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Abstract—This paper investigates the modeling, analysis, and
design methods for passively balancing flying capacitor multilevel
(FCML) converters using coupled inductors. Coupled inductors
synergize with FCML converters by reducing inductor current
ripple, reducing switch stress, and, as proven in this paper,
by providing flying capacitor voltage balancing. This enables
FCML topologies to be scaled well to larger systems. This paper
proves that coupled inductors can solve the unbalancing problem
in many FCML converters. Moreover, tools are developed to
thoroughly explain and quantify coupled inductor balancing,
allowing general design guidelines to be offered for robust
coupled inductor FCML converters. Finally, this paper derives
the limitations of coupled inductor balancing with respect to the
number of phases, levels, and the required coupling ratio. The
key principles of coupled inductor FCML balancing in steady-
state are demonstrated with a systematic theoretical framework
and extensive experimental and simulation results.

Index Terms—flying capacitor multilevel (FCML) converter,
coupled inductors, natural balancing, charge balancing, passive
voltage balancing, feedback mechanism

I. INTRODUCTION

M ultilevel converters are an important enabling tech-

nology for power converter applications requiring low

current ripple and fast transient response, such as CPU voltage

regulators [4], [5], envelope trackers, and power amplifiers

[6], [7]. By using three or more switching voltage levels,

multilevel converters can reduce the voltage and current stress

on components and multiply the effective switching frequency.

One method of generating more than the two switching voltage

levels from a single input voltage is to use capacitors with dc

voltages connected in series with the input supply. This is

the working principle of flying capacitor multilevel (FCML)

converters [8], which have proved especially effective in high

bandwidth and high power converter designs [9]–[17].

Multilevel converters help to address one of the fundamental

challenges of high bandwidth power converter designs: the
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Fig. 1. Chart of selected research areas in FCML converter balancing. Cou-
pled inductors represent a new branch of techniques for passively balancing
FCML converters which can be used together with other techniques. Some of
the highlighted balancing methods are compared in Section VII.

trade-off between current ripple and bandwidth presented by

the inductive elements [4], [7], [18]. It is desirable to have a

larger inductance to maintain low inductor current ripple, but

it is also desirable to have a smaller inductance to respond

to sudden load, input line, or output reference transients [15],

[16], [19]. For a buck converter, the inductor selection must

trade-off these two competing criteria. By switching between

voltage levels that are closer together at a higher effective

switching frequency, multilevel converters enable the use of

smaller inductors without increasing the current ripple, thus

circumventing the typical inductor trade-off.

FCML converters also synergize well with multiphase cou-

pled inductors. Interleaving multiple converter phases with

coupled inductors can reduce the inductor size [20], output

current ripple [21], and transient inductance [22], [23]. Since

coupled inductors reduce not only the overall current ripple

but also that of the individual phases [24], [25], they can

also reduce the core loss and saturation flux requirements.

Finally, as proven in this paper, interleaving multiple FCML

converters with coupled inductors passively balances the flying

capacitors, overcoming the key limitation of FCML converters.

A. Background on FCML Converter Balancing

Despite their numerous advantages in theory, FCML con-

verters only function well if the flying capacitors stay at
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their ideally balanced voltage levels. If the flying capacitors

are not balanced, the switching voltage levels will become

corrupted and cause increased voltage stresses, current ripple,

and harmonic distortion at the output [9], [10], [26]. Consid-

erable attention has been given to understanding the theory of

flying capacitor balancing and developing improved methods

for balancing a single-phase, standalone FCML converter.

It has been shown that practical FCML converters exhibit

natural balancing [12], [27]–[29]. In this paper, we define nat-

ural balancing as the process in which the power losses in the

converter gradually balance the flying capacitors to their ideal

values. Ideal odd-level FCML converters have been shown to

exhibit steady-state indeterminacy, which leads to an increased

sensitivity of flying capacitor voltages to parasitic losses and

timing imperfections [30]. Therefore, natural balancing can

be less reliable, especially when losses are low. Moreover,

the variable and nonlinear nature of natural balancing makes

it difficult to predict the steady-state flying capacitor voltage

imbalance and to size the component ratings [31]–[33].

Many other methods of balancing flying capacitors have

been developed, some of which are shown in Fig. 1. Perhaps

the most prominent is active balancing, where the flying

capacitor voltages are sensed or estimated and then balanced

through an active intervention such as adjusting the phase shift

or duty cycles of the switches [34]–[37]. This is a flexible and

robust technique that is applicable in many FCML converters.

However, since active balancing requires additional sensing

circuitry and more complex control, it becomes challenging to

implement as the number of levels, the switching frequency,

or the control bandwidth increase [32], [37]. Other approaches

such as balance boosters [13], optimizing the switching se-

quence [27], [38], [39], or simply choosing an even number

of levels [33] seek to improve the passive balancing of FCML

converters. Here, we define passive balancing as any balancing

mechanism that does not use active control to sense and adjust

the flying capacitor voltages. Therefore, natural balancing is a

type of passive balancing.

In addition to the practical methods used to balance FCML

converters, the underlying theory of how flying capacitors are

balanced can be divided into two broad categories: i) dynamic,

which describes how FCML converters dynamically balance

(or fail to do so) from an initial imbalance [9], [10], [27], and

ii) steady-state, which describes the flying capacitor imbal-

ance that persists at steady-state due to external unbalancing

mechanisms. In particular, while much early FCML balancing

research focuses on dynamic behavior, [40] studies the ex-

istence of steady-state imbalances and examples of practical

non-idealities that can cause them.

B. Using Coupled Inductors to Balance FCML Converters

One recent advance is the use of coupled inductors to

balance multiphase FCML converters in dynamic [1] and

steady-state conditions [2], and with multiple phases and levels

[3]. By coupling the inductor currents of multiple interleaved

FCML converters, the flying capacitors of one phase can

compensate the imbalances of another and passively balance

the system. This offers several advantages over other means of

balancing: i) The FCML converter system naturally inherits the

benefits of coupled inductors in current ripple reduction and

faster transient response; ii) Coupled inductors provide loss-

less flying capacitor voltage balancing without any additional

components or changes to the switching scheme that is much

stronger than natural balancing in most practical converters;

iii) Coupled inductor balancing scales well to higher power

levels, large numbers of levels, and higher switching frequen-

cies since there is no need to sense or actively adjust the flying

capacitor voltages. However, no systematic analysis has been

presented to quantitatively explain the balancing mechanisms

of coupled inductors and to explore their applicability and

limitations.

C. Contributions of this Work

This paper systematically investigates the mechanisms, ap-

plicability, and limitations of coupled inductor balancing of

FCML converters. The main contributions are:

• We develop, for the first time, a systematic modeling

framework for quantitatively describing the balancing

behavior of coupled inductor FCML converters. The

models and methods scale well to an arbitrary number

of levels, number of phases, and switching pattern.

• We compare coupled inductor balancing to other common

techniques such as active balancing and demonstrate its

advantages in cost, strength, and flexibility.

• We analyze the limitations of scaling the technique to

an arbitrary number of levels and phases, and explore

the scenarios when the balancing mechanisms may fail.

Balancing with partially coupled inductors is discussed,

including desirable regions of coupling to maximize

robustness.

• While this paper deals mainly with coupled inductor

balancing, the modeling methods and framework are

broadly applicable to other FCML converter balancing

mechanisms.

The rest of the paper is organized as follows: Section II

reviews the background of FCML converters and coupled

inductors. Section III explains the fundamental balancing

mechanism of coupled inductors. Section IV derives a sys-

tematic mathematical framework for studying coupled inductor

balancing and to determine which converters coupled inductors

can balance. Section V finds the limitations of coupled induc-

tor balancing with regards to the number of phases, levels, and

coupling ratio. Section VI verifies the theoretical results using

a four-phase, three-level FCML converter and a two-phase,

five-level FCML converter. Section VII compares coupled in-

ductor balancing to other common techniques including active

balancing, natural balancing, and even-level selection. General

design guidelines for coupled inductor FCML converters to

minimize capacitor voltage imbalances are reviewed. Finally,

we summarize our main findings in Section VIII.

II. FCML CONVERTERS WITH COUPLED INDUCTORS

Figure 2 shows a two-phase, three-level FCML converter

with coupled inductors used as the canonical cell for pre-

senting the analytical framework. The two phases each have
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Fig. 2. Schematic of a two-phase, three-level FCML converter with coupled
inductors parameterized by the leakage (Ll) and magnetizing (Lμ) inductance.
The current sources idist1 and idist2 model mechanisms unbalancing the flying
capacitors, such as timing or duty cycle mismatches.
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Fig. 3. (a) Schematic and (b) diagram of a two-phase coupled inductor
parameterized using leakage and magnetizing inductance.

two pairs of switches operated as complementary pairs to

prevent shorting. The switches signals are labelled as Φxy ,

where x is the phase number and y orders the switches in

one phase with y = 1 being closest to the input side. Each

phase has a flying capacitor, labeled Cfly1 and Cfly2, which

ideally have voltages equal to half the input voltage Vdc such

that the switch node voltages can be 0, Vdc

2 , or Vdc depending

on the switch connections. The phases are coupled by a two-

phase coupled inductor, which is also illustrated in Fig. 3.

The coupled inductor is parameterized using a transformer

model and its leakage and magnetizing inductance, Ll and

Lμ. Additional background on multiphase coupled inductors

and models used in this paper can be found in Appendix I.

Fig. 4 shows the switching waveforms of the converter, with

the switch states and capacitor charge/discharge states detailed

in Table I. Both of the individual FCML converter phases

are switched using phase-shifted pulse width modulation (PS-

PWM), which means the switch pairs in one phase are

operated with a duty cycle of d and phase shifted by 180° to

distribute the switching actions evenly in the switching period

T . The two phases are then themselves interleaved with a

phase shift of 90°. The result of this dual interleaving is four

evenly interleaved switch pulses, labelled pulse (1) through

pulse (4) in Fig. 4. For higher numbers of phases or levels

in the FCML converter, the switches are similarly interleaved

such that the switching events are always uniformly distributed

in a cycle.

During pulse (1), phase #1 connects Vdc to vSW1 through

Cfly1 and charges the flying capacitor. During pulse (2),

t
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Fig. 4. Switching waveforms of the two-phase, three-level FCML converter in
Fig. 2 with PS-PWM and d = 0.125. If the flying capacitors are imbalanced
(illustrated with a positive imbalance on phase #1 and a negative imbalance
on #2), the current ripple is increased.

TABLE I
SWITCH AND FLYING CAPACITOR STATES FOR TWO-PHASE, THREE-LEVEL

FCML CONVERTER WITH d = 0.125

Sub-period 1 2 3 4 5 6 7 8

Start time t 0 T
8

T
4

3T
8

T
2

5T
8

3T
4

7T
8

Φ11 1 0 0 0 0 0 0 0

Φ21 0 0 0 0 1 0 0 0

Φ21 0 0 1 0 0 0 0 0

Φ22 0 0 0 0 0 0 1 0

CflyA chg - - - dischg - - -

CflyB - - chg - - - dischg -

phase #2 connects Vdc to vSW2 through Cfly2 and charges the

flying capacitor. Pulses (3) and (4) connect the switch nodes to

ground through the flying capacitors in the opposite direction,

which discharges them. Since the ideal voltage of the flying

capacitors is Vdc

2 , each of the four switch node voltage pulses

are ideally at Vdc

2 .

