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Abstract

Mass spectrometry imaging (MSI) is a powerful scientific tool for understanding the spatial
distribution of biochemical compounds in tissue structures. In this paper, we introduce three
novel approaches in MSI data processing to perform the tasks of data augmentation, feature
ranking, and image registration. We use these approaches in conjunction with non-negative
matrix factorization (NMF) to resolve two of the biggest challenges in MSI data analysis,
namely: 1) the large file sizes and associated computational resource requirements and 2)
the complexity of interpreting the very high dimensional raw spectral data. There are many
dimensionality reduction techniques that address the first challenge but do not necessarily
result in readily interpretable features, leaving the second challenge unaddressed. We dem-
onstrate that NMF is an effective dimensionality reduction algorithm that reduces the size of
MSI datasets by three orders of magnitude with limited loss of information, yielding spatial
and spectral components with meaningful correlation to tissue structure that may be used
directly for subsequent data analysis without the need for additional clustering steps. This
analysis is demonstrated on an MSI dataset from female Sprague-Dawley rats for an animal
model of comorbid visceral pain hypersensitivity (CPH). We find that high-dimensional MSI
data (~ 100,000 ions per pixel) can be reduced to 20 spectral NMF components with < 20%
loss in reconstruction accuracy. The resulting spatial NMF components are reproducible
and correlate well with H&E-stained tissue images. These components may also be used to
generate images with enhanced specificity for different tissue types. Small patches of NMF
data (i.e., 20 spatial NMF components over 20 x 20 pixels) provide an accuracy of ~ 87% in
classifying CPH vs naive control subjects. This paper presents the novel data processing
methodologies that were used to produce these results, encompassing novel data process-
ing pipelines for data augmentation to support training for classification, ranking of features
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according to their contribution to classification, and image registration to enhance tissue-
specific imaging.

Introduction

Mass spectrometry imaging (MSI) produces three-dimensional images in which each pixel at
an (x, y) location has a corresponding mass spectrum with mass-to-charge (m/z) and intensity
axes. Raw MSI datasets can be difficult to interpret due to the sparse and distributed nature of
the information, with many tissue characteristics associated with a combination of ions rather
than individual ions. Analysis of replicate-powered MSI data presents significant challenges
due to their large size, necessitating dimensionality reduction techniques and extraction of fea-
tures for further analysis.

Most approaches to address dimensionality reduction in MSI do not preserve the inherent
physical properties of MSI spectra, namely that MSI spectra are nonnegative. In this work, we
explored the use of non-negative matrix factorization (NMF) as a dimensionality reduction
technique that preserves spectral nonnegativity and provides a strong correlation with physio-
logical features. Spectral peaks present in the extracted NMF components represent lipid ions
present in the tissues.

This research establishes a new way to interpret MSI data that significantly reduces the data
size and produces interpretable features, allowing for faster data processing and histological
analysis based on MSI-derived features. We describe a data pipeline for extracting interpret-
able information from MSI data that can be represented compactly while preserving the spec-
tral and spatial interpretability of the compressed MSI data. We have applied our data pipeline
to two important applications- biological classification and generation of tissue histology
images- to study the viability of our methods.

This paper presents novel approaches for MSI data analysis that build upon existing meth-
ods in three distinct ways: 1) by introducing a data augmentation technique that allows the use
of NMF components for classification into biological groups using limited training data; 2) by
introducing a statistical approach that may be used to extract biologically relevant, class-dis-
tinctive latent variables and to rank their contributions to the classification accuracy; and 3) by
introducing an image registration technique that enhances the tissue-type specificity and cor-
relation with H&E-stained images. The approaches are demonstrated on an MSI dataset for a
rodent model of chronic visceral pain.

Background and related research

This paper builds on existing techniques in mass spectrometry imaging, H&E staining, data
compression, and data classification, which are briefly summarized below.

Mass spectrometry imaging

Mass spectrometry imaging (MSI) is an analysis technique that generates a spatial distribution
of ions and abundances in a given sample and can be used for a variety of molecular targets.
Several MSI processes use different ionization techniques, with the most widely used being
matrix-assisted laser desorption ionization (MALDI), desorption electro-spray ionization
(DESI), and secondary ion mass spectrometry (SIMS), and their uses are well-reviewed [1-3].
The spatial aspect of MSI makes it possible to obtain anatomical images of any ion detected
in the mass spectra in a given experiment. MSI has been widely used to map diverse analytes,
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but it is particularly effective in analyzing lipids [4, 5] and has been used to map lipids and
lipid fine structure in brain tissue [6], simultaneously map host and bacterial lipids [7], lipo-
somal drug distribution [8, 9], and cancer [10] in tissues.

H&E staining

H&E staining is a two-dye staining technique that is commonly used to evaluate tissues [11,
12]. It is also used in tandem with mass spectrometry [13]. The differential properties of the
two dyes, hematoxylin and eosin, enhance the contrast of tissue features when observed under
a microscope. Hematoxylin stains genetic material a blue-purple color, highlighting structures
such as ribosomes and chromatin within the nucleus. Eosin stains cytoplasmic structures,
highlighting cytoplasm, cell wall, collagen, and connective tissue in varying shades of pink
[14]. H&E staining helps to discriminate between different types of cells and tissues and pro-
vides an important tool to understand the patterns, shapes, and arrangement of cells in a tissue
sample [15, 16]. However, the evaluation of H&E-stained tissue still relies on the expertise of a
trained pathologist or histologist; this process can be tedious and time-consuming, and there
are abundant examples of similar pathologies that are not well resolved using H&E alone. The
development of automated image segmentation to rapidly isolate regions of interest from stan-
dard stainings is an active area of interest.

