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ofHighlights

IDyOMpy: A New Python-Based Model for Statistical Analysis of
Musical Expectations

Guilhem Marion, Fei Gao, Benjamin P. Gold, Giovanni M. Di Liberto, Shihab
Shamma

• We present IDyOMpy: a new Python-based Model based on the IDyOM,
a widely used statistical model of music;

• IDyOMpy outperforms the previous Lisp model in terms of generaliza-
tion error and correlation with behavioral data;

• IDyOMpy makes statistical modeling of music more accessible;

• IDyOMpy offers new features such as prediction of musical rests and
training monitoring. Also, its modular design facilitates future modifi-
cations.
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Abstract

Background : IDyOM (Information Dynamics of Music) is the statistical
model of music the most used in the community of neuroscience of music.
It has been shown to allow for significant correlations with EEG (Marion,
2021), ECoG (Di Liberto, 2020) and fMRI (Cheung, 2019) recordings of
human music listening. The language used for IDyOM -Lisp- is not very
familiar to the neuroscience community and makes this model hard to use
and more importantly to modify.

New method : IDyOMpy is a new Python re-implementation and exten-
sion of IDyOM. This new model allows for computing the information con-
tent and entropy for each melody note after training on a corpus of melodies.
In addition to those features, two new features are presented: probability
estimation of silences and enculturation modeling.

Results : We first describe the mathematical details of the implementa-
tion. We extensively compare the two models and show that they generate
very similar outputs. We also support the validity of IDyOMpy by using its
output to replicate previous EEG and behavioral results that relied on the
original Lisp version (Gold, 2019; Di Liberto, 2020; Marion, 2021). Finally,
it reproduced the computation of cultural distances between two different
datasets as described in previous studies (i.e. Pearce, 2018).

Preprint submitted to NeuroImage November 20, 2024
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cates the previous behaviors of IDyOM in a modern and easy-to-use language
-Python. In addition, more features are presented. We deeply think this new
version will be of great use to the community of neuroscience of music.

Keywords: IDyOM, Statistical Model of Music, Music Cognition,
Expectations
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

During the 1950s, the music theorist Leonard Meyer advanced the idea
that musical predictions were at the core of music perception[1]. The devel-
opment of the Predictive Processing[2, 3] has since further elaborated this
idea and provided computational formulations for its implementation[4, 5, 6].
This framework revolves around the notion that the brain learns a model
of the world that is continuously used to predict sensory inputs. Percep-
tion, therefore, occurs at the encounter between sensory inputs and their
predictions[7] generating a prediction error that is exploited to update the
model[8]. This theory rests on two main hypotheses[9]: (1) The Statistical
Learning Hypothesis which states that the brain needs to learn and update
an internal model of the environment’s regularities; (2) The Probabilistic
Prediction Hypothesis which postulates that predictions of the sensory in-
puts are based on the same internal model to modulate their neural encoding
and facilitate their perception.

A large number of studies investigate predictions in music[10, 11, 9, 4],
speech[12, 13], vision[14, 15], touch[16, 17], and even smell[18], many us-
ing computational models to account for human cognition[19, 20] or cortical
activity[21, 22, 23]. Speech models are particularly varied and widespread
and sometimes even include complex deep neural networks (DNN) imple-
mentations [24, 25, 26, 27] that are presumed to reflect different facets of
human cognition[28, 29]. The community of music cognition has embraced
this approach[30] and already provided evidence for its two hypotheses by
demonstrating that explicit[31, 32, 33, 34, 35] and implicit[36, 37, 33, 38, 39,
40, 41, 42, 43, 22, 44, 45, 46] predictions correlate well with the probability of
musical events in the listeners’ culture[19]. Prediction signals have even been
measured during moments of musical silence which correlated well with the
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passive exposure to unfamiliar music engenders statistical learning consistent
with the music heard[47, 48, 49, 50, 51]. For instance, passive exposure to
Balkan music (chosen because of its non-isochronous time signatures) facili-
tates in young children and adults the detection of violations in new musical
excerpts with similar time signatures [51]. Another study replicated this
phenomenon for pitch with adult listeners who gained superior abilities to
predict the next note in melodies sampled from random musical grammar
after being passively exposed to different melodies sampled from the same
musical grammar[48].

In general, predictions have accounted for many other facets of music cog-
nition such as memory[52], emotions[53], reward[54] and neural activity[55,
23, 56] making the predictive coding framework a rich framework for future
musical studies [57, 58]. Compared to speech, however, the modeling of mu-
sic cognition has been dominated by a single powerful model: IDyOM[59]
(Information Dynamics of Music), which has been used in myriad of studies
about musical prediction and cited in over 300 articles. This model, however,
is implemented in Lisp, which is not widely known anymore and is poorly
supported on modern computers, making it difficult to use and modify it.

