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Characterization of a Microstrip Line Referenced to a
Meshed Return Plane Using 2-D Analysis

Ze Sun
Daryl Beetner

Abstract—Transmission lines with meshed return planes offer
enhanced flexibility but can introduce signal integrity challenges.
Characterizing such transmission lines using full-wave simulation
is accurate but time and resource intensive. In response, an efficient
modeling method using 2-D analysis is proposed in this article.
First, cross sections of the transmission line are taken at multiple
locations to create a sampled representation of the changing geome-
try. The per-unit-length (PUL) RLGC parameters of each segment
are obtained using 2-D analysis. The value of the inductance ob-
tained from the 2-D analysis is then modified to account for the
position-dependent current direction on the return plane. Finally,
the segments are cascaded together to obtain the S-parameters of
the transmission line. The results obtained using this method closely
align with those from 3-D full-wave simulations, demonstrating the
effectiveness and efficiency of the proposed approach.

Index Terms—Mesh return plane, printed circuit board, signal
integrity, transmission line.

1. INTRODUCTION

N MODERN compact electronic devices, flexible printed
I circuit boards (FPCBs) have become an essential component
for achieving reliable and space-saving designs. The physical
flexibility of these boards is made possible through the imple-
mentation of a meshed reference plane, which is significantly
different from the traditional microstrip that employs a solid ref-
erence plane. The adoption of a meshed reference plane presents
a set of challenges, including signal integrity issue like the
variations in characteristic impedance along the signal trace [1],
and the electromagnetic (EM) radiation [2] [3]. This article
focuses on the characterization of signal integrity behavior in
microstrip lines with meshed return plane.

Transmission lines with a solid reference plane can be mod-
eled by 2-D cross-sectional analysis [4] [5] because the geome-
tries are translationally invariant. When dealing with traces that
reference to a meshed plane, however, the geometrical variations
of the ground plane require the application of a full-wave simu-
lation for accurate modeling. This requirement poses challenges
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in terms of both time efficiency and computational resource
consumption. For example, in [6], [7], and [8], the S-parameters
of the transmission line needed to be obtained from full-wave
simulation to extract the effective characteristic impedance and
the per-unit-length (PUL) parameters.

To overcome these challenges, this research introduces a novel
method for calculating the S-parameters of a single-ended trace
referenced to a meshed return plane using only 2-D analysis.
The proposed approach accounts for the periodic changes in
the structure and the position-dependent direction of the cur-
rent flow. The accuracy of this method was validated through
comparison with full-wave simulation results.

This article is organized as follows. In Section I, the geometry
sampling procedure is introduced. By extracting and simulating
the cross-sectional geometries of the transmission line at various
locations using a 2-D solver, the resulting RLGC parameters can
be cascaded to obtain the S-parameter of the entire board. As will
be shown, however, the 2-D analysis fails to capture the changes
in return current flow direction caused by the geometry of the re-
turn plane, leading to inaccuracies in the resulting S-parameters.

The rest of this article is organized as follows: In Section II,
the proposed modeling methodology is introduced. In Section
III, a method is proposed to modify the calculated inductance
of the return plane obtained by the 2-D analysis. By doing
so, the current flow path around the mesh apertures can be
handled correctly. In Section IV, the proposed method is applied
to specific transmission line geometries for validation. Finally,
Section V concludes this article.

II. PROPOSED MODELING METHOD: INITIAL APPROACH

In this section, the proposed modeling methodology is in-
troduced. First, cross sections of the transmission line were
taken at multiple locations along the trace to create a sampled
representation of the changing geometry. It is critical to ensure
that the distance between adjacent cuts is small relative to the
size of the return plane aperture to enable appropriate sampling
of the ground geometry. Next, 2-D EM analysis was performed
using the cross-sectional geometries at the corresponding cuts to
obtain the PUL RLGC parameters of each segment. The RLGC
parameters can then be converted to matrix parameters (S or
ABCD) by representing each segment as a translationally invari-
ant transmission line with a length equal to the sampling step.
Finally, the matrix parameters of the segments were cascaded to
derive the matrix representation of the entire transmission line.
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Fig. 1.

