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Abstract—Reinforcement learning (RL) and model predictive
control (MPC) each offer distinct advantages and limitations
when applied to control problems in power and energy systems.
Despite various studies on these methods, benchmarks remain
lacking and the preference for RL over traditional controls is
not well understood. In this work, we put forth a comparative
analysis using RL- and MPC-based controllers for optimizing a
battery management system (BMS). The BMS problem aims to
minimize costs while adhering to operational limits, by adjusting
the battery (dis)charging in response to fluctuating electricity
prices over a time horizon. The MPC controller uses a learning-
based forecast of future demand and price changes to formulate
a multi-period linear program, that can be solved using off-
the-shelf solvers. Meanwhile, the RL controller requires no time-
series modeling but instead is trained from the sample trajectories
using the proximal policy optimization (PPO) algorithm. Numer-
ical tests compare these controllers across optimality, training
time, testing time, and robustness, providing a comprehensive
evaluation of their efficacy. RL not only yields optimal solutions
quickly but also ensures robustness to shifts in customer behavior,
such as changes in demand distribution. However, as expected,
training the RL agent is more time-consuming than MPC.

Index Terms—Battery management system, reinforcement
learning, model predictive control, time-series forecast.

I. INTRODUCTION

In the domain of control problems, reinforcement learning
(RL) and model-predictive control (MPC) have their merits
and drawbacks. RL deals with agents in uncertain settings
and optimizes actions over infinite horizons without modeling
the dynamics of the environment. It excels in environments
with large modeling errors but suffers from data inefficiency
and safety due to possibly undesirable actions. On the other
hand, MPC optimizes actions over a finite horizon, with heavy
reliance on accurate environmental models. It is less concerned
with safety and data efficiency, due to the deterministic nature
of the optimization problem and its use of hard constraints.
However, it could perform poorly due to modeling inaccura-
cies and the limitations of a finite horizon [1]-[3].

In power and energy systems, both RL and MPC have
been explored for the battery control problem, because of its
sequential decision-making nature. In the problem of battery
management system (BMS), the charging and discharging
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schedule of an energy storage system is controlled to minimize
the cost of electricity purchase over a certain period. For
example, one work based on MPC uses a long short-term
memory (LSTM) forecast to model the system; then, the multi-
period optimization problem is solved [4]. Despite showing
its superiority over conventional methods like dynamic pro-
gramming and fuzzy logic, this work does not check the
impact of forecasting errors on the optimality of MPC and
other methods. On the other hand, RL in [5], particularly
deep-Q networks (DQN), has improved the battery’s operation
and minimized its degradation. However, there is a lack of
benchmark in general for justifying the choice of RL over
currently used control methods.

In this work, a comparative analysis is conducted between
the model-based MPC and the model-free RL approaches
to the battery control problem. The closest to our work is
[6], which compares the performance of DQN with one-step
MPC. Nonetheless, the comparisons therein are limited in
three aspects. First, DQNs have been outperformed by several
policy-based algorithms, such as proximal policy optimization
(PPO) and deep deterministic policy gradient (DDPG), which
are currently the popular RL algorithms in power and energy
systems [7], [8]. Second, one-step MPC is essentially a greedy
algorithm that does not benefit from planning over multiple
time steps, thereby compromising the optimality of the MPC
results. Third, the comparison is solely based on the control
cost, and does not include some important criteria, such as
robustness and computational efficiency. To the best of our
knowledge, our work is the first to address these three aspects
and conduct a full comparative analysis between RL and MPC
for BMS. The main contributions of this work are summarized
below:

1) We study the optimality of the decisions made by RL
and MPC for the battery control problem. We adopt the
well-known, widely used algorithms for each approach.

2) We extend the basis of the comparison from control cost
to include multiple other criteria: data efficiency, online
computation time, and robustness.

