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Characterization of a Microstrip Line Referenced to a
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Abstract—Transmission lines with meshed return planes offer
enhanced flexibility but can introduce signal integrity challenges.
Characterizing such transmission lines using full-wave simulation
is accurate but time and resource intensive. In response, an efficient
modeling method using 2-D analysis is proposed in this article.
First, cross sections of the transmission line are taken at multiple
locations to create a sampled representation of the changing geome-
try. The per-unit-length (PUL) RLGC parameters of each segment
are obtained using 2-D analysis. The value of the inductance ob-
tained from the 2-D analysis is then modified to account for the
position-dependent current direction on the return plane. Finally,
the segments are cascaded together to obtain the S-parameters of
the transmission line. The results obtained using this method closely
align with those from 3-D full-wave simulations, demonstrating the
effectiveness and efficiency of the proposed approach.

Index Terms—Mesh return plane, printed circuit board, signal
integrity, transmission line.

I. INTRODUCTION

I
N MODERN compact electronic devices, flexible printed

circuit boards (FPCBs) have become an essential component

for achieving reliable and space-saving designs. The physical

flexibility of these boards is made possible through the imple-

mentation of a meshed reference plane, which is significantly

different from the traditional microstrip that employs a solid ref-

erence plane. The adoption of a meshed reference plane presents

a set of challenges, including signal integrity issue like the

variations in characteristic impedance along the signal trace [1],

and the electromagnetic (EM) radiation [2] [3]. This article

focuses on the characterization of signal integrity behavior in

microstrip lines with meshed return plane.

Transmission lines with a solid reference plane can be mod-

eled by 2-D cross-sectional analysis [4] [5] because the geome-

tries are translationally invariant. When dealing with traces that

reference to a meshed plane, however, the geometrical variations

of the ground plane require the application of a full-wave simu-

lation for accurate modeling. This requirement poses challenges
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in terms of both time efficiency and computational resource

consumption. For example, in [6], [7], and [8], the S-parameters

of the transmission line needed to be obtained from full-wave

simulation to extract the effective characteristic impedance and

the per-unit-length (PUL) parameters.

To overcome these challenges, this research introduces a novel

method for calculating the S-parameters of a single-ended trace

referenced to a meshed return plane using only 2-D analysis.

The proposed approach accounts for the periodic changes in

the structure and the position-dependent direction of the cur-

rent flow. The accuracy of this method was validated through

comparison with full-wave simulation results.

This article is organized as follows. In Section II, the geometry

sampling procedure is introduced. By extracting and simulating

the cross-sectional geometries of the transmission line at various

locations using a 2-D solver, the resulting RLGC parameters can

be cascaded to obtain theS-parameter of the entire board. As will

be shown, however, the 2-D analysis fails to capture the changes

in return current flow direction caused by the geometry of the re-

turn plane, leading to inaccuracies in the resultingS-parameters.

The rest of this article is organized as follows: In Section II,

the proposed modeling methodology is introduced. In Section

III, a method is proposed to modify the calculated inductance

of the return plane obtained by the 2-D analysis. By doing

so, the current flow path around the mesh apertures can be

handled correctly. In Section IV, the proposed method is applied

to specific transmission line geometries for validation. Finally,

Section V concludes this article.

II. PROPOSED MODELING METHOD: INITIAL APPROACH

In this section, the proposed modeling methodology is in-

troduced. First, cross sections of the transmission line were

taken at multiple locations along the trace to create a sampled

representation of the changing geometry. It is critical to ensure

that the distance between adjacent cuts is small relative to the

size of the return plane aperture to enable appropriate sampling

of the ground geometry. Next, 2-D EM analysis was performed

using the cross-sectional geometries at the corresponding cuts to

obtain the PUL RLGC parameters of each segment. The RLGC

parameters can then be converted to matrix parameters (S or

ABCD) by representing each segment as a translationally invari-

ant transmission line with a length equal to the sampling step.