Here we propose a Python implementation of the IDyOM model with
improvements such as an alternate technique for merging different Markov
chains’ orders. We also propose new features that have been used to ex-
plore new ideas about the brain, e.g., a model for computing the probability
of having melodic notes during silent intervals and a model that monitors
learning all along training for different testing datasets. Finally, we pro-
vide a quantitative comparison with the original Lisp implementation using
both theoretical (based on generalization error) and cognitive (based on EEG
decoding and self-reported data) measures. We demonstrate that this new
implementation replicates the original Lisp implementation and improves on
some of its findings. All codes can be found online1.

1The IDyOMpy model can be found at https://github.com/GuiMarion/IDyOMpy.
All the code and data related to the analyses presented here can also be found at
https://github.com/GuiMarion/codeForPaper-IDyOMpy-.
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The Information Dynamics of Music (IDyOM) model, developed by Mar-
cus Pearce and published in 2005[59], is a statistical framework for predicting
auditory expectations in music. It computes the expectedness of each note
within a given context using measures of information content and entropy.
To learn patterns of musical structure, IDyOM is first trained on a cor-
pus of melodies, using the multiple viewpoint framework by Darrell Conklin
[60] and the Prediction by Partial Matching (PPM) data compression algo-
rithm [61, 62]. Once trained, it assesses new pieces by applying these learned
statistics in two modes: a long-term model (LTM), which simulates listeners’
long-term cultural exposure, and a short-term model (STM), which captures
the local statistical features specific to the piece being evaluated.

2.1. Architecture

The model is based on variable-order Markov chains to capture long-term
information. They form the two bricks which are the LTM and the STM..
Both of them rest on the same architecture, but the data they are trained
on are different. An important limitation of Markov chains is that they are
discrete models, making them unsuitable to work on continuous data such
as raw audio waveforms or spectrograms. The use of IDyOM is therefore
limited to symbolic musical scores.

2.1.1. Variable Order Markov Chains

A Markov chain describes a memoryless2 process which means that the
probability of any event is only a function of the previous one. Formally, for
∀k,Xk sequential random variables,

P (Xk = x|Xk−1, Xk−2, ..., X0) = P (Xk = x|Xk−1)

Let Σ be the set of all possible notes, referred to as the alphabet, borrow-
ing the term from formal languages. P : Σ2 → [0, 1] is a function for the
probabilities of transitions from note to note. Such a model can be expressed
as an n × n matrix or a graph G = (V,E) where V (vertexes) is the set
of notes, and E (edges) indicates the transition probabilities. This model is
known as a first-order Markov Chain.

2The next state only depends on the value of the current state. No memory is stored.
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order Markov chain for music. It expresses the statistical model representing
the beginning of the melody of Au Clair de la Lune (fig. 1.B).
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Figure 1: (A) Markov chains of order 1 and (D) order 2 corresponding to (B), the
beginning of the melody Au Claire de la Lune. Fractions correspond to the transition
probabilities (aka frequencies in the data). (C) Probabilistic relationships between the
different bi-grams of the data.

Because of the highly structured nature of music, it is reasonable to as-
sume that note probabilities would depend on more than one prior note. Mu-
sical sentences are often constructed over a large number of previous notes
and thus show long-term dependencies. By using n-grams as the alphabet
of the Markov chain, it is still possible to use the Markov model and include
long-term dependencies.

An n-gram is an ordered sequence of n elements of the alphabet Σ. For
instance, if the alphabet is Σ = {a, b}, all the 2-grams are {aa, ab, ba, bb}.
Formally, it is an element of the Cartesian product of the original set of states
Σ. For instance, 2-gram ∈ Σ × Σ, 3-gram ∈ Σ × Σ × Σ, ..., and so,

n-gram ∈
n∏

k=1

Σ

By using n-grams as elements of V , the set of states of our Markov Chain,
we can define the transition probability between length-n words ω, ∀n,
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With Xn:m the sequence of elements from n to m:

Xn:m = Xn, ..., Xm−1

Fig. 1.C shows a graph representation of probabilistic relationships be-
tween the 2-grams of the melody Au Clair de la Lune. The number of states
hugely increased as compared to the 1-gram analysis; more data are needed to
train the model accurately, but more complex structures can be captured. To
compute the second-order Markov chain, we can collapse this representation
by summing across all sequences starting with the same note and therefore
get the probability to observe a given single note after a given context (c.f.
fig. 1.C):

P (Xk = x|Xk−n:k) =
∑

{ω}|ω0=x

P (Xk:k+n = ω|Xk−n:k)

Variable-order Markov chains have the flexibility to use n-grams of dif-
ferent lengths and to dynamically adapt the contribution of each order. The
ability to embed n-long temporal dependencies allows for modeling melodic
sentences.