With uncoupled inductors, the current in each phase iL1

and iL2 will ramp based only on the voltage applied to the

same coil. Only natural balancing is in effect. When the
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inductors are coupled, the currents also ramp depending on

the voltage of the other phase. This happens because of the

shared magnetic flux paths as shown in Fig. 3(b). To quantify

the amount of coupling between the phases, we define the

inductive relationships between the phases as[
diL1

dt
diL2

dt

]
=

[
1/Lsame

1/Lcross

1/Lcross
1/Lsame

]
︸ ︷︷ ︸

L−1

[
vL1

vL2

]
, (1)

where the inductor voltages and currents are labelled in

Fig. 3(a). Matrix L−1 is the inverse of the inductance matrix

L in vL = LdiL
dt describing the induced voltages in each coil

due to changing coil currents. L is traditionally parameterized

by the self and mutual inductances [24]. The formulation

in eq. (1) is inverted, with changing currents expressed as

a function of applied voltages: diL
dt = L−1vL. To avoid

confusion with the self and mutual inductances, we define

the same inductance (Lsame) describing the resulting current

ramp if a voltage is applied to the same winding, and the

cross inductance (Lcross) describing the current induced in

one phase if the other has a voltage applied to it. According to

[24], Lcross and Lsame are functions of the mutual and leakage

inductance Lμ and Ll:

Lcross =

(
M − 1

μ
+M

)
Ll, (2)

Lsame =
μ

M − 1 + μ

(
M − 1

μ
+M

)
Ll, (3)

where M is the number of phases and μ =
Lμ

Ll
is the coupling

ratio. Lcross is always greater than or equal to Lsame. When

μ → ∞, the inductors becoming fully coupled and Lcross =
Lsame = MLl, indicating that applied phase voltages have

equal influence on all phase current.

Fig. 4 shows the inductor current waveforms in the two-

phase example that are typical of a coupled inductor system.

For example, the current in phase 2 increases during sub-

period #1 despite the fact that the voltage on its coil is −Vo

during this time. This is because the first coil has a positive

voltage and is coupled to it. The current in phase 2 will not

necessarily increase during sub-period #1 depending on the

coupling ratio [24], but its slope will always be greater than

if there was no coupling.

Because a voltage applied on either coil ramps the current

in both, the current ripple frequency is doubled from usual and

the ripple is reduced. Increasing the coupling ratio increases

the effect that the voltage on one coil has on the current in

the other. A fully coupled inductor, where the flux in each

phase is identical, would have Lcross = Lsame and the same

current (both dc current and ac ripple) in both phases. With

tight coupling, it is important to switch all phases with proper

phase shifting, as the core will present a low inductance if

only one phase is switched and be prone to saturation.

If the flying capacitor voltages are not equal to Vdc/2, they

are unbalanced. Fig. 4 illustrates this for the case where flying

capacitor #1 has a positive imbalance and flying capacitor #2

has a negative imbalance. In this case, the switch node pulses

have voltages above and below the ideal level, which increases

the current ripple. Moreover, the voltage stress on the switches

is increased. This is why it is important to ensure the flying

capacitor voltages remain balanced.

Later sections of this paper deal with FCML converters with

more phases and levels. We define the number of phases as M
and the number of flying capacitors in each phase as K. Each

phase is therefore a (K + 2)-level FCML converter since the

number of possible switching levels is always two more than

the number of flying capacitors. We denote the flying capacitor

voltages as v(phase #m, cap #k)
fly , or for brevity, v(m,k)

fly , where m =
1, . . . ,M and k = 1, . . . ,K are the indices identifying the

phase and capacitor. The capacitor closest to the input source

has the index k = 1. The ideally balanced flying capacitor

voltages in this case are

v(#m, #k)
fly, balanced = Vdc

K + 1− k

K + 1
, (4)

which are the voltages that result in equal voltage stresses

on all switches and switching levels that are evenly spaced

between 0 and Vdc.

III. FUNDAMENTAL PRINCIPLES OF COUPLED INDUCTOR

FCML CONVERTER BALANCING

In this section, we present a feedback framework to explain

the mechanisms of coupled inductor voltage balancing for

FCML converters. In the context of this paper, we define

voltage balancing as the flying capacitor voltages reaching

steady-state values, and we are interested in understanding

the mismatches between these steady-states and the nominal

capacitor voltages. We start by formally reviewing small-signal

modelling of FCML converter balancing. Then, we show how

the losses in a FCML converter will naturally force the system

into a steady-state, regardless of if the inductors are coupled

or uncoupled, then compare the resulting steady-state values

in the uncoupled and coupled cases.

A. Small-Signal Modeling of FCML Converter Balancing

In this section, we formalize the small-signal modelling

principles used to develop the feedback models in the proceed-

ing sections. First, we examine the schematic of the three-level

converter in Fig. 5. The state variables are the inductor current

iL and the flying capacitor voltage vfly. These state variables

can be further divided by superposition into balanced and

unbalanced components. This division simplifies the analysis

since only the unbalanced components, the flying capacitor

voltage imbalance ṽfly and the inductor current imbalance

ĩL, are relevant to balancing analysis. The large-signal load

current Io, the ideally balanced voltage flying capacitor, Vdc/2,
and the switching ripple (which we assume to be negligible)

are components of normal operation that can be ignored.

Therefore, each flying capacitor voltage is written as

v
(m,k)
fly = v

(m,k)
fly, balanced + ṽ

(m,k)
fly , (5)

where the balanced level is defined in eq. (4). Fig. 6 shows

the switching waveforms of the three-level converter. We wish

to relate the imbalance voltage, power loss, and current in the

flying capacitor. In our analysis, we assume the power loss



SUBMITTED TO IEEE TRANSACTIONS ON POWER ELECTRONICS

iin
Cfly

Vdc

L Rw

Co Ro

vo
C

vfly = 
Vdc
2 + vripple + vfly

Balanced 
Components

Unbalanced 
Component

Io

L

iL = Io + iripple + iL

Balanced 
Components

Unbalanced 
Component

Φ1 Φ2

Φ2Φ1

ifly
idist
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Fig. 6. Switching waveforms of a single-phase three-level FCML converter.
The unbalanced component of the switch node voltage causes a perturbation
of the inductor current, ĩL. If the resistance Rw is zero, the inductor
current perturbation ramps linearly and causes no charge transfer in the flying
capacitor. If the resistance is nonzero, the inductor current ramps exponentially
and there is a net charge transfer, thus causing lossy natural balancing.

comes from the resistance in series with the inductor Rw. First,

we analyze how an imbalance in the flying capacitor affects

power transfer in the converter. There are four sources and

sinks of power in the converter in Fig. 5: i) power dissipated

in the resistance, ii) power input from the source Vdc, iii)

power output to the load, and iv) power that charges the flying

capacitor. First, we compute the loss that an unbalanced flying

capacitor causes in the resistor. Fig. 6 shows the switching

waveforms of the three-level converter. By superposition, the

imbalanced component of the flying capacitor voltage, ṽfly,

is applied to the switch node twice in alternating directions

every period. This induces an imbalanced component of the

inductor current ripple ĩL. Assuming the flying capacitor is

large enough such that the flying capacitor voltage does not

change appreciably during a switching period, induced current

is symmetric across t = 0.5T and has zero mean. This

assumption is valid because the flying capacitors must be sized

large enough to minimize the ripple at maximum load and

protect the switches. Averaging over a switching period, the

unbalanced inductor current causes an average power loss in

the resistance Rw

〈PRw
〉 = 〈

Rwi
2
L

〉
=

〈
Rw(Io + ĩL)

2
〉

= RwI
2
o +Rw

〈
ĩL

2
〉
+RwIo�

���
0〈

ĩL
〉

= RwI
2
o +Rw

〈
ĩL

2
〉
. (6)

Here, 〈x(t)〉 = 1
T

∫ T

0
x(t) dt represents the average over a

switching period. Because the FCML converter switches the

flying capacitor in alternating directions symmetrically every

period, the inductor imbalance current is symmetric about zero

and has zero mean, meaning the loss components from the

large- and small- signal current are independent. Next, the

output power is

Po = Io(dVdc −RwIo), (7)

assuming the output capacitor is very large such that the output

voltage is constant. The flying capacitor current is equal to the

inductor current with alternating directions as shown in Fig. 6.

The power transferred to the flying capacitor is

〈Pfly〉 =
(
Vdc

2
+ ṽfly

) 〈̃
ifly

〉
. (8)

Finally, power comes from the input source. The input cur-

rent sees the same imbalance current as the flying capacitor

during 0 < t ≤ dT . The flying capacitor current during

0.5T < t ≤ (d + 0.5)T is identical to 0 < t ≤ dT , but

the input source is not connected during this time. Therefore,

the average current from the source is equal to the average

capacitor current divided by two. The average power from the

source is

〈Pin〉 = dVdcIo + Vdc

〈̃
ifly

〉
2

. (9)

By conservation of energy, the average power of all sources

and sinks sums to zero:
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���dVdcIo +����
Vdc〈ĩfly〉/2︸ ︷︷ ︸
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2
o )︸ ︷︷ ︸

Po

−
(
�
��Vdc

2
+ ṽfly

) 〈̃
ifly

〉
︸ ︷︷ ︸

〈Pfly〉

−
(
���RwI

2
o +Rw

〈
ĩL

2
〉)

︸ ︷︷ ︸
〈PRw 〉

= 0

→ −ṽfly

〈̃
ifly

〉−Rw

〈
ĩL

2
〉
= 0

→ ĩbal :=
〈̃
ifly

〉
= −

Rw

〈
ĩL

2
〉

ṽfly

. (10)

The average current into the flying capacitor, which we define

here as the balancing current ĩbal, is dependent only on the

“small-signal” loss in the resistor Rw

〈
ĩL

2
〉

and the flying

capacitor voltage. It is not dependent on the large-signal input

voltage or load current. This happens because for every unit

of charge taken from the flying capacitor, a proportional unit

is taken from the input source. In other words, the small-

signal power loss affects the small-signal flying capacitor

voltage, while the large-signal flying capacitor voltage is taken

care of by the input source. The balancing effect always

reduces the flying capacitor imbalance. Since the power loss is

always positive, if the flying capacitor imbalance voltage ṽfly is

positive, ĩbal is negative and the flying capacitor is discharged

by the power loss, and vice versa if the imbalance is negative.

