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Abstract
A neuromorphic simultaneous localization and mapping (SLAM) system shows potential for more
efficient implementation than its traditional counterpart. At the mean time a neuromorphic model
of spatial encoding neurons in silicon could provide insights on the functionality and dynamic
between each group of cells. Especially when realistic factors including variations and
imperfections on the neural movement encoding are presented to challenge the existing
hypothetical models for localization. We demonstrate a mixed-mode implementation for spatial
encoding neurons including theta cells, egocentric place cells, and the typical allocentric place cells.
Together, they form a biologically plausible network that could reproduce the localization
functionality of place cells observed in rodents. The system consists of a theta chip with 128 theta
cell units and an FPGA implementing 4 networks for egocentric place cells formation that provides
the capability for tracking on a 11 by 11 place cell grid. Experimental results validate the robustness
of our model when suffering from as much as 18% deviation, induced by parameter variations in
analog circuits, from the mathematical model of theta cells. We provide a model for implementing
dynamic neuromorphic SLAM systems for dynamic-scale mapping of cluttered environments,
even when subject to significant errors in sensory measurements and real-time analog
computation. We also suggest a robust approach for the network topology of spatial cells that can
mitigate neural non-uniformity and provides a hypothesis for the function of grid cells and the
existence of egocentric place cells.

1. Introduction

Navigation and localization are essential capabilities for animals and humans to survive in complex terrains.
As they depart from their homes, they can plan a path through obstacles while advancing towards their
targets and remember the path to return home. Interestingly, when exploring a new environment, animals
can form a concept of the environment that couples spatial location with sensory stimuli to remember
locations of, for example, food and danger. This behavior coincides with the scenario of autonomous robots
navigating without a pre-charted map. In the robotics community, this problem is called simultaneous
localization and mapping [1] (SLAM) and is conceptualized as the computational problem of creating a map
of an initially unknown environment and localizing the robot while exploring. However, typical SLAM
algorithms require complex computations to handle a large number of sensory inputs and internal memory,
resulting in high computational and energy demands. Animals, in contrast, achieve SLAM without explicit
mathematical computations and can even navigate in darkness with relatively few sensory inputs. Many
researchers [2–6] propose that the neuroscience study of how animal brains navigate and localize would help
in developing more energy- and computation-efficient SLAM algorithms.

The memorizing of environmental information with location implies some form of spatial encoding
within the brain. Neuroscience has already observed several classes of neurons whose firing behaviors couple
with the animal’s spatial location. In particular, ‘place cells’ was discovered in the rat hippocampus with their
firing rate is high only when the animal is within a particular spatial location, which defines the associated
place field [7]. Later, ‘grid cells’ that activate with spatial periodicity as the animal explores a given space was
also observed [8]. When encountering an unfamiliar environment, new spatially specific behaviors such as
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relocation of firing fields of place cells, and change in periodicities of grid cells are generated and persist until
further changes of the environment [9–11], demonstrating their mapping capabilities and role in navigation.

Such discoveries have already inspired the development of many biologically inspired SLAM algorithms
such as NeuroSLAM and RatSLAM [2–4]. These have shown the advantages of needing fewer sensory inputs
such as lower resolution visual inputs thus less computation power required than conventional visual-based
SLAM algorithms. NeuroSLAM shows promise of performance comparable to that of living organisms,
surpassing the current computation-heavy algorithms. Yet problems arise when implementing such models
since most of them encode behavior spatially, resulting in complex mathematical computations that must
then be implemented in the hardware [12]. This behavior model abstraction fails to take advantage of the
elegance and physical properties of underlying neural network circuitry in the hippocampus, resulting in a
cumbersome implementation and failing to sufficiently reduce the resource demands to match those typical
of a neuromorphic system, whether implemented in software or hardware.

To approach the efficiency of the brain and the understand on brain’s mechanism of localization and
navigation, we choose to build a neuromorphic system consisting of the underlying neurons and networks
that performs path encoding and integration. We want to generate the spatial encoding neurons, i.e. place
and grid cells, from the movement encoding cells from a designer’s perspective to gain insights on the
challenges of neural non-uniformity and network complexity. We believe that the remedy we proposed to
these challenges would provide interesting hypotheses on the neural network’s topology of brain’s navigation
system and functionality of grid cells, which do not provide direct mapping of space.

Models of how spatial encoding neurons—i.e. the place cell and grid cells—are emerged from neural
networks have been proposed. Many of the attempted models fall into two main categories: continuous
attractor networks (CANs) [13–15] and oscillatory interference (OI) [16–18] models. In CAN models, grid-
cell patterns emerge from a network in which each cell has a recurrent connectivity with its neighbors. Each
cell has a characteristic preferred direction, meaning that the cell tends to fire more rapidly when the animal is
moving in that direction. Each of the cells projects weighted connections, with an inhibitory center-surround
circular weight profile, to its neighbors and receives inhibition and excitation from others as well. The
local maxima then translate as the animal moves, creating a grid-cell firing pattern [13–15]. The OI model
is radically different. It forms grid cells by interfering oscillators, with frequency controlled by the animal’s
locomotion velocity, and encodes the path integration into phase accumulation of the interference results.

In 2016, Welday observed such velocity encoding cells and named them as ‘theta cells’ [19].
Both models provide challenges for hardware implementation. CAN models are network population

models that require large numbers of connections between their constituent neurons for their recurrent
network to function. Furthermore, the weight profile contains excitatory and inhibitory weights that are
computed based on distance to neighbors, aside from receiving excitatory input from movement encoding
neurons, increasing the computational complexity of a programmable network implemented in hardware. The
OI models are much simpler in terms of their modularity since each grid cell receives feedforward excitatory
signals from oscillatory cells such as the theta cells. Yet, due to their phase accumulation principle, OI
models require an accurate frequency relationship with velocity and uniformity of its constituent oscillators,
which is unrealistic considering the mismatch between either analog VLSI circuitry or biological cells.

The implementation of the fundamental block, i.e. the theta cells, poses difficulties as well. Our team’s
previous work has shown that it would be difficult to maintain the oscillation’s stability while maintaining its
sensitivity to velocity inputs due to its complex ring attractor structure [20]. To amend this problem, we
designed a theta chip that employs the principle of abstract neuromorphism to implement the theta cells’
behavior model by exploiting the simplicity of analog computation circuitries. We published an early design
for the chip in [21] and then taped out the chip in the TSMC 65 nm process. In this paper, we will briefly
introduce the final design of the theta chip in section 3, and its performance and proposed application in
implementing place cells in section 6.

If a collection of theta cells is available, it is possible to form neuromorphic grid and place cells as the
models suggest. But, as mentioned above, both models encounter hardware implementation problems. In
the current stage of our research, we choose to implement place cells based on the OI model’s framework due
to its simpler network structure and single-cell modularity. To overcome its strict requirements on the
oscillators, we previously proposed an improved OI model for neuromorphic implementations that
compensates the mismatch between theta cell behaviors with an ‘offset reduction’ strategy and simplifies the
interference operation to logic operations between oscillators with square-wave oscillation profiles. We
summarize the principle of the improved model in section 2.2; for a more detailed analysis, please refer to
our previous report [22].