3) Our results show that RL performs better in terms of
optimality and online computation time. It is also more
robust to shifts in the demand distribution. However, it is
much more data-inefficient than MPC, whose optimality
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Fig. 1: The components of the system. At a given time t, the
load has a demand d; and the utility sells electricity at a price
p¢. To minimize the total cost of purchasing electricity over a
certain period, the battery controller chooses between charging
from the grid (a; > 0) and discharging to the load (a; < 0).

is drastically affected by forecasting errors.

4) Our methodology and analysis go beyond the BMS
problem and could be applicable to general control
problems in power and energy systems.

The rest of the paper is organized as follows: Section II
defines the problem, Sections III and IV respectively introduce
the MPC and RL approaches, Section V discusses the main
results, and Section VI concludes the paper.

II. PRELIMINARIES

The battery control problem is formulated for a system of
three components: a load with a time-varying demand for
electricity, denoted by d; (in kW) for a given time ¢, an
electric utility that sells electricity at a time-varying price p; (in
$/kWh), and a battery storage system of a capacity E (in kWh)
and state of charge SOC;. The latter is capable of charging
electricity from the utility and discharging to the load at a rate
G+ = amax (in kW), as long as SOC, remains within operational
limits SOCpi, and SOC.x. The electricity tariff g; at a given
time ¢ is then linear in a;: g¢ = p;(d; + a;). The interaction
between the three components of the system is best illustrated
in Fig. 1.

To minimize the cost of purchasing electricity, the battery
must be discharged during periods of high tariffs, and charged
otherwise. However, due to the battery’s limited capacity, the
controller must plan over a certain time horizon, to see when
charging and discharging are most economical. This results in
a multi-step optimization problem with cost function f, where
f is the sum of individual tariffs at the considered timesteps:
f =>", 9+ Despite the linearity of the cost function in terms
of the decision variables a;, the problem is non-trivial due to
the uncertainties in the demand d, and prices p;. As a result,
two approaches are considered for solving the battery control
problem: model-based and model-free.

III. MODEL-PREDICTIVE CONTROL (MPC)

The MPC problem aims at minimizing the operating cost
of the energy system over a finite time horizon t € T =
{1,2,...,T}, while maintaining the battery within its opera-
tional limits. At each time step ¢ € 7T, the first element b,

in the vector of solutions obtained from each optimization
problem is stored. Subsequently, another optimization problem
is solved starting at the time step ¢+ 1. The demand and price
in the problem are sampled from two time-series distributions:
peyke ~ fo(t + k,0) and dyypy ~ fa(t + k,p) for all
k e {1,2,3,...,T}, where 0 and p are the parameters of
the price and demand distributions, respectively. We obtain
estimated values for price and demand from forecasters, i.e.,
Pryklt ~ [t +k,0) and diyp|t ~ fi(t+Fk, ) forallt € T,
where 7 is the full horizon of the problem.

To tackle the inherent unpredictability of future demand and
electricity prices, we employ a predictive framework relying
on an LSTM network, well-suited for sophisticated time
series forecasting. This neural network acts as a forecaster,
projecting demand and cost factors from the current time
step t + 1 to a specified horizon 7. The MPC framework
leverages the forecasted data to make informed decisions
about battery charging and discharging, aiming to minimize
electricity expenses and stabilize battery energy levels. To
enhance the reliability of these forecasts, we engage in iterative
refinement of the predictive models. This critical step involves
continuously aligning the models with observed data, thereby
reducing forecasting errors and improving decision-making
accuracy in the MPC framework.

Given the predicted electricity cost p;4 ¢ at time t + K,
which is predicted at time ¢, the BMS optimization problem
seeks to minimize the total cost while satisfying the opera-
tional limits, as given by:

T
‘ min | Zﬁt+k\t(E i)t + digr)e) (1a)
At|ts-s A4 T|t s
Subject to SOCt—O—k—l—l‘t = SOCt—Q—k‘t + at+k|t7 (lb)
SOCmin < SOCt-&-k—&-l\t < SOCmaxa (IC)
||at+k\t|| < Gmax, (1d)
Vke{0,...,T}, VteT. (1le)

The constraints in (1b) represent the remaining battery level,
SOC; 1 g41)t» at t+k+1 after making a charging or discharging
decision at t+ k. The battery’s operational limits in (1c) range
from SOC,,in to SOC,,,«. Moreover, the maximum allowable
charge/discharge rate is limited by the constant an,, (in kW),
as denoted in (1d). The problem (1) is a multi-step linear
program that can be efficiently solved by off-the-shelf solvers.