Data compression

MSI datasets can be very large (~ GB) depending on factors including spectral range, spatial
sampling, and density of spectral data collection, with the potential for millions of ions to be
represented at each location in a tissue sample. Dimensionality reduction techniques simplify
the analysis of such datasets by representing MSI data compactly with minimal loss in infor-
mation. Verbeeck et al. describe several unsupervised machine-learning approaches for MSI
data analysis [17]. They compare principal components analysis (PCA) and NMF as
dimensionality reduction techniques for MSI data, assessing the interpretability of extracted
features using a synthetic dataset with known composition. They further report the ability of
NMEF to extract anatomically relevant regions in brain tissue imaged with MALDI MSI. Nijs
et al. compared several dimensionality reduction algorithms including NMF, PLSA, LDA, and
KL NMF, and found that NMF provides the best fit overall for MSI data [18]. Paine et al. were
able to identify different compounds in cancer tissue from NMF spectra [19], establishing that
NMEF yields meaningful spectral components with peaks attributable to compounds present in
the sample. Another important characteristic of the spatial components produced by NMF is
its strong spatial correlation with anatomical tissue structure, which enables its capability to
produce segmented views of tissue features. Trindade et al. used the spatial distributions of
NMF components to differentiate similar but distinct resin types [20].

MSI data processing

Several authors have reported data processing methods to extract and interpret information
from MSI data. These methods involve clustering of spectral and spatial features to extract tis-
sue characteristics as well as annotation of metabolites of interest. Many clustering methods
exist to interpret the spatial information in MSI data such as k-means, GMM, and TSNE. Clus-
tering on MSI data is computationally expensive and is usually preceded by dimensionality
reduction. Prasad et al. evaluated several clustering methods using both real and synthetic MSI
data and found that clustering performance decreased with increasing complexity, and data
compression prior to clustering improves the performance [21]. In our analysis based on novel
visceral pain data, we found that performing NMF across multiple tissue samples inherently
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produced meaningful spatial distinction of the components without the need for explicit
clustering.

Recent data processing approaches have reported new ways to incorporate either additional
spectral or spatial features into MSI data after dimensionality reduction to extract interpretable
information. Smets et al. incorporated spectral information in addition to spatial information
by adding prioritization of selected m/z values to uniform manifold approximation and projec-
tion (UMAP) spatial embeddings [22]. Smets et al. have also reported an approach to combine
molecular data from multiple UMAP spatial embeddings with histology data by creating low-
dimensional 3D representations of RGB images which are fused using an adjustable parameter
based on H&E data [23]. We have observed that NMF-compressed data inherently produces
meaningful and interpretable features reflecting histology as well as spectral information and
in this work have explored spectral and spatial representations based on linear combinations
of NMF features.

Zhang et al. report a method that uses patches for data augmentation for training an ML
model for subsequent dimensionality reduction and clustering [24]. The method presented in
our paper also uses patches for data augmentation—but in this case for training of a classifier.
The distinction is that the patches in our paper have already passed through a dimensionality
reduction algorithm (i.e., NMF) whereas the Zhang et al. patches are taken directly from the
raw MSI data and are used to train a dimensionality reduction algorithm. Unlike in this work,
the Zhang et al. methodology allows spatially overlapping patches, which is suitable for train-
ing a dimensionality reduction algorithm but would introduce bias into the training of a
classifier.

SVM classification

Support vector machines (SVM) are a class of supervised machine learning algorithms that are
mostly used for classification and regression problems [25]. SVM is widely used in the data
analysis of biological and other sciences [26]. SVM operates by finding a decision boundary
with the maximum margin, i.e., one that is farthest away from all classes. The decision bound-
ary in general can be quantified over a higher dimensional space than the ambient space of the
features, giving rise to Kernel SVM, in which the kernel defines the high-dimensional feature
mapping. Examples of such kernels are the Radial Basis Functions (RBF) and polynomial ker-
nels [25]. When the kernel is the identity mapping, the resulting SVM is known as linear SVM.
For linear SVM, the classifier is equivalent to a linear combination of the features that is dis-
criminative of the classes. While Kernel SVM typically achieves higher classification accuracy
[25], it results in more complex and often less interpretable models. Linear SVM, on the other
hand, generates simpler models whose weights may be used to identify the latent features that
contribute to the classifier’s performance [27].

Methodology
Ethics statement

This study was carried out in strict accordance with the recommendations in the guide for the
care and use of laboratory animals of the National Institutes of Health and the guide for the
use of laboratory animals by the International Association for the Study of Pain. The protocol
was approved by the Institutional Animal Care and Use Committee (IACUC) at the University
of Maryland, Baltimore (Protocol Number: 0220020).
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Animal model

Nociplastic pain describes chronic pain conditions that are not due to injury or disease (e.g.,
temporomandibular disorder (TMD), irritable bowel syndrome (IBS), fibromyalgia, migraine
headache). Human patients often experience two or more conditions resulting in comorbid or
chronic overlapping pain conditions (COPCs). Stress modulates colonic pain through activa-
tion of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathoadrenal medullary
(SAM) axis evoking the release of inflammatory mediators sensitizing colonic afferents. This
leads to the hypothesis that the transition from normal sensory processing in the GI tract to
chronic visceral pain involves changes in metabolic processing in the colon. In animals, orofa-
cial inflammation followed by stress results in chronic visceral hypersensitivity modeling pain
in patients with TMD and IBS [28, 29]. Using this comorbid pain hypersensitivity (CPH)
model in female rats, colon tissue was collected at a period of heightened visceral
hypersensitivity.

Female rats (Envigo; 10 weeks old at arrival at University of Maryland, Baltimore, animal
facility) were acclimated to the animal facility for one week. Naive rats (n = 4) were left in their
home cage under normal husbandry conditions for 3 weeks. Rats were then euthanized by
CO, asphyxiation followed by decapitation and tissue harvest. Following one week of acclima-
tion, CPH rats (n = 4) were briefly sedated with isoflurane, and Complete Freund’s Adjuvant
(CFA; Sigma-Aldrich, F5881; 50 pL, 1:1 in saline) was injected into both masseter muscles.
Starting the following day restraint stress was produced by placing rats in Broome-style rodent
restrainers (4.8 cm diameter, 20 cm length) preventing movement for 2 hrs per day for 4 con-
secutive days. Rats were tilted at a 45-degree angle head up or head down in 15-minute blocks
alternating with 15-minute blocks in the horizontal position. Two weeks after the last stress
session, rats were subject to colorectal distention (3 trials of 20, 40, 60 mmHg distention, 20
sec each, 3 min interstimulus interval). Rats were subsequently euthanized by CO, asphyxia-
tion followed by decapitation and tissue harvest.