B. Feedback Model of Natural Balancing
We develop a model for natural balancing using the single-

phase FCML converter shown in Fig. 5 to compare it to the

canonical coupled two-phase case. FCML converters exhibit

natural balancing, where flying capacitor imbalance voltages

cause increased losses that dissipate the imbalance gradually

[9], [10], [12], [26], [41]. For converters without balancing

techniques like active balancing, natural balancing is the dom-

inant mechanism that determines the flying capacitor voltages.
Assuming the inductor resistance Rw provides the loss

source, the “small-signal” power loss
〈
P̃Rw

〉
, considering

only the unbalanced state variables, is

〈
P̃Rw

〉
=

γ

RwQ2
L

ṽ2fly, (11)

where γ = d2(3−4d)π2

3 is a scaling factor depending on the

duty cycle and QL = ωswL
Rw

is the quality factor of the inductor

at the switching frequency. The details of this calculation are

contained in Appendix II. The power loss is equal to the

approximate imbalance voltage over the resistor
ṽfly

QL
squared,

divided by the winding resistance Rw and scaled by γ. As

proven in Section III-A (and verified in Appendix II), this

power loss causes an effective balancing current

ĩbal =

〈
P̃Rw

〉
ṽfly

=
γ

RwQ2
L

ṽfly. (12)

Equation (12) relates the balancing current to the power loss,

and by extension, the imbalance voltage. Using these equa-

tions, we construct the feedback model of natural balancing

shown in Fig. 7. The flying capacitor is modelled as an inte-

grator of current that produces an imbalance ṽfly which feeds

back via natural balancing to counteract external disturbances

modelled using ĩdist. The flying capacitor imbalance voltage

ṽfly induces an average power loss 〈PRw
〉 depending on the

quality factor of the inductor QL.

The feedback diagram emphasizes the fundamental prob-

lems with natural balancing: it relies on large converter losses

to be effective. The steady-state gain from disturbance to

imbalance, which we compute by setting ĩdist = −ĩbal, is

ṽfly

ĩdist

∣∣∣∣
steady-state

=
Q2

LRw

γ
. (13)

If the quality factor QL of the inductor is high, the gain from

imbalance voltage to balancing current will be low, leading to

weak balancing capability.

C. Feedback Model of Coupled Inductor Balancing

Coupled inductor balancing uses a fundamentally different

mechanism to natural balancing. Fig. 8 illustrates the balancing

mechanism in a feedback model for a two-phase FCML

converter with coupled inductors. An imbalance voltage on

either phase will induce a current in the other through the

coupled inductors. We show that in periodic steady state,

coupled inductors create a negative feedback loop through

the cross inductance Lcross to greatly mitigate the voltage

imbalance created by an external disturbance. This mechanism

is significantly more effective than the lossy mechanism of

natural balancing because its gain is much higher.

Fig. 9 details the coupled inductor feedback loop. Through

the coupled currents, the imbalance voltage of phase #2 can

compensate for the disturbance current in phase #1 and vice

versa. Both phase imbalances induce currents in the other

with slope 1/Lcross and scaled by a timing factor derived in

Appendix II. In the 0 < d < 1
4 case, this timing factor

has magnitude d2T because the induced current ramps up for

dT and then the balanced flying capacitor is connected for

duration dT , so the average balancing current is scaled by
dT×dT/T = d2T .



SUBMITTED TO IEEE TRANSACTIONS ON POWER ELECTRONICS

∑ sCfly

1ifly1 vfly1idist1

∑ sCfly

1ifly2 vfly2idist2

Coupled Inductor

ibal
(1→2)

ibal
(2→1)

~

~

~ ~

~~
~

~

Fig. 8. Feedback diagram of two-phase, three-level FCML converter balanced
by coupled inductors.
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Fig. 9. Detailed feedback balancing diagram of coupled inductor FCML
converter where an imbalance voltage on phase #1 or #2 compensates for a
disturbance on phase #2 or #1 respectively when 0 < d < 1

4
.

The closed-loop transfer functions from {̃idist1, ĩdist2} to

{ṽfly1, ṽfly2}, which are computed by dividing the forward gain

by the loop gain, are

[
ṽfly1

ṽfly2

]∣∣∣∣
coupled

=

⎡
⎢⎢⎢⎣

1
sCfly

1−( d2T
Lcross

1
sCfly

)2

− d2T
Lcross

( 1
sCfly

)2

1−( d2T
Lcross

1
sCfly

)2

d2T
Lcross

( 1
sCfly

)2

1−( d2T
Lcross

1
sCfly

)2

1
sCfly

1−( d2T
Lcross

1
sCfly

)2

⎤
⎥⎥⎥⎦

[
ĩdist1

ĩdist2

]
.

(14)

The steady state dc gain of the system when s → 0 is[
ṽfly1

ṽfly2

]∣∣∣∣
steady-state, coupled

=

[
0 Lcross

d2T

−Lcross

d2T 0

] [
ĩdist1

ĩdist2

]
. (15)

The negative symbol is determined by the order of the switch-

ing order of phase #1 and phase #2 in a cycle. This equation

confirms that the impact of coupled inductor balancing is

only determined by Lcross, d, and T and is independent from

resistance Rw.

We now compare the imbalances in the uncoupled (13)

and coupled (15) cases. If the same disturbance is applied to

both converters, the ratio of the steady-state imbalance voltage

between the coupled and uncoupled converter when 0 < d < 1
4

is ∣∣∣∣ ṽfly, coupled

ṽfly, uncoupled

∣∣∣∣ = Lcross

d2T
× γ

Q2
LRw

. (16)
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Fig. 10. Generalized feedback balancing diagram for an FCML converter
with an arbitrary number of flying capacitors.

In a tightly coupled inductor design, Lcross is usually much

smaller than Luncoupled. In this case, the imbalance of the

coupled inductor system is much smaller than the uncoupled

system. As we seek to reduce converter losses by minimizing

Rw and maximizing the quality factor of the inductor QL, the

relative strength of coupled inductor balancing becomes more

pronounced.

IV. A GENERALIZED MODELING FRAMEWORK FOR

STEADY-STATE BALANCING ANALYSIS

This section develops a generalized framework for analyzing

coupled inductor balancing for converters with an arbitrary

number of phases and levels. This model is used to determine

the applicability and limitations of balancing with coupled

inductors in multiphase FCML converters.

A. Feedback Model of Coupled Inductor Balancing for Arbi-
trary FCML Converter Size

First, we extend the feedback models in Section III-C to any

FCML converter size. Consider a converter with M phases and

(K+2)-levels with a total of n = MK flying capacitors in the

system. Fig. 10 shows the generalized feedback diagram. The

bold connections are signal buses for all the n flying capacitor

voltages and currents. With n flying capacitors, each flying

capacitor voltage imbalance induces a current that balances

up to n − 1 other capacitors through the coupled inductors.

This is represented by the balancing matrix in Fig. 10. The

balancing matrix describes the effective balancing current or

charge that is induced in every flying capacitor as a result of

the imbalance voltages in all the other flying capacitors. The

balancing matrix is important, because it determines whether

or not the coupled inductors can counteract the disturbance

currents.
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By inspection of Fig. 10, we define the following multi-
phase FCML balancing criterion: the converter is balanced

if the flying capacitor imbalance voltages can balance an

arbitrary set of disturbance currents. This criterion is met if

the balancing matrix is full rank. Having a full-rank balancing

matrix means that the system only has one unique periodic-

steady-state and will not oscillate between two or more states.

This property and the generalized feedback diagram are used

throughout the rest of this paper.

If the system is to reach a steady state with a persistent

disturbance current (̃idist) at each phase, the disturbance current

in every capacitor needs to be canceled by the total cross-phase

balancing current (̃ibal) introduced by the coupled inductors:

ĩbal + ĩdist = 0. (17)

Assuming the system is periodic with T , eq. (17) can be

rewritten in terms of charges instead of currents as

Qbal +Qdist = Aṽfly +Qdist = 0, (18)

where ṽfly is a vector of all the flying capacitor voltage im-

balances. The balancing matrix A relates the flying capacitor

imbalance voltages to the resulting balancing charges on the

other flying capacitors and depends on the switching order,

duty cycle, and coupling ratio.. We can find the steady-state

capacitor imbalances in terms of the disturbance charge if and

only if A is invertible.

ṽfly = −A−1Qdist. (19)

In summary, the balancing matrix A describes the amount of

balancing charge induced in each phase by the others through

the coupled inductor. If A is full rank, then an arbitrary

disturbance can be canceled out by the coupled inductor and

the system is balanced and will reach a steady-state computer

by eq. (19).

B. Balancing with an Arbitrary Number of Phases

This section shows that an M -phase coupled inductor can

balance the flying capacitors of any even number of three-

level FCML converter phases. To prove this, we compute the

balancing matrix and show that it is full rank. We begin with

the case when the duty cycle is in the region 0 < d ≤ 1
2M .

First, we consider if the flying capacitor of phase #1 has a

positive imbalance, ṽ
(1,1)
fly . This imbalance is applied negatively

and positively to the switch node once per period, as shown in

Fig. 11 for a four-phase example. This induces an imbalance

inductor current i#1→#2,#3,#4
L in the other three phases.

When the other three flying capacitors are connected, they

receive a charge transfer labelled Q
(1,1)→(2,1)
bal , Q

(1,1)→(3,1)
bal ,

and Q
(1,1)→(4,1)
bal . Therefore, the charge transfer induced by

phase #1 in the other flying capacitors is

Q
(1,1)→(m,1)
bal = − (dT )2

Lcross

ṽ(1,1)
fly , (20)

for m = 2, . . . ,M . Thus, a positive voltage imbalance on

flying capacitor (1,1) causes a uniform negative charge transfer

on the other flying capacitors. We calculate the remaining

entries of the balancing matrix in a similar way. All the flying

Δt

t

charge

vL,PH#1

Δt

t

t

t

Qbal
(1,1)→(2,1) Qbal

(1,1)→(4,1)

Qbal
(1,1)→(3,1)
baabaaaaaaaaaaaaaaaalllllll

(1(1(1((((1(1(1((1(1(1(((((11(11))))))))

iL
#1→#2,3,4

tSW

discharge
T0.75T0.5T0.25T

Δt Δt

-vo Qdist
(1,1)

idist
#1

Φ11 Φ21 Φ31 Φ41 Φ12 Φ22 Φ32 Φ42

Vdc/2

-vfly
(1,1)

+vfly
(1,1)

vSW1

dT/Lcross

dT

Fig. 11. Switching waveforms of four-phase, three-level FCML converter
with the second set of switches delayed by a disturbance. The disturbance
charge caused by the delay and the balancing charge caused by the other
flying capacitors must cancel out at steady-state.

capacitors cause the same charge transfer magnitude in the

other phases; the only difference is the sign, which will be

positive or negative depending on whether the target flying

capacitor is in its charging or discharging phase. The resulting

charge transfers are

Q
(ms,1)→(mt,1)
bal =

⎧⎪⎨
⎪⎩
− (dT )2

Lcross
ṽ
(ms,1)
fly ms < mt

+ (dT )2

Lcross
ṽ
(ms,1)
fly ms > mt

0 ms = mt

, (21)

where ms = 1, . . . ,M is the “source” flying capacitor that

is unbalanced, and mt = 1, . . . ,M is the “target” flying

capacitor that receives a charge. From eq. (21), we write the

complete balancing matrix that relates the imbalance voltages

and balancing currents in matrix form

A =
(dT )2

Lcross

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 · · · 1
−1 0 1 1 · · · 1
−1 −1 0 1 · · · 1
−1 −1 −1 0 · · · 1

...
...

