouped by intersection labels and sent to the server as they
are collected as a packet or a video. This packet contains the
information of the GPS as well as the heading of the bus
when the images were taken. When the packet is received by
the server, the corresponding reference SfM reconstruction is
retrieved and the images are processed as described in section
III-B. The remote server we use is an Intel Core 17-7700 CPU
@ 3.60GHz with 32GB Ram and two GeForce GTX 1070
GPUs.

The main idea is that we take advantage of the small
computation available on the edge to perform simple tasks like
GPS filtering and find relevant images immediately, in contrast
to waiting until the end of the day to offload the data and obtain
delayed results. Meanwhile, the larger computer on the server
can be used to perform complicated tasks that require GPUs
and a steady power source like STM. Although data filtering is
simple, it serves an important function of trimming 99% of the
bus data, which are often redundant or uninteresting images
taken while on highways or at bus depots.
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IV. EXPERIMENTS
A. Data

We analyze the crosswalks at 17 locations along the bus
route. These locations contain zebra crosswalks and range
from 1 to 4 crosswalks per location, as seen in Fig. 5. 13
locations are seen from two opposed viewing angles, since the
bus traverses them in each direction, leading to a total of 30
different STM maps being created. These different view angles
are treated as separate maps and reference images due to
the difficulty of matching images with large angle differences
using scale-invariant feature transform (SIFT) features [23] in
COLMAP. Developing a more robust map at each location so
that different maps are not needed for different viewing angles
is left for future work. Each reference map uses an average
of 183 images in its SfM process, with images taken from the
bus on multiple days. The images were taken in May and June
2021. The labels for changes are recorded at an intersection
level as well as an individual crosswalk level at each time the
query images are taken. We annotate crosswalk-level changes
because some crosswalks at an intersection can change while
others remain the same. This is not considered in [1], where if
any change occurs in the scene, there is only one output value.
Having more specificity of the change and the localization of
the change is helpful for the vehicle as well as for updating
the map.

Offline Dataset: We collect a dataset of bus images from
April 2021 to September 2022, covering more than a year’s
worth of data. Each month has images collected from the bus
and assigned to each location and heading angle. However,
some days the bus takes a different route and certain angles
of a location are not observed, so evaluation at those locations
and times are ignored. During this one year of recording,
there are 427 query logs, with each map averaging 14 query
logs, and each query log averaging 85 images. Query logs are
manually sorted into their respective maps, with start and stop
frames visually inspected for bad weather and camera issues.
While manual intervention is used here in order to remove
data outliers and evaluate the change detection pipeline, image
sorting is automated in the live deployment where the complete
end-to-end system is evaluated. Changes occur in six locations,
two of which are seen at different angles. Four locations
experienced crosswalk removal due to repaving of the road,
where after one or two weeks the crosswalks are painted back,
as shown in Fig. 3. One location experienced a change of
crosswalk type from a plain crosswalk to a zebra crosswalk.
Another location experienced two crosswalk removals for a
period of one month before only one crosswalk was repainted
in. This dataset is the first of its kind to analyze locations
for crosswalk changes over an extended period of time and
evaluate the consistency of change predictions given slight
changes of the camera and different dynamic objects in view.

Online Dataset: Another way we evaluated the effective-
ness of our change predictor was to deploy it live for a
month in January 2023 with communication from a bus where
images are received and assigned to each intersection by
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Fig. 6: Different reference labels (detection, map, and empty) by
columns and the observability check (last row) are shown. The query
(first row) is compared with the reference (second row). These are the
results at one intersection with four crosswalks. However, only three
are clearly visible. The third row indicates the change predictions
for each crosswalk. The left column shows an implied no change
for the unobserved crosswalk, the middle column shows a removed
crosswalk, and the right column shows a no change. When the
observability check is applied, the right crosswalk determination is
removed because we identify it as not visible.

location and angle automatically without human supervision.
This important difference tests the robustness of the method
in dealing with images that are not visually inspected for their
correctness with respect to their reference map assignments.
In this online dataset the images are assigned by the GPS
proximity filter, which can be erroneous if the GPS is noisy,
such as in the downtown region where tall buildings exist.
Furthermore, live deployment does not consider the weather
and lighting of the images in its collection, which poses
additional challenges for the change prediction. There are also
other factors, such as different bus routes taken, etc. In total,
the online dataset has 1347 logs, with each map having on
average of 45 logs and each log having 82 images. Logs from
the bus that have unsuccessful image registration are ignored.

B. Additional Checks

When evaluating the change prediction method there are
many factors that can affect its result and accuracy. In this
paper, we recognize two important factors: crosswalk observ-
ability and image localization quality.