2.1.2. Merging Different Orders (Original model)

It is generally difficult to merge all distributions (one per order) into a sin-
gle one. In the original IDyOM, the Prediction by Partial Matching (PPM)
algorithm is used to approximate the final P (Xk = x|Xk−n:k). PPM[61] is a
data compression scheme in which the central component is an algorithm for
performing back-off smoothing (escaping when a symbol is found) or interpo-
lated smoothing (always computing a linear combination of predictions from
all orders for all symbols) of the distributions from different orders. This
technique allows for the probability estimation of events that have yet to be
encountered.

For instance, the interpolated smoothing technique used in IDyOM uses
the following definition:

P (Xk = x|Xk−n:k) = α(x|Xk−n:k) + γ(Xk−n:k) · P (Xk = x|Xk−n+1:k)

The functions α() and γ() are computed using the PPM algorithm[59](see
[63] for the original method). By iterating recursively, they encounter all
orders and assign a coefficient to each order. The IDyOM Lispdefault method
(called C) is defined by:

6
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t(Xk−n:k)

#Xk−n:k + t(Xk−n:k)
, and,

α(x|Xk−n:k) =
#Xk−n:k · x

#Xk−n:k + t(Xk−n:k)

Where t(C) denotes the total number of symbol types of Σ that have
occurred with non-zero frequency in context C and #ω denotes the number of
occurrences of the sequence ω in the corpus. Therefore, γ(Xk−n:k) computes
the quotient relationship between the prevalence of a context and the variety
of symbols occurring after this context and α(x|Xk−n:k) the frequency of the
symbol x in the given context Xk−n:k.

This method allows one to account for the diversity of distributions.
Thus, a distribution that only encountered a few n-grams will be less repre-
sented than a distribution that saw all the alphabet. Globally this technique
tends to favor the lower orders.

2.1.3. Merging Different Orders: The New IDyOMpy Model

Instead of using the PPM algorithm to merge the different orders of the
Markov chains, we propose a new method using an arithmetic mean weighted
by the inverse of the normalized entropies of the distributions. Our new
method accounts for the reliability of each distribution. It weights them
by prioritizing more informative contexts which is presumably more effective
information than the diversity of the contexts. This method has been success-
fully used in the original IDyOM implementation to merge the distributions
of the STM and LTM. We expect this method to outperform the heuristic
weights used in the PPM smoothing algorithm which don’t consider the na-
ture of the predictive distribution. We denote by NEi the normalized entropy
of the probability distribution given by the context Xk−i:k corresponding to
the ith-order model.

P (Xk = x) =

n∑
i=1

P (Xk = x|Xk−i:k) ·NE(Xk|Xk−i:k)−1

n∑
i=1

NE(Xk|Xk−i:k)−1

The normalized entropy3 (NE) of a probability distribution is the Shan-
non entropy (E) normalized by the maximum entropy for its support. This

3Note that the original IDyOM implementation uses the term relative entropy, which
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bution with the same number of elements, so it depends only on the size of
the distribution’s support. Normalizing in this way enables entropy compar-
isons across different orders of Markov chains. As a Markov chain’s order
increases, the number of represented states typically grows, which can ar-
tificially inflate entropy (more terms to sum). Normalization by maximum
entropy compensates for this.

NE(X) = E(X)/Emax(X)

The Shanon entropy of a random variable quantifies the average level of
uncertainty or information associated with the variable’s potential states or
possible outcomes:

E(X) = −
∑

x

P (X = x) · log2(P (X = x))

The maximal entropy is defined by the entropy of the uniform distribution
that shares the same support (number of states):

Emax(X) = −
∑

n

1/n · log2(1/n) = log2(n)

Our Python implementation includes the option to use both merging tech-
niques (PPM or entropy-based). The manuscript presents analyses of both
models. We refer to the PPM method as IDyOMpy PPM and both IDyOMpy
AE and IDyOMpy GE both use the entropy-based merging technique.

2.1.4. The Short-Term Model

The short-term model consists exactly of the same computational model
as the long-term model described before but is not trained on a corpus. It is
trained during the testing phase, therefore, it only takes into account the very
local grammar of the tested piece. It is useful for accounting for local struc-
tures and repetitions within the pieces that do affect the predictions but do
not come from a long-term statistical learning process[64] (key, modulations,
theme repetitions, ...). The probability distributions of the short-term model
and the long-term model are merged using the arithmetic mean weighted by

we chose to change to normalized entropy to avoid confusion with the Kullback-Leibler,
which has a different formulation.

8
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different orders), with b as an additional parameter that allows for sharpening
or smoothing the final distribution4

P (Xk = x) =
NE−b

LTM(Xk) · PLTM(Xk = x) + NE−b
STM(Xk) · PSTM(Xk = x)

NE−b
LTM(Xk) + NE−b

STM(Xk)

With ELTM and ESTM , the entropies of respectively the long- and short-
term models:

ELTM(Xk) = −
∑

x

PLTM(Xk = x) · log2(PLTM(Xk = x))

2.1.5. Entropy Approximation

A straightforward implementation would directly compute the entropy of
the long- or short-term models to merge them, which is computationally very
expensive.