Though the model in [22] provides conciseness and feasibility against realistic parameter and behavioral
variations, the spatial cell it forms does not replicate the functionality of a place cell. The model is only
capable of indicating one segment of a movement rather than tracking the location of the agent throughout a
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trail. Thus, in this paper, we will refer to the cells formed by the model of [16] as ‘egocentric place cells’. They
are egocentric due to their response region, or place field, are centered in a coordinate system that moves
along with the animal, while the original place cells are fixed in the world coordinate system. The model in
[22] proposed a vector accumulation strategy for localization by resetting the egocentric reference frame
according to the firing of egocentric place cells. Here, we realize that concept by proposing a place cell
network model that receives input from the egocentric place cells and accumulates the movement in a
neuromorphic fashion. We describe the structure of the place cell network in section 5 and how it reacts to
implemented egocentric place cell signals in section 6.3.

Thus, in this paper, we demonstrate the results of a hardware implementation of place cells that can track
a robot’s location. Place cells are obtain from networks of egocentric place cells implemented onto a
Spartan-6 FPGA with the theta cell signals from a mixed-mode theta chip. The network structure is
computed through our proposed neuromorphic model. The results show that the place cells can be generated
from a simple feedforward network with logic node operations from a group of theta cells that are not
uniform in behavior. This work proves the feasibility of an efficient neuromorphic SLAM system with place
and grid cells generated from a biologically plausible and simple network while providing a potential
function of grid cells.

2. Methods

2.1. OI model under ideal condition
Part of the model that is implemented is an improvement upon the original OI model, tailored for a more
robust and simpler implementation in silicon. It can compensate for the inevitable behavioral variations of
either biological neurons or neuromorphic implementations while reducing the interference operation to
logic operations. The performance and details of the model are published in [22], though we will introduce
its basic structure here for completeness. An important characteristic is that to accommodate variations
among theta cells readily, the cell formed by the improved model is downgraded into an egocentric place cell
reporting segmented displacement rather than being a location-specific cell in the original OI model. In this
section, we first review how to form a place cell in the ideal scenario, then discuss why we can get only an
egocentric place cell from either the original OI or the improved model. Later in section 5, we will discuss
how to integrate the segmented displacement into localization with respect to a global reference frame.

As predicted by the OI models [16, 17], the fundamental components of an OI model are oscillators that
can encode the animal’s moving velocity into frequencies. Then the integration of velocity can be translated
into the accumulation of angular velocities, thus achieving path integration for localization. This type of
neurons was later observed and reported in [19] with their oscillatory behavior is related to the animals’
traversing velocity as described in equation (1)

F= Fidle +β

(
⇀

V ·
⇀

Vp

)
. (1)

Here, F is the oscillation frequency of a theta cell. It is centered at a constant idling frequency Fidle and

modified by a scaled inner product between its preferred direction unit vector
⇀

Vp and the agent’s velocity
⇀

V.
The scaling coefficient β is the gain or frequency response factor. The parameters β and Fidle are relatively
stable for one theta cell but differ between theta cells as Welday et al discovered [19].

In the OI models, grid cells and place cells can be obtained by interfering with various theta cells [16,
17]. First, spatially periodic bands or gratings can be formed by interfering a theta cell with a cell that has
an oscillation frequency at Fidle, with the results shown in subplots (a)–(c) of figure 1. The process resembles
the down conversion from the demodulation of wireless communication to remove the ‘carrier frequency’

Fidle then extract the β(
⇀

V ·
⇀

Vp) term that encodes spatial information. The resulting signal is the cosine of
the phase accumulated by the moving velocity projected onto the preferred velocity of the theta cell. Thus, its
spatial firing pattern forms a periodic sinusoid along its preferred direction. The difference in periodicity of
subplots (a)–(c) in figure 1 is due to distinct scaling coefficient β, or the magnitude of the theta cell’s preferred
velocity vector. Grid cells can be formed by interference between gratings of preferred direction that are
multiples of 60◦ apart, as indicated by the red dotted arrows in figure 1. Place cells can be formed in a similar
fashion but with gratings with a much larger period, which can be obtained through interference between
denser gratings but with mutually prime scaling coefficients, as shown by the green arrows in figure 1.

2.2. Improved OI model with theta cell variations
The improved OI model employs a similar interference structure in general but discovered several realistic
factors that lead to the improvements and alternation from place cells to egocentric place cells. In an analog
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Figure 1. One method to form a place cell in the ideal scenario: Two groups of theta cells, denoted (a)–(c) and (e)–(g) interfere
with a reference theta cell. Both groups have the same set of mutually prime frequency response factors, but with their individual
preferred directions 120◦ apart. A place cell can be formed along the pathway indicated by the green arrow: first, a single stripe is
formed, and this is intersected by another at a desired location, marked by the green circle in (j). Alternatively, grid cells (i)–(iii)
can be formed by following the red dotted arrows, then interfering the hex grids to form the same place cell in (j). This is a
reproduction of figure 5 in [22]. Reproduced from [22]. © The Author(s). Published by IOP Publishing Ltd CC BY 4.0.

implementation or a biological neural circuitry of a theta cell, it is unlikely that all theta cells share the same
baseline frequency Fidle. Even with a distributed pairing strategy, the chance of finding two theta cells with
the exact same Fidle is minimal. Here in equation (2), we denote the term Foffn as the offset frequency for the
nth theta cell with respect to an average baseline frequency among all theta cells

Fn = Fidlen +βn

(
⇀

V ·
⇀

Vpn

)
= Fidle + Foffn +β

(
⇀

V ·
⇀

Vpn

)
. (2)

In the improved model, with schematics on the bottom of figure 2, an offset-reduction strategy is
proposed to reduce the impact of this offset term by interfering between theta cells that have similar Foff but
opposite preferred directions. We model the logic AND interference operation as multiplication here with
operation symbol⊗ to indicate that only the low frequency component is considered. The following
equation demonstrates the effect of the interference in the signal domain. The actual oscillating signal of any
theta cell contains an initial phase φ i, which is critical to determine the location of the place field in the OI
model for place cells

cos(2πFat+φ a)⊗ cos(2πFbt+φ b)

= cos

(
2π

[(
βa

(
⇀

V ·
⇀

Vpa

)
+ Fidle + Foffa

)
−
(
βb

(
⇀

V · −
⇀

Vpa

)
+ Fidle + Foffb

)]
t+(φ a −φ b)

)
= cos

(
2π

[
(βa +βb)

(
⇀

V ·
⇀

Vp

)
+(Foffa − Foffb)

]
t+(φ a −φ b)

)
. (3)