Observability Check: For observability, even though we
know a crosswalk exists at a location, if the crosswalk is
occluded by a vehicle or is not fully seen in an image due
to the field of view, such that it makes detection difficult,
then that crosswalk prediction can be ignored. This provides
some flexibility in our evaluation. This also follows the work
of [1], which considers change only for visible crosswalks.
Our observability check is determined by projecting crosswalk
labels in the reference map into query images and seeing if the
entire crosswalk is seen in the image. If the entire crosswalk
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Fig. 7: The top row shows localized query images (blue) in the SfM
map. The original registration has several bus images being localized
poorly. While the images should have a fixed height with respect to
the ground, some images are seen scattered vertically. This creates
multiple false positive changes in the bottom left prediction. Many
of these false positives can be removed if poorly localized images
are removed, circled in red. The bottom right prediction is after the
localization check is applied and only one false positive detection
remains.

is not visible in three or more frames, we indicate that the
crosswalk is not observable. An example is shown in Fig. 6.

Localization Check: Another factor is the localization
quality of the images. If image localization is poor, then the
change prediction results will also be poor. This is because if
there is a misalignment of the detections coming out of the
images onto the bird’s eye view, a single crosswalk in the real
world would appear multiple times in our BEV representation,
causing false positive change predictions. Localization quality
is determined by measuring the distance between a registered
query image and its nearest neighbor reference image. If the
difference is too large, that image is removed from the list
of query images. Because each intersection uses images from
the bus coming from the same angle and trajectory, we can
assume that the query images should lie close to the locations
of images in the reference map. The localization check is
demonstrated in Fig. 7.

C. Hand Labels

Another factor we consider is the label used for the
crosswalks in the reference map. [1] uses hand-labeled HD
map polygons of crosswalks. This can be problematic if the
crosswalk’s appearance does not match the hand label. A
situation like this can occur, for example, when the crosswalk
is faded and is difficult to detect using an object detection
model. Therefore, we experiment with hand labels for the
reference crosswalks by creating dense reconstructions of each
scene and labeling the crosswalks from the bird’s-eye view. An
example is shown in Fig. 6 as map labels.

D. Pretending an Empty Map

The last experiment that is done is pretending that there
is nothing in the map, so that the expected change is for all
crosswalks to be newly added crosswalks. This experiment is
conducted because the existing changes in the dataset involve
mostly removed crosswalks, with few added crosswalks. This
imbalance is due to the limited range of the bus route and
the bus primarily driving on main roads where necessary
crosswalks already exist. However, in theory, our methods
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Fig. 8: Three examples of change detection from the offline dataset
where reference and query images are shown in the first two rows,
the change detection result for that time instance in the third row,
and the longitudinal result over one year where the arrow indicates
when the third row prediction occurs and the red filling is when
the ground truth change occurs. Scene 1 demonstrates a crosswalk
being removed. Scene 2 demonstrates no change in the crosswalks;
however, there is one instance of a false positive detection. Scene 3
shows one instance of an added zebra crosswalk, which persists.

could be tested for added crosswalks if the reference map was
created in the middle of road renovations when the pavement
is entirely empty and no road markings have been painted.
But instead, we pretend the map is empty and no existing
crosswalk labels are yet in the reference map, which can be
useful if the map is yet to be annotated.

V. RESULTS

We measure the results in accuracy, F1 score, precision, and
recall for the change detection system on the offline and online
data at the individual crosswalk level and intersection level.
The most extensive experimental results are for the offline
data, which include ablation results, using the detections from
reference images, hand labels from dense reconstructions, and
an empty map.

Offline Dataset: Our results in Table I show that observ-
ability and localization checks increase the performance in
all metrics. When comparing the use of detection vs. the
map as reference labels, the detection labels perform better;
however, the localization and observability checks make the
performance gap smaller. If we assume the map is empty, we
can achieve high change precision, which indicates the method
is not overfitted to a low probability of change and indicates
our crosswalk detector is very accurate even over the period of
a year. We also look at the intersection level change prediction
and see similar patterns. It is useful to note that despite a
large imbalance of no change occurring, high precision and
F1 scores can be achieved. Fig. 8 shows qualitative change
detection results of three intersections and the longitutinal
change detection over the year.

Online Dataset: We also show the results using the
best performing method from the offline dataset, using the
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TABLE I: Change detection results for the offline dataset. The query
predictions are compared against different reference labels: detections
from the reference images (det), hand drawn map labels (map), and no
labels (empty). Ablation for the observability (obs) and localization
(loc) checks are also shown.