(a) Top view of single-ended signal trace referenced to a meshed return
plane. The x-axis is along the vertical direction, the z-axis is along the horizontal
direction. (b) Zoom-in to the reference ground period.
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Fig. 2. Segmentation of the meshed round period. Only the portion closes
to the signal trace is shown. The lower and higher portions of the lattice were
divided by the red dashed line.

It has been observed, however, that this method cannot ac-
curately model the transmission line. To demonstrate this, a
simulated single-ended signal trace referenced to a meshed
return plane was analyzed using a full-wave solver (CST [9]),
as depicted in Fig. 1. The total length of the line was 51.24 mm,
with a ground plane hatch width of 0.3 mm and a hatch pitch of
1 mm. To ensure continuity with the port modes, the reference
plane on the left and right boundaries was solid, each with a
length of 1.72 mm. The trace width and the air layer between the
trace and reference plane were 0.25 and 0.08 mm, respectively,
while the thicknesses of both the trace and reference plane were
0.03 mm. The center of the trace was aligned with the center
of the return plane apertures. It took four and a half hours to
complete the simulation on a server with Intel 6136 processor
using the frequency domain solver.

Following the proposed methodology, the mesh period was
cross-sectioned at 64 locations, as illustrated in Fig. 2. The
geometry was sampled at a step of 29.5 pym below the dashed
line and 26.5 pm above the line, respectively. The sampling steps
were less than 2% of the lattice period (1.84 mm). This approach
resulted in 49 cuts uniformly distributed around the aperture and
15 cuts uniformly distributed at the crosshatch intersection. The
cuts were indexed in ascending order from the bottom to the top,
with cut 1 and cut 49 located at the bottom and top vertices of the
square hole, respectively, and cut 25 located in the center of the
hole. Due to symmetry, the cross section at cut ¢ was identical
to cut 50 — 4, where ¢ was any integer between 1 and 24, and the
cross section at cut ¢ was identical to cut 114 — ¢, where ¢ was any
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Fig. 3. Cross-sectional geometries at (a) cut 1, (b) cut 15, and (c) cut 25.
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Fig. 4. Comparison between full-wave and segmented models. (a) Magnitude
of S11. (b) Phase of Sy1. (c) Magnitude of Sy2. (d) Phase of Sp2.
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integer between 50 and 56. This approach reduces the number of
the required cross-sectional analyses to 33 instead of 64. Such
cross-sectioning strategy, however, is not mandatory and does
not limit the applicability of the method to nonsymmectrical
geometries. The cross-sectional geometries of several cuts are
depicted in Fig. 3. The RLGC parameters of each segment were
simulated using the Ansys Q2D solver.

The S-parameters of one period can be calculated by cascad-
ing the RLGC parameters of the 64 segments together. After
this, the S-parameters of the entire line in Fig. 1 were calculated
by cascading 26 periods and the two solid return plane segments
at the two ends. The comparison between the magnitude and
phase of the transmission coefficient (normalized to 50 )
obtained by the full-wave solver and by cascading the segments
is presented in Fig. 4. The disparity in the magnitude and phase
of S12 obtained through these two methods was quantified by
the relative errors defined as

S st S 2-D
31S1a] = 1 22l =Pl 0

cst| ||

|arg(S12,,) — arg(Si2,,)]l

2
Jarg(S1a,) | @

dargSis =
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Fig. 5. Current density distribution on the top surface of the return plane. The
vertical red lines indicate the position of trace.

The analysis revealed a relative error of 6.8% in magnitude
and 6.6% in phase. As can be seen from Fig. 4(c), the lines
models exhibit different electrical lengths, as evidenced by the
phase progression. This discrepancy can lead to errors in the
modeling of differential line skew [10]. The mismatch arises
from errors in the calculation of inductance, which is discussed
in Section III.

It should be noted that the presented method, based on cross-
sectional analysis, implicitly assumes that only the transverse
electromagnetic modes (TEM) exist in each cross section. In
reality, this is, of course, not true, and the non-TEM modes are
always present due to the nonuniformity of the transmission line
ground. This means that the presented method should be seen
as a low-frequency approximation, i.e., assuming that the size
of the apertures in the ground plane is electrically small. As
such, the possible EM interference caused by the ground plane
is not modeled. In addition to that, the signal degradation at
high frequencies caused by the significant non-TEM field at the
apertures is not taken into account as well.