We already computed the entropies of each individual order to merge the
Markov chains’ of both the LTM and STM, for instance for the LTM:

PLTM(Xk = x) =

n∑
i=1

PLTM(Xk = x|Xk−i:k) ·RELTM(Xk|Xk−i:k)−1

n∑
i=1

RELTM(Xk|Xk−i:k)−1

Therefore, it is useful to find a way to compute the entropy of PLTM(Xk)
only from the ELTM(Xk|Xk−i:k) from all different order i. One possible ap-
proach is to use the mean of the self-weighted entropies which proved to be
a good approximation that reduced computation times by a factor of 5:

E(Xk) =

n∑
i

E(Xk|Xk−i:k) · E(Xk|Xk−i:k)−1

n∑
i

E(Xk|Xk−i:k)−1

This approximation resulted in IC values that were very highly correlated
with the IC computed using genuine entropy computations (r=0.87 on Bach

4In our implementation we use b = 1. This parameter can be changed within the code.
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compare the versions using the approximation versus the genuine compu-
tations of the entropies. Those analyses resulted in comparable values, we
present them throughout the manuscript. The implementation of IDyOMpy
includes both options.

2.2. Viewpoints

Music evolves across 5 dimensions: Pitch, duration, timbre, intensity, and
spatialization5. IDyOM assumes that those dimensions are independent (or
joint as multi-dimensional states) when computing their joint product. While
the dimensions most often considered with IDyOM are pitch and duration
of the notes, any other feature can be included in the model as long as it is
discrete.

P (Xk = x) = P (Pitchk = xpitch) · P (Durationk = xduration)

Xk is a valid probability distribution (sums to 1) if Pitchk and Durationk

are. pi and di are all the different pitches and durations.
∑
x∈Σ

P (Xk = x) =
∑
pi

∑
di

P (Pitchk = pi) · P (Durationk = di)
∑
x∈Σ

P (Xk = x) =
∑
pi

P (Pitchk = pi) ·
∑
di

P (Durationk = di)
∑
x∈Σ

P (Xk = x) = 1

2.3. Training

During the training phase, the transition probabilities for each Markov
chain are learned from a corpus of melodies by computing the frequencies
(counts) over all the different values. For the IDyOMpy model (c.f. 2.1.3),
we compute those probabilities directly from those counts. We use #ω as
the number of occurrences of the sequence ω in the corpus and · as the
concatenation operator. Therefore, #Xk−n:k · x denotes the count of words
starting with Xk−n:k and ending with x in the whole corpus.

5Spatialization refers to where we perceive the sounds to come from. For instance, in
a string orchestra, violins are usually on the left, and cellos and basses are on the right
of the stage. Spatialization became a key element of recorded contemporary music as
pieces are delivered as stereo mixes (one track for each ear), with sometimes live changes
of the instrument’s position in the space. Numerically, spatialization can be encoded as
the balance of the signal between the two ears, usually presented as between -50 (all left)
to 50 (all right).

10



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofP (Xk = x|Xk−n:k) = #Xk−n...Xk−1Xk

#Xk−n...Xk−1
= #Xk−n:k·x

#Xk−n:k

2.4. Measures Computed by the Models
Information Content

The negative log-likelihood of a note x, referred to as its information
content (IC), represents how well the model predicts it given the context
Xk−n:k. This computation has an interpretation in terms of compressibility
or information measurement. For instance, events with high information
content are difficult to compress as they rarely occur: one can say that they
contain a lot of information. This metric has been shown to provide good
measures for psychological interpretations of perceptual data [65, 66].

IC(x|Xk−n:k) = −log2(P (Xk = x|Xk−n:k))

Entropy

The entropy provides an approximation of the uncertainty given a con-
text Xk−n:k. In information theory, this measure evaluates the amount of
information contained in a signal (as opposed to an event, as for the IC).
In the case of a probability distribution, it reflects the flatness of the distri-
bution given by the model to estimate the confidence of the prediction. If
all outcomes are equiprobable (the model cannot gather any information),
the entropy will be maximum and the prediction will be highly uncertain.
If one outcome has a probability of 1 and all others 0, the entropy will be
minimum (E = 0) and the prediction is certain. For instance, the first note
of a melody is very uncertain as almost all notes are equiprobable (high en-
tropy), whereas, the next note during a repeated sequence is very certain
as it is very likely to be the one we heard during the previous repetitions.
This measure has been used as a descriptor of musical pieces (i.e. indicator
of complexity) and has been shown to provide good measures for behavioral
and neural measurements [54, 55].