This operation suppresses the phase error accumulation. Notice that the result has a very similar
mathematical form and spatial pattern as the original theta cell, with a new frequency response factor
β = (βa +βb) and a new offset frequency Foff = Foffa − Foffb . Furthermore, the summation of frequency
response factors (βa +βb)makes the V⃗t-dependent term in (3) more dominant than the subtracted offset
frequency, with the effect shown in subplots (a)–(c) of figure 2. Because of the similarity in behavior, we can
view the result as an effective theta cell. This modularity of the offset reduction strategy enables a layered
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Figure 2. Subplot (a)–(c) shows the effect of the offset-reduction method. (a), (b) are the spatial response of two interfered theta
cells with β = 3.5 and 4.9, Foff = 10 and 13.5 relative to the reference frequency, and preferred directions of 0◦ and 180◦. Subplot
(c) is the result of interference between the two theta cells directly; boosting β results in a denser grating and less Foff to straighten
the stripes. Subplots (d), (e) are sample egocentric place cells formed by a group of 48 theta cells with a 25% relative standard
deviation on idling frequency and a 20% relative standard deviation of frequency response factor β. Bottom: Schematic of the
offset-reduction method to form egocentric place cells with theta oscillators with variations in β and base frequency and non-zero
Foff. Figure from figure 8 of [22]. Reproduced from [22]. © The Author(s). Published by IOP Publishing Ltd CC BY 4.0.

structure as shown in the schematic in figure 2, should the variation be large. This strategy also eliminates the
need for idling oscillators and consists purely of theta cells, further reducing system complexity. The
variation in β among theta cells is less of a problem since it contributes to the uniqueness of the egocentric
place’s firing field, similar to the method of spacing by mutual primes discussed previously. The uniqueness
problem is a more predominant issue due to our simplification that converts the sinusoidal oscillation profile
of theta cells to square-wave since it basically regularizes the positive part of a sinusoid to one. Please refer to
the original publication [22] for a more detailed discussion. In conclusion, the variations in both β and Foff
becomes advantages when forming a unique firing field for place cell while applying a square-wave
oscillation profile, enabling us to use logic AND operation for interference to save resources.

In the actual scenario however, we understand that the offset frequency Foff cannot be eliminated all the
way to zero, so the phase shift computation must be adjusted as in (4) due to the remaining offset frequency,
even after offset reduction. The modulo operation is to account for digitized phase shift in an implemented
system, such as a ring oscillator described in the next section that offers 8 digitized phase shifts, or a neural
circuit model of theta cell in the form of a ring oscillator [20, 23]

φ i (R,θ) = mod

(
1−mod

(
R

(
cos
(
θ− θpi

)
βi +

Foffi

|
⇀
V |

)
,1

)
,0.125

)
. (4)

Here, φ i is the phase shift of the ith effective theta cell after our proposed AND interference for the

egocentric place cell designated for location
⇀
x . R and θ are the polar coordinates for

⇀
x , and θpi for

−→
Vpi. The

spatial firing patterns of two egocentric place cells with arbitrary designated locations are shown in
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figures 2(d) and (e). The modulo 0.125 operation is to accommodate the eight-phase digitized output of the
theta chip, which will be introduced in the next section. They are formed from the same group of 48
simulated theta cells with a 25% relative standard deviation on idling frequency and a 20% relative standard
deviation of frequency response factor.

The reason for the degradation from place cell to egocentric place cell is because of the remaining Foffi
term. They only operate when the theta cells are all in a known state and the agent is traveling with a constant
velocity when reaching any point in the spatial maps of figure 2, due to the phase accumulated through Fofft.
A phase reset procedure is proposed in [22] to address this problem. The procedure is triggered either 1: at a
fixed interval when velocity is constant or 2: in the event of changing the movement velocity. The first
condition is to clear unforeseen errors, such as thermal noise or crosstalk, accumulated by regularly pulling
the system back to a known state. The second condition is due to the dependence of phase accumulated with
time induced by the remaining offset frequency, generating a path dependency from the origin to any point.
For example, the agent can travel from the origin to [1,1] directly, or by detouring via [1,0]. Though both
paths end at the same location, the difference in travel times leads to different phase accumulations across the
theta cells. Thus, each segment of the path must be recorded as a displacement vector, triggering the phase
reset event and creating a new egocentric frame at the point of velocity change. Every time the phase reset
event happens, the system can record the current egocentric place cell firing to achieve a path integration or,
in other words, a dead reckoning. In section 5 of this paper, we describe our proposed model for place cells to
perform localization through the accumulation of egocentric place cell activities.

3. Theta chip

3.1. Design of the theta chip
A theta chip has been designed and taped out with TSMC 65 nm technology, targeted at producing the
behavior described by equation (1). Though a neural attractor network model was previously proposed in
[20], it consists of many neurons with both inhibitory and excitatory interconnections, making VLSI
implementation and configuration difficult. In order to provide an array of programmable theta cells with
reasonable hardware resources, we choose to implement the theta chip with abstract neomorphism by
reproducing the theta cells’ behavior model. But, to preserve an analogy to the neuronal behavior, we employ
a mixed-mode design with analog computation circuitry to reduce transistor count as well as a
continuous-spectrum response to the input velocity. We also choose digital output for the theta unit
oscillations for easier handling by external components. We briefly describe the final design of the chip
below; a detailed description of an early design of the included circuits is discussed previously in [21].

The chip consists of 128 theta cell units with an I/O (input-output) arbiter for the control, program, and
output of the theta units. Each theta unit has an individually programmable preferred velocity and operates
asynchronously. A theta cell unit includes four major components.

(1) SRAMs: Each unit has two 4-bit SRAMs to store the x and y components of the preferred velocity
⇀

Vp.
The values are signed and in ascending order with value 8 (binary: 1000) representing the zero value.
They can be programmed during the chip’s start-up phase.

(2) A/D Converters: Since the preferred velocity vectors are not to be changed after configuration,
capacitance DACs that require refreshment are not preferred here. We adopted a W-2W transistor
ladder [24] with a long transistor length to minimize current consumption. Two such DACs are
implemented for each theta unit, connecting to the preferred velocity SRAMs.

(3) Analog Computation Module: The analog computation unit calculates the inner product between the
theta unit’s preferred velocity and the input movement velocity. We use two Gilbert cells to compute a
continuous four-quadrant dot product between the internal preferred velocity and the movement
velocity input to the theta unit, both represented in analog voltages. The Gilbert cells require less power
and fewer transistors than conventional multipliers. The analog multiplication generates a pair of
differential voltages as the product. Two pairs of differential voltages, representing the products of the x
and y components, are converted into two currents using differential pairs, and the sum of the two
currents represents the dot product, as shown in figure 3(c).