III. CURRENT FLOW PATH ON A MESHED RETURN PLANE

To investigate the error observed in the cascaded model,
the surface current distribution on the return plane produced
by the full-wave solver CST is shown in Fig. 5. The current
flow direction on the meshed return plane is position-dependent.
Specifically, when a conductor is located underneath the trace,
the return current primarily flows along the z direction. In the
absence of a ground conductor, the return current predominantly
flows along the edges of the apertures in the meshed return
plane. In the 2-D analysis, however, the information about the
position-dependent return current direction is missing as the
geometry of the return plane is assumed to be translationally
invariant. As a result, the direction of the return current is always
normal to the cross-sectional plane.
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Fig. 6. (a) Assumed current flow direction in 2-D analysis. (b) Top view of
current flow direction in a transmission line with a mesh return plane.

The difference in current flow direction between the 2-D
and 3-D simulations is illustrated qualitatively in Fig. 6. For
a segment of the translationally invariant line [Fig. 6(a)] with
length dz, the length of both the trace and ground conductors
is equal to the segment length: dl; = dl, = dz. In contrast, for
the line with the meshed ground [Fig. 6(b)], the length of the
conductor in which the current flows at an angle 6 relative to
the trace is longer: dl, = dz/cos6. This difference affect the
inductance value. Therefore, the inductance value obtained from
the 2-D simulation needs to be modified to account for the effect
of the current flow direction, which is discussed in detail in
Sections III-A to III-C.

It is important to note that the value of the PUL capaci-
tance C' is unaffected by the current flow direction, while the
PUL resistance R is (because of the increased length of the
return current path). The analysis presented in Fig. 4 highlights
that the amplitude of the reflection and transmission coeffi-
cients is reproduced quite accurately even without modifying
the PUL R of the segments, suggesting that the influence
of the meshed ground plane on the conductor loss is a rela-
tively weak effect. Therefore, this study primarily focuses on
investigating the influence of the position-dependent current
direction on the inductance value and correcting the phase
progression; accurate modeling of the conductor loss is out-
side the scope of this article and could be a topic of future
research.

A. Reconstruction of Return Current Direction

The 2-D analysis only provides the magnitude distribution
of the current at the cross sections. To determine the modified
inductance, however, it is necessary to reconstruct the current
flow direction.

The governing equation for the current density J on the return
plane is the continuity equation [11]

- ap
V.-J= e 3)
where dp /0t represents the rate of change of the charge density
p, which is zero in the case of a transmission line.
The divergence of Jin (3) can be expressed as

aJ,  oJ,

L 90 aJ.
oz y 0z

— 0. (4)
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Fig. 7. Solving for the current flow direction using the finite difference.

Considering that the thickness of the return plane is much
smaller compared to its width and length, the change in current
density in the y direction can be neglected (aJy = ) As
depicted in Fig. 6(b), when the angle between the current flow
direction and the z direction is denoted as 6, (4) can be rewritten
as

d(—|J|sind)  A(|J|cosd) _ 5)
ox 0z

Following the Leibniz product rule, the derivatives in the x
and z directions can be expressed as

89 8|J| 9 8|J| B
By dividing each term by —|.J|, (6) can be reformulated as
a0\ . 00
(M+§)sm9+ (%—N)COSG—O @)

where M and N are normalized derivatives of the absolute value
of the current density

8 J
A 5 ®
mﬂ~
N=——/|J| 9
il ©
The tangent of the angle 6 can be expressed from (7) as
_ 90
tanf = —— 9 (10)
20
M+ 37

Equation (10) is a nonlinear partial differential equation with
respect to 6. The equation can be solved by meshing the geom-
etry by a rectangular grid and substituting the partial derivatives
with the finite differences [12]. An example of the meshing is
shown in Fig. 7. From the 2-D analysis, the current amplitude
|Ji;| is known at the points i in the cross sections j. Thus,
the values of the functions M and N at a point (¢, j) can be
calculated, for example, as

|3 1=1T5-1 41 | T35 1=, 1]
M;j~ —=-2%— N;j ~ —22— (11)
|/, | Ji g
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Similarly, the partial derivatives of the angle at the location
(i, ) are calculated as