E(Xk−n:k) = − ∑
x∈Σ

P (Xk = x|Xk−n:k) · log2(P (Xk = x|Xk−n:k))

3. Methods For Evaluating Model Performance

To compare our new model with the previous Lisp version, we define
a few metrics we will run through all models. We first present theoretical
measures assessing how well each model generalizes to unseen data, and then
assess cognitive measures through decoding of EEG recordings of participants
listening to music and self-reporting liking of songs.

11
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A common computational approach to evaluate different implementations
consists of assessing how well the model generalizes to unseen portions of the
dataset (theoretical evaluation), using the negative log-likelihood on testing
fold T using k-fold cross-validation. This technique allows us to compare
models trained on the same data in terms of computational generalization6.

error =
∑

x∈T

−log(P (Xk = x))

|T | (1)

Using the average negative log-likelihood over unseen data is based on
the idea that notes in an unseen score (underlined by the same distribution,
i.e., same musical genre) should have on average (because of the law of large
numbers) a greater probability than the ones that did not appear. Since the
probability distribution must sum to 1, a more accurate distribution should
generate a large probability (low negative log-likelihood) on the notes of the
score. This is a common technique in the machine learning community[67].

To this end, we used three homogeneous datasets of melodies: Bach
chorales, traditional Chinese melodies from the region of Shanxi, and a large
database of Western folk melodies. All were sampled from the KernScores
website7. We used k-fold cross-validation by dividing each dataset into 5
folds, meaning we trained a model on 4 of them and evaluated the remaining
one. We then computed the average negative log-likelihood for each song
and compared them between models.

3.2. Cultural Distance

IDyOM has proven to be an effective model for musical enculturation
because it allows for the modeling of cultural distance [9]. This consists of
examining the model’s ability at distinguishing between melodies from dif-
ferent cultures. We train two models: one trained on Bach chorales and
one trained on traditional music from the Shanxi region of China. We apply
test/train splits to compute the incongruent models (i.e. trained on Bach and

6Discrete and continuous models cannot be compared using this technique as the sup-
port on which they compute the probabilities are different. Continuous models therefore
usually result in lower probabilities (higher IC) without being necessarily worse at gener-
alizing.

7http://www.esac-data.org/
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models. We extract the average generalization error for each musical excerpt
according to both models. Next, we create a scatter plot where the x-axis
represents the generalization errors for the Shanxi model, and the y-axis rep-
resents the errors for the Bach model, each point corresponding to a specific
musical piece. A poorly classifying model would result in most points lying
along the equality line, indicating that it cannot distinguish between the two
cultures. In contrast, an efficient classifying model would clearly separate
the points into two groups on either side of the equality line, successfully
differentiating between the two musical corpora.

To quantify the extent to which the two cultures are separated we defined
three measures:

Inter-cultural distance (interCD) represents the average Euclidean dis-
tance between each point of the first culture and each point of the
second culture. A value of 0 means that all points collapse; the bigger
the value the further the two cultures are in the model space.

Intra-cultural distance (intraCD) represents how close the pieces are within
a culture. It is a proxy for the variability of the generalization error
and the stability of the model. Small values mean a more stable model
(less variance).

Clustering index = interCD
intraCD(A)/2+intraCD(B)/2

combines both inter- and intra-
cultural distances into a composite measure that tells to which extent
it is easy to classify the two cultures.

3.3. Music Listening EEG Recordings

IDyOM has been widely used in studies of the psychology and neuro-
science of music. One recent application that is considered here involved
relating note expectation values from IDyOM with EEG signals recorded
during music listening. Here, we use publicly available data to replicate two
recent studies (Study #1[68] and Study #2[22]) that related IDyOM with
EEG through encoding models. We compared the results of the analyses
when using the Lisp and Python implementations of IDyOM. Both experi-
ments used a 64-channel Biosemi Active Two System. In Study #1, EEG
signals were digitally filtered between 1 and 8 Hz using a Butterworth zero-
phase filter (low- and high-pass filters both with order 2 and implemented

13



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofwith the function filtfilt) and down-sampled to 64 Hz. In Study #2, sig-

nals were filtered between 0.1 Hz and 30 Hz and down-sampled to 64 Hz.
EEG channels with a variance exceeding three times that of the surrounding
ones were replaced by an estimate calculated using spherical spline interpola-
tion. All channels were then re-referenced to the average of the two mastoid
channels for Study #1 and using global re-referencing for Study #2. The
pre-processing was the exact same as in the original study. The stimuli were
composed of 10 Bach partitas for Study #1 and 4 Bach chorales for Study
#2.