(4) Oscillator: The basic structure of the oscillator is a current-starved ring oscillator as shown in
figure 3(b), where the control current for the ring oscillator is mirrored from the dot product circuit. An
extra NMOS transistor is added between the inverters to allow a manual hold for the oscillation with the
control signal Cap_clear, the model needs this phase reset capability for pulling the oscillation to a
known phase for correcting accumulated error. To achieve a linear relation between the current and
frequency, as well as to reduce the oscillation frequency, extra load capacitance is introduced between
inverter stages. Eight of the nine inverters are connected in parallel with a delay capacitor taking
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Figure 3. Theta cell schematics: (a) general arrangement of the theta chip. The green ‘Common Signals’ box on the left shows all
the broadcasting control and input signals to all theta units, with one shared oscillation output port. A shift-register based I/O
arbiter, with bypass capability, is responsible for indexing each theta unit for initial configuration and oscillation output during
operation. The theta units store the programmed preferred velocity and perform real-time computation of equation (1) through
the analog computation module shown in box c, then regulate the oscillator shown in box (b). (b) A 9-stage, current-starved ring
oscillator with reset capability. (c) The analog computation module performs the multiplication using a Gilbert cell and then
computes the summation in current mode to achieve vector projection.

advantage of the Miller Effect, thus ultimately reducing the capacitances needed down to 1 pF each. This
design provides a digitized eight-phase output of each theta cell unit for the improved OI model to
choose from through equation (4). And, since the TSMC technology provides metal-metal capacitors in
upper layer metals, the capacitors are placed above the transistors to reduce the area needed for the
entire design.

The I/O arbiter follows the concept of Time Division Multiple Access for the I/O of each theta unit,
according to the schematic shown in figure 3(a). It comprises a chain of 1024-bit shift registers that forms
128 groups of 8-bit registers. Within the group, each bit enables one phase output of a theta unit, and the first
bit also provides an enable signal for programming the preferred velocity SRAM of this unit. Each register is
accompanied by a bypass SRAM that determines whether the shift path goes through the register or bypasses
it. The bypass capability allows a shorter scan cycle after the calibration and can only provide signals that are
useful for further processing. Upon start-up, the shift register will shift through all the theta units and their 8
phases to program each theta unit’s preferred velocity and the Bypass SRAM for each phase output.

3.2. Operation of the theta chip
The chip is placed on a custom PCB to interface its digital ports with the FPGA and to meet its analog bias
requirement by a DAC. The chip employs serial input and output. Preferred velocity input is transmitted
over an 8-bit bus with the lower 4 bits carrying the x component value and the upper 4 bits for y. Upon
startup, the clear signal needs to be held high for a few clock cycles to guarantee reset of all SRAMs and shift
registers. The first bit of the long shift register will be held high to index the first theta unit’s preferred
velocity SRAM and the Bypass SRAM for the first phase of the oscillation output of this unit. Then if pulling
the active high enabling signal Write, the data input signal bypass and the preferred velocity byte can then be
used to program the theta unit’s output and preferred velocity. Each clock pulse proceeds the shift register to
program whether to output each phase of an oscillation, and every eight clock pulses will move the index to
the next theta unit, eventually looping through all 128 units. After the initial setup, the clock then only scans
through the phases that are programmed to be output, reducing the length of the scanning cycle or,
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equivalently, increasing the sampling frequency without increasing the clock frequency. The user can then
load the moving velocity of the agent either digitally through the preferred velocity byte by pulling load
signal high, or through analog voltage using two analog input pins.

4. Egocentric place cell implementation

4.1. Configuration of the egocentric place cell network
As suggested by the improved OI model, the first layer of interference should be between theta units with
similar Fidle but with opposing preferred directions for offset reduction. The total number of layers needed
depends on the distribution of Fidle. In this demonstration, we implemented only two layers to show the
capability of our model with a small number of operations. In figure 8 in the results section, 82 of the units
exhibit a coefficient of determination higher than 0.9. Thus, the structure of a two-layered network will have
40 interference pairs in the first layer and 20 pairs in the second. Among the participating 80 units, units are
paired to have the closest possible idling frequencies. The output node will be the direct logic AND operation
on the outputs of the 20 nodes of the second layer, with the structure shown in figure 4.

Since the velocity is represented in Cartesian coordinates, the straightforward choice of preferred
directions for the theta cells are positive and negative directions along the x and y axes. Given the
programmability of the theta units, we can first form 40 pairs based solely on the closeness of Fidle, then
assign 20 pairs with opposing velocities along the x axis, and the other 20 along the y axis. In each pair, for
example, one theta unit might be programmed to have a preferred velocity of [4, 0] and the other with [−4,
0]. In the second layer, we can choose to interfere between one from the x-aligned group and one from the
y-aligned group. This operation resembles the formation of grid cells as shown in figure 1(i-iii), showing that
one potential functionality of the grid cells is to reduce the influence of offset frequency. An alternative is to
repeat the process for pairing based on the similarity of frequencies. Thus, the network consists of 60
interference operations, each of which comprises a logic AND between two signals and a low-pass filtering
process as illustrated in figure 4, which is an instantiation of figure 2 but with an inherent formation of grid
cells.

4.2. Egocentric place cell network implementation
The network for the egocentric cells is implemented with the Xilinx Spartan-6 FPGA. As shown in figure 4,
the implementation comprises two main components: an interference node and a multiplexer. Each node
contains simply an AND gate followed by a filter to remove the high-frequency component as suggested by
the models. In systems like biological neural networks or similar neuromorphic network systems such as
IFAT [25–27], integrators like the neuron’s cell membrane or a capacitor for an integrate-and-fire neuron
model can perform this low-pass filtering. In our current implementation in the FPGA, we mimic such
functionality through a 9-tap Hamming window function followed by a digitized RC circuit. And, to show
the compatibility of the system’s filters, the filters in the second layer of nodes use a 9-tap moving average
filter with a digitized RC circuit with a larger time constant. All the filters are arranged in a pipeline to ensure
a continuous data flow and to allow the network output to be synchronized with the clock. The output node,
which is simply a 20-input AND gate, produces the output of the place cell which is then buffered in a FIFO
queue for streaming to a PC for the next layer, as will be described below.

The multiplexer in figure 4 interfaces between the theta chip and the network described above. For
efficiency, the data path structure between network layers is fixed, thus localizing the job of network
configuration to the first layer’s input. It scans a cycle of the theta chip and directs each oscillation output to
its position in an 80-bit wide buffer based on a lookup table, whose values are computed from equation (4)
with the frequency information obtained from a calibration cycle. After the multiplexer finishes each scan
cycle, it generates a clock signal for the network to load in the 80-bit buffer and advance the interference
process.

4.3. Interfacing between the theta chip and the network
As described above in section 3.2, the network in the FPGA needs to initialize the theta chip before operation.
Based on equation (4), a place cell’s designated location is determined by the initial phase shift relation
among the theta cells. Combining that outcome with equation (3), every interference result is the difference
between the initial phases of the source signals. Thus, in our 2-layered network, the output of the second
layer depends on the initial phase of 4 signals. If we initialize 3 of the signals with the same initial phase, the
difference between the initial phase of the fourth theta cell with the other 3 can determine the initial phase of
the node of the second layer. So, the number of phases to be output by the theta chip is programmed to be
60+ 8× 20= 220, where one of every 4 theta units has all 8 phases available for the multiplexer, denoted as
the 8 dots around one theta unit in figure 4. After the theta chip is initialized, we gather the traces for the 80
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Figure 4. Implementation schematic of the egocentric place network. After a certain velocity is asserted to the theta chip, theta
units’ oscillations are directed to the input layer of the egocentric place network by a multiplexer based on a lookup table. Below
the schematic are three representative egocentric place cells implemented along the same direction and related output response.

theta units and compute their frequency to compute the phase connection lookup table, given the desired
location of a egocentric place. In this form, any egocentric place (allowing for digitization error) within the
range can be generated with the same basis of 220 theta phases by a different lookup table for the multiplexer.
Their results for tracking the movement within a certain range are demonstrated in figure 10 in the results.