Finally, the matrix parameters of the segments were cascaded to

derive the matrix representation of the entire transmission line.
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Fig. 1. (a) Top view of single-ended signal trace referenced to a meshed return
plane. Thex-axis is along the vertical direction, the z-axis is along the horizontal
direction. (b) Zoom-in to the reference ground period.

Fig. 2. Segmentation of the meshed round period. Only the portion closes
to the signal trace is shown. The lower and higher portions of the lattice were
divided by the red dashed line.

It has been observed, however, that this method cannot ac-

curately model the transmission line. To demonstrate this, a

simulated single-ended signal trace referenced to a meshed

return plane was analyzed using a full-wave solver (CST [9]),

as depicted in Fig. 1. The total length of the line was 51.24 mm,

with a ground plane hatch width of 0.3 mm and a hatch pitch of

1 mm. To ensure continuity with the port modes, the reference

plane on the left and right boundaries was solid, each with a

length of 1.72 mm. The trace width and the air layer between the

trace and reference plane were 0.25 and 0.08 mm, respectively,

while the thicknesses of both the trace and reference plane were

0.03 mm. The center of the trace was aligned with the center

of the return plane apertures. It took four and a half hours to

complete the simulation on a server with Intel 6136 processor

using the frequency domain solver.

Following the proposed methodology, the mesh period was

cross-sectioned at 64 locations, as illustrated in Fig. 2. The

geometry was sampled at a step of 29.5 μm below the dashed

line and 26.5μm above the line, respectively. The sampling steps

were less than 2% of the lattice period (1.84 mm). This approach

resulted in 49 cuts uniformly distributed around the aperture and

15 cuts uniformly distributed at the crosshatch intersection. The

cuts were indexed in ascending order from the bottom to the top,

with cut 1 and cut 49 located at the bottom and top vertices of the

square hole, respectively, and cut 25 located in the center of the

hole. Due to symmetry, the cross section at cut i was identical

to cut 50− i, where i was any integer between 1 and 24, and the

cross section at cut iwas identical to cut 114− i, where iwas any

Fig. 3. Cross-sectional geometries at (a) cut 1, (b) cut 15, and (c) cut 25.

Fig. 4. Comparison between full-wave and segmented models. (a) Magnitude
of S11. (b) Phase of S11. (c) Magnitude of S12. (d) Phase of S12.

integer between 50 and 56. This approach reduces the number of

the required cross-sectional analyses to 33 instead of 64. Such

cross-sectioning strategy, however, is not mandatory and does

not limit the applicability of the method to nonsymmectrical

geometries. The cross-sectional geometries of several cuts are

depicted in Fig. 3. The RLGC parameters of each segment were

simulated using the Ansys Q2D solver.

The S-parameters of one period can be calculated by cascad-

ing the RLGC parameters of the 64 segments together. After

this, the S-parameters of the entire line in Fig. 1 were calculated

by cascading 26 periods and the two solid return plane segments

at the two ends. The comparison between the magnitude and

phase of the transmission coefficient (normalized to 50 Ω)

obtained by the full-wave solver and by cascading the segments

is presented in Fig. 4. The disparity in the magnitude and phase

of S12 obtained through these two methods was quantified by

the relative errors defined as

δ|S12| =
‖|S12cst

| − |S122-D
|‖

‖|S12cst|
‖

(1)

δ argS12 =
‖arg(S12cst

)− arg(S122-D
)‖

‖arg(S12cst
)‖

. (2)
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Fig. 5. Current density distribution on the top surface of the return plane. The
vertical red lines indicate the position of trace.

The analysis revealed a relative error of 6.8% in magnitude

and 6.6% in phase. As can be seen from Fig. 4(c), the lines

models exhibit different electrical lengths, as evidenced by the

phase progression. This discrepancy can lead to errors in the

modeling of differential line skew [10]. The mismatch arises

from errors in the calculation of inductance, which is discussed

in Section III.