Our analysis was conducted in a similar fashion as in the original studies
by estimating temporal response functions (TRFs)[69, 70] with the mTRF-
Toolbox[71]. The TRF model is a convolutional model relating an input
signal s(n) with an observed EEG signal eeg(n, k) through the convolutional
kernels w. Both the observed eeg signal and the estimated kernel w are
functions of both times and electrodes. The input signal s is a function of
time only, ϵ is the residual error.

eeg(n, k) =
M∑

m=0

s(n) · wk(n−m) + ϵ

Using matrix rewriting and mean square error optimization, we can ap-
proximate w as:

ŵk = (ST
k Sk)−1ST

k · eegk

With S, the Toeplitz matrix of s(t):

S =




s(1) S(N) · · · s(1 −N)
s(2) S(1) · · · s(2 −N)

...
. . . . . .

...
s(N) S(N − 1) · · · s(1)




This model is used to regress the IC signal computed by both imple-
mentations of IDyOM with the pre-processed EEG recordings using k-fold
cross-validation. Pearson’s correlation is computed between the predicted
and original EEG signals.

r = corr(s ∗ ŵ, eeg)
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the correlation indicates the strength of its relationship with the EEG signal.
An IC signal that more accurately matches human perception is expected to
generate larger EEG prediction correlations. This method provides us with
a tool for estimating the physiological validity of each model.

3.4. Behavioral Preference

A recent study[72] showed that the entropy from the IDyOM model ex-
plains 19% of the variance of 44 participants’ behavioral liking measured
using a 7-item Likert scale on 57 stimuli. Mixed-effects models[73] were fit
between the mean duration-weighted entropy and the liking for each song.

y = X2β + Zu + ϵ

Where,

• y is a known vector of liking observations;

• X is the known design covariate matrix for the fixed effects mean
duration-weighted entropy;

• Z is the known design covariate matrix for the random effects due
to inter-participant variability (participants are treated as a random
effect);

• β is an unknown vector of fixed effects relating X to y;

• u is an unknown vector of random effects, relating Z to y;

• ϵ is an unknown vector of residual random errors;

There was a significant Wundt (quadratic correlation, a.k.a. inverted-U
shape well documented in the literature[74]) effect between the liking ratings
for the songs and the mean duration-weighted Entropy of the same songs.
We, therefore, used these data as a way to estimate the validity of the en-
tropies computed by our model. To do so, we replicated the results of this
study on the same observation data, and both models (Lisp and IDyOMpy)
trained on the same musical corpus. We then compared the r2 (variance ex-
plained by the entropy as computed by the mixed-effects models) using both
Lisp and IDyOM implementations.
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σ2
0

= 1 −
∑

(yi − ŷ)2∑
(yi − ȳ)2

With, ŷ the approximation of y using the optimized β, u, and ϵ.
To compute the significance of the difference between the two models, we

computed the distribution for each model using a Bootstrap method. We
computed the r2 values of sub-sampled data (80% sampled from participants
and songs) 5000 times using the same indexes for each model. We then
computed the difference distribution and the p-value for it being inferior
or equal to 0 by counting to proportion of observations respecting the null
hypothesis H0 (oi ≤ 0). This p-value is reported in the result section. We
also report the individual p-values computed during the correlations.

The same study also showed a Wundt effect between the IC and the liking
ratings. However, in our replication, our model explained more variance
using a linear regression instead of a quadratic one. It was therefore hard to
compare the two, and we decided not to include the IC analysis in this study.

4. New Features

4.1. Missing Notes Detection

The predictive coding framework states that brain responses during music
listening reflect a comparison between the bottom-up sensory responses and
top-down prediction signals generated by an internal model that embodies
the music exposure and expectations of the listener[75]. To attain a clear
view of these predictive responses, previous work has eliminated the sensory
inputs by inserting artificial silences (or sound omissions) that leave behind
only the corresponding predictions of the thwarted expectations[76, 77]. We
propose a new alternate approach that uses the IDyOMpy model to detect
the natural silences during existing pieces that exhibit high probabilities of
containing a note.

One of our recent studies used this technique to show that it is possi-
ble to decode predictions from EEG recordings during musical silences that
IDyOM predicted to contain a note. Moreover, the amplitude of those neural
responses was correlated with the probabilities computed by the model[23].
We present here this new feature of the IDyOMpy model: the missing notes
detection feature.

This feature only uses the duration viewpoint by computing the proba-
bility distribution of the durations of the notes. It allows us to compute the
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musical piece based on both the statistics of a training corpus (long-term)
and the local statistics of the existing piece (short-term). This model uses
conditional probabilities to explore all the different potential combinations
of notes on all subdivisions of the tempo (up to 1/32th of a note) that lead
to a note during the targeted silence. A detection threshold is set (0.2 by
default) that will only take into account notes that have a probability higher
than the threshold. Figure 2 shows examples of four Bach chorales run with
this feature.

The probability Ps of having a note played during the silence at time t is
driven by the probability distribution of the duration of the last note played
at time t′.