5. Place cell network

Though the egocentric place cells we implemented above can perform basic tracking functionality [22], they
do not provide a one-to-one encoding of space as typical place cells are observed to do. And, as stated in [22],
a location can be encoded by a certain sequence of firing from such cells. In other words, they function as
basis vectors. To realize the spatial encoding capability of place cells, we add another layer of cells that
functions as accumulators to represent the vector summation. The structure of this layer is shown in figure 5.
Here, a set of self-recurrent place cells are indirectly connected with its neighbors through path cells. The
path cells operate like unidirectional switches or AND gates controlled by the egocentric place cells. When an
egocentric place cell fires, the path cell that is enabled by an activating place cell is triggered to excite the next
place cell while turning off the self-excitatory loop of the current place cell to ensure the transfer of the
activity bump. Then, a leakage process is also simulated to discharge the activity of the previous place cell
back to baseline level. An alternative way for implementing the transfer of activity bump, especially in the
case of actual neural circuits, is to replace the gating of self-excitatory loop by inhibition connections
between adjacent place cells. Given the neural firing property of spike rate adaptation, the newly activated
place cell would have a spike frequency higher than the previous one thus able to inhibit it back to baseline
level thus ensuring the uniqueness of the activity bump after the transfer occurs.

This structure loosely resembles the CAN model of place cells in which the localization manifests in the
migration of activity bump. The main difference is the lack of direct connectivity between the place cells and
the homogeneity among place cells; both drastically reduce the complexity. We believe that the connection
between place cells can be used for path planning and navigation but is not necessary for localization, as we
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Figure 5. Place cell network structure for path integration. Each place cell is connected to its neighbors through path cells
(y-direction place cells are omitted for clarity) that are gated by the egocentric place cells. When a path cell fires, it transports the
activity from the current place cell to its corresponding neighbor and shuts the self-excitatory path off. All sets of path cells can be
connected to the same set of egocentric place cells. Here, the path cells are connected to the inner circle of egocentric place cells to
create a homogeneous map with small scale. A dynamic map can be formed by using egocentric place cells with different
magnitudes, as indicated by the faded egocentric placer cells and dashed connection.

have not included it in the model under consideration here, further description will be postponed until the
Discussion. The path cells replace the activity bump transfer functionality that is realized by the asymmetric
inhibition profile between place cells and different directional preferences among the place cells in the CAN
model. Thus, each place cell is modularized into the structure shown in figure 5. This modularization allows
an expandable and concise implementation scheme, in contrast to the original CAN model’s requiring a
substantial number of cells within each patch of the network [13–15]. The path cells outsource the need for
directional preference cells to the egocentric place cells which, in turn, can be centralized to save resources
that are needed by the reduction of theta cell variations as discussed above and in [22].

Overall, our place cell model greatly simplifies the CAN place cell network by eliminating the complex
weight profile between place cells and, thus, the population nature of the attractor networks [13–15].
Moreover, interesting capabilities can be achieved when exploring the connections between path cells and
egocentric place cells. For example, if the path cells tap into a different set of egocentric place cells with a
different magnitude, the sheet of place cells can be reused to form a space with a different resolution and
scale, and similarly for orientation. Furthermore, if we assume learning and plasticity abilities of individual
path cells, the map learned by exploration may have a dynamic and inhomogeneous spatial encoding based
on the density of the external events and the complexity of the path, opening possibilities for more efficient
and dynamic mapping and navigation strategies such as quadtree mapping [28]. As mentioned previously, a
phase-reset signal is needed to start the next segment of tracking. In the current setup (figure 5), the reset
signal is issued by the firing of any involved egocentric place cells, indicating the end of the current tracking
segment.

6. Results

6.1. Theta chip
After we received the theta chip from TSMC then placed on a testing PCB to interface with the FPGA
asshown in figure 6, We first evaluate the theta chip for its accuracy in reproducing the oscillation frequency
behavior described in equation (1). To have a more thorough evaluation of the performance, we supplied
analog voltages that override the internal DACs for digital inputs. As a few units’ responses shown in figure 7,
the frequency demonstrates a sigmoid relationship with the inner product value. Thus, during the operation,
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Figure 6. Left: A photo of the theta chip’s die. The left column of pads are digital I/Os and the right-column pads are for analog
bias inputs. Right: The top board is a SPARTAN-6 FPGA connected by standard JTAG jumpers to the bottom board where the
theta chip sits.

Figure 7. The response of theta units over a larger range of input velocity values. The frequency depicts a sigmoid relationship
with the inner product value.

we chose to limit the magnitude of velocities to approximate the linear relationship. The limitation on the
range lead to a shrink in frequency swing as well, allowing us to tune down the current supply for the
oscillators without concerning them reach equilibrium on deep negative inner product values. This shifts the
idling frequency lower from around 6500 Hz–2000 Hz, reducing the power consumption of the chip during
actual operation.

The characteristics of the theta chip configured for operation are shown in figure 8. Figure 8(a) depicts a
theta cell’s selectivity on the input velocity direction. To assess the performance of the theta chip, we
exhaustively program all combinations between the preferred velocity and the input velocity for every theta
unit, then record the traces. Frequency analysis then gives a relationship between the inner product of the
input and preferred velocities with the oscillation frequencies, with a selection of relevant results with actual
configuration values used for egocentric place construction are shown in figure 8(b). In general, most of the
theta units exhibit a positive monotonic relation between the inner product value and the oscillation
frequency. Figure 8 shows a scenario in which the input velocity’s x and y components are scanned separately
while the preferred velocity is clamped to zero; it shows that some of the variation comes from the W-2W
DAC. A slight offset between the zero value of the DAC output and the broadcasting zero-value reference
voltage for the mixer resulted in non-zero multiplication results added to the resultant frequency.