IV. REINFORCEMENT LEARNING (RL)

Due to its sequential decision-making nature and Marko-
vian state space, the problem can be modeled as a Markov
decision process (MDP) [9]. An MDP is defined as the tuple
(S, A,p,r,7), where S and A are sets of states and actions,
respectively. For an action a € A that an agent takes in a
given state s € S, p(.|s,a) models the distribution over the
next states. For the transition s — s, the agent receives a
scalar reward (s, a, s'). Finally, the discount factor v € [0, 1]
can be used to give smaller weights for future rewards. The
elements of the MDP tuple for the BMS problem are defined
below:
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« State space (S): The state is characterized by the tuple
(SOCt, Pt dt, ht, Dt), where:
— SOC,; represents the state of charge of the battery at
time ¢.
— pq is the electricity price at time t.
— d; indicates the energy demand at time t.
— h, is the hour ¢ of the day.
— D, distinguishes between weekdays and weekends.

o Action space (A): The action space is one-dimensional
and represents the control variable a;, defined as the
amount of charge/discharge at a given time t¢. Since
the optimal solution is always one of three values:
charge with the maximum amount (a; = amax = 0.1E),
discharge with the maximum amount (a; = - Gmpax =
- 0.1E), or idle (a; = 0), the action space is discrete
A={-0.1E,0,0.1F}.

o Transition function (p): Time elements in the state
space incur deterministic transitions. The state of charge
progression is described below:

SOCLiin if SOC; 4 a; < SOCyin
SOCi+1 = < SOCax if SOC; 4 a; > SOC ax
SOC; + a; otherwise

2)

This ensures that SOC stays within the operational limits
SOCpyin and SOC,,,x. On the other hand, the electricity
price and energy demand are assumed to be drawn from
two time series distributions: p; ~ f, and d; ~ fq.
Modeling f, and f4 is challenging and may incur signifi-
cant errors. Fortunately, model-free RL allows for solving
the problem without any knowledge of the time-series
distributions.

« Reward function (r): the reward is defined as the nega-
tive of the instantaneous electricity cost of the energy con-
sumed. The power consumed is used to satisfy the load
demand and to charge the battery: r; = —p;(dy + o+ E).

o Discount factor (y): Since electricity costs at future
time steps matter as much as costs in the present, no
discounting is applied, i.e. v = 1.

In an MDP framework, an RL agent takes its actions based
on a policy distribution 7, i.e. a; ~ m(-|s¢), where 7(a|s) is
the probability of choosing action a from state s under policy
7. Given that the agent is at state s; at a given time t, the
return G, is defined as the total reward the agent receives
starting at time ¢ and until the end of the trajectory, when
taking actions based on policy 7. The expected value of the
return is known as the value function V™ (s;). The goal of the
RL problem is to find the optimal policy 7*, which maximizes
the expected total reward the agent receives over its trajectory,
ie. 7 = max, V7(s) Vs € S.

In modern RL, policy-based deep RL methods have enjoyed
more success than classical value-based methods [10]-[12].
In the discrete action-space setting, the policy distribution is
represented by a deep neural network with parameters 6, as
shown in Fig. 2. The input vector to the network is the state
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Fig. 2: The policy network my. The state vector s; propagates
through the neural network layers to output the probability
masses 7p(a|s¢) Va € A. o is a non-linear activation function
to allow the network to represent non-linear input-output
relationships. A softmax function is applied at the output to
convert the raw numbers (logits) to probabilities.

s, and the output vector consists of the probability masses
mo(als). For a given state s;, the action is sampled from the
output vector distribution: a; ~ mg(-|s¢). The optimal policy
m* = mp~ is obtained by maximizing the expected return
received along its experienced trajectories. In other words, if
the agent experiences a trajectory 7, which produces a large
return G}, the actions that yield such a trajectory are enforced
by the policy network, i.e. their probabilities increase. The
objective function is formally represented below:

max J(0) = meaXIET[Go | so] 3)

= meax Z P(1)Gy )

where P(7) is the probability of trajectory 7, and is a
function of the actions chosen by the agent, i.e. my and the
environment transitions p.