...
...

. . .
...

−1 −1 −1 −1 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
XM×M

(22)

for an M -phase, three-level converter with d < 1
2M . The

main diagonal is zeros, since no flying capacitor induces a

net charge transfer in itself. The remaining entries all have

the same magnitude and sign determined by the switching

order. The flying capacitor voltage imbalance will reach a

steady state if A is invertible. As shown in Appendix III, A
is invertible for an even M , and is non-invertible for an odd M .
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Case Study: Time Delay in an Even M -Phase Converter
The prior analysis is applicable to any disturbance. As a

case study of how the actual steady-state imbalances would

be computed for a specific disturbance, we take a uniform

time delay of the second set of switches (the pair further

from the input side) of every phase for an even M -phase

converter. This disturbance is illustrated in Fig. 11. Because of

the time delay Δt, which might be caused by rise/fall times,

signal mismatches, etc, the inductor current in each phase

ramps down longer before the discharging phase of every

flying capacitor. The current in phase #1, i#1
L , is shown as an

example. This means that all the flying capacitors charge more

than they discharge during every switching period, resulting

in a persistent unbalancing current. The disturbance charge,

shown by the shaded area under the i#1
dist curve in Fig. 11, is

Q
(m,1)
dist = dT × dVdc

Ll
Δt, (23)

for m = 1 . . .M where Ll is the leakage inductance of

the coupled inductor from the transformer model in Fig. 3.

Therefore, the complete disturbance vector is

Qdist = dT
dVdc

Ll
Δt

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
...

⎤
⎥⎥⎥⎥⎥⎦
M×1

. (24)

We now plug the disturbance vector into eq. (19) to find the

steady-state capacitor voltage imbalances are

ṽfly =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ṽ
(1,1)
fly

ṽ
(2,1)
fly

ṽ
(3,1)
fly

...

ṽ
(M,1)
fly

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= −A−1Qdist = Vdc

Δt

T

Lcross

Ll

⎡
⎢⎢⎢⎢⎢⎣

1
−1
1
...

−1

⎤
⎥⎥⎥⎥⎥⎦
M×1

,

(25)

where the inverse of A is computed in Appendix III. The

voltage imbalances with coupled inductor balancing are only

dependent on the coupling coefficient and not on losses, since

loss-based natural balancing is negligible. The magnitudes

in all capacitors are equal and the signs are determined by

the switching order. One half of the capacitors have positive

voltage imbalance, while the other half have negative voltage

imbalance. The steady-state imbalance is proportional to Δt/T
and M . The voltage imbalance also increases with the number

of phases. A higher coupling ratio k leads to smaller steady-

state voltage imbalances, and if the windings are perfectly

coupled, i.e., μ → +∞, the minimum steady-state voltage

imbalance is

ṽfly|tightly coupled
≈ Vdc

MΔt

T

⎡
⎢⎢⎢⎢⎢⎣

1
−1
1
...

−1

⎤
⎥⎥⎥⎥⎥⎦
1×M

, (26)
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Fig. 12. Schematic of two-phase, five-level FCML converter with coupled
inductors. The flying capacitors are numbered by the second index k = 1, 2, 3,
where k = 1 is closest to the input voltage source.

following from eq. (2). Note that for time delay disturbances,

the voltage balancing is also independent of the power level of

the FCML converter. For other disturbances, coupled inductor

balancing can still be dependent on the load.

We now consider a more general time-shift disturbance

when the second set of switches of every converter phase

is time-shifted from the first set by Δt positively (lead)

or negatively (lag), as in Fig. 11. Appendix III derives the

best- and worst- case imbalances for this arbitrary time shift

disturbance. In the worst case, all the time shifts are alternating

direction and the disturbance vector is

Qworst-case = dT
dVdc

Ll
Δt

⎡
⎢⎢⎢⎢⎢⎣

+1
−1
+1
−1

...

⎤
⎥⎥⎥⎥⎥⎦
M×1

, (27)

and the largest flying capacitor imbalance is

max (ṽfly)|worst-case
=

(M − 1)VdcΔt

T

(
M − 1

k
+M

)
.

(28)

The imbalance scales with M2, meaning the balancing be-

comes weaker as M increases.

C. Balancing with an Arbitrary Number of Levels

This section shows that coupled inductors can balance

FCML converters with any finite number of levels. We prove

this by computing the balancing matrix for a (K + 2)-level

converter and showing that it is full rank.

Fig. 12 shows a two-phase, five-level converter with switch-

ing waveforms in Fig. 13 for d < 1
2(K+1) as an example.

The steps required to prove the balancing capabilities of a

(K+2)-level converter are similar to Section IV-B. Each flying

capacitor imbalance voltage causes balancing charge transfers

in the other flying capacitors. The balancing matrix (derived

in Appendix IV) is

A(K+2)-levels =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α β 0 0 · · · 0
−α 0 α β 0 · · · 0
−β −α 0 α β · · · 0
0 −β −α 0 α · · · 0
0 0 −β −α 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (29)
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Fig. 13. Switching waveforms of two-phase, five-level FCML converter with
time delay disturbance. An imbalance on capacitor #1 of phase #1 will cause
a balancing charge on capacitor #2 of phase #1 and capacitor #1 of phase #2.

where α = (dT )2

Lcross
and β = (dT )2

2Lsame
. The same inductance Lsame

appears because there are multiple flying capacitors in the

same phase that induce balancing currents in each other. The

size is 2K × 2K because each phase has K flying capacitors.

The vector of flying capacitor voltages corresponding with

eq. (29) is

v =
[
v
(1,1)
fly v

(2,1)
fly v

(1,2)
fly v

(2,2)
fly · · · v

(1,K)
fly v

(2,K)
fly

]T

.

(30)

As proven in Appendix IV, A(K+2)-levels is invertible for any

finite number of levels if the coupled inductors are fully

coupled (Lsame = Lcross). In Section V, we treat cases with

other duty cycles and phase counts.

Case Study: Time Delay in a Two-Phase, Five-Level
Converter

As an example of how the actual steady-state imbalances

would be computed for a specific disturbance, we analyze a

uniform time delay disturbance between every pair of switches

and the pair closest to the input voltage source for the five-

level converter. Fig. 13 shows the inductor current in phase

#1 because of this disturbance. The shaded area shows the

disturbance charge that would result on flying capacitor (1,1).

As with Section IV-B, we compute the disturbance charge on

every capacitor (a total of six). At steady-state, eq. (19) yields

the steady-state flying capacitor voltage imbalances

ṽfly =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṽ
(1,1)
fly

ṽ
(2,1)
fly

ṽ
(1,2)
fly

ṽ
(2,2)
fly

ṽ
(1,3)
fly

ṽ
(2,3)
fly

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −A−1Qdist ≈ Vdc × Δt

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

−3

2

−2

1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (31)

if we take the coupled inductors as tightly coupled with

Lcross = Lsame. Again, the flying capacitor imbalances have

magnitudes and signs determined by the switching order. Like

in the M -phase case, the imbalance depends on the relative

severity of the time delay compared to the period.

D. Balancing with Partially Coupled Inductors

So far, we have assumed the inductors are fully coupled

and that the converter losses are negligible. In this section, we

show that tightly coupled inductors minimize the imbalance

and illustrate the effect that losses and natural balancing have

in conjunction with coupled inductor balancing.

In a practical circuit with losses, natural balancing and

coupled inductor balancing act simultaneously, and the com-

bination of the balancing effects determines the steady-state

flying capacitor voltages. If the inductors are uncoupled, there

is only natural balancing. If the inductors are very tightly

coupled, natural balancing is overshadowed by the much

stronger coupled inductor balancing effect. In terms of the

feedback diagrams in Section III, coupled inductor and natural

balancing are two parallel feedback paths, and the stronger

path will exert the most prominent balancing effect.

Fig. 14 illustrates how the strength of coupled inductor

balancing increases as the coupling ratio
Lμ

Ll
is increased.

As the coupling ratio increases, coupled inductor balancing

becomes stronger. Natural balancing, meanwhile, has constant

strength since the losses remain the same. For very loose

or no coupling, natural balancing dominates. As coupling

increases, coupled inductor balancing overtakes natural

balancing and reaches a much higher total balancing strength,

which leads to smaller voltage imbalances at steady-state.

When the coupling ratio becomes very high, the balancing

strength reaches the limits derived in sections IV-B and IV-C,

where we assumed fully coupled inductors.

Case Study: Partially Coupled Four-Phase Converter
In this case study, we simulate the flying capacitor imbal-

ances of a four-phase converter as we vary the inductors from

being uncoupled to very tightly coupled. Fig. 15 shows the

simulation results of a four-phase, three-level FCML converter

with a Δt = 2 ns delay as the disturbance, fsw = 500 kHz,

Cfly = 1 μF, Ll = 300 nH and d = 0.125 as a function of the

coupling ratio
Lμ

Ll
. At very low coupling ratios, the inductors

are almost uncoupled and the flying capacitor voltages are

determined primarily by natural balancing. As the coupling

ratio increases, the strength of coupled inductor balancing

increases, which causes the flying capacitor imbalances to

decrease. In fact, the imbalance voltages decrease within the

envelope outlined by the dotted lines from the predicted
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Fig. 14. Combination of natural and coupled inductor balancing. As the
coupling level increases, coupled inductor balancing becomes stronger than
natural balancing and dominates the balancing characteristics. Very tightly
coupled inductors reach the maximum limit of balancing strength.

Fig. 15. Simulated flying capacitor voltage imbalances of a four-phase,
three-level converter plotted vs. the coupling ratio with Vdc = 16 V,
fsw = 500 kHz, a Δt = 2 ns delay, and d = 0.125. As the coupling ratio
increases, the strength of coupled inductor balancing increases and reduces
the imbalance.

imbalances from Section IV-B. At very high coupling ratios,

the flying capacitor imbalances are minimized.

With a low to moderate coupling ratio (Lμ/Ll between about

0.01 and 1), the strength of the balancing mechanisms is

comparable. This explains how v
(1,1)
fly initially increases under

the influence of multiple balancing factors which lead it to

compensate for the other phases with a high imbalance. Since

this could negatively impact one of the phases even though the

others are improved, it is advisable to have a high coupling

ratio such that coupled inductor balancing dominates natural

balancing. This minimum depends on the application, but

Fig. 15 shows that even a modest coupling ratio of
Lμ

Ll
= 1

yields most of the balancing benefits.