Given the relationship between preferred velocities, input velocities, and oscillation frequencies of the
theta units, we fit the data for each theta chip with equation (1) to evaluate their performances. The results,
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Figure 8. Theta cell characteristic in operation: (a) shows traces recorded from a theta cell when the input velocity’s direction
swings from+90 to−90◦ with respect to the preferred velocity direction, demonstrating the realization of equation (1). (b)
Shows 4 theta units’ frequencies with respect to the inner product and the linear fit of equation (1) with 90% confidence bound.
The units’ preferred velocities are programmed four times with equal magnitudes but opposite directions along the x/y direction,
which is the configuration further used as inputs to the place cells in the following experiments. They generally depict a linear
relationship as expected but have slight offsets for each programmed value. Plot (c) illustrates one potential factor for the
distribution of frequency for the same inner product value shown in the upper right subplot in (b). When the unit’s x or y
component is programmed to be the zero value (1000 in binary), the frequency still varies linearly with the input velocity’s x or y
component. This implies that a difference in voltage between the broadcasting zero-value bias and the internal DAC’s zero-value
output for preferred velocity forms a small value that still participates in the computation. The DAC’s linearity listed in table A.1
provides evidence for this explanation. (d) Depicts the variation in theta cells’ parameters after the linear fit to equation (1).

shown in figure 8, demonstrate variations between the units. Later in the implementation, we choose to only
use theta units with a correlation of R2 > 0.9. As shown by figure 8(d), the values of β and Fidle vary
considerably among the theta units due to the analog implementation of the computation unit and the
oscillator. As described in section 2.2 and in [22], the variation of β is in fact beneficial in our model since it
substitutes the need to deliberately program parallel preferred velocities to be mutually prime. This variation
also avoids the need for a very large frequency domain of operation since the magnitude of programmed
preferred velocity can be the same across the units, which helps the oscillators to operate without saturating
the current starving capabilities of the ring oscillators. Furthermore, the non-uniformity better resembles the
biological behavior of neurons and can, therefore, better test the robustness and plausibility of the proposed
improved OI model.

We demonstrate the output flexibility due to the bypass functionality of the chip in figure 9. Although the
chip’s output is serial, by knowing the number of phases programmed to be output, we could re-parallelize
the data stream to reconstruct the oscillation of each outputting phase. Figure 9 demonstrates 8 consecutive
phases programmed to be output: the first 4 traces belong to different phases of the same theta unit, and the
last 4 traces are from different theta units with different preferred velocities. Based on the measurement, an
oscillation frequency range between 1500 Hz and 3000 Hz can produce reasonable linearity with the lowest
frequency range. Thus, the Nyquist frequency of the scanning clock becomes (2× 4000×N)Hz, where N is
the number of outputting phases. In the experiments, we chose a sampling clock of 6 MHz with 220
outputting phases from the theta chip, resulting in a 27 272.7 Hz sampling frequency for each phase.

To ensure the formation of egocentric place cells, phase accuracy is crucial. In figure 9, we plot the recorded
output of a theta unit’s 8 phases and the reconstructed signal with the frequency computed from the Fourier
transform, and the respective phase shifts digitized at 0.25 π steps. Most of the units show a good correlation
between prediction and output. Adaptive algorithms are also applied when configuring the egocentric
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Figure 9. The left subplot demonstrates the output flexibility provided by the bypass function of the theta chip through 8
consecutive traces. The first four traces are from different phases of the same unit, and the last four are from different theta units.
The right subplot compares the eight phases from a single theta unit to a simulated reference trace with 0.25 π phase steps. It
shows that, in general, the theta units can provide an accurate initial phase value for the formation of egocentric place cells.

place networks to ensure the closest fit between the phase tap and the computed phase φ i. For cases when
the resulted nodes cannot provide constructive interference, eventually, due to cumulative phase alignment
error among the participating theta cells, the egocentric place network will simply ignore this group.

6.2. Egocentric place cell network
An instance of the egocentric place network is implemented in the FPGA for validation. We want to test the
capability of the egocentric place cells for tracking movements within the domain and the state of aliasing
among all the potential egocentric place cells. We generated a grid of 11× 11 egocentric place cells as the
domain, but due to resource limitations on the FPGA, we could only conduct the experiments for each
egocentric place within the domain under the same input when building a whole map for the response of all
the cells. In other words, the lookup table for each egocentric place is reprogrammed for the same input
velocity. The start of each session is signified by the release of the Cap_Clear signal of the theta chip, then we
record the network output. A selection of traces is shown in figure 10, where each square shows whether the
value of its corresponding egocentric place is high or low. Here, we show snapshots of two trails of the
egocentric place cells firing sequentially as the input velocity is held constant. Each egocentric place cell
activates only when the agent reaches its place field; this demonstrates its localization functionality. If several
of them are deployed simultaneously in combination with the place cell model proposed in section 5,
real-time localization can be achieved. Though not shown in the figures, we also observed artifacts from
other egocentric place cells coincidentally briefly firing. A similar phenomenon can also be observed in the
traces of the relevant egocentric place cells in figure 10, but they are not significant enough to generate a
pulse in the subsequent layer since their pulse width are significantly shorter and contains much less energy.
Only pulses significant enough would trigger an activity bump migration in the place cell’s layer, and thus
will not affect the tracking accuracy of the place cells. We have tested various types of window functions with
different numbers of orders. Hamming windows with orders larger than 15 can provide egocentric place cell
signals with much fewer artifacts. But considering the balance between performance and resource demands
for hardware implementation, a 9 tap square window function is chosen. In the experiment shown at the
bottom of figure 10, more artifacts can be observed for egocentric place cells with place field further from
origin. This is due to the accumulation of unpredictable thermal noise from the theta chip over a longer
time. The phase reset mechanism described earlier is intended to restrict the magnitude of noise
accumulation and prevent it from getting enough energy to disrupt the tracking in the place cell layer.

6.3. Place cell network
The location tracking mechanism is powered by the basis formed by the egocentric place cells. Though we
discussed the potential advantages of an abundant egocentric place basis, the limitation of the FPGA,
especially the need for simulated RC filters on board, limits the number of egocentric place networks that can
be implemented. As shown in figure 4, implementing just one network requires 80 nodes that each involve a
9-tap FIR and a multiplier for the simulated RC filter. But, since the input is digitized and the FIR is a square
window function, the FIR only requires counters. We expect all these excessive components can be easily
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Figure 10. A grid of 11× 11 egocentric place cells (with digitization) are generated to test the tracking capability of egocentric
place cells. The right columns of plot show the egocentric place cells firing as time passes, tracking the agent traveling, with their
respective signal traces shown to the right. We can observe artifacts (short spikes in the traces) as well as random flashes from
other egocentric place cells, but they are brief enough not to impact the next layer and the major cause is the limited taps of our
lowpass filter.

replaced by any existing programmable neuromorphic device that has membrane capacitance imitations
such as IFAT, or a mixed-mode ASIC chip, after the system is finalized.