Tissue preparation

Colons were collected from naive and CPH groups (n = 4 ea.) from cecum to anus and placed
into a petri dish with room temperature porcine gelatin in endotoxin-free water (2% w/v;
Sigma G1890). Gelatin solution was injected ( ~200 uL) at five evenly distributed points along
the colon length using a 21G needle. The colons were split along the mesenteric line and fecal
material was removed. The anal junction was grasped with two flat wooden toothpicks and
rolled, lumenal side inward, toward the cecal junction. The colon rolls were then placed
upright on a foil boat, float-frozen on a pool of liquid nitrogen, sealed and stored at -80°C
before sectioning. Colon tissues were removed, prepared, and frozen in less than five minutes.
Serial cryosections were collected on a Leica CM1950 (Leica Biosystems) starting from at least
1/3 of the cross-sectional depth of the rolled tissue at 12 ym thickness and thaw-mounted on
indium tin oxide (ITO) glass microscope slides (Delta Technologies). This preparation orients
the proximal colon on the outer rings of the roll and the distal colon in the center. Slides were
stored at —-80°C prior to data collection. At the time of analysis, glass slides were placed in a
vacuum desiccator to thaw (less than five minutes total). An orientation light scan was col-
lected on a flatbed scanner.

Mass spectrometry imaging and staining

Sections were coated with norharmane (NRM) matrix solution of 7 mg/mL in 2:1 (v:v) chloro-
form:methanol using an HTX M5 Matrix Sprayer (HTX Technologies, NC). The following
matrix application settings were used: 10 passes, 10 psi, 2 L/min nitrogen gas, 30C nozzle, 40
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mm height, 0.1 mL/min, 1200 mm/min velocity, CC pattern, and 2.5 mm track spacing. Data
were collected on a Bruker timsTOF flex (Bruker Daltonics) instrument in negative ion mode
from m/z 600-2000. The instrument was calibrated to the Agilent ESI peptide standard mix
resulting in a sub-ppm standard deviation calibration. The MALDI laser was operated in the
M5 small setting with 16 ym x 16 ym beam scan resulting in 50 ym spatial resolution. Data
used in this work were collected using MALDI negative mode MSI since it has a wide range of
molecular masses, and negative ion mode lipid data provides excellent reproduction of the
details of tissue structures [30].

Raw data were individually imported into SCiLS Lab software [31] as centroided data on
loading and the individual files were exported to the common data format, imzML [32] for fur-
ther analysis. Following MSI, the matrix was cleared with two consecutive dips (10 seconds
each) in 70% ethanol and tissue stained with H&E as previously described [30]. Slides were
cleared in xylene and permount was used to attach coverslips. Optical images were collected
on an Aperio slide scanner (Leica Biosystems) at 20x magnification and images were exported
in eps format from Leica’s ScanScope software.

Datasets

8 MSI datasets along with their respective H&E-stained images were generated using tissue
samples from the 4 CPH and 4 naive animals. The 8 datasets collectively will be referred to as
the ‘data cohort’, while the term ‘dataset’ will refer to the MSI data corresponding to a single
tissue sample. Fig 1 shows ion images from the 8 datasets at m/z 885.5, with samples from
CPH animals shown on the left, and naive control animals shown on the right. The chosen ion
at m/z 885.5 is suspected to be the lipid ion 1-stearoyl, 2-arachidonyl-phoshphatidylinositol
(SAPI), which is known to play a role in pain hypersensitivity in animals [7]; however, the
identity of this lipid candidate has not been confirmed.

Data processing pipeline

The Python programming language running on a Dell Precision 5820 (Intel Core i9 10900X
CPU with 20 cores) with 256 GB system memory was used to process and analyze the data.
The Python library pyimzML [33] was used to parse the data from imzML format to the com-
puter memory. Fig 2 summarizes the data processing pipeline which is explained in the steps
below.

o Step 1: Data binning This experiment resulted in large individual datasets (~ 13 GB per
dataset) and is therefore saved in a sparse file format. Binning, as the pre-processing step,
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Fig 1. The biological replicates. (a) Mass-spectrum image at m/z 885.5, and (b) the H&E-stained image for each
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logical replicate. The CPH and datasets are shown as groups on the left and right respectively.

https://doi.org/10.1371/journal.pone.0300526.9001
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offers a two-fold advantage. First, it allows us to down-sample the data to a lower resolution
to make the computations much faster in the subsequent steps. Second, it enables matrix cal-

culations that are needed later, by transforming the data into uniform and equally spaced

m/z bins. This is shown in Fig 3.
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Fig 3. MSI spectra before, and after binning. Original MSI spectra are binned to bins of width 0.05 m/z to create

uniformly spaced peaks. The bin size of 0.05 m/z sufficiently preserves the spectral resolution of the MSI data as can be

seen through the insets.
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The sparse nature of MSI datasets allows for spectral binning with minimal information loss.
We used a bin width of 0.05 Da and maximum peak intensity (ion abundance) within a bin
to represent the bin intensity. Binning at the 0.05 Da bin width reduces the spectral dimen-
sion from 100,000 to 28,000 features.

The binned data was stored in memory in a 3-dimensional array of size (A x BY x M) per
dataset. Here, A% and B? are the number of pixels in the horizontal and vertical dimensions
for a given dataset d which form an ‘ion image’ for each detected m/z value. A dataset can
therefore be understood as a stack of M images, each with a size of A% x BY pixels. Binning
leads to M being consistent for every pixel p in every dataset in the cohort. It should however
be noted that the A and B? values are different for each dataset d. This is because the tissue
samples from different animals may take different physical shapes and sizes.

Step 2: Truncation Although each spectrum ranged from 600 Da to 2000 Da, we found that
the spectra became much sparser beyond 1100 Da. This corresponds to the upper limit of
the typical phospholipid mass range and was subsequently truncated to 1100 Da. This trun-
cation further reduced the spectral dimension from 28000 to 10000 features.

Step 3: Normalization The binned data is subsequently normalized based on the total ion
current (TIC) measure using the formula in Eq 1.

d
’I‘ d _ XY,

S (1)
d
2 L.
s=1

Here I{, and I ¢ are the raw and TIC normalized intensities of the s™ bin center (m/z

value) at the (x, y)" pixel location of the d™ dataset respectively, and M is the total number of
bins in each pixel location (x, y).
M Id

s=1"xy,s

TIC normalization is an essential part of the pipeline. The sum of intensity values »

for a TIC normalized spectrum at pixel location (x, y) adds up to 1.