8(91'7]' - (91'73' — 91‘,173‘ 891‘,]‘ N 91‘,]‘ —
dr Ax Tz Az

Finally, (10) can be rewritten in terms of the finite differences

%*.(m

1J5,41-13, 511
Z

001y
_ [Ji5] Az
tanéij = — = (13)
> [ 51=1Ji-1 41 0, —0, 1
é:{: + 2%} AZ"v]7
[Ji 51

The values of the angles at the boundary of each segment j
(i.e., at the edges of the conductor) are known and are equal to
the angle of the conductor edges relative to the z-axis. Therefore,
(13) can be solved at each location (4, j) by specifying a certain
angle for the current in the first segment (for example, the current
can be set parallel to the z-axis) and then iteratively solving the
equation at each point in the remaining cross sections.

B. Modifying Inductance Based on Current Flow Direction

After reconstructing the current flow direction, the inductance
can be calculated based on the definition [13]

o [;B-ds
I I
where @ is the magnetic flux through the surface S between
the trace and the return plane. This quantity is determined by
calculating the surface integral of the normal component of the
magnetic field B over the surface S. Beside, the magnetic field
B field can be computed as [14]

L= (14)

B=VxA 5)

where A denotes the vector potential. By substituting (15) into
(14) and applying the Stokes’s theorem, a representation of
inductance can be derived in terms of A

gdd
g

In this equation, c refers to the closed contour encircling
surface S. The inductance can be divided into contributions from
the trace and the return plane, thus, (16) can be reformulated as

fc A'trace - dl fc A)GND : dr
1 1

(16)

L = Lyace + Lonp =

A7)

where fftme and /YGND represent the vector magnetic fields
generated by the current flowing on the signal trace and on the
return plane, respectively.

Let us first analyze the return conductor contribution Lgnp in
the infinitesimal segments of length dl formed by two parallel
and nonparallel filament currents, as depicted in Fig. 8. When
the return current is normal to the cross-sectional plane, the
direction of /TGND aligns with the z direction. The direction of
the integral line is set as clockwise, and it can be separated into
four segments: two segments parallel to the trace and return path
(CD and AB), and two segments perpendicular to the trace and
return path (BC and DA). As /TGND is orthogonal to BC' and
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Fig. 8. Calculation of Lgnp of segments formed by: (a) two parallel filament
currents and (b) two nonparallel filament currents.

D A, the corresponding line integral is zero. Consequently, Lgnp

can be calculated as

Jx Aaxo di+ [ Aonp dll
7 .

Lonp = (18)

Since the lines in Fig. 8 are formed by infinitely long con-
ductors and the length of the segment is infinitesimal, the vector
potential is constant along the lines parallel to the conductors
(i.e., AGND (A) = AGND (B) and AGND (C) = AGND (D)) and the
integrals in (18) can be replaced by products

1 _ oo (4)[dl — | Aano(D)]d]
GND — T .

19)

In the case of a meshed return plane, as depicted in Fig. 8(b),
the direction of /TGND remains parallel to the return current but
no longer aligns with the z direction. An additional point £’ is
introduced between B’ and C’, such that | B'E’| = | D" A’|. This
subdivision allows the line integral to be split into five segments.
In this way, the line integral between B’ E" and D’ A’ cancel with
each other.

Therefore, similar to (19), the contribution of the return con-
ductor Lgyp can be expressed as

ro = (A (A/)|‘”+/C/A‘ it [ Ao di
GND T GND COSG ’ GND o GND

where % represents the length of the segment A’ B’.
As the segment length dl is infinitesimal, the length of the
segment E'C” is infinitesimal as well (if 6 # 7/2) and the
values of the magnetic potential at points £’ and C’ become
equal, and both are in turn equal to the value at point D"
Acnp(E') = Aonp(C') = Agnp (D). In this case, the integrals
along the paths E'D’" and E'C’ D’ will be equal
c . D'
Acnp dl +

B c

= —|Agnp(D")| dl tanf sind — |Agap(D')] dl cost

D/
a__ / Agnp dI-
E/

fIGND df

— —|Agxp(D') 21
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Fig. 9. Calculation of Ly, of segments formed by: (a) two parallel filament
currents and (b) two nonparallel filament currents.