Ps(X = t) = P (Durationt′ = t− t′)

This feature is native to the IDyOMpy model.
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Figure 2: Missing Notes Detection: The model was run on the duration dimension
to compute the probability of a note occurring at each tempo sub-division. A threshold
of 0.2 was applied. Blue lines represent the likelihood of actual notes, and orange lines
indicate probable notes during silences. Time is converted to seconds for readability.

4.2. Training Monitoring

Another new feature is the Training Monitoring. It allows monitoring
of the training of the model by computing the corpus-specific mean IC at
each update for a given corpus. The model can be trained on different cor-
pora to emulate musical enculturation or look at the interactions between
two inter-corpus statistics. One can, therefore, assess the amount of data
needed for model convergence. Also, since it is possible to initialize the
model with another dataset, this feature is a good way to compare inter- and
intra-corpus variability. Figure 3 demonstrates results from two datasets of
traditional Chinese music versus a large corpus of Western music. Finally,
this monitoring can serve as a model for learning new music and musical
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on top of an already familiar one. We used 2-fold cross-validation to compute
the generalization errors, and it is possible to choose the number of pieces
to test on. Note that the results may noticeably change depending on how
the two sets are chosen (randomly done here). It is therefore recommended
to compute the learning trace several times with different partitions of the
data and take the average as the final trace. Also, note that IDyOM Lisp
already partially offers this feature as incremental prediction performance
during training tested on the same dataset.
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Figure 3: Training Monitoring: The model was first trained on Western melodies, then
on three corpora (Shanxi, Han, or a mix of traditional Chinese music). There are therefore
two training phases: common western enculturation and three different corpus-specific
enculturations. Each line shows the generalization error during the training of those two
phases. Deeper lines during Western Enculturation reflect how well the Western corpus
accounts for Chinese grammar. Higher lines (e.g., for the mixed dataset) indicate more
variability. The difference between convergence plateaus during Western and Corpus-
Specific Enculturation reflects how much the specific corpus changed the model, serving
as a proxy for corpus similarity.
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In this section, we present several analyses based on theoretical measures,
as well as prediction of behavioral and neural data. Four models are investi-
gated: IDyOM Lisp, the original Lisp implementation; IDyOMpy PPM the
Python implementation of the original model, which uses the PPM algorithm
instead of our entropy-weighted method to merge the different Markov chains
orders; IDyOM py Approximated Entropies (AE) it is the new IDyOMpy
model using the entropy weighted merging method, it also uses our entropy
approximation method that reduces the computation time by a factor of 5;
IDyOMpy Genuine Entropies (GE) which use the genuine calculation of the
entropies instead of the approximation.

5.1. Information Content

We first used the generalization error (c.f. 3.1) to compare the models
on different datasets (Fig. 4.A). We found that the new IDyOMpy models
significantly outperformed the previous implementation in all three datasets:
traditional Chinese music from Shanxi, Bach chorales, and a large Western
database. IDyOM Lisp and IDyOMpy PPM performed similarly, suggesting
that our new method for merging the Markov chains is more efficient than
the PPM algorithm used in the Lisp version. IDyOMpy GE outperformed
IDyOMpy AE, suggesting that using the genuine entropy calculation results
in a more efficient model. We also used our new feature Training Monitoring
(c.f. 5.2) to compare the trace of the generalization error over the course of
the training. We observed that the final point of the Lisp model is reached
with fewer data for IDyOMpy AE (Fig. 4.B). Finally, we correlated the raw
IC for each note of each Bach chorale between the two models. We found
a relatively strong correlation of r = 0.7 indicating that the two models are
consistent but not identical.

We then plotted the cultural distance between traditional Chinese music
from Shanxi and Bach chorales for IDyOM Lisp and IDyOMpy AE (Fig.
5.A&B). IDyOM Lisp outperformed all IDyOMpy models on all inter-cultural
and intra-cultural distances (Table 1). IDyOMpy AE and IDyOMpy GE
resulted in similar values.

Finally, we used the mTRF toolbox to predict EEG recordings of par-
ticipants listening to Western music (in two different studies, c.f. 3.3) from
the IC signal computed with IDyOM Lisp and IDyOMpy AE We found no
significant difference in the accuracy (Fig. 5.C&D). However, we should note
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tle differences in the ICs would not result in significant differences in EEG
predictions.
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Figure 4: Comparison of the Generalization Errors. A: Average generalization
error for different datasets (∗ : p < 10−10). AE: Approximated Entropies. GE: Genuine
Entropies. B; Generalization error over the course of the training of the model (training
monitoring). C: Correlation of the IC for each note. Pearson’s r = 0.7
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Distance
Intra-Cultural
Distance on A