Step 4: Dimensionality reduction After preprocessing the datasets as described in steps
1-3, we perform dimensionality reduction separately with NMF and with PCA. While the
following steps describe the steps used with NMF, many of the same considerations apply to
PCA.

1. Step 4a: Flattening and stacking each dataset We first flatten the 3-dimensional data-
sets of size (A% x B? x M) into 2D datasets of size (A°B? x M), and stack them along the
combined (x-y) spatial axis for input to the NMF algorithm. This ensures that NMF
finds basis vectors that are common to all datasets. Since NMF does not change the data
order along the rows, we are able to separate the low-dimensional output corresponding
to each dataset from the stacked output.

2. Step 4b: Computing the NMF spatial and spectral features Stacking of the datasets
leads to a combined data array I of dimensions (N x M), where N = > | A% x Bis
the total number of pixels in all datasets in the cohort. We performed NMF on this com-
bined data array, reducing the dimensionality M from 10,000 to 20. This reduced num-
ber of dimensions is denoted by m.

The NMF algorithm compresses raw MSI data as given in Eq 2.

T4 d d
L= Z wa’ ’ lPSJ +E (2)
-1
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where the reduced dimension representation for T ¢ is defined at spectral bin s (m/z)
and 2D spatial location (x, y) for the d™ tissue sample (withd=1, 2, ....D), wa. is the jth

spatial NMF component at location (x, y) and ‘¥ is the ™" spectral NMF component at
m/z bin s, and finally E{ _is the residual error that cannot be captured by the NMF
decomposition. Note that the spectral NMF component is sample-independent to
account for the population-level spectral composition, whereas the spatial component is
sample-dependent to account for the sample-specific spatial variations. The NMF com-
ponents are estimated by minimizing

>y

d=1 xy,s

(3)

m
N E VAR 29
ES A X.y,j s,
j=1

subject to the non-negativity constraints Zf_w > 0,Vx,y,jand ¥; > 0, Vs, j [34 35], in

which the optimization problem in Eq 3 is typically solved using iterative methods.

This reduced feature space contains 20 basis vectors, (spectral NMF components; V), and
20 low-dimensional features (spatial NMF components; Z). The portion of each spatial NMF
component (Z ;) corresponding to each dataset d can be reshaped into an image describing
the spatial distribution of lipid ions contained in its corresponding spectral component. The
output of the NMF algorithm is the transformed MSI data with 20 component spectra and 20
spatial intensity maps.

The number of NMF components was selected to be 20 based on the normalized residual
reconstruction error as shown in Fig 4. The normalized reconstruction error is defined as the
sum of the squared difference between the binned MSI data and its NMF reconstruction, nor-
malized by the sum of squares of the binned MSI data. It falls quickly for the first few NMF

90 X 45
< G
X gs =407
>
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g 2 304
g ™ 5
= S 251
O 82 (o4
= - 201
") (]
© 801 =
O g 151
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Fig 4. Performance for NMF and PCA data compression in classification and data reconstruction. (a) The relationship between SVM classification
accuracy and the width of patches extracted from the NMF spatial intensity maps. The gray dotted line shows the patch width of 20 x 20 pixels used to
generate the results presented in this paper. (b) The relationship between reconstruction error (normalized root-mean-squared error as a percentage)
and the number of PCA/NMF components. The gray dotted line marks the normalized error of 20%.

https://doi.org/10.1371/journal.pone.0300526.9004
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components and then more gradually, with the reconstruction error falling under 20% for 20
NMF components. Results in the remainder of the paper are presented for 20 NMF
components.

We used the NMF algorithm available with the scikit-learn package for Python [36]. 6000
iterations with the default parameters were required for convergence. The sklearn NMF library
does not sort NMF components according to any measure. Therefore, we use a backward elim-
ination technique to rank them based on their contribution to the reconstruction of the binned
MSI data. Starting with the full set of 20 NMF components, we remove one component and
calculate the residual reconstruction error between the binned MSI data and its reconstruction
using the remaining NMF components. The component that leads to the highest residual
reconstruction error when removed is ranked as the most important component for the recon-
struction task and is designated as component 0. This process is repeated until only 1 NMF
component is left, which is the least important component for reconstruction and is desig-
nated as component 19.

Classification pipeline

This subsection describes the methodology used to train a support vector machine (SVM) clas-
sifier to distinguish between CPH and naive data. High classification accuracy is one of the
necessary conditions for the presence of ‘pain-related metabolites’ in CPH animals, and the
absence of such in naive animals. However, it should be noted that this is not a sufficient condi-
tion for the hypothesis to be considered true. The steps in the pipeline are described below.

o Step 1: Spatial reconstruction In the dimensionality-reduction step, all the datasets were
concatenated into a single array. To perform the classification, the datasets need to be sepa-
rated and labeled as being from a CPH dataset or a naive one. After separating and labeling
the data, the NMF spatial intensity map for each dataset d was reconstructed by reshaping
the data into a 3-dimensional array of size (A% x B x m). It is important to notice the resem-
blance this has to the initial binned, truncated, and normalized 3-dimensional data array
I ¢ . mentioned in the data processing pipeline above. The key difference is that the depth
dimension has now been reduced from 10,000 to 20. This modified data cohort will here-
forth be referred to as the ‘compressed data cohort’.

o Step 2: Data augmentation The 8 datasets in the compressed data cohort in their raw form
would only contribute 8 labeled data samples for the classification task. Data augmentation
was therefore required to prevent overfitting of the SVM classifier. As shown in Fig 5, aug-
mentation was achieved by redefining a data sample as a spatially cropped version of a data-
set from the compressed data cohort. Each dataset was spatially divided into a grid of non-
overlapping patches with each patch being of size (20 x 20) pixels. All patches that were off-
tissue were discarded from the augmented dataset. This defines a data sample to be a
3-dimensional array of size (20 x 20 x m), where m is the number of components in the fea-
ture space after dimensionality reduction and takes a value of 20. This approach makes the
implicit assumption that the metabolites leading to pain in CPH animals are distributed
throughout the entire tissue area.