This can be achieved with gradient ascent in the 6 space:

T
0« 0+ad Vlogm(ar | st)Gy (5)
t=0

where « is the step size, and T is the number of steps taken
in the trajectory.

To reduce the variance in the return during learning, an
action-independent baseline is subtracted from the return in
(5). In most settings, this baseline is the value function V' (s;),
and the objective function becomes:

T
9<—0+azvelogﬁe(at | st) (Gt — V(st)) (6)
Py

The value function itself can be represented as a separate
neural network with parameter ¢, and is optimized by mini-
mizing the temporal difference (TD) error:

min (r 47V () = Va(s))’ )
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In some situations, large parameter updates result in un-
stable learning and potential divergence. As a remedy, these
updates can be ensured to be within a trust region, by enforcing
the KL-divergence between the parameters before and after
the update, Dxr (0new||foid), to be within a threshold 4.
Therefore, the parameters take the largest step (towards the
steepest ascent) that keeps them inside trust region. This
translates to the constrained optimization problem below:

Onew = arg max J(6)
S.t. DKL(Q || ao]d) < 1)

An approximate form of this problem is solved by the
proximal policy optimization (PPO) algorithm [13], whose
pseudocode is shown in Algorithm 1.

®)

Algorithm 1 Proximal Policy Optimization (PPO)

1: Initialize parameters 6 for policy 7y and ¢ for value
function Vi

2: repeat

3 Collect trajectories Dy, = {s;, at, r¢, s} using

4 Compute Gy, A, = G, — Vy(sy)

5: for each epoch over Dy, do

6 Update € by (approximately) solving (8)

7 Update ¢ minimizing (r; +~Vy(s}) — Vi (s:))?

8 end for

9: until convergence

V. NUMERICAL COMPARISONS

In this section, we compare the performance of reinforce-
ment learning (RL) and model-predictive control (MPC) on a
residential building. We consider two stages in the evaluation:
training and testing. In the training phase, the RL agent learns
a policy network, as outlined in Algorithm 1, while a forecaster
for price and demand is trained for MPC. In the testing phase,
RL and MPC are run on a new data set. The performance of
each method is judged based on four criteria:

1) control performance (optimality): the total cost in-

curred on the test dataset.

2) data efficiency: the data needed to train the RL agent

or forecaster

3) testing time: the time needed to make control decisions

for the test dataset

4) robustness: the degree of optimality when the distribu-

tion of the model changes from the training dataset to
the testing dataset

For this purpose, two datasets (each with training and testing
sets) are considered. In the first dataset, the model of the
system remains the same over the training and testing sets,
and the first three criteria are tested. In the second dataset, the
distribution of the demand changes from the training to the
testing set, therefore allowing us to examine the robustness of
each controller.

As a baseline, we consider a pre-defined policy that dis-
charges the battery when the price is above average (computed

TABLE I: The performance metrics for the different con-
trollers. The ground truth is computed by considering the
actual values of demand and prices and optimizing over the
entire test set. RL performs best in terms of optimality and
testing time, while MPC is more data-efficient. The optimality
of MPC (with true values of demand and price) indicates that
errors in the regular MPC model are due to the forecaster.