We chose to implement the conventional Cartesian basis on the cardinal directions (N, S, W, E), so 4 such
networks need to be instantiated. However, on close observation, due to our 2-layered structure requiring
only 1 out of 4 theta cells to have a programmable phase, half of the first layer’s nodes are constant and thus
can be shared with other vector networks to save resources. In general, the number of sharable nodes is:

S=
N−1∑
n=1

2n − 1

2N
M=M

(
1− N+ 1

2N

)
. (5)

Here, S is the number of sharable nodes, N is the number of layers andM is the number of theta cells
involved. Thus, the total number of nodes Q for K egocentric place networks is

Q=M

(
1− N+ 1

2N

)
+KM

N

2N
=M

(
1+

(K− 1)N− 1

2N

)
. (6)

The number of nodes or resources needed for multiple networks becomes less significant as the number
of layers increases. In the current setup, we could use 20+ 4× 40= 180 nodes instead of 4× 60 = 240 for
the implemented basis, avert needing more DSP capacity than is provided by the SPARTAN-6 FPGA used
here.
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Figure 11.We simulated a grid of 11× 11 place cells to validate its localization function. Three different paths are inputted to the
theta chip in the form of velocity sequences. The first of these simulates the agent walking down the arena while looking around.
The second simulates the agent circumventing an obstacle to reach its destination at [3,−2]. The third one simulates the agent
walking a loop. The recorded traces of the four simultaneously operating egocentric place cells are shown on the left column with
colored coded sections corresponding to the movement shown in the middle column. The panels in the middle column mark all
the place cells that fired along the trail. The collection of panels on the right shows the place cells in action when receive a pulse
from the egocentric place cells, along the first path. The activity bump marked by a value of 10 moves to the next place cell while
leaving a trailing tail of 5 because of the global leakage of 5.

To conduct a tracking experiment, commands for controlling input velocity and resetting to the theta
chip are issued from the host PC to the FPGA then relayed to the theta chip, then the PC records the output
from the egocentric place cells and feeds the traces into the place cell network described in section 5. The
Cap-clear signal is generated at the beginning of the trail and when any egocentric place cell fires, or a change
in input velocity. Currently, for ease of display, the place cell network is simulated in MATLAB. It is trivial to
implement the place cell network in its current state on a FPGA or a general-purpose neuromorphic chip
given the modular design and simple logic. But we believe it can be further developed to perform mapping
and navigation functionalities with the interconnection between place cells; this prospect will be explored in
the discussion.

Three of the experiments in figure 11 demonstrate tracking capability with the implemented egocentric
place cell networks receiving inputs from the theta chip. The travel is sequenced into segments as shown by
the color code in figure 11. In the current experiments, each segment is encoded as a change of velocity
command to load the theta chip’s input DAC with the new velocity and held the Cap-clear signal high to
commence a phase reset. The first path simulates the agent traveling along while randomly looking around.
The second simulates the agent circumventing an obstacle to reach a certain destination, and the third tests
the place cell network’s ability to handle a trajectory with a loop. Each pulse from the egocentric place cells
triggers the migration of the activity bump towards to the next respecting cell to track of the location. A
phase reset procedure is conducted by the pulse of any egocentric place cell. If the robot travels along the
same direction, multiple pulses are observed from the same egocentric place cells reporting multiple
segments along that direction. The artifacts in the raw output from the egocentric place cells, as shown in
figure 10, are filtered by the input port of the place cell layer thus will not cause errors in the next layer as
discussed before. We use 5 as the step size for each place cell’s activity level to allow clearer differentiation. A
value of 10 means that a place cell is currently firing; 5 means that it was firing then decayed by a universal
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leak parameter of 5. We use this scheme to create a trailing tail for a better demonstration of the travel
direction, shown in figure 11. We can see that the place cell network can successfully accumulate the
egocentric place cell pulses to become a tracking map in an absolute spatial location given any path.

7. Discussion

We have demonstrated a neuromorphic structure for the formation of place cells with a simple digitized
interference network that shows localization and path tracking capabilities in a place cell network. Our theta
chip shows variations just like those that Welday et al observed in biological theta cells. We validated the
robustness of the OI model proposed in [22] with our theta chip and FPGA implementation. We also
designed a simple place cell network to convert the segmented displacement information of the OI model in
[22] into a functional localization system.

The proven effectiveness of the improved OI model opens possibilities for neuromorphic
implementations of a neuromorphic SLAM system. The model’s tolerance towards theta cells allows for an
analog implementation for lower layers. Our analog structure for the behavior model of theta cells serves as
an example. Other theta cell implementations with more biologically plausible structures can also be
developed through our structure without strict restrictions on accuracy or linearity. Moreover, with our
network structure, variability of the analog circuits can be utilized to substitute the programmability
requirement of the preferred velocity.

The theta chip can also be repurposed for any other models for place or grid cells since it encodes
movements. Both OI model and CAN model require cells performing such task. Given the non-uniform
nature due to its analog circuits, it provides a validation platform for the robustness of any neuromorphic or
even neuroscience model. Furthermore, since mathematically the chip performs an approximation of vector
projection operation, applications in other fields is also probable such as convolution or pattern recognition.

Our theta chip functions as a valid input layer despite the fact it operates at a much higher frequency
range (∼2500 Hz) than is observed in biology (∼8 Hz). This issue shortens the phase-reset period, thus
reducing the operation domain for the egocentric place cells. We will consider reducing the operating
frequency of the theta chip in our next iteration.

The improved OI model provides a potential explanation of the functionality of grid cells for localization.
The nodes in the second layer of our network structure can form grid cell behavior as shown in figure 1.
Thus, grid cells not only participate in the localization, but also serve the purposes of variation reduction. In
the second layer, there are two possibilities of pairing. The one implemented in this paper is that the pair is
formed by nodes with the same orientation but opposite direction, resulting in a sparse stripe pattern as
shown by the green arrow in figures 1(d) and (g). The other pairing strategy, shown in figure 1(i-iii), is the
pair formed by lower-layer nodes with different orientations that could generate grid cell patterns such as the
red arrow in the figure. Interestingly, both types of cells have been observed in biology [29]. Our model can
serve as a guide for researching the properties of those cells in biology.

Furthermore, the basis formed by the egocentric place cells collectively forms a grid cell’s response. For
example, plotting the four signals together as one cell in a tracking trail in figure 11 shows how this cell is
triggered in a square-grid fashion. A hexagonal grid can be implemented simply by replacing the current
orthogonal basis with 6 basis vectors separated by 60◦. Our model then provides an explanation of how grid
cells tessellate. Interestingly, this explanation suggests that the grid cell’s main function is to generate the
phase reset signals for the theta cells.

We have hinted several times at the potential of the place cell network we proposed, especially the
potential of the yet-to-exist direct connections between the place cells. Since the place cell network encodes
the space in a coherent map, conventional path finding algorithms can be applied for a complete SLAM
system. Any smart algorithm targeting at finding the optimized path requires some form of knowledge
between the current location and the destination. We believe that the connection between place cells can
broadcast distance information through the diffusion of the interconnections between place cells, given that
the place cells can perform memory tasks. Then, a computed path can be expressed as a sequence of path
cells by which to perform the navigation task. Furthermore, a more dynamic navigation algorithm can be
combined with the flexible spatial encoding capability of the place cell network through connection with
egocentric place cells with different magnitudes. These topics will be our group’s future research toward a
complete neuromorphic SLAM system.

In summary: we proposed and validated a neuromorphic system inspired by the hippocampus for spatial
localization. The system can track the location of a moving agent under the influence of variations among
the system with a simplified digital interference and still reproduce the behavior of place cells. Overall, the
proposed system provides a concise and implementable platform for a more efficient neuromorphic SLAM
system.
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Appendix

Table A1. Characteristics of the theta chip.