The 3-dimensional data samples were flattened into 1-dimensional vectors of size (8000 x 1)
in preparation to be fed into an SVM classifier. The data augmentation step generated a total
of 2,000 labeled sample vectors.

« Step 3: Data split 80% of the data patches were used to train the classifier. The remaining
20% were used as a testing set. Both the training and testing sets were balanced such that
there were equal numbers of samples for both the classes CPH and naive.
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Fig 5. SVM classification and data augmentation methodology. 20x20x20 patches of NMF data sampled from different regions of
labeled CPH and naive datasets were used to train and test the SVM classifier.

https://doi.org/10.1371/journal.pone.0300526.9005

« Step 4: SVM classification Binary classification was performed with the positive class corre-
sponding to CPH data and the negative class corresponding to naive data. A high classifica-
tion accuracy would therefore establish a necessary (but not sufficient) condition to infer that
the CPH animals had certain features in their MSI data that correlated with their hypersensi-
tivity to pain. We used the Support Vector Classifier (SVC) module of the Python sklearn
library [36], evaluating both linear and radial basis functions (RBF) as kernels. We used
5-fold cross-validation, implemented with the GridSearchCV module of the Python sklearn
library to tune the hyperparameters of the SVM algorithm.

Ranking NMF components according to their contribution to classification
accuracy

One of the goals of this study is to test the hypothesis that there exists certain lipid ion fea-
tures or a cluster of features in CPH animals that correlate with sensitivity to pain. This
hypothesis is tested with the results of the SVM classification. We identified the latent vari-
ables that support this hypothesis by evaluating which NMF components were most impor-
tant in discriminating between CPH and naive animals. We call these NMF components “the
candidate list” as their spectra may contain lipid ions that are associated with pain
hypersensitivity.

The data cohort used in this study contains images from 8 different animals with natural
differences in the size of the tissue segments, resulting in different spatial sizes for the MSI ion
images as well as the NMF spatial intensity maps. Images of different sizes produce different
numbers of patches, and including all patches will bias the classification toward animals with
larger MSI ion images. To overcome this bias, we developed a statistical sampling methodol-
ogy, as follows:

1. Determine the dataset with the smallest number of patches, P.

2. Randomly select P image patches from each dataset.
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3. Use 5-fold cross-validation to train and test N SVM classifiers, each using only the intensity
map corresponding to a single NMF component. This results in N values for mean cross-
validation classification accuracy.

4. Return to step 2, selecting a different random set of patches for each of the non-minimum
size images.

5. Repeat 50 times to obtain a distribution of classification accuracies for each of the N
components.

To rank the 20 NMF components, we use an iterative approach. During the first iteration,
N takes the value 20; i.e., the total number of NMF components. We perform two-sample
unpaired t-tests to evaluate the statistical significance of the mean of each distribution against
that of the distribution that has the highest mean [37]. We select the component with the high-
est mean and any other components that have mean accuracies statistically similar to it and
append them to the candidate list. Let us now assume that the candidate list has K candidate
components at the end of this first iteration. During the next iteration, we repeat steps 1-4
above on the candidate list, augmented by single NMF components that are not yet selected
(i.e., N takes a value of 20 — K now) This process is repeated until the stopping criterion is
reached, which in this case was to expand the candidate list until the components in the candi-
date list alone can produce a classification accuracy of at least 75% (i.e., 25% above chance
level). This procedure generates a list of components that are ranked according to their impact
on classification accuracy. This process is computationally intensive, so we used the University
of Maryland supercomputing cluster to accelerate the computations through parallelization of
the repeat calculations.

Image registration pipeline
Generating biological and mechanistic insight from untargeted spatial ‘omic information in raw
MSI data is generally a difficult task due in part to its high dimensional nature. Further, tissue
annotation is a time-consuming step that requires expert-level evaluation for complex pathol-
ogy. In MSI, each ion will have its corresponding ion image. However, not all ions will have a
distinctive spatial structure. In contrast, an H&E-stained image contains a multitude of anatomi-
cal features with fine spatial resolution, but without well-defined mapping to different tissue
types due to the limited specificity available from shades of the two stains applied to the tissue.
Although H&E staining and MSI are separate modalities carrying separate types of infor-
mation, their complementary nature enables augmenting the anatomical features visible in the
H&E-stained images with information from the NMF spatial intensity maps. However, MS
images and H&E-stained images have differences in scaling and non-linear perspective distor-
tions as they are acquired using disparate types of instruments. Therefore, to effectively com-
pare the NMF spatial intensity maps generated from MSI with H&E-stained images, we follow
the image registration pipeline described below to align these images.

Step 1: Scaling Image alignment algorithms typically require the input images to be scaled to
the same size. Therefore, the H&E-stained images which have higher pixel resolution are
down-sampled to match the size of their corresponding NMF spatial intensity maps. This
was accomplished using the Python OpenCV library [38].

Step 2: H&E-stained image segmentation The scaled H&E-stained images are decomposed
into segments based on the color profile of visible spatial structures such as the muscular
lining, mucosal layers, and regions of immune cell aggregation. As an example, to segment
the muscular lining, a region of interest (ROI) 8 x 8 pixels in size is defined on top of the
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Fig 6. Simplified methodology for anatomical feature segmentation of H&E-stained images. Red, green, and blue
color channel intensity distributions are extracted in a region of interest (ROI) centered within the boundaries of the
desired anatomical structure. Following outlier removal, 6 thresholds are determined based on the means and standard
deviations of each color channel data as parameters to generate a mask that can be applied to the original H&E-stained
image to segment the desired anatomical feature.

https://doi.org/10.1371/journal.pone.0300526.g006

muscular lining in an H&E-stained image. The means 4 and standard deviations o° of each
color channel ¢ (red, green, blue) within this ROI are calculated. The entire H&E-stained
image is subsequently thresholded to extract pixels with intensities within two standard
deviations of the mean (4 + 2¢°) of each color channel. Fig 6 shows the ROI determination

and thresholding.

Step 3: Edge detection Edges act as landmarks that can enhance alignment. Therefore, we run
the NMF spatial intensity maps and segments of H&E-stained images through a Canny
edge detector available in the Python OpenCV library [39].