V. SINGULARITIES WHERE COUPLED INDUCTOR

BALANCING FAILS

Section IV derives a mathematical framework that proves

the balancing capabilities of coupled inductors. The only

TABLE II
NUMBER OF SINGULARITIES IN MULTIPHASE THREE-LEVEL FCML

CONVERTER BALANCING MATRIX FOR 0 < d ≤ 0.5, WITH SYMMETRY

FOR THE 0.5 < d < 1 RANGE

M
Duty cycle regime i

1 2 3 4 5 6 7 8 9 10
2 0 0
4 0 0 2 0
6 0 0 1 1 0 0
8 0 0 2 0 0 0 4 0

10 0 0 2 1 0 0 0 1 0 0

theoretical limitations found so far are the requirement of

an even number of phases, a moderate coupling ratio, and

the fact that balancing may become weaker as the number

of flying capacitors increases. However, these derivations

assume perfectly coupled inductors and only certain duty cycle

regimes. In this section, we consider all operating conditions

and prove that coupled inductors balance FCML converters for

almost all duty cycles and coupling ratios. In doing so, we also

find point singularities where coupled inductor balancing fails

if there are more than two phases or three levels. We predict

the location of these singularities and show how they place

theoretical limits on the number of balanced phases, levels,

and the required coupling ratio.

A. Duty Cycle Singularities with More Than Two Phases

While coupled inductors can balance any even number of

three-level phases for d < 1
2M as shown in Section IV-B, we

must also treat the other duty cycle regions. The procedure

for determining the balancing capability in any duty cycle

region is similar to the approach in Section IV: i) compute the

balancing matrix, ii) compute the determinant, and iii) find the

conditions, if any, for which the determinant is zero.

In Appendix V, we note that if the phase converter operation

is symmetric and every phase has the same phase shift, the

balancing matrix is skew-symmetric. This property can be

used to show that coupled inductor balancing almost always
works for any even number of phases, any number of
levels, and any duty cycle:

|A| �= 0 ∀ d ∈ (0, 1), d /∈ D. (32)

Equation (32) asserts that the balancing matrix has nonzero

determinant and the converter is balanced for all cases ex-

cept for a finite set of duty cycle singularities D with size

n(D) ≤ M2K(K + 1).
This analysis reveals that coupled inductor balancing fails

at specific duty cycles depending on the number of phases

and levels. These singularities exist because the elements of

the balancing matrix are functions of the d and there are

some values of d for which the balancing matrix is singular.

We can find these values by solving for the roots of the

determinant. Table II lists the number of singularities for three-

level converters and the duty cycle regime i they occur in,

where the duty cycle is i−1
M(K+1) < d ≤ i

M(K+1) . There are

no singularities for the two-phase converter, but the number

of singularities increases as the number of phases increases,
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Fig. 16. Simulated flying capacitor voltage imbalances of a four-phase
converter with Vdc = 16 V, fsw = 500 kHz, and a time delay disturbance
of Δt = 2 ns on each phase. There are singularities in the balancing matrix
at certain duty cycles, resulting in diverging capacitor voltages.

putting a theoretical limitation on the number of phases and

levels that can be balanced.

Using multiple two-phase coupled inductors instead of a

single multiphase coupled inductor can improve balancing

performance. This is because there are no duty cycle

singularities with two-phase coupled inductors, as proven

in this section, combined with the analysis in section IV-B

and equations (25) and (28) showing that the balancing

strength decreases with increasing phases. Using multiple

two-phase coupled inductors may lead to higher ripple or

larger size compared to one multiphase coupled inductor. [24].

Case Study: Four-phase Converter Singularities
We now consider a numerical example to illustrate the

impact of the duty cycle singularities. In Appendix V, we

derive the balancing matrix of the four-phase, three-level

converter and numerically compute the duty cycles at which

the balancing matrix is singular, finding two such duty cycles

at D = {0.2836, 0.3629}, which are both in the 1
4 < d ≤ 3

8
region. Theoretically, coupled inductor voltage balancing is

not effective at these two duty cycles. Fig. 16 shows the

simulated imbalances with a Δt = 2 ns delay, fsw = 500 kHz,

Cfly = 1 μF, and Lμ/Ll = 100. The coupled inductors balance

the four flying capacitor voltages for most duty cycles, but

divergence can be observed at the predicted duty cycle points,

along with their mirrored counterparts across the d = 0.5 axis.

In a practical converter, there are asymmetries, losses, and non-

idealities that could reduce the divergence at the singularity

points.

B. Coupling Ratio Singularities with More Than Three Levels

In Section IV-C and IV-D, we showed that fully coupled

inductors can balance FCML converters with any finite number

of levels, and that the balancing strength tends to improve as

the coupling ratio is increased. We now treat partially coupled

inductors and find that balancing works for almost all coupling

ratios except at specific coupling singularities.

To find the coupling singularities, we use the same

procedure of computing the balancing matrix and finding

j=1

(a)

j=1

j=2

(b)

j=1

j=2
j=3

(c)

Fig. 17. Simulated flying capacitor imbalance voltages of a two-phase FCML
converter with (a) five, (b) seven, or (c) nine levels. The simulations use
Vdc = 16 V, Δt = 2 ns, fsw = 500 kHz, Ll = 300 nH and d = 1

2(K+1)
.

As the number of levels increases, the number of coupling ratio singularities
in the balancing matrix, annotated by index j from eq. (33), increases.
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TABLE III
CIRCUIT PARAMETERS OF THE FCML PROTOTYPE

Parameter/Component Value

fsw 500 kHz
Vdc 16 V
Cfly 1206 10 μF × 4

Custom Coupled Inductor Ll 192 nH
Custom Coupled Inductor Lμ 7.44 uH
Off-the-shelf Coupled Inductor Eaton CL1108-4-50TR-R
Two-phase Coupled Inductor Coilcraft PA6605-AL

Discrete Inductor Coilcraft XAR7030-222MEB
Switches EPC2024

Controller TMS320F28379D

the conditions where its determinant is zero, except we

find roots of the coupling ratio Lsame

Lcross
instead of the duty

cycle. Coupled inductor balancing works for almost all
cases except for a finite number of singular coupling
ratios. It is not only important to have a high coupling

ratio to maximize balancing strength, but also to avoid

coupling singularities that can impact the converter’s

robustness. To illustrate the coupling ratio restrictions, we

turn to a case study of two-phase multilevel FCML converters.

Case Study: Coupling Singularities of a Two-Phase Converter
Let us consider a two-phase converter with d = 1

2(K+1)
and partial coupling. In this case study, we treat the duty

cycle as fixed and vary the coupling ratio. Fig. 17 shows the

simulated imbalances with a varying coupling ratio for five-,

seven-, and nine-level converters. The imbalances generally

follow the same pattern as in the four-phase case, with

reducing imbalance as coupled inductor balancing strengthens,

and the even-numbered capacitors tend to stay well-balanced

throughout [31], [33]. However, there are point singularities at

certain coupling ratios, with more singularities as the number

of levels increases.

As derived Appendix IV, this case has explicit solutions for

the locations of the singularities. If we let the coupling ratio

be x = Lsame

Lcross
=

Lμ

(M−1)Ll+Lμ
= μ

M−1+μ where μ =
Lμ

Ll
, the

singularities are at

xj = cos

(
j

K + 1
π

)
(33)

for j = 1, . . .K. In the simulation, the flying capacitor

voltages diverge at exactly these predicted roots; for example,

the five-level converter has a predicted root at x1 = 1√
2

, which

corresponds to a coupling ratio of approximately
Lμ

Ll
≈ 2.41.

Eq. (33) also shows that the number of coupling singularities

increases as the number of levels increases. The largest singu-

larity, which occurs at j = 1, approaches x1 → 1 as K → ∞.

As the number of levels increases, the required coupling ratio

also increases.

VI. EXPERIMENTAL VERIFICATION

The theoretical predictions are verified using FCML con-

verters with two or four phases and between three and five

levels. Fig. 18 shows the two-phase, five-level and four-phase,

three-level boards. The prototypes have the component values

(a)

(b)

Fig. 18. (a) A four-phase, three-level FCML converter with off-the-shelf Eaton
four-phase coupled inductor and (b) a two-phase, five-level FCML converter
with off-the-shelf Coilcraft PA6605-AL inductor.

shown in Table III, with the five-level converter having a lower

switching frequency of 50 kHz due to gate driving limitations.

To compare coupled inductor balancing to natural balancing,

four inductors are used: discrete 2.2 μH inductors, an off-the

shelf Eaton CL1108-4-50TR-R four-phase coupled inductor

with
Lμ

Ll
= 2.66, a custom four-phase coupled inductor with

Lμ

Ll
= 38.9, and an off-the-shelf Coilcraft PA6605-AL two-

phase coupled inductor with
Lμ

Ll
= 38.5, which all have

sufficient steady-state inductance for low ripple. The flying

capacitors are rated for 50 V and have a class II X8L dielectric.

The capacitances are selected to have small voltage ripple with

the given load and switching frequency. At the selected input

voltage, the capacitance varies around 10% for different dc

biases in the five-level converter. If a higher input voltage is

used, the effect of dc bias on different flying capacitors should

be considered in a higher order converter.

The operating waveforms of the four-phase converter at

d = 0.1 are shown in Fig. 19 with the (a) tightly coupled(
Lμ

Ll
= 38.9

)
inductors and (b) discrete inductors. Due to

the three-level FCML structure and interleaving with coupled

inductors, the effective ripple frequency is multiplied by eight.

This considerably reduces the ripple amplitude.
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(a)

(b)

Fig. 19. Measured switching waveforms of four-phase, three-level FCML
converter with (a) coupled inductors and (b) discrete inductors. Because of
the coupled inductors, the ripple frequency is four times higher with coupled
inductors than discrete inductors.

Fig. 20. Measured per-phase current ripple average of the four phases. The
inductors are chosen to have similar maximum ripple. Despite this, the coupled
inductors generally have significantly lower ripple due to additional ripple
cancellation points, matching well with the theoretical ripple shown by the
dotted line. The uncoupled inductor ripple does not cancel at d = 0.5 due to
flying capacitor voltage imbalances, even with no disturbances.
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90

92
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Fig. 21. Measured converter efficiency at vo = 8 V and vo = 4 V,
demonstrating coupled inductor efficiency improvements.
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Fig. 22. Flying capacitor voltage imbalance as a function of the time delay
Δt at d = 0.125. With coupled inductors, the imbalance scales linearly with
Δt, as predicted in eq. (25), and are much smaller with coupled inductors.

The inductors compared in these experiments are selected to

have similar ripple, as shown in Fig. 20. Because of this, the

coupled inductors have a much lower leakage inductance of

Ll = 192 nH compared to the discrete inductance of 2.2 μH.

Therefore, the coupled inductor converter will have a much

faster transient response, allowing it to respond to load tran-

sients more effectively [23]. Despite this, the coupled inductor

converter still has lower ripple due to ripple cancellation at

more duty cycles. Fig. 21 shows the converter efficiency being

improved by coupled inductors.