It should be noted that the presented method, based on cross-

sectional analysis, implicitly assumes that only the transverse

electromagnetic modes (TEM) exist in each cross section. In

reality, this is, of course, not true, and the non-TEM modes are

always present due to the nonuniformity of the transmission line

ground. This means that the presented method should be seen

as a low-frequency approximation, i.e., assuming that the size

of the apertures in the ground plane is electrically small. As

such, the possible EM interference caused by the ground plane

is not modeled. In addition to that, the signal degradation at

high frequencies caused by the significant non-TEM field at the

apertures is not taken into account as well.

III. CURRENT FLOW PATH ON A MESHED RETURN PLANE

To investigate the error observed in the cascaded model,

the surface current distribution on the return plane produced

by the full-wave solver CST is shown in Fig. 5. The current

flow direction on the meshed return plane is position-dependent.

Specifically, when a conductor is located underneath the trace,

the return current primarily flows along the z direction. In the

absence of a ground conductor, the return current predominantly

flows along the edges of the apertures in the meshed return

plane. In the 2-D analysis, however, the information about the

position-dependent return current direction is missing as the

geometry of the return plane is assumed to be translationally

invariant. As a result, the direction of the return current is always

normal to the cross-sectional plane.

Fig. 6. (a) Assumed current flow direction in 2-D analysis. (b) Top view of
current flow direction in a transmission line with a mesh return plane.

The difference in current flow direction between the 2-D

and 3-D simulations is illustrated qualitatively in Fig. 6. For

a segment of the translationally invariant line [Fig. 6(a)] with

length dz, the length of both the trace and ground conductors

is equal to the segment length: dlt = dlg = dz. In contrast, for

the line with the meshed ground [Fig. 6(b)], the length of the

conductor in which the current flows at an angle θ relative to

the trace is longer: dlg = dz/cosθ. This difference affect the

inductance value. Therefore, the inductance value obtained from

the 2-D simulation needs to be modified to account for the effect

of the current flow direction, which is discussed in detail in

Sections III-A to III-C.

It is important to note that the value of the PUL capaci-

tance C is unaffected by the current flow direction, while the

PUL resistance R is (because of the increased length of the

return current path). The analysis presented in Fig. 4 highlights

that the amplitude of the reflection and transmission coeffi-

cients is reproduced quite accurately even without modifying

the PUL R of the segments, suggesting that the influence

of the meshed ground plane on the conductor loss is a rela-

tively weak effect. Therefore, this study primarily focuses on

investigating the influence of the position-dependent current

direction on the inductance value and correcting the phase

progression; accurate modeling of the conductor loss is out-

side the scope of this article and could be a topic of future

research.

A. Reconstruction of Return Current Direction

The 2-D analysis only provides the magnitude distribution

of the current at the cross sections. To determine the modified

inductance, however, it is necessary to reconstruct the current

flow direction.

The governing equation for the current density �J on the return

plane is the continuity equation [11]

∇ · �J = −
∂ρ

∂t
(3)

where ∂ρ/∂t represents the rate of change of the charge density

ρ, which is zero in the case of a transmission line.

The divergence of �J in (3) can be expressed as

∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

= 0. (4)
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Fig. 7. Solving for the current flow direction using the finite difference.

Considering that the thickness of the return plane is much

smaller compared to its width and length, the change in current

density in the y direction can be neglected
(

∂Jy

∂y
= 0

)

. As

depicted in Fig. 6(b), when the angle between the current flow

direction and the z direction is denoted as θ, (4) can be rewritten

as

∂(−| �J |sinθ)

∂x
+

∂(| �J |cosθ)

∂z
= 0. (5)

Following the Leibniz product rule, the derivatives in the x
and z directions can be expressed as

−| �J |cosθ
∂θ

∂x
−

∂| �J |

∂x
sinθ − | �J |sinθ

∂θ

∂z
+

∂| �J |

∂z
cosθ = 0. (6)