Step 4: Homography transformation and alignment We iteratively optimize a homography
transformation algorithm in the Python OpenCYV library between each H&E image segment
and NMF spatial map. The optimal alignment between each image pair is obtained by maxi-
mizing the enhanced correlation coefficient (ECC) score [40]. The ECC score takes a high
value if the NMF spatial map and the H&E image segment being aligned have similar spatial
structures. For each dataset, we select the alignment that gives the highest ECC score and
extract the corresponding warp matrix. We then apply the non-linear transformation defined
by this warp matrix on the original H&E-stained image to obtain the desired alignment.

Enhanced tissue-specific image generation

The NMF spatial intensity maps contain anatomically relevant features. Color-coding each
spatial intensity map and overlaying them on top of each other generates a composite NMF-
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based H&E-like image’ that provides enhanced tissue specificity by highlighting different ana-
tomical structures in different colors.

NMEF spatial intensity maps contain pixels with both low and high intensities. Regions of
low intensities generally correspond to noise or background and usually represent areas of a
tissue that contain low abundances of ions defined by the respective NMF component’s spec-
trum. If such low-intensity pixels are color-coded, they may overlap with information-rich
high-intensity pixels of a different NMF component’s spatial intensity map, thereby masking
important information. Therefore it is important that the color-coding is only applied to pixels
that have intensities above a certain threshold. This threshold may be tweaked depending on
the context or depending on the contrast between the foreground and background pixels.

Once an appropriate threshold is determined, it is applied on the NMF spatial intensity
maps to extract two binary masks; i) a foreground mask that defines the foreground pixel loca-
tions, and ii) a background mask that defines background pixel locations. We apply the back-
ground mask on the corresponding spatial intensity map to select and artificially set the below-
threshold pixels to zeros. This way, only the foreground pixels will be color-coded during sub-
sequent steps. To convert the grayscale NMF spatial intensity maps to their color-coded ver-
sions, we first determine an appropriate set of visually contrasting colors and obtain their {red,
blue, green} vector mapping using a color vector table. A color vector is a three-element vector
containing a value between 0 and 1 for each of the three color channels red, green, and blue.
For example, the color vector (1, 0, 0) represents pure red while the color vector (0.1, 0.8, 0.3)
represents a mixture of 10% red, 80% green, and 30% blue. The foreground pixels previously
extracted are scaled by the color vector and assigned to three color channels to form a color-
coded NMF spatial intensity map. This process is repeated for the remaining spatial intensity
maps. As the final step, these color-coded NMF spatial intensity maps are combined into a sin-
gle composite image by simply adding them together. To display images, they need to be con-
verted to 8-bit unsigned integer arrays. The previous steps could generate certain pixels that
have intensity values greater than 255, which cannot be represented by an 8-bit integer. Such
pixels are artificially clamped at 255. It should be noted however that clamping of too many
pixels could lead to a saturated image with poor contrast.

Results
Dimensionality reduction with NMF

Fig 7a shows the five NMF components that contributed the most towards reducing the recon-
struction error, accounting for 70% of the reconstruction accuracy achieved with all 20 compo-
nents. It should be noted that all spectral intensities are non-negative. The spatial components,
i.e., the NMF spatial intensity maps, show diverse and distinct spatial structures. Data is shown
from one representative dataset out of the 8 in the compressed data cohort.

Dimensionality reduction with PCA

Fig 7b shows the five PCA components that explain the most variance in the data, accounting
for 90% of the variance and 13% of the reconstruction accuracy achieved with 20 PCA compo-
nents. It should be noted that certain spectral intensities are negative. Fig 7b also shows how
the spatial information captured by the first few PCA components are feature-dense, but the
presence of distinct spatial structure gradually tails off with an increasing number of compo-
nents. In comparison, the NMF representation captures sparser spectral and spatial compo-
nents with approximately equal numbers of spectral peaks and spatial features in each
component.
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Fig 7. The first five NMF and PCA components ranked according to their contribution towards MSI data reconstruction. (a) First
five NMF components. Observe how the NMF spectral peaks take only positive values. (b) First five PCA components. The PCA spatial
maps gradually lose structure for higher-ordered PCA components.

https://doi.org/10.1371/journal.pone.0300526.g007

CPH vs naive data discrimination

The F; score is a measure of classification accuracy reflecting precision and recall. The SVM
classifier achieved F, scores of 99.9% and 87.5% on NMF training and testing data respectively.
These results were achieved with a kernel SVM using the RBF kernel. SVM with a linear kernel
achieved F; scores of 95% and 83% on NMF training and testing data respectively.

Fig 4 shows how the classification accuracy depends on the size of image patches used dur-
ing the data augmentation stage. Note that the number of patches was maintained at a constant
value during these analyses.

We found that the RBF kernel SVM classifier achieved a classification accuracy of 99.9%
and 87.4% on PCA training and testing data respectively. Although the SVM classification
accuracy is comparable for PCA and NMF data, NMF produces histologically meaningful spa-
tial components, and directly interpretable spectral components compared to their PCA
counterparts.

This study was carried out using an MSI data cohort based on single tissue samples from 8
rats split into two experimental groups, CPH and naive. As shown in Fig 4, successful discrimi-
nation of samples from the two groups was obtained using an SVM classifier based on
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Fig 8. Four NMF components that contributed the most towards discriminating CPH vs naive data samples. Note
that the spatial maps are distributed throughout the colon structure indicating that pain-causing biomarkers may be
found throughout the colon and fall into one of three classes: complex fingerprint, simple predominant ion, and off
tissue.

https://doi.org/10.1371/journal.pone.0300526.9008

relatively small (20 x 20 x 20) patches of NMF features. Classification accuracy generally
increased with the number of NMF components used and with the patch size (saturating
around 20 components). Classification accuracy increased from 75% for 5 NMF components,
to 82% for 10 NMF components, to 87.2% for 20 NMF components (for 20 x 20 x 20 patches).
Classification accuracy increased from 78% for 5 x 5 x 20 patches to a maximum of 87.65% for
25 x 25 x 20 patches, decreasing for larger patches due to the limited number of samples.