[ ref +obs +loc [ precision accuracy recall F1 ]
Individual Crosswalk Performance
det 0.19 0.86 098 0.32
det X 0.27 0.91 098 0.42
det X 0.23 0.89 0.98 0.37
det X X 0.38 0.94 0.98 0.54
map 0.16 0.83 0.98 0.27
map X 0.26 0.90 098 041
map X 0.18 0.85 0.98 0.30
map X X 0.36 0.94 098 0.52
emp 0.94 0.84 0.88 091
emp X 0.94 0.91 0.97 0.96
emp X 0.98 0.86 0.87 092
emp X X 0.98 0.95 0.97 097
Intersection Performance

det 0.25 0.75 1.00 0.40
det X 0.36 0.85 094 0.52
det X 0.25 0.75 1.00 0.40
det X X 0.37 0.86 0.94 0.53
map 0.22 0.70 1.00 0.36
map X 0.34 0.84 0.94 0.50
map X 0.22 0.70 1.00 0.36
map X X 0.35 0.85 0.94 0.51
emp 1.00 0.98 0.98 0.99
emp X 1.00 0.98 098 0.99
emp X 1.00 0.98 098 0.99
emp X X 1.00 0.98 098 099
TABLE II: Change detection results for the online dataset.

[ ref +obs +loc [ precision accuracy recall FIl |

Individual Crosswalk Performance
det X X [ 0.22 0.85 0.98 0.35
Intersection Performance

det X X [ 0.28 0.66 0.84 042

sensor detections as labels, in the live deployment and show
accuracy, precision, recall and F1 scores of predictions in Table
II. We observe a performance gap between the online and
offline in all metrics, for example a 0.11 difference in the
F1 score for intersection level performance. We also track the
accuracy over time to indicate the consistency of the change
prediction results in Fig. 9. However, we do notice that there
are fluctuations, which indicates that there are environment
factors that can affect the change prediction even at the same
location. This can be a form of anomaly detection in the
environment or data, because in the plot there is a large
dip in accuracy on the last day and this is due to large
snow precipitation from the previous night, which might have
affected detection performance.

Influence of Weather: We explore the effect of weather
on the change detection performance using the online dataset
shown in Fig. 10. For the hour that the query images are taken,
the metadata of the weather is also recorded. We explore the
change detection accuracy as well as the rate of success of SfM
in registering the new images. For change detection accuracy,
there is a drop in performance on three notable occasions,
clear and foggy days and night time. Performance difficulty
at night is reasonable because darkness can hinder detection

= o =
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Fig. 9: Accuracy of the method over all intersections on a given
day through the online dataset. Fluctuations exist in accuracy due
to external factors such as weather, dynamic objects, etc. Example
images from the best and worst performing days are shown on the
right.
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Fig. 10: Accuracy of the method and success rate of query image
localization over different weather conditions in the online dataset.
Drops in performance for both metrics occur at night. Additionally,

change detection performance decreases on clear and foggy days.
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Fig. 11: Accuracy of the method over intersections with different
number of crosswalks on the online and offline datasets. Decrease in
performance as crosswalk numbers increase and a larger performance
gap between the online and offline datasets.

performance and change the lighting of the environment.
Surprisingly then is that a clear day also results in lower
performance. The reason, however, is that on clear days, there
are more cases of shadows, sun glare, image overexposure,
which can also hinder detection. Foggy weather will limit
visibility and also hinder detections. We also look at the
registration success rates of query images and see similar
trends, except clear days see an improvement while night
time imagery remains low. Another surprise is how there is
little performance decrease on snow weather, but it may be
dependent on the amount of precipitation that occurs. Snow
days have diffuse light like cloudy days which is beneficial for
localization and crosswalk detection, but when snow begins
to cover the ground, it will affect performance. Therefore,
this analysis shows that it is best to perform change detection
during the day time, with little precipitation and with diffuse
light.

Influence of Number of Crosswalks: We explore the
effect of the type of intersection on the change detection
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result as shown in Fig. 11. Here we see analysis on both the
online and offline datasets where accuracy is plotted against
the number of crosswalks at the intersection. There is a
downward trend of accuracy as more crosswalks exist, with
a performance gap between the offline and online change
detection for intersections with more than one crosswalk.
This drop in performance is likely because intersections with
more crosswalks tend to be larger, having more crosswalks
to account for, and more traffic that can disrupt the normal
change detection process.

Latency: Since the purpose is for high frequency moni-
toring of HD maps, the general time consumption and latency
for the whole process is important to consider. The cellular
internet bandwidth of the bus of 200KB-1MB/s allows for
an image transfer rate of 2-10 images/s with an image size
of 151KB/image. A single intersection with 80 images can,
therefore, take 8-40s to be received on the server. The server
analysis takes 107£52s per intersection. Thus, the total pro-
cessing time of 4 mins per intersection is suitable for daily
map status updates; however, there is an upper bound of the
number of intersections that can be monitored given the slight
latency.