By dividing each term by −| �J |, (6) can be reformulated as

(

M +
∂θ

∂z

)

sinθ +
(∂θ

∂x
−N

)

cosθ = 0 (7)

whereM andN are normalized derivatives of the absolute value

of the current density

M =
∂| �J |

∂x
/| �J | (8)

N =
∂| �J |

∂z
/| �J |. (9)

The tangent of the angle θ can be expressed from (7) as

tanθ =
N − ∂θ

∂x

M + ∂θ
∂z

. (10)

Equation (10) is a nonlinear partial differential equation with

respect to θ. The equation can be solved by meshing the geom-

etry by a rectangular grid and substituting the partial derivatives

with the finite differences [12]. An example of the meshing is

shown in Fig. 7. From the 2-D analysis, the current amplitude

| �Jij | is known at the points i in the cross sections j. Thus,

the values of the functions M and N at a point (i, j) can be

calculated, for example, as

Mi,j ≈
| �Ji,j |−| �Ji−1,j |

∆x

| �Ji,j |
, Ni,j ≈

| �Ji,j |−| �Ji,j−1|
∆z

| �Ji,j |
. (11)

Similarly, the partial derivatives of the angle at the location

(i, j) are calculated as

∂θi,j
∂x

≈
θi,j − θi−1,j

∆x
,
∂θi,j
∂z

≈
θi,j − θi,j−1

∆z
. (12)

Finally, (10) can be rewritten in terms of the finite differences

tanθi,j =

|�Ji,j |−|�Ji,j−1 |

∆z

| �Ji,j |
−

θi,j−θi−1,j

∆x

|�Ji,j |−|�Ji−1,j |

∆x

| �Ji,j |
+

θi,j−θi,j−1

∆z

. (13)

The values of the angles at the boundary of each segment j
(i.e., at the edges of the conductor) are known and are equal to

the angle of the conductor edges relative to the z-axis. Therefore,

(13) can be solved at each location (i, j) by specifying a certain

angle for the current in the first segment (for example, the current

can be set parallel to the z-axis) and then iteratively solving the

equation at each point in the remaining cross sections.

B. Modifying Inductance Based on Current Flow Direction

After reconstructing the current flow direction, the inductance

can be calculated based on the definition [13]

L =
Φ

I
=

∫

S
�B · d�s

I
(14)

where Φ is the magnetic flux through the surface S between

the trace and the return plane. This quantity is determined by

calculating the surface integral of the normal component of the

magnetic field �B over the surface S. Beside, the magnetic field
�B field can be computed as [14]

�B = ∇× �A (15)

where �A denotes the vector potential. By substituting (15) into

(14) and applying the Stokes’s theorem, a representation of

inductance can be derived in terms of �A

L =

∮

c
�A · d�l

I
. (16)

In this equation, c refers to the closed contour encircling

surfaceS. The inductance can be divided into contributions from

the trace and the return plane, thus, (16) can be reformulated as

L = Ltrace + LGND =

∮

c
�Atrace · d�l

I
+

∮

c
�AGND · d�l

I
(17)

where �Atrace and �AGND represent the vector magnetic fields

generated by the current flowing on the signal trace and on the

return plane, respectively.

Let us first analyze the return conductor contribution LGND in

the infinitesimal segments of length dl formed by two parallel

and nonparallel filament currents, as depicted in Fig. 8. When

the return current is normal to the cross-sectional plane, the

direction of �AGND aligns with the z direction. The direction of

the integral line is set as clockwise, and it can be separated into

four segments: two segments parallel to the trace and return path

(CD and AB), and two segments perpendicular to the trace and

return path (BC and DA). As �AGND is orthogonal to BC and
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Fig. 8. Calculation of LGND of segments formed by: (a) two parallel filament
currents and (b) two nonparallel filament currents.