Substituting (21) into (20), Lyp can be written as

o 2 (| Aoan(A)| — [Aaxp (D))
GND — I .

(22)

The magnitude of /TGND depends on the distance between the
observation point and the source current. In (18) and (22), it can
be observed that |EGND (A)| = |EGND (A/)| and |XGND(D)| =
| Agxp(D')|. Therefore,

1

L/GND == @LGND. (23)

The variation of Ly, for the meshed return plane case can
be derived similarly. Fig. 9(a) displays the distribution of A
generated by the trace current for the parallel case. Same as
Fig. 8(a), the integral line can be divided into four segments,
and Lyee can be expressed as

$, Auce - Al _ |Ayaee(D)] dl — |Auace(A)| d
Ltrace = =

1 1

For the case of the meshed return plane illustrated in Fig. 9(b),

the direction of fftmce aligns with the zdirection. As a result, the

modified inductance Lj,.. is equal to Ly for the parallel case,

. (24)

as follows:
o $ A dl_ JE Apee dl+ 5 Agee dl
trace I I
Xrace D - Xrace A
= Ml ”dlI' el ALy )

By combining the contributions of Lgnp and Ly, the cor-
responding PUL inductance should be modified as

1
L'= Ltrace + 7LGND-

cost (26)

C. Calculating the PUL Inductance of the Cross Sections

At each cut, the reconstructed current flow direction is
position-dependent. In order to modify the PUL L using (26),
which describes the inductance of the filament currents, the sum
of the filament current contributions needs to be taken [15], [16].

After reconstructing the return current density J using the
method discussed in Section III-A, the return current at each cut
can be represented as a combination of multiple filaments. If the
distance between two adjacent filaments is Ad, the current of the
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PUL L of the segments before and after modification according to

ith filament can be calculated as I_; = Adfi. In the case when the
return current is parallel to the signal trace, as depicted in Fig. 10,
the magnetic flux density B; generated by the ith filament can
be obtained using the Biot-Savart law as [17]

27)
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where 1 is the permeability of free space, r is the distance
from the observation point to the current source, and ¢, is the
unit vector in the azimuthal direction (tangential to the circle
with the center at the filament location and going through the
observation point).

The magnetic flux through the surface S between the trace and
the return plane generated by the ith filament can be expressed

as
@i:/éi-dg.
S

The surface .S is defined between the edges of the signal trace
and the return plane, as shown in Fig. 10. The distances from the
tth filament to the edge of the return plane and the signal trace
are denoted as dy; and d»;, respectively. Be defining a circle with
the center of the filament and the radius equal to d»;, itis possible
to define surface S’ which lies in the same plane as the filament.
Since the B field generated by the filament is tangential to the
circle [see (27)] and the divergence of the B field is zero, the
flux through surfaces S and S’ is equal. Therefore, the magnetic
flux can be calculated as follows:

S

dai L y0dl ~ odl do;
- / L)% gy = |1 22 (—2) (29)
di; 27 dli

(28)

2mx

where dl corresponds to the length of the segment in the z
direction.

The total magnetic flux generated by all n return plane
filaments is given by the sum of the contributions from each
filament, which can be expressed as

" - podl do;
(I)GND:Z(I)ZZZ|11|? H(d—h)
i=1 i=1

(30)
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The return plane inductance contribution is the ratio of the

flux (30) to the total current
,Ltodl d21
Z i ().

To find the inductance contribution in the case of the meshed
ground, the contributions of each filament in (31) has to be
modified according to (23)

Z Iz |u0dl @ 1
dy; ) cost;

1

‘I’GND B

Lonp = 3D

GND = (32)

where 6; is the angle of the current flow of the 7th filament.