VI. CONCLUSION AND FUTURE WORK

This paper demonstrates a way to obtain accurate crosswalk
change detections from a low-cost sensor suite of a front
camera and a GPS on a bus. We show how images contain
enough information to perform complex scene analysis in
2D and 3D and are more easily crowd-sourced compared to
other sensor modalities. The system performs with 86% and
66% accuracy of change detection at the intersection level
on the offline dataset and online dataset, respectively, and
94% and 85% at the crosswalk level, respectively. Though
not perfect, our methods can be used to feed suggestions to
map maintainers who can verify if a change has occurred. This
would improve their workflow and save their time in searching
for changes. The paper improves on past work that used map
labels as reference and addresses sources of error such as
observability and localization issues when using a monocular
camera approach. This paper, furthermore, shows that buses
and other public vehicles are valuable sources of data for road
monitoring and present an alternative solution to designated
mapping fleets.

In the future, it is important to consider the plain crosswalk,
which is currently excluded in this paper. The plain crosswalk
is defined by only two lines and can easily be confused with
lane dividers by modern object detectors. Furthermore, other
map changes exist such as lane changes, added bike lanes, or
lane shifting. These are additional detection tasks that should
be incorporated and considered for map updates. Lastly, the
number of intersections this paper addresses is limited and
covering a larger area should be considered.

VII. ACKNOWLEDGMENT

We thank Canbo Ye, William Pridgen, Anurag Ghosh, and
Khiem Vuong for their useful feedback and assistance.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

J. Lambert and J. Hays, “Trust, but verify: Cross-modality fusion for HD
map change detection,” in Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski,
“Building rome in a day,” in 2009 IEEE 12th International Conference
on Computer Vision, 2009, pp. 72-79.

K. Matzen and N. Snavely, “Scene chronology,” in Proc. European Conf.
on Computer Vision, 2014.

S. M.S., H. Grimmett, L. Platinsky, and P. Ondriska, “Visual vehicle
tracking through noise and occlusions using crowd-sourced maps,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2018, pp. 4531-4538.

Q. Li, Y. Wang, Y. Wang, and H. Zhao, “Hdmapnet: An online hd map
construction and evaluation framework,” 2021.

T. Roddick and R. Cipolla, “Predicting semantic map representations
from images using pyramid occupancy networks,” in IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2020.
S. A. Abbas and A. Zisserman, “A geometric approach to obtain a bird’s
eye view from an image,” in 2019 IEEE/CVF International Conference
on Computer Vision Workshop (ICCVW). IEEE, 2019, pp. 4095-4104.
H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” in CVPR, 2020.

M.-F. Chang, J. W. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse: 3d
tracking and forecasting with rich maps,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

K. Sakurada and T. Okatani, “Change detection from a street image pair
using cnn features and superpixel segmentation,” in BMVC, 2015.

P. F. Alcantarilla and S. Stent, “Street-View Change Detection with
Deconvolutional Networks,” p. 10.

J. L. Schonberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixel-
wise view selection for unstructured multi-view stereo,” in European
Conference on Computer Vision (ECCV), 2016.

J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

A. Kirillov, K. He, R. B. Girshick, C. Rother, and P. Dollar, “Panoptic
segmentation,” CoRR, vol. abs/1801.00868, 2018.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and L. Zitnick, “Microsoft COCO: Common Objects in
Context,” in Proceedings of the European Conference on Computer
Vision (ECCV), Sept. 2014.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in 2017
IEEE International Conference on Computer Vision (ICCV), 2017, pp.
2980-2988.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770-778.

T. Lin, P. Dolldr, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature Pyramid Networks for Object Detection,” in 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
936-944.

G. Neuhold, T. Ollmann, S. Rota Buldo, and P. Kontschieder, “The
mapillary vistas dataset for semantic understanding of street scenes,”
in International Conference on Computer Vision (ICCV), 2017.

K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proceedings of the 12th
Annual International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’14.  New York, NY, USA: Association for
Computing Machinery, 2014, p. 68-81.

C. Ye, “Busedge: Efficient live video analytics for transit buses via edge
computing,” Master’s thesis, Carnegie Mellon University, Pittsburgh, PA,
July 2021.

D. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the Seventh IEEE International Conference on Computer
Vision, vol. 2, 1999, pp. 1150-1157 vol.2.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 09,2025 at 18:47:53 UTC from IEEE Xplore. Restrictions apply.