DA, the corresponding line integral is zero. Consequently,LGND

can be calculated as

LGND =

∫ B

A
�AGND d�l +

∫D

C
�AGND d�l

I
. (18)

Since the lines in Fig. 8 are formed by infinitely long con-

ductors and the length of the segment is infinitesimal, the vector

potential is constant along the lines parallel to the conductors

(i.e., �AGND(A) = �AGND(B) and �AGND(C) = �AGND(D)) and the

integrals in (18) can be replaced by products

LGND =
| �AGND(A)|dl − | �AGND(D)|dl

I
. (19)

In the case of a meshed return plane, as depicted in Fig. 8(b),

the direction of �AGND remains parallel to the return current but

no longer aligns with the z direction. An additional point E′ is

introduced between B′ and C ′, such that |B′E ′| = |D′A′|. This

subdivision allows the line integral to be split into five segments.

In this way, the line integral betweenB′E ′ andD′A′ cancel with

each other.

Therefore, similar to (19), the contribution of the return con-

ductor L′
GND can be expressed as

L′
GND =

1

I
(| �AGND(A

′)|
dl

cosθ
+

∫ C ′

E′

�AGND d�l +

∫ D′

C ′

�AGND d�l)

(20)

where dl
cosθ

represents the length of the segment A′B′.

As the segment length dl is infinitesimal, the length of the

segment E′C ′ is infinitesimal as well (if θ �= π/2) and the

values of the magnetic potential at points E′ and C ′ become

equal, and both are in turn equal to the value at point D′:
�AGND(E

′) = �AGND(C
′) = �AGND(D

′). In this case, the integrals

along the paths E ′D′ and E ′C ′D′ will be equal

∫ C ′

E′

�AGND d�l +

∫ D′

C ′

�AGND d�l

= −| �AGND(D
′)| dl tanθ sinθ − | �AGND(D

′)| dl cosθ

= −| �AGND(D
′)|

dl

cosθ
=

∫ D′

E′

�AGND d�l. (21)

Fig. 9. Calculation of Ltrace of segments formed by: (a) two parallel filament
currents and (b) two nonparallel filament currents.

Substituting (21) into (20), L′
GND can be written as

L′
GND =

dl
cosθ

(| �AGND(A
′)| − | �AGND(D

′)|)

I
. (22)

The magnitude of �AGND depends on the distance between the

observation point and the source current. In (18) and (22), it can

be observed that | �AGND(A)| = | �AGND(A
′)| and | �AGND(D)| =

| �AGND(D
′)|. Therefore,

L′
GND =

1

cosθ
LGND. (23)

The variation of Ltrace for the meshed return plane case can

be derived similarly. Fig. 9(a) displays the distribution of �A
generated by the trace current for the parallel case. Same as

Fig. 8(a), the integral line can be divided into four segments,

and Ltrace can be expressed as

Ltrace =

∮

c
�Atrace · d�l

I
=

| �Atrace(D)| dl − | �Atrace(A)| dl

I
. (24)

For the case of the meshed return plane illustrated in Fig. 9(b),

the direction of �Atrace aligns with the zdirection. As a result, the

modified inductance L′
trace is equal to Ltrace for the parallel case,

as follows:

L′
trace =

∮

c
�A · d�l

I
=

∫D′

C ′
�Atrace d�l +

∫ B′

A′
�Atrace d�l

I

=
| �Atrace(D)| dl − | �Atrace(A)| dl

I
= Ltrace. (25)

By combining the contributions of LGND and Ltrace, the cor-

responding PUL inductance should be modified as

L′ = Ltrace +
1

cosθ
LGND. (26)

C. Calculating the PUL Inductance of the Cross Sections

At each cut, the reconstructed current flow direction is

position-dependent. In order to modify the PUL L using (26),

which describes the inductance of the filament currents, the sum

of the filament current contributions needs to be taken [15], [16].