Similarly, the trace current can be treated as a combination
of m filaments in the trace conductor. As show in Fig. 11,
the inductance contribution of the trace L, in (26) can be
calculated as

<I> dl d
Ltrace _ Fwace _ I Z | i ‘ 120] ( 27 >
1j

where I; is the current of the jth filament, d;; and dy; are the
distance from the jth filament to the edge of the return plane and
trace, as shown in Fig. 10. The total PUL inductance is calculated
as

(33)

L' = Lyace + Lonp- (34)

IV. VALIDATION OF THE PROPOSED METHOD

A. Trace Aligned With the Aperture Center

The proposed methodology was applied to the model depicted
in Fig. 1, where the trace is aligned with the center of the return
plane aperture. Following the completion of the 2-D analysis,
the direction of the return current was reconstructed using the
process described in Section III-A, as illustrated in Fig. 12.

Subsequently, the value of the PUL L was modified according
to (32). The resulting dependency of the PUL inductance on the
position along the TL is shown in Fig. 13. By combining the
modified PUL L with the PUL RGC obtained directly from the
2-D analysis, the S-parameters of each segment were calculated.

Finally, the S-parameters of the entire board were obtained
by cascading these segments together, as presented in Fig. 14.
Using (1) and (2), the relative errors in the magnitude and phase
of the transmission coefficient were 2% and 0.2%, respectively.
It can be observed that after modifying the PUL L based on
the return current direction, the cascaded results exhibit a much
better correlation with the results of the full-wave simulation
in terms of phase delay, as a consequence the magnitude error
reduced as well because of the alignment of the nulls.

B. Trace Not Aligned With the Aperture Center

The proposed method can also be applied to cases where
the trace is not aligned with the center of the apertures. To
demonstrate this, the trace of the transmission line in Fig. 1
was shifted toward the positive x direction by 0.35 mm, as
illustrated in Fig. 15. The region between the two black dashed
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Fig. 15. Model with the trace off away from the aperture center. Only the
portion close to the signal trace is shown.
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Fig. 16. Reconstructed return current direction. The blue lines indicate the
position of the signal trace.
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Fig. 17. PUL L before and after modification.

lines represents the half period of the meshed plane. Similar to
the previous example, the model was cross-sectioned at the same
32 locations. Using the current magnitude distribution obtained
from the 2-D analysis, the return current flow direction was re-
constructed, as depicted in Fig. 16. The comparison between the
PUL L obtained from the 2-D analysis and the modified result is
shown in Fig. 17. By cascading the RLGC parameters of all seg-
ments together, the resulting S-parameters were calculated and
presented in Fig. 18. A good correlation was achieved between
the cascaded result and the full-wave simulation, indicating the
effectiveness of the proposed methodology in such cases as
well.
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V. CONCLUSION

The widespread use of FPCBs in contemporary electronic
devices has made it increasingly important to accurately charac-
terize transmission lines referenced to mesh return planes. In this
article, a novel and efficient method is proposed for calculating
the S-parameters of single-ended traces referenced to a meshed
return plane using 2-D analysis.

Traditional 2-D cross-sectional analysis is inadequate for
accurately characterizing transmission lines with meshed ref-
erence planes due to the geometry-induced changes in return
current flow direction. The proposed approach addresses this
limitation by considering the changes in the geometry and the
position-dependent direction of current flow. The calculated
inductance of the return plane obtained by the 2-D analysis was
modified, effectively accounting for the current flow path around
the mesh openings.

The validity of the approach was demonstrated through the
modeling of transmission lines with both aligned and offset sig-
nal traces relative to the apertures in the meshed return plane. The
proposed method yields consistent phase values for the reflection
and transmission coefficients when compared to full-wave 3-D
simulations. This correlation was crucial for accurately predict-
ing skew and signal distortion during signal integrity analysis.
Moreover, the magnitude of the S-parameters can be reasonably
reconstructed, with a maximum error of approximately 0.3 dB.
This aspect will be investigated in future studies.
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In addition to the two validation cases demonstrated within
this article, wherein the signal traces are aligned parallel to the
diagonal axis of the mesh apertures, it is important to recognize
that in practical applications, signal traces may assume an an-
gle relative to this diagonal axis. In such scenarios, the angle
formed between the signal trace and the diagonal axis of the
mesh aperture determines the structure’s periodicity and might
require to increase the number of the cross sections (for the
same cross-sectioning step). Nevertheless, the proposed method
remains fully applicable.

In conclusion, this research carries significant implications
for the design and optimization of FPCBs, contributing to the
ongoing advancement of modern electronic devices.
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