Intra-Cultural
Distance on B

Clustering
Index

IDyOM Lisp 2.5818 1.1439 0.66443 2.8554
IDyOMpy PPM 2.2866 1.4042 0.89402 1.9899
IDyOMpy AE 1.6777 1.6441 0.69206 1.4363
IDyOMpy GE 1.7282 1.5855 0.54608 1.6216

Table 1: Cultural Classification Metrics for Both Models. The metrics are defined
in 3.2.
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Figure 5: Accuracies for cultural clustering and EEG decoding. A & B: We
plotted the piece-averaged IC for both an instance of the models trained on Shanxi tra-
ditional music (Chinese model) and an instance trained on Bach chorales (Bach model).
Detailed values are noted in Table 1. C & D: We used the mTRF toolbox to encode the
IC from each model (IDyOM Lisp and IDyOMpy AE) trained on the same large Western
database into EEG recordings of participants listening to Western music (not in the train-
ing dataset). We did not observe any significant difference between the models.
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A. Behavioral Liking and Entropy Correlation for IDyOM Lisp B. Behavioral Liking and Entropy Correlation for IDyOMpy PPM
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Figure 6: Comparison and Validation of the Entropy. A, B, C & D: Correlation
of the Entropy from IDyOM Lisp, IDyOMpy PPM, IDyOMpy AE, and IDyOMpy GE
respectively with the self-reported liking ratings from [54]. IDyOM Lisp explained 20% of
the variance, IDyOMpy PPM 21%, IDyOMpy AE 29% and IDyOMpy GE 23%. IDyOM
Lisp and IDyOMpy PPM did not significantly explain different amounts of variance. IDy-
OMpy AE significantly outperformed all other models. C : Correlation of the Entropy for
each note. Pearson’s r = 0.3
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the raw estimates from the two models for each note of each Bach chorale. We
found a relatively weak correlation of r=0.31 (Fig. 6.C) indicating that the
two models compute the entropy differently. We then used data from [54] to
assess which model explains the most variance of the behavioral liking ratings
(c.f. 3.4 for method). We found that the new IDyOMpy AE model explains
29% of the variance compared to 20% for the Lisp version (Fig. 6.A&B). A
bootstrap procedure was used: we repeated the procedure 3000 times with
sub-portions of the data (same sub-portions for each model) and generated a
distribution of the adjusted r2. The distributions for the two models did not
overlap and resulted in a significant t-test; p < 0.0001. This result leads us to
conclude that even if the two models compute Entropy somewhat differently,
they both replicate results from (Gold et. al., 2019) and that IDyOMpy even
outperforms the Lisp implementation in terms of variance explained giving it
a cognitive validation of the Entropy computations of both models. IDyOM
Lisp and IDyOMpy PPM did not significantly differ in terms of variance
explained. However, IDyOMpy AE outperformed all models.

6. Discussion

In this report, we have presented IDyOMpy, a new statistical model of
music in Python, based on the IDyOM architecture. This implementation
differs in the way that the different Markov chains (for each order) are merged
using an entropy-weighted linear combination (c.f. 2.1.3) and not the PPM
algorithm as in the Lisp version (c.f. 2.1.2). By comparing IDyOMpy PPM
and IDyOMpy we showed that, except for cultural classification, the use of
our new entropy-weighted merging algorithm is more efficient than the PPM
algorithm for combining different Markov chains orders. We also propose a
way to approximate the entropy that reduces the computation time by at
least a factor of 4 and only slightly affects the results discussed in this study.
However, our findings indicate that calculating the exact entropies enhances
IC generalization, though it reduces the entropy-based variance explanation
of behavioral liking. This suggests that using entropy approximations should
be carefully balanced depending on the specific application and the dataset
size.

Our new IDyOMpy model generates overall comparable or superior re-
sults and allows for significant future improvements. We first showed that it
performs better regarding generalization errors and the amount of training
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computed from the two models were relatively close (r = 0.7, c.f. Fig 2) and
resulted in comparable results for two EEG decoding experiments (c.f. Fig
3) thus confirming their consistent physiological relevance.

We showed that, even if the entropies only weakly correlate between the
two models (r = 0.3), IDyOMpy generates results with better correlation
with the behavioral data of self-reported liking ratings (c.f. Fig 4), thus
providing a cognitive validation of the model’s outcomes. In addition, we
presented two original new features (missing notes detection and training
monitoring, c.f. Section 5) that will be very useful for our community. A
limitation of IDyOMpy that still needs to be resolved is the analysis of musical
performances through audio recordings based solely on a rich representation
of the sound (e.g. spectrograms as opposed to extracted features).

Finally, this Python implementation is easy to install, understand, and
use from any computer and operating system. Furthermore, its internal
code can be rapidly augmented with new features, as demonstrated in the
present work. In sum, we think that IDyOMpy will be of high interest to
the community and will facilitate rapid progress in the field of computational
music cognition.
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