After reconstructing the return current density �J using the

method discussed in Section III-A, the return current at each cut

can be represented as a combination of multiple filaments. If the

distance between two adjacent filaments is∆d, the current of the
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Fig. 10. Calculation of the magnetic flux of the return plane filament currents.

Fig. 11. Calculation of the magnetic flux of the trace filament currents.

Fig. 12. Fragment of the reconstructed return current. The blue lines indicate
the position of the signal trace. The arrows represent normalized current density
vectors.

Fig. 13. PUL L of the segments before and after modification according to
(32).

ith filament can be calculated as �Ii = ∆d �Ji. In the case when the

return current is parallel to the signal trace, as depicted in Fig. 10,

the magnetic flux density �Bi generated by the ith filament can

be obtained using the Biot-Savart law as [17]

�Bi = êϕ
μ0|�Ii|

2πr
(27)

Fig. 14. Comparison between full-wave and segmented models. (a) Magnitude
of S11. (b) Phase of S11. (c) Magnitude of S12. (d) Phase of S12.

where μ0 is the permeability of free space, r is the distance

from the observation point to the current source, and êϕ is the

unit vector in the azimuthal direction (tangential to the circle

with the center at the filament location and going through the

observation point).

The magnetic flux through the surfaceS between the trace and

the return plane generated by the ith filament can be expressed

as

Φi =

∫

S

�Bi · d�s. (28)

The surface S is defined between the edges of the signal trace

and the return plane, as shown in Fig. 10. The distances from the

ith filament to the edge of the return plane and the signal trace

are denoted as d1i and d2i, respectively. Be defining a circle with

the center of the filament and the radius equal to d2i, it is possible

to define surface S ′ which lies in the same plane as the filament.

Since the �B field generated by the filament is tangential to the

circle [see (27)] and the divergence of the �B field is zero, the

flux through surfaces S and S ′ is equal. Therefore, the magnetic

flux can be calculated as follows:

Φi =

∫

S

�Bi · d�s =

∫

S′

�Bi · d�s′

=

∫ d2i

d1i

|�Ii|
μ0dl

2πx
dx = |�Ii|

μ0dl

2π
ln

(

d2i
d1i

)

(29)

where dl corresponds to the length of the segment in the z
direction.

The total magnetic flux generated by all n return plane

filaments is given by the sum of the contributions from each

filament, which can be expressed as

ΦGND =
n
∑

i=1

Φi =
n
∑

i=1

|�Ii|
μ0dl

2π
ln

(

d2i
d1i

)

. (30)
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The return plane inductance contribution is the ratio of the

flux (30) to the total current

LGND =
ΦGND

I
=

1

I

n
∑

i=1

|�Ii|
μ0dl

2π
ln

(

d2i
d1i

)

. (31)

To find the inductance contribution in the case of the meshed

ground, the contributions of each filament in (31) has to be

modified according to (23)

L′
GND =

1

I

n
∑

i=1

|�Ii|
μ0dl

2π
ln

(

d2i
d1i

)

1

cosθi
(32)

where θi is the angle of the current flow of the ith filament.

Similarly, the trace current can be treated as a combination

of m filaments in the trace conductor. As show in Fig. 11,

the inductance contribution of the trace Ltrace in (26) can be

calculated as

Ltrace =
Φtrace

I
=

1

I

n
∑

j=1

|�Ij |
μ0dl

2π
ln

(

d2j
d1j

)

(33)

where �Ij is the current of the jth filament, d1j and d2j are the

distance from the jth filament to the edge of the return plane and

trace, as shown in Fig. 10. The total PUL inductance is calculated

as

L′ = Ltrace + L′
GND. (34)

IV. VALIDATION OF THE PROPOSED METHOD

A. Trace Aligned With the Aperture Center

The proposed methodology was applied to the model depicted

in Fig. 1, where the trace is aligned with the center of the return

plane aperture. Following the completion of the 2-D analysis,

the direction of the return current was reconstructed using the

process described in Section III-A, as illustrated in Fig. 12.