To verify the balancing performance, a time delay of one set

of switches between -40 ns and +40 ns is introduced using the

digital controller. Fig. 22 shows the measured flying capacitor

voltage imbalances of the four-phase, three-level converter

at d = 0.125 as a function of the delay magnitude. The

coupled inductors balance the flying capacitors much better

than natural balancing, which reduces the voltage stress, ripple,

and distortion.

Coupled inductor balancing improves as the coupling ratio

increases, as shown in Fig. 23. In these plots, the imbalance
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(a) (b)

(c) (d)

Fig. 23. Flying capacitor voltage imbalances with constant time delay Δt = 10 ns and (a) four discrete 2.2 μH inductors, (b) off-the-shelf four-phase coupled

inductors with
Lμ

Ll
= 2.66, (c) custom four-phase coupled inductors with

Lμ

Ll
= 38.9, and a pair of two-phase coupled inductors with

Lμ

Ll
= 38.5. The input

voltage is Vdc = 16 V.

is plotted across the duty cycle range for a time delay of

Δt = 10 ns. With uncoupled inductors (a), the imbalances

are large and reach an absolute maximum of 3.328 V. With

the tightly coupled custom inductors (c), the imbalance is

consistently limited to 0.559 V across the duty cycle range.

With the off-the-shelf coupled inductors (b), which have a

coupling ratio between the other two of
Lμ

Ll
= 2.66, the

balancing is less effective. The absolute maximum imbalance

is 1.143 V, which is still considerably reduced compared to

the results with discrete inductors.

As shown in Section IV-B, coupled inductor balancing

becomes weaker and less reliable as the number of coupled

inductor phases increases. However, these experiments show

that a single four-phase coupled inductor is still suitable for

balancing a four-phase converter. It is also possible to use

two two-phase coupled inductors instead, which is the most

reliable configuration. Fig. 23(d) shows the imbalances with

two two-phase coupled inductors with
Lμ

Ll
= 38.5 coupling

phase #1 with phase #2 and phase #3 with phase #4.

Fig. 24 shows the measured imbalances of a four-

phase, three-level converter where one complimentary pair

of switches is phase shifted by 8° from ideal. The capacitor

voltages are generally kept well balanced but do spike at

four duty cycle points. These spikes coincide exactly with the

singularities for a four-phase converter predicted in Section V

to occur at D = {0.2836, 0.3629} and the corresponding

points across the d = 0.5 axis. This experiment verifies both

the existence of multiphase singularities and the validity of the

balancing matrix approach for predicting their locations.

Fig. 25 shows the measured voltage imbalances of a two-

phase, five-level converter with a time delay of Δt = 300 ns

applied to each phase. A larger time delay is used to empha-

size the imbalance since the switching period is longer. The

coupled inductors keep the flying capacitors balanced for most

duty cycles, but they diverge at d = 0.5. This is a nominal

conversion ratio where the five-level converter is intrinsically

imbalanced and another balancing mechanism is needed.

Fig. 26 verifies the balancing performance across load.

Coupled inductor balancing maintains similar balancing per-

formance at both high and low loads, making it applicable to

a variety of operating conditions. Fig. 27 verifies that coupled

inductor balancing functions well for a variety of randomized

phase shift disturbances, both positive and negative, on all

switches. A random phase shift between ±7°, equivalent to

±40 ns, is applied to all of the switches on the four-phase,

four-level converter. Very large disturbance magnitudes are



SUBMITTED TO IEEE TRANSACTIONS ON POWER ELECTRONICS

vfly1
vfly2

vfly3
vfly4

ideal 
(Vdc/2)/ )/ ))

(a)

d = 28.64% d = 36.15%
d = 64.14%

d = 71.64%

(b)

Fig. 24. (a) Flying capacitor voltages of the four-phase converter kept well-
balanced with a 8° phase shift on one complimentary pair of switches and
a 6 A load. (b) Singularities of the four-phase converter at the theoretically
predicted duty cycles.
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Fig. 25. Flying capacitor voltage imbalances of two-phase, five-level converter
with Vdc = 16 V and time delay Δt = 300 ns unbalancing the flying
capacitors.

used to emphasize the imbalance. In a practical circuit, the

disturbances would likely be smaller.

VII. COMPARISON WITH OTHER BALANCING

TECHNIQUES AND DESIGN GUIDELINES

Having explained the fundamental mechanism of coupled

inductor balancing, we can now compare its strengths and

weaknesses to other common balancing techniques. Table IV

compares the impact of each method on voltage balancing,

size, current ripple, loss, and complexity. Although converters

0.49 %Vin imbalance (78.4 mV)

Fig. 26. Average absolute flying capacitor voltage imbalance for four-phase,
four-level FCML converter across output load at d = 0.25 and Vdc = 16 V.

Fig. 27. Histogram of average absolute imbalances with random phase shift
disturbances on all switches between ±7° ≡ 40 ns at fsw = 490 kHz and a
5 A load.

with an even number of levels are less sensitive [33], natural

balancing [12] has the general drawback of variability and

dependence on losses, and is not typically relied on as a sole

balancing method. Active balancing [35] uses measurement or

estimation of the flying capacitor voltages and active control to

balance them. This is a very flexible and robust technique that

can handle many unbalanced structures. Additionally, active

balancing can, with appropriate feedback control, force the

steady-state imbalance to be zero, while passive balancing

methods like coupled inductors will still have a nonzero,

albeit small, remaining imbalance. However, it does have the

disadvantage of needing additional hardware and control for

every flying capacitor that must be balanced, and the control

bandwidth is limited. Additionally, some active balancing tech-

niques rely on the load current to balance the capacitors and

do not work at light load, while coupled inductor balancing

works independently of the load current.

Compared to other existing balancing approaches, coupled

inductor balancing offers the following advantages: i) Strong

voltage balancing without the need to rely on converter losses

or complex sensing and control hardware, ii) Good scaling

to higher-order multilevel multiphase converters where more

capacitors must be balanced, or high bandwidth applications

with high switching frequencies; iii) Can be combined with

using an even number of levels or other balancing approaches
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TABLE IV
COMPARISON OF FCML VOLTAGE BALANCING TECHNIQUES

Coupled Inductor Natural Balancing Active Balancing Even-level Switching
References [1]–[3], [42] [9]–[12] [32], [35] [30], [31]

Balancing Strength Strong Weak Strong Depends

Steady-State Yes Yes Yes Partially

Transient Faster No change Depends No change

Reliant on Losses No Yes No No

Applicability Even # phases, any # levels Any # levels Any # levels Even # levels

Inductor Size Reduced No change No change No change

Current Ripple Reduced No change No change No change

Load Dependence No Yes Sometimes No

Passivity Passive Passive Active Passive

to provide good balancing in all cases; iv) Acceleration of

the dynamic voltage balancing and transient response by

reducing transient inductance; v) Inherent ripple reduction

that can improve efficiency, switch stress, and saturation flux

requirements, all with a smaller size than multiple discrete

inductors.

We now summarize general design guidelines for robust

flying capacitor voltage balancing using coupled inductors.

Ripple reduction is a primary function of coupled inductor

and multilevel converter design. The design guidelines for this

purpose have been explored in detail [14], [22], [24], [42]–

[45]. In general, the ripple can be reduced by interleaving,

increasing the number of phases, increasing the number of

levels, and designing tightly coupled inductors.

To minimize capacitor voltage imbalances in FCML con-

verters using coupled inductors, the following guidelines are

recommended for selecting the number of phases, flying

capacitor levels, and coupling coefficients:

1) Use an even number of phases: coupled inductor

balancing works for an even number of phases and is

not effective for an odd number of phases.

2) Avoid using very high number of phases: the bal-

ancing mechanism gets weaker as the number of phases

increases.

3) Use an even number of levels: while coupled inductor

balancing works for any finite number of levels, an even

number of levels aids capacitor voltage balancing in

coupled and uncoupled FCML converters alike, especially

at nominal conversion ratios.

4) Maximize the coupling coefficient: maximizing the

coupling coefficient minimizes the imbalance and offers

the most ripple reduction for a given transient response.

VIII. CONCLUSION

This paper proves that coupled inductors are effective at

balancing flying capacitor voltages in multiphase FCML con-

verters. The voltage balancing capabilities are derived for an

arbitrary multiphase converter, and it is shown that any even

number of phases may be balanced for most duty cycles,

and the magnitude of the steady-state imbalances may be

predicted theoretically. Multiphase converters with more than

two phases are shown to have singularities at certain duty

cycles where balancing fails, though these may be suppressed

in practical designs. With other conditions held constant, two-

phase coupled inductors are shown to minimize the imbalance

without susceptibility to singularities that higher-order coupled

inductors have. Coupled inductors are shown to balance FCML

converters with any number of levels if the coupling ratio is

high enough, and may be used to balance any number of flying

capacitors so long as there are an even number of phases.

Partially coupled inductors will also balance the flying capac-

itors in some cases, though some coupling ratios will result in

divergence. Coupled inductor balancing is shown to apply to a

variety of disturbances and to intrinsically unbalanced FCML

structures. The theoretical results are experimentally verified

with a four-phase, three-level FCML converter, a four-phase,

four-level FCML converter, and a two-phase, five-level FCML

converter. Design guidelines for the number of phases, number

of levels, and coupling coefficient for robust FCML converters

are recommended.
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APPENDIX I

EXPANDED MODELS FOR COUPLED INDUCTORS

A multiphase coupled inductor integrates multiple windings

on a single magnetic core. Fig. 28 shows an example four-

phase coupled inductor. Assuming the core is symmetric and

the top and bottom plates have negligible reluctances, the

voltages and currents in the inductor can be described using

the inductance dual model [24] as

N2

⎡
⎢⎢⎢⎣

di1
dt
di2
dt
...

diM
dt

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
RL + RC RC · · · RC

RC RL + RC · · · RC

...
...

. . .
...

RC RC · · · RL + RC

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
v1
v2
...

vM

⎤
⎥⎥⎥⎦ .

(34)

Here, i and v are the current through and voltage over each

of the M windings. Each winding has N turns and RL and

RC are the side leg and center leg reluctances respectively, as

indicated in Fig. 28. As the center leg reluctance increases

or the side leg reluctance decreases, the inductor becomes

more coupled. Higher coupling reduces ripple and transient

inductance, and also improves voltage balancing capability.



SUBMITTED TO IEEE TRANSACTIONS ON POWER ELECTRONICS

݅ଷ݅ଶ݅ଵ ݅ସ
ଵܰ ଶܰ ଷܰ ସܰ

+ଵݒ − +ଶݒ − +ଷݒ − +ସݒ −
(a)

+−ଵܰ݅ଵ
ℛ௅,ଵ +−ସܰ݅ସ

ℛ௅,ସ
+−ଷܰ݅ଷ

ℛ௅,ଷℛ஼+−ଶܰ݅ଶ
ℛ௅,ଶ

(b)

Fig. 28. (a) Drawing of a symmetric four-phase coupled inductor, and (b)
reluctance model of a four-phase coupled inductor with center leg reluctance
RC and side leg reluctances RL,1 · · ·RL,4. The reluctances of the top and
bottom plates are neglected in the theoretical analysis. They are not required
to be negligible in practical designs.