Technology TSMC 65 nm

Number of theta units 128
Maximum output phases 1024= 128∗8
Die area 1.5 mm× 1 mm
Typical frequency range 1206–3066 Hz
Typical mean frequency (Mean/STD) 2023.771/374.611 Hz
Typical of gain coefficient (Mean/STD) 20.802/3.688 Hz per unit inner product
Digital power supply 3.3 V
Analog power supply 1 V
Maximum scanning clock 10 MHz
Typical scanning clock 6 MHz
Typical power consumption 6.2 mW
Output oscillation duty cycle ∼50%
Range of input/Preferred velocity [4-bit digital] Range for better linearity [−4, 4], Max: [−7, 7]

DAC linearity

Ideal range 0.2–0.3875 V
Ideal LSB 0.0125 V
Actual Range 0.2058–0.3824 V
DNL 0.224 LSB
INL −0.872 LSB
Zero scale error 0.464 LSB
Offset error 5.8 mV
Gain error −5.81%
Full scale error −2.72%

Data availability statement

The data cannot be made publicly available upon publication because they contain commercially sensitive
information. The data that support the findings of this study are available upon reasonable request from the
authors.

Acknowledgments

This work was partially funded via a Cooperative Agreement between JHU and Toshiba Corporation, NSF,
and a Graduate Student Fellowship to Alia Nasrallah from the Government of Kuwait.

ORCID iD

Zhaoqi Chen https://orcid.org/0000-0003-2716-7495

References

[1] Khairuddin A R, Talib M S and Haron H 2015 Review on simultaneous localization and mapping (SLAM) 2015 IEEE Int. Conf. on
Control System, Computing and Engineering (ICCSCE)

[2] Milford M J, Wyeth G F and Prasser D 2004 RatSLAM: a hippocampal model for simultaneous localization and mapping IEEE Int.
Conf. on Robotics and Automation, 2004

[3] Ball D, Heath S, Wiles J, Wyeth G, Corke P and Milford M 2013 OpenRatSLAM: an open source brain-based SLAM system Auton.
Robots 34 149–76

[4] Milford M, Jacobson A, Chen Z and Wyeth G 2016 RatSLAM: using models of rodent hippocampus for robot navigation and
beyond Robotics Research: The 16th Int. Symp. ISRR

[5] Chen Z, Lowry S, Jacobson A, Hasselmo M E and Milford M 2015 Bio-inspired homogeneous multi-scale place recognition Neural
Netw. 72 48–61

[6] Milford M and Wyeth G 2010 Persistent navigation and mapping using a biologically inspired SLAM system Int. J. Robot. Res.
29 1131–53

[7] O’Keefe J and Dostrovsky J 1971 The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving
rat Brain Res. 34 171–5

17

https://orcid.org/0000-0003-2716-7495
https://orcid.org/0000-0003-2716-7495
https://doi.org/10.1007/s10514-012-9317-9
https://doi.org/10.1007/s10514-012-9317-9
https://doi.org/10.1016/j.neunet.2015.10.002
https://doi.org/10.1016/j.neunet.2015.10.002
https://doi.org/10.1177/0278364909340592
https://doi.org/10.1177/0278364909340592
https://doi.org/10.1016/0006-8993(71)90358-1
https://doi.org/10.1016/0006-8993(71)90358-1


Neuromorph. Comput. Eng. 4 (2024) 024009 Z Chen et al

[8] Hafting T, Fyhn M, Molden S, Moser M-B and Moser E I 2005 Microstructure of a spatial map in the entorhinal cortex Nature
436 801–6

[9] O’keefe J and Burgess N 2005 Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to
entorhinal grid cells Hippocampus 15 853–66

[10] Moser E I, Kropff E and Moser M-B 2008 Place cells, grid cells, and the brain’s spatial representation system Annu. Rev. Neurosci.
31 69–89

[11] Sargolini F, Fyhn M, Hafting T, McNaughton B L, Witter M P, Moser M-B and Moser E I 2006 Conjunctive representation of
position, direction, and velocity in entorhinal cortex Science 312 758–62

[12] Indiveri G et al 2011 Neuromorphic silicon neuron circuits Front. Neurosci. 5 73
[13] Samsonovich A and McNaughton B L 1997 Path integration and cognitive mapping in a continuous attractor neural network

model J. Neurosci. 17 5900–20
[14] Burak Y and Fiete I R 2009 Accurate path integration in continuous attractor network models of grid cells PLoS Comput. Biol.

5 e1000291
[15] Conklin J and Eliasmith C 2005 A controlled attractor network model of path integration in the rat J. Comput. Neurosci. 18 183–203
[16] Burgess N, Barry C and O’keefe J 2007 An oscillatory interference model of grid cell firing Hippocampus 17 801–12
[17] Burgess N 2008 Grid cells and theta as oscillatory interference: theory and predictions Hippocampus 18 1157–74
[18] Hasselmo M E, Giocomo L M and Zilli E A 2007 Grid cell firing may arise from interference of theta frequency membrane

potential oscillations in single neurons Hippocampus 17 1252–71
[19] Welday A C, Shlifer I G, BloomM L, Zhang K and Blair H T 2011 Cosine directional tuning of theta cell burst frequencies: evidence

for spatial coding by oscillatory interference J. Neurosci. 31 16157–76
[20] Cellon A B, Eisape A A, Furuta M and Etienne-Cummings R 2019 Velocity-controlled oscillators for hippocampal navigation on

spiking neuromorphic hardware 2019 IEEE Int. Symp. on Circuits and Systems (ISCAS)
[21] Nasrallah A, Chen Z, Alemohammad M, Balaji A, Cellon A, Furuta M and Etienne-Cummings R 2020 Velocity-tuned oscillators

for NeuroSLAM and spatial navigation 2020 IEEE Int. Symp. on Circuits and Systems (ISCAS)
[22] Zhaoqi C, Nasrallah A, Alemohammad M, Furuta M and Etienne-Cummings R 2022 Neuromorphic model of hippocampus place

cells using an oscillatory interference technique for hardware implementation Neuromorph. Comput. Eng. 2 044013
[23] Mhatre H, Gorchetchnikov A and Grossberg S 2012 Grid cell hexagonal patterns formed by fast self-organized learning within

entorhinal cortex Hippocampus 22 320–34
[24] Gupta S, Saxena V, Campbell K A and Baker R J 2009 W-2W current steering dac for programming phase change memory 2009

IEEE Workshop on Microelectronics and Electron Devices
[25] Varghese V, Molin J L, Brandli C, Chen S and Cummings R E 2015 Dynamically reconfigurable silicon array of generalized

integrate-and-fire neurons 2015 IEEE Biomedical Circuits and Systems Conf. (Biocas)
[26] Folowosele F, Hamilton T J and Etienne-Cummings R 2011 Silicon modeling of the Mihalaş–Niebur neuron IEEE Trans. Neural
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