Subsequently, the value of the PULLwas modified according

to (32). The resulting dependency of the PUL inductance on the

position along the TL is shown in Fig. 13. By combining the

modified PUL L with the PUL RGC obtained directly from the

2-D analysis, theS-parameters of each segment were calculated.

Finally, the S-parameters of the entire board were obtained

by cascading these segments together, as presented in Fig. 14.

Using (1) and (2), the relative errors in the magnitude and phase

of the transmission coefficient were 2% and 0.2%, respectively.

It can be observed that after modifying the PUL L based on

the return current direction, the cascaded results exhibit a much

better correlation with the results of the full-wave simulation

in terms of phase delay, as a consequence the magnitude error

reduced as well because of the alignment of the nulls.

B. Trace Not Aligned With the Aperture Center

The proposed method can also be applied to cases where

the trace is not aligned with the center of the apertures. To

demonstrate this, the trace of the transmission line in Fig. 1

was shifted toward the positive x direction by 0.35 mm, as

illustrated in Fig. 15. The region between the two black dashed

Fig. 15. Model with the trace off away from the aperture center. Only the
portion close to the signal trace is shown.

Fig. 16. Reconstructed return current direction. The blue lines indicate the
position of the signal trace.

Fig. 17. PUL L before and after modification.

lines represents the half period of the meshed plane. Similar to

the previous example, the model was cross-sectioned at the same

32 locations. Using the current magnitude distribution obtained

from the 2-D analysis, the return current flow direction was re-

constructed, as depicted in Fig. 16. The comparison between the

PUL L obtained from the 2-D analysis and the modified result is

shown in Fig. 17. By cascading the RLGC parameters of all seg-

ments together, the resulting S-parameters were calculated and

presented in Fig. 18. A good correlation was achieved between

the cascaded result and the full-wave simulation, indicating the

effectiveness of the proposed methodology in such cases as

well.
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Fig. 18. Comparison between full-wave and segmented models. (a) Magnitude
of S11. (b) Phase of S11. (c) Magnitude of S12. (d) Phase of S12.

V. CONCLUSION

The widespread use of FPCBs in contemporary electronic

devices has made it increasingly important to accurately charac-

terize transmission lines referenced to mesh return planes. In this

article, a novel and efficient method is proposed for calculating

the S-parameters of single-ended traces referenced to a meshed

return plane using 2-D analysis.

Traditional 2-D cross-sectional analysis is inadequate for

accurately characterizing transmission lines with meshed ref-

erence planes due to the geometry-induced changes in return

current flow direction. The proposed approach addresses this

limitation by considering the changes in the geometry and the

position-dependent direction of current flow. The calculated

inductance of the return plane obtained by the 2-D analysis was

modified, effectively accounting for the current flow path around

the mesh openings.

The validity of the approach was demonstrated through the

modeling of transmission lines with both aligned and offset sig-

nal traces relative to the apertures in the meshed return plane. The

proposed method yields consistent phase values for the reflection

and transmission coefficients when compared to full-wave 3-D

simulations. This correlation was crucial for accurately predict-

ing skew and signal distortion during signal integrity analysis.

Moreover, the magnitude of the S-parameters can be reasonably

reconstructed, with a maximum error of approximately 0.3 dB.

This aspect will be investigated in future studies.

In addition to the two validation cases demonstrated within

this article, wherein the signal traces are aligned parallel to the

diagonal axis of the mesh apertures, it is important to recognize

that in practical applications, signal traces may assume an an-

gle relative to this diagonal axis. In such scenarios, the angle

formed between the signal trace and the diagonal axis of the

mesh aperture determines the structure’s periodicity and might

require to increase the number of the cross sections (for the

same cross-sectioning step). Nevertheless, the proposed method

remains fully applicable.

In conclusion, this research carries significant implications

for the design and optimization of FPCBs, contributing to the

ongoing advancement of modern electronic devices.
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