Previous works have detailed optimal coupled inductor design

in terms of structure [46], loss [20], integration [22], and tran-

sient response [23], [24]. Alternatively, we can parameterize

the coupled inductor in terms of its leakage inductance Ll and

magnetizing inductance Lμ,

Ll =
N2

RL +MRC
, (35)

Lμ =
N2(M − 1)RC

RL(RL +MRC)
. (36)

Ll determines the transient performance of a coupled inductor

converter [23]. As Lμ/Ll increases, the inductors become more

tightly coupled.

APPENDIX II

WAVEFORM STITCHING TECHNIQUE

As a hybrid switched capacitor system, balancing analysis

of FCML converters often involves calculating the inductor

current over a switching period with many switching states,

each with a different duration and circuit state. Therefore, we

compute the solution of each switching state separately and

“stitch” them together computationally [29].

A. Naturally Balanced FCML Converters

An unbalanced three-level FCML converter has typical

switching waveforms shown in Fig. 6. There are four switching

sub-periods. First, the flying capacitor is connected through

Vdc to the switch node and it is charged by the inductor

current. Second, the switch node is grounded. Third, the flying

capacitor is connected through ground to the switch node and

it is discharged by the inductor current. Finally, the switch

node is grounded again. These switching states are illustrated

in Fig. 29. In this analysis, we assume the duty ratio is smaller

than 1/2. Similar analysis can be conducted for other duty

ratios with similar results.

In Fig. 6, the flying capacitor is assumed to have a positive

imbalance, that is, vfly > Vdc

2 . Therefore, the switch node has

unequal pulse amplitudes. The imbalanced component of the

switch node is labelled as ṽsw. Our goal is to calculate the

inductor current induced by this imbalance using the waveform

stitching technique and compute the balancing effect and loss.

+
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Fig. 29. Equivalent sub-period circuits for the three-level FCML converter.

The imbalanced component of the switch node voltage

induces an imbalanced component in the inductor current

labelled ĩL and is shown for the cases when the winding re-

sistance Rw is zero and nonzero. When the winding resistance

is zero, the inductor current ramps linearly and it is obvious

that the net charge transfer in the flying capacitor (the shaded

areas) is zero. When the winding resistance is nonzero, the

inductor current waveform changes exponentially instead of

linearly, which is exaggerated in Fig. 6 for effect. The flying

capacitor is connected in alternating directions and so it sees

a negative average current ĩfly in both sub-periods #1 and #3.

To quantify the charge transferred into the flying capacitor,

we compute the inductor current. We first write the current

in each sub-period as a function of the current at the end of

the previous sub-period, then solve for the inductor current in

each of the sub-period circuits shown in Fig. 29 as

ĩ#1
L (t) = ĩ#4

L (d∗T )e−
Rw
L t − ṽfly

Rw

(
1− e−

Rw
L t

)
, (37)

ĩ#2
L (t) = ĩ#1

L (dT )e−
Rw
L t, (38)

ĩ#3
L (t) = ĩ#2

L (d∗T )e−
Rw
L t +

ṽfly

Rw

(
1− e−

Rw
L t

)
, (39)

ĩ#4
L (t) = ĩ#3

L (dT )e−
Rw
L t, (40)

where d∗ = 1
2 − d. For simplicity, each sub-period current is

shifted to start at time t = 0. Each current is simply the current

at the end of the previous sub-period (for example, ĩ#1
L (dT )

is the current at the end of sub-period #1 which is used in

the equation for sub-period #2), which decays exponentially,

plus a possible forcing function. We need one initial condition

to fully define the current. This condition comes from our
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assumption that the flying capacitance is large so ṽfly does not

vary much in a switching period: this means that the average

voltage applied to the switch node is zero, and the average

inductor current must be zero.

Using the equation of the inductor current with the initial

condition applied, we compute the average power loss in the

resistor and the charge transferred from the flying capacitor in

one period. First, the average power loss in the resistor is〈
P̃Rw

〉
= Rw

〈
ĩL

2
〉

=
Rw

T

∫ T

0

ĩL
2
dt

(41)〈
P̃Rw

〉
≈ RwT

2d2ṽ2fly(3− 4d)

12L2

=
γ

RwQ2
L

ṽ2fly. (42)

Here, the integral of the square inductor current in (41)

is calculated symbolically from the inductor current in

eq. (37) through (40). In the final result (42), γ = d2(3−4d)π2

3

is a scaling factor depending on the duty cycle and QL = ωswL
Rw

is the quality factor of the inductor at the switching frequency.

The power loss is derived by approximating exponential terms

with a third-order Taylor series and assuming the quality factor

of the inductor is high [1]. The power loss has the general

form of a squared voltage divided by the resistance, where

the voltage
ṽfly

QL
is approximately the voltage over Rw.

The net charge into the flying capacitor during one period

is

ΔQ =

∫ dT

0

ĩ#1
L (t) dt−

∫ dT

0

ĩ#3
L (t) dt

≈ γT

RwQ2
L

ṽfly, (43)

since the capacitor is charged in sub-period #1 and discharged

in sub-period #3. The average current into the flying capacitor

is therefore

ΔQ

T
=

γ

RwQ2
L

ṽfly =

〈
P̃Rw

〉
ṽfly

= ĩbal, (44)

which is exactly equal to the average power dissipated in

the resistor divided by the imbalance voltage, which we

define in eq. (10) as the balancing current ĩbal. Therefore,

equations (41) and (44) verify the conclusion in Section III-A

that the small-signal power loss induced by the flying capacitor

imbalance relates to the effective flying capacitor balancing

current.

B. Derivation of Timing Factor for Feedback Model of Cou-
pled Inductor Balancing

The same waveform stitching method can be applied to

coupled inductor converters. Since coupled inductor balancing

does not rely on any losses, the current waveforms are linear,

making the analysis much simpler. As explained in Section III,

the imbalance voltage of one phase in a two-phase converter

will cause a balancing current in the other phase that tends

tSW

T0.75T0.5T0.25T

charge 
Cfly2

discharge 
Cfly2

tvsw1

Vdc/2

vsw1~ t

- vfly

+ vfly

~iL

Φ11 Φ21 Φ12 Φ22

t
Qbal

(1,1)→(1,2)
l

Fig. 30. Switching waveforms of two-phase, three-level FCML converter used
to derive the timing factor in the feedback path.

to cancel out disturbances. To mathematically describe this

process, we must study the waveforms in detail.

The switching order is important to the balancing behavior.

Note that if phase #1 switches “first”, that is, connecting to

Vdc first, then the order of flying capacitors being connected to

the switch node is −ṽfly1 → −ṽfly2 → +ṽfly1 → +ṽfly2, which

is not the same should phase #2 be switched “first”.

Fig. 30 shows the balancing waveforms of a two-phase,

three-level FCML converter for d < 0.25 and phase #1

switching first. We assume that flying capacitor 1 has a positive

imbalance voltage. The imbalance voltage of phase #1 induces

an imbalance current in phase #2 because of the coupled

inductor. During the charging duration of phase #2, which

begins at t = 0.25T , flying capacitor 2 is charged by

Q
(1,1)→(2,1)
bal = − (dT )2ṽfly1

Lcross

. (45)

On average, this means that a balancing current of −d2T ṽfly2

Lcross

is applied to phase #2. A positive flying capacitor voltage

imbalance in phase #1 will induce a negative balancing current

in phase #2 scaled by d2T
Lcross

, as shown in Fig. 9. On the other

hand, a similar derivation shows that a positive imbalance in

phase #2 induces a positive current in phase #1, so the timing

factor is −d2T in this case. Since one timing factor is negative

and one is positive, a full traversal of the loop indicates it

is in negative feedback. In summary, the waveform stitching

method can easily find the balancing relationships between

each phase. In particular, a timing factor must be found to

account for the order of switching, duration of sub-periods,

and their subsequent effect on the balancing matrix to describe

the balancing behavior.
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APPENDIX III

DERIVATION OF COUPLED INDUCTOR BALANCING

CAPABILITIES FOR AN ARBITRARY NUMBER OF PHASES

If we restrict the duty cycle to d < 1
2M , the balancing matrix

A takes the form in eq. (22). Let X be

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 · · · 1
−1 0 1 1 · · · 1
−1 −1 0 1 · · · 1
−1 −1 −1 0 · · · 1

...
...

...
...

. . .
...

−1 −1 −1 −1 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
M×M

, (46)

which is the balancing matrix A with shared scaling terms

factored out. If X has a nonzero determinant, AM -phase is in-

vertible, a solution to eq. (18) exists, and the coupled inductor

will balance the flying capacitors. X is skew-symmetric, so

if M is odd, |X|M odd = 0 [47]. The coupled inductors will

not balance the flying capacitors if there are an odd number

of phases. If M is even, |X| = 1. Therefore, the balancing

matrix is always invertible for an even number of phases M
and the coupled inductors can balance the flying capacitors.

To estimate how the balancing strength scales with the

number of phases, we compute the inverse of A if M is even.

The inverse of X is

X−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1 −1 · · · −1
1 0 −1 1 · · · 1
−1 1 0 −1 · · · −1
1 −1 1 0 · · · 1
...

...
...

...
. . .

...

1 −1 1 −1 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
M×M

, (47)

and for a given imbalance vector Qdist, the steady-state voltage

imbalances are

ṽfly = −A−1Qdist

=
Lcross

(dT )2
X−1Qdist. (48)

For a time shift disturbance where each phase has a time shift

of Δtm for m = 1, . . . ,M , the disturbance vector is

Qdist = dT × dVdc

Ll

⎡
⎢⎢⎢⎢⎢⎣

Δt1
Δt2
Δt3

...

ΔtM

⎤
⎥⎥⎥⎥⎥⎦ , (49)

following from the derivation in the four phase case in Sec-

tion IV. Assuming each time shift has a maximum magnitude

of Δt and is either positive or negative (lag or lead respec-

tively), we can compute the best- and worst- case imbalance

depending on the signs of the time shifts. Without loss of

generality, we consider the first flying capacitor. If all the

time shifts are in the same direction, then the flying capacitor

voltage imbalance is

ṽfly =
Lcross

(dT )2
X−1 × dT

dVdc

Ll

⎡
⎢⎢⎢⎢⎢⎣

Δt
Δt
Δt
...

Δt

⎤
⎥⎥⎥⎥⎥⎦

→ ṽ
(1,1)
fly

∣∣∣
best-case

=
VdcΔtLcross

TLl
. (50)

In the worst case, the direction of the time shifts alternates.

In this case, the worst-case imbalance of capacitor #1 is

ṽfly =
Lcross

(dT )2
X−1 × dT

dVdc

Ll

⎡
⎢⎢⎢⎢⎢⎣

+Δt
−Δt
+Δt

...