(a) Optimality (control cost)

Controller Cost ($) Optimality Gap
RL 85,100+£200 7.36%
MPC 89,650 £ 665 13.10%
MPC (exact model) 79,268 0%
Baseline 90, 989 14.77%
Ground truth 79,268 -

No BMS 114,065 43.89%

(b) Data Used and Testing Time

Controller Data Used Testing Time (s)
RL 3 x 10° 5
MPC 3 x 103 30

based on the training dataset) and charges the battery otherwise
- as long as the state of charge is within operational limits.

In both experiments, the data is hourly, and the horizon for
MPC is 24 hours. An LSTM network is trained in Tensorflow
as the forecaster, while StableBaselines3 [14] with default
parameters is used to train the RL agent. Five runs are
performed for each method, for which a 95% confidence
interval of the cost is computed. The simulations took place
on a machine equipped with an Intel® CPU @ 2.10 GHz and
32 GB RAM.

A. Dataset 1: Consistent Model through the Training and
Testing

The load corresponds to a residential building, and the real-
time (RT) prices are from the Pennsylvania, New Jersey, and
Maryland (PJM) region. The training and testing sets are for
July 2017 and 2018 respectively.

Table I shows the performance of each controller based on
the first three criteria. While the table shows that any control
method that employs a battery storage system is economic
(as compared with no BMS), RL achieves the highest degree
of optimality, as compared with MPC and the baseline. This
reinforces the capabilities of trust-region policy-based methods
in reaching the optimal solution without any model of the
environment [10], [13]. On the other hand, MPC suffers from
modeling errors incurred by the forecaster and performs just
better than the baseline predefined policy. The errors in the
forecast are verified by the optimality of the MPC solution
when considering the actual values for demand and price,
rather than the forecasted ones.

Meanwhile, RL requires about 1000 times more data than
MPC, as the RL agent requires a lot of interactions with
the environment during training [2]. Nonetheless, training is
performed only once, after which RL is 6 times faster during
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Fig. 3: The shift in the distribution of the demand from the
training to the testing datasets.

TABLE II: The optimality of each controller when considering
distributional shifts in the demand from training to testing. RL
is robust to such shifts, as it maintains a high level of opti-
mality due to its generalization capabilities. The performance
of MPC is again drastically affected by forecasting errors.

Controller Cost ($) Optimality Gap
RL 157,091+104 1.36%
MPC 161,806 4+ 740 4.40%
MPC (exact model) 154,981 0%
Baseline 166, 490 7.43%
Ground Truth 154,981 -

No BMS 179,958 16.12%

the testing phase. This is because decision-making for RL
involves a forward propagation over the policy network (Fig.
2), while MPC has to solve a multi-step optimization problem
every time a decision is made.

B. Dataset 2: Distributional Shifts in the Demand from the
Training to the Testing Sets

Training and testing data are for July and August 2017,
respectively. The price data are again retrieved from PJM,
while the demand is for a commercial building in South Korea.
Fig. 3 illustrates the differences in the distributions of demand
between training and testing.

Table II displays the total cost incurred by each controller,
where RL is shown to maintain its high level of optimality.
This not only emphasizes the advantages of model-free learn-
ing utilized by RL, but also RL’s ability to learn general rules
that transcend changes in the model. On the other hand, the
errors in the forecaster are magnified by this distributional
shift, which resulted in a relatively high control cost for MPC.

VI. CONCLUSION

To sum up, we have developed and compared the model-
based MPC and model-free RL controllers for the battery
management system. Although RL requires a longer training
time compared to MPC, it can achieve optimal control and
offers a faster testing time than MPC. We summarize the
general comparison of RL and MPC for optimal control in
Table III. Our future research directions include considering
more generalized energy management systems with photo-
voltaic panels and multiple loads, as well as implementing

TABLE III: Comparison of RL and MPC for the optimal
control of the battery storage system. RL yields more optimal
solutions in less time. Furthermore, its solutions are robust
to changes in customer behavior, represented by shifts in the
demand distribution. On the other hand, training the RL agent
requires much more time than MPC.

Comparison criteria RL MPC
Optimality v X
Data Efficiency X v
Online Computation v X
Robustness v X

different types of forecasters to handle uncertainties arising
from those components.
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