Most discriminating spectral features

Fig 8 shows the spatial and spectral distributions corresponding to the four NMF components
that contributed the most toward classification accuracy. As explained in methods, these four
components alone, when used in a linear SVM classifier yield a CPH vs naive discriminatory
F, score of 77.5% compared to 83% for all 20 components (this accuracy level should not be
confused with the 87.5% F,; score obtained when RBF kernel SVM was used with all 20 NMF
components).

It can be observed in Fig 8 that the NMF components that contributed the most towards
SVM accuracy are distributed throughout the swiss-roll structure and fall into three classes:
NMEF 10 exhibits a complex spectral “fingerprint” with moderate intensities, NMFs 0 and 2
reflect spectra predominated by high-intensity single lipid ions, and NMF 18 is an off-tissue
component.

Alignment of H&E-stained images with spatial components of NMF

Fig 9 shows a selected subset of the aligned NMF spatial intensity maps alongside H&E-stained
images. It is notable that the NMF spatial components reflect spatially coherent regions of the
tissue such as the muscular lining, submucosa, regions of inflammation, efc., in the different
components. As shown in Fig 10, by color-coding and overlaying individual NMF spatial
intensity maps, an equivalent to an H&E-stained image with enhanced specificity for different
tissue types can be obtained.
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Fig 9. Spatial features in NMF components align strikingly well with anatomical features in H&E-stained images. a)
Example alignment for a CPH dataset showing H&E image, original NMF spatial components, and the aligned images
which enhance identification of tissue structure. b) Alignment for a naive dataset. Similar features are apparent in the raw
and H&E images. However, the correlation is moderate due to alignment mismatch. The aligned images demonstrate
excellent correlation and preserve detailed tissue structure.

https://doi.org/10.1371/journal.pone.0300526.9009

This indicates that NMF features can be used to identify tissue structures, at least in rat
colon tissue. This may reflect underlying differences in the phospholipids present in the cell
membranes for different tissues which the NMF spatial-spectral decomposition successfully
retains. It is hypothesized that this observation may also translate to interpretable feature
extraction in other types of tissue with complex histological features.

Discussion

In this work, we discussed the high interpretability of both spatial and spectral components
generated by NMF. The NMF spectral components are strictly non-negative, and can thus be
interpreted to represent the presence of specific lipid ions corresponding to the mass-to-charge
peaks in the spectra. We also found that NMF spatial intensity maps correlate strongly with
spatial tissue structure and therefore could be used to obtain information typically captured
with a different modality such as H&E-stained imaging.

Comparison of NMF with PCA

We compared NMF feature extraction with PCA, a dimensionality reduction technique com-
monly used with MSI data. A comparison of quantitative and qualitative performance charac-
teristics is shown in Table 1.
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images with enhanced contrast and spatial detail relative to actual H&E-stained images (despite the higher pixel
resolution of H&E data). Only 5 components are represented for simplicity. The composite image contains many of
the visible anatomical features of the original H&E image with greater specificity for different tissue structures. b)
Color-coded PCA spatial maps do not overlay well to generate a high-contrast composite image. This is because only
PCA 0 and PCA 1 have well-defined structures while the rest of the components are noisy, producing a smeared/
saturated composite image.

https://doi.org/10.1371/journal.pone.0300526.9010

The fact that PCA components are allowed to have negative values makes it difficult to
interpret the meaning carried by the peak intensities in a PCA spectrum. A PCA component
having large positive peak intensities may superimpose with another component carrying neg-
ative peak intensities to generate a reconstructed spectrum carrying zero intensity peaks.

Table 1. Comparison of performance characteristics for PCA and NMF features on MSI data cohort from an animal model of comorbid visceral pain

hypersensitivity.
Performance comparison

Reconstruction error (20
components)

Classifier accuracy (20 components)
Spectral interpretability
Spatial interpretability

H&E-like composite image

NMF
18.94%

87.65%

requires extra processing nonnegativity allows molecular ID

1-2 components correlate with histological most components exhibit significant correlation with histological

features

Blurred and spatially overlapping (Fig 10b) High spatial resolution, distinct spatial features(Fig 10a)
https://doi.org/10.1371/journal.pone.0300526.t001
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Therefore, although PCA permits reconstructing the data with high accuracy, it does not gen-
erate readily interpretable information in each component spectrum. In contrast, NMF spectra
are strictly non-negative. Therefore, spectral intensities carried by each component are always
constructively superimposed during reconstruction. Consequently, if a given NMF component
spectrum shows a significant ion, this peak will be clearly reflected in the reconstructed data.
Hence, given a sufficiently low NMF reconstruction error, we can confidently state that the
presence of an ion in an NMF component spectrum indicates that the lipid annotation corre-
sponding to that mass-to-charge value was present in the tissue sample.

The results shown in Fig 7b establish that the PCA spatial and PCA spectral components
exhibit distinct structures for low-order components, but the presence of distinct structures
markedly decreases for higher-order components. This may be attributed to the fact that the
PCA algorithm extracts components such that a maximum amount of variance in the data is
captured in each successive component. Therefore, the higher-order PCA components will
capture finer detail of the data such as pixel noise. In contrast, the NMF algorithm extracts
components by optimizing the reconstruction error with a positivity constraint, thereby cap-
turing differences inherent to the data in different components which together represent the
whole data. It can be observed (Fig 7) that spatial structure is prominent only in the first few
PCA components but quickly becomes blurred, whereas the spatial structure in NMF compo-
nents is preserved for all components. In some cases, NMF spatial components also represent
off-tissue or matrix components.

Ranking NMF components

We have established a methodology for ranking the contribution of each NMF component to
classification accuracy, with the top four components shown in Fig 8. The NMF spectra corre-
sponding to the components fall into two general classes, those that indicate the predominant
presence of single ions and those that reflect a more complex combination of ions and their
relative abundances. For example, the significant peak in NMF component 2 aligns with the
putative phospholipid SAPI which has been found in other work to correlate with inflamma-
tion [7]. Likewise, the significant peak in component 0 seems to correspond with the putative
phospholipid PI 36:1, while the spectrum in component 10 reflects a complex combination of
ions that is more indicative of something like a tissue fingerprint. These identification of com-
pounds from the NMF peaks are from preliminary analysis and have not yet been validated
experimentally. This is one of the future directions of our ongoing research project.