−Δt

⎤
⎥⎥⎥⎥⎥⎦

→ ṽ
(1,1)
fly

∣∣∣
worst-case

=
(M − 1)VdcΔtLcross

TLl
. (51)

APPENDIX IV

DERIVATION OF COUPLED INDUCTOR BALANCING

CAPABILITIES FOR AN ARBITRARY NUMBER OF LEVELS

We compute the balancing matrix of a two-phase, (K +
2)-level converter, which has switching waveforms shown in

Fig. 13. First, consider the charge transfers that capacitor #1

of phase #1 induces:

Q
(1,1)→(1,2)
bal = (dT )2

1

2Lsame

ṽ
(1,1)
fly (52)

in capacitor #2 of phase #1 and

Q
(1,1)→(2,1)
bal = (dT )2

1

Lcross

ṽ
(1,1)
fly (53)

in capacitor #1 of phase #2. A similar pattern exists for the

charge transfers of the other flying capacitors, with scaling by

the cross inductance for charge induced in the other phase and

scaling by the self inductance for charge induced in the other

capacitors of the same phase. If we extend this to (K + 2)-
levels per phase and d < 1

2(K+1) , the balancing matrix A
takes the form in eq. (29) with α and β as the element

values. A(K+2)-levels is size 2K×2K since there are two phases

with K flying capacitors each. The balancing matrix is skew-

symmetric, pentadiagonal, of even size, and Toeplitz, and if

β �= 0, it has the determinant

|A(K+2)-levels| =
[
βKUK (x)

]2
, (54)

where UK is the Chebyshev polynomial of the second kind of

degree K and the argument being the coupling ratio

x =
α

2β
=

Lsame

Lcross

=
k

M − 1 + k
∈ (0, 1]. (55)

Eq. (54) indicates that the balancing matrix is singular only at

the roots of UK , which are

xj = cos

(
j

K + 1
π

)
(56)

for j = 1, . . . ,K. The largest root of UK is at x1 =

cos
(

1
K+1π

)
. If the converter coupling ratio x is equal to any

of the roots in eq. (56), the converter will not balance. With



SUBMITTED TO IEEE TRANSACTIONS ON POWER ELECTRONICS

t/Tv0

1

charge

Ω+dd

+φ

charge discharge

t/Tvφ
charge

discharge

discharge

Ω

t/T

t/T

+φ

ibal
0→φ

ibal
φ→0

Qbal
0→φ

+φ +φ

t/T

haraa g sch

charge discharge

Qbal
φ→0

-φ

t/T

arrrggggggggggggggggggggg sch-φ

Fig. 31. General charge transfer behavior between two arbitrary phase-shifted
flying capacitors in a coupled inductor FCML system.

fully coupled inductors, the coupling ratio x = Lsame

Lcross
→ 1,

which is greater than all of the roots in (56), meaning fully

coupled inductors can balance any finite number of levels.

For partially coupled inductors with Lsame

Lcross
< 1, a sufficient

condition on the coupling ratio to avoid coinciding with all

roots is

x =
Lsame

Lcross

> x1 = cos

(
1

K + 1
π

)
. (57)

As the number of levels increases, the largest root x1 and

required coupling ratio increase.

APPENDIX V

SINGULARITIES OF THE BALANCING MATRIX

Previously, we only considered specific operating conditions

and level/phase combinations to explain coupled inductor

balancing. However, the balancing matrix of an M -phase and

(K+2)-level FCML converter can have arbitrarily large order

and any duty cycle and coupling ratio. In this section, we

generalize balancing behavior for any operating conditions

from the structure of the balancing matrix.

A. Toeplitz and Skew-Symmetric Properties of the Balancing
Matrix

Assuming that the phase shifts between all switches are

uniform, the balancing matrix is always Toeplitz and skew-

symmetric. To prove this, we consider without loss of gen-

erality a flying capacitor called v0 being connected to the

switch node (labelled in Fig. 31), assuming its phase to

be zero. This flying capacitor could be from any switching

level of a (K + 2)-level converter. Every flying capacitor

is connected with equal duration in the both a positive and

negative orientations in order to maintain charge balancing.

In Fig. 31, the phase shift between the flying capacitor being

connected again is Ω.

Now we analyze the charge transfer that the flying capacitor

induces in another flying capacitor that has its switching

actions phase shifted by ϕ which we call vϕ, and the charge

that vϕ induces in v0. Fig. 31 shows the small-signal imbalance

currents and charges induced by each of the flying capacitors

in the other. By inspection, we can see that the two flying ca-

pacitors are charged and discharged with the same magnitude

and opposite signs. Therefore, we can conclude that if a first

flying capacitor v0 induces a charge Q in a flying capacitor

vϕ, then flying capacitor vϕ induces a charge of −Q in v0.

This is equivalent to saying the balancing matrix must be skew

symmetric, since all symmetric entries about the diagonal will

have equal magnitude and inverted sign. This proof is uniform

across the full operation range and does not depend on the

phase shift between the charging and discharging pulses (Ω),

the phase shift between the two capacitors (ϕ), or the duty

cycle regime.

We now prove that the balancing matrix is Toeplitz. If a

flying capacitor, say our base capacitor v0, causes a charge

transfer Q in another that is phase shifted by ϕ, then all the

flying capacitors will cause the same charge transfer Q in

the flying capacitor phase shifted by ϕ from them. This is a

consequence of the symmetry of the converter and the fact that

the switching actions are all uniform with equal phase shift.

The entries on the same balancing matrix diagonals correspond

to equal phase shifts between the flying capacitors, so we can

conclude that the balancing matrix must be Toeplitz.

B. Polynomial Determinant of the Balancing Matrix

Generally, each element of the balancing matrix is a poly-

nomial of d scaled by either the Lcross or Lsame inductance.

We consider d as a variable and the inductances as fixed since

a converter generally has a fixed coupled inductor but can

operate across the entire duty cycle regime. Given the varying

elements and arbitrary size of MK × MK, it is difficult to

explicitly prove the invertibility, and therefore the balancing

capability, of the balancing matrix in all cases. However, we

can use the skew-symmetric property of the balancing matrix

to place bounds on the balancing capability.

First, the determinant of a skew-symmetric matrix of even

order can be expressed as a square of a polynomial of its

elements [47]. Since the elements are themselves polynomials

of d, we know that the determinant of the balancing matrix is

a square of a polynomial in d

|A| = (p (d))
2
, (58)

where p is a polynomial. The degree of the elements of A can

be as large as 2 in d, since the charge transfer elements are

calculated as an “area” where the sides are both dependent on

the duty cycle. Therefore, as MK is the size of A, the degree

of the polynomial |A| can be as large as 2MK in d, and the

degree of p(d) can be as large as MK in d.

At the roots of p(d), the balancing matrix is singular and

balancing fails. Since p(d) is a univariate polynomial of d with

degree MK, there are at most MK roots which are generally

discrete complex values of d.

C. Limiting Singularities of the Balancing Matrix

The dependence of the balancing matrix on duty cycle

changes abruptly at the “nominal” conversion ratios defined
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in [31] that are multiples of 1
M(K+1) . There are generally

M(K+1) unique operating regions of the duty cycle bounded

by these nominal conversion ratios. The behavior of different

regions generally changes when crossing these boundaries

because the number of overlapping on-switches changes. The

reason there are M(K+1) regions is because there are a total

of M(K+1) total switching actions during a switching period,

so one phase can overlap between 0 and (M(K+1)−1) other

actions, for a total of M(K + 1) possibilities.

To explain the different balancing behavior in each duty

cycle region, we define i as an index representing the duty

cycle operating region of an M -phase, (K+2)-level converter,

where the duty cycle in operating region i is in the range
i−1

M(K+1) < d ≤ i
M(K+1) (bounded by the two nearest nominal

conversion ratios). Since there are M(K +1) unique regions,

the index can take the values i = 1, 2, . . .M(K+1). Formally,

the definition of i is

i = ceil(M(K + 1)d). (59)

We now rewrite the charge balancing equation (18) with

explicit reference to the operating region i as

Qbal +Qdist = Ai(d)ṽfly +Qdist = Qcap. (60)

As with before, we assume there is a generic disturbance

charge Qdist injected on the flying capacitors and a balancing

charge Qbal that counters it. The balancing matrix is now

written as Ai(d), where i is the operating region and the

dependence on the duty cycle d is highlighted. Finally, the sum

of the balancing and disturbance charges is not automatically

assumed to be zero, but rather an explicit excess capacitor

charge Qcap. This highlights the fact that if Ai(d) is singular

for a given duty cycle, then it will not be possible to cancel

out an arbitrary disturbance.

We can now formally define the duty cycles, if any exist,

when balancing fails. Coupled inductor balancing fails for the

set of duty cycles

D = {d ∈ (0, 1) ||Ai(d)| = 0} . (61)

We only consider purely real values of d strictly between 0

and 1 since these are the only non-trivial switching regions.

D specifies all duty cycles in this range which cause the

determinant of the corresponding balancing matrix to be zero,

which indicates a failure of balancing capability.

There are at most MK roots of |Ai(d)| = 0 for each i.
If a root falls within the range i−1

M(K+1) < d ≤ i
M(K+1) ,

then that root is in D. If the root falls outside this region or

is complex, it is not a practically achievable duty cycle and

is not a singularity. Since there are at most MK roots per

region i that could be in D, and M(K + 1) total regions, the

maximum number of singularities is

n(D) ≤ M2K(K + 1), (62)

where n(D) is the number of elements in D. Meanwhile,

the maximum number of singularities within a particular duty

cycle region defined by i is ni ≤ MK.

These results imply that for a finite number of levels and

phases, there is a finite maximum number of duty cycle sin-

gularities that can exist, meaning that balancing will generally

t
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Fig. 32. Balancing currents induced by phase #1 in a four-phase, three-level
FCML converter with coupled inductors when the duty cycle is in the range
1
4
< d < 3

8
.

be possible across the entire duty cycle regime except at

specific singular points. We can also conclude that as the

number of phases and levels increases, the maximum number

of singularities within each duty cycle region i increases while

the size of each duty cycle region decreases. Since there

are more possible singularities in a smaller space as M and

K increase, it is possible that balancing fails for all duty

cycles as the number of phases M → +∞ and/or levels

(K + 2) → +∞.

D. Computation of Singularities for Four-Phase Converter

We compute the singularities of a four-phase, three-level

FCML converter with 1
4 < d ≤ 3

8 . The balancing matrix in

the i = 3 operating region may be computed as

Ai=3(d) =
T 2

Lcross

⎡
⎢⎢⎣

0 α β α
−α 0 α β
−β −α 0 α
−α −β −α 0

⎤
⎥⎥⎦ , (63)

where

α =
d

8
+

1

8

(
d− 1

8

)
, (64)

β = d2 − 2

(
d− 1

4

)2

. (65)

After computing the determinant and numerically finding the

roots of the resulting polynomial of d, we find the set of

singular duty cycles for the four-level converter is

D = {0.2836, 0.3629} . (66)

Coupled inductor cannot help with balancing the flying capac-

itor voltages at these two singular duty cycles.
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