Interpreting NMF spatial maps

As shown in Fig 10, by color-coding individual NMF spatial intensity maps, an equivalent to
an H&E-stained image with better spatial specificity for different tissue types may be obtained.
This is an unexpected result as there is no a-priori requirement for NMF components to cap-
ture anatomical information separately in its components. This ability to use NMF spatial
intensity maps as a basis to generate ‘H&E-stained like’ images with higher spatial detail prom-
ises a link between the two techniques of MSI and H&E-stained imaging. There is good evi-
dence here for an NMF-based H&E feature extraction tool that can automate the reading of
well-defined tissue stains given enough training, and full automation of MSI-H&E coregistra-
tion based on automated regions of interest. We note that this study identifies useful roles for
both the spectral and spatial components resulting from NMF feature extraction, with the
spectral components providing interpretability into constituent ions and the spatial compo-
nents enhancing the spatial interpretability of tissue structure and yielding high classification
accuracy.

PLOS ONE | https://doi.org/10.1371/journal.pone.0300526  October 10, 2024 19/24


https://doi.org/10.1371/journal.pone.0300526

PLOS ONE

Interpretable dimensionality reduction and classification of MSI data in a visceral pain model via NMF

Attempts to align NMF spatial maps with H&E-stained images using approaches based on
feature-matching were unsuccessful. This could be attributed to the graininess present in both
NMEF spatial maps and H&E-stained images, thereby precluding standard feature-based align-
ment techniques from extracting landmark features to generate a satisfactory alignment. We
found that the homography transformation tuned by maximizing the enhanced correlation
coefficient was successful in aligning NMF and H&E data.

Limitations of NMF

Despite the demonstrated advantages of NMF feature extraction for MSI data, the computa-
tion itself has a relatively high cost. The requirement for high resolution in binning also
increases the computational burden. At 0.05 Da bin size, an MSI dataset may occupy 20—30
GB of system memory. This leads to approximately 200 GB of data when the 8 datasets are
stacked. While the PCA algorithm executes on this stacked data in under 10 minutes, approxi-
mately 24 hours were required for the convergence of the NMF algorithm. These bottlenecks
may preclude the average user from using this technique on large datasets. However, the initial
exploratory analysis could be achieved faster by using a larger bin width (0.1 Da). Indeed, simi-
lar results were obtained in preliminary analysis with bin widths of 1 Da. This issue could be
resolved in future work by efficient computation with multiprocessing, better algorithms to
compute NMF using GPU servers, and batch implementations of the NMF algorithm such
that a large number of datasets could be processed with limited computational resources.

Conclusion

This research was motivated by the observation that NMF provides effective feature extraction
for MSI data, with individual NMF components exhibiting a strong correlation with underly-
ing tissue structures and offering interpretability according to the m/z values of constituent
molecular compounds. The novel contribution of this paper consists of three data processing
methodologies that perform data augmentation to support the training and testing of classifi-
ers, ranking of the most important features for classification, and image registration to support
tissue-specific imaging. These methods are demonstrated on a novel MSI data cohort for a
rodent model of chronic visceral pain.

The MSI data processing pipelines establish distinct roles for the spectral and spatial NMF
components. The spectral components allow for interpretability in terms of the m/z values of
constituent ions due to the nonnegativity constraint in NMF spectral decomposition. The spa-
tial components not only enhance the contrast and spatial detail of tissue structures but also
are distinctive enough to allow for high classification accuracy.

The overall advantage of these methodologies is spatial and spectral representations of MSI
data that are directly interpretable, an observation that we have leveraged in conjunction with
downstream analysis methods. We note that the PCA features exhibit similar or slightly higher
performance than the NMF features for classification and reconstruction (Fig 4); the spectral
and spatial interpretability of NMF features is a distinct advantage over PCA, allowing NMF
components to be used directly for downstream data processing such as classification and data
fusion without the need for an additional clustering step. The novel data augmentation tech-
nique allows data cohorts with a limited number of tissue samples to be used for training and
testing unbiased classifiers. The novel feature ranking technique allows data analysis efforts to
highlight components that are most discriminative between two experimental groups. This
allows those components to be prioritized in subsequent investigations and analysis. The novel
image registration technique allows NMF feature components with underlying correlation to
tissue structure (as identified in H&E-stained images) to be identified and combined to
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enhance specificity for different tissue types and anatomical structures. Image registration is
required when establishing correlations between multiple experimental techniques that do not
ensure registration at the scale of individual pixels.

The main disadvantage and limitation of these methodologies arises from their high
computational cost. For the visceral pain data cohort with all 8 samples, execution of the NMF
algorithm on a Dell Precision 5820 (Intel Core i9 10900X CPU with 20 cores) with 256 GB sys-
tem memory required approximately 24 hours whereas execution of the PCA algorithm fin-
ished in about 10 minutes. The computational cost is further increased due to multiple
samples of MSI data required in the data methodology presented here and limits the number
of samples that can be processed.

Detailed descriptions of data processing pipelines are presented for 1) NMF feature extrac-
tion, 2) classification based on NMF features, and 3) image registration of NMF and H&E
data. Three novel methodologies were developed for data augmentation, feature ranking, and
image registration. The utility of these methods is demonstrated on a novel MSI data cohort
for a rodent model of chronic visceral pain and supported by results including the successful
and robust classification of naive and co-morbid pain subjects as well as a meaningful interpre-
tation of NMF features regarding tissue histology.

Supporting information

S1 Fig. NMF spatial maps for the data cohort. Each row shows 20 NMF spatial maps for each
of the 8 datasets. The first four rows represent the CPH data and the last four rows represent
the naive data.

(TIF)

S2 Fig. PCA spatial maps for the data cohort. Each row shows 20 PCA spatial maps for each
of the 8 datasets. The first four rows represent the CPH data and the last four rows represent
the naive data.

(TIF)

S3 Fig. Overlay of NMF spatial maps on the H&E images. Overlay of 20 NMF spatial maps
over the corresponding H&E image for each of the 8 datasets. The first four rows represent the
CPH data and the last four rows represent the naive data.

(TIF)
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