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Abstract—We present the system architecture for real-time
processing of data that originates in large format tiled imaging
arrays used in wide area motion imagery ubiquitous surveillance.
High performance and high throughput is achieved through
approximate computing and fixed point variable precision (6
bits to 18 bits) arithmetic. The architecture implements a
variety of processing algorithms in what we consider today
as Third Wave AI and Machine Intelligence ranging from
convolutional networks (CNNs) to linear and non-linear mor-
phological processing, probabilistic inference using exact and
approximate Bayesian methods and Deep Neural Networks based
classification. The processing pipeline is implemented entirely
using event based neuromorphic and stochastic computational
primitives. An emulation of the system architecture demonstrated
processing in real-time 160 x 120 raw pixel data running on a
reconfigurable computing platform (5 Xilinx Kintex-7 FPGAs).
The reconfigurable computing implementation was developed to
emulate the computational structures for a 2.5D System chiplet
design, that was fabricated in the 55nm GF CMOS technology. To
optimize for energy efficiency of a mixed level system, a general
energy aware methodology is applied through the design process
at all levels from algorithms and architecture all the way down
to technology and devices, while at the same time keeping the
operational requirements and specifications for the task at focus.

Index Terms—Chiplets, 2.5D architecture, neuromorphic pro-
cessing, mixed signal design, event based processing, wide area
image processing

I. INTRODUCTION

Technological advances in microelectronics fueled by the
economic growth of the semiconductor industry i.e. Moore’s
law [1], have enabled the wide availability of CMOS image
sensors with tens and even hundreds million pixels. Every
mobile device today has at least two cameras and often three
or four, and today (February 2024) there are more mobile
communication devices in the (8.6 Billion) than there are
people [2] (7.3 Billion)!

Data generated by the billions of CMOS cell-phone cameras
create a challenge in the computing systems that need to
process these data [3]. Hence a new engineering field, Big
Data (BD) science, has emerged which is aimed at sophisti-
cated statistical techniques, algorithms and computing systems
necessary to deal with such massive amounts of data. Big data
science aims at developing intelligent software and hardware
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that can process, analyze, and distill knowledge from the vast
quantities of speech, sound, video and text, ultimately with as
much nuance and depth of understanding as a human would.
There are three key challenging attributes of processing real-
time BD: big volume, big velocity and big variety. The field
is extensive and multidisciplinary, spanning computer science,
mathematics, signal processing, and statistics.

A. Wide Area Motion Imagery (WAMI) Data

Advances in optics [4], [5] and the proliferation of cheap
CMOS image sensors have enabled the creation of commer-
cially available larger tiled image arrays such as the Kestrel
and Simera [6], CorvusEye 1500 [7] and Sentinel CA-247 [8],
with billions of pixels based on essentially what is cell-phone
camera technology. Wide area motion imagery (WAMI) [9]
from giga-pixel sensor systems is a rapidly growing data
resource for civilian and defense applications (see Figure 1).
These air-borne systems, aboard a moving platform such as
a small plane, a UAV or an aerostat, are capable of imaging
objects with a resolution of 0.2 to 0.8 meters at a distance of
a few kilometers with giga-pixel image sizes and temporal
resolution of a few frames per second (3 to 15 fps) [10].
Advanced imaging technologies such as analog [11]-[13] or
all digital [14], [15] event based cameras can circumvent the
challenges of limited frame rates but the latter have not found
their way yet into WAMI systems. Hence WAMI processing
pipelines rely extensively on motion dynamic information.

Auvailability of full motion high resolution data over large,
city-size, geographical areas, (100 square kilometers) offers
unprecedented capabilities for situational awareness. The dy-
namic nature of the imagery offers insights about actions
and patterns of activities that static images do not. Civilian
applications of WAMI data allow for the monitoring and
intelligent control of traffic across large geographical area and
inference of a hierarchy of events and activities and ultimately
to “life-patterns” [16]. Additional applications include the co-
ordination of activities in disaster areas and the monitoring of
wildlife. Algorithm development for WAMI tasks is facilitated
through databases such as CLIF [17] and VIVID [18] and data
management standards [19].
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Fig. 1: Examples of wide area imagery

B. Bio-inspired event based processing

In some ways, the human brain is the ultimate machine
for real-time processing. We all have an uncanny ability to
remember and recall facts (big volume), that are stored and
recalled as a result of our daily multi-sensory experience
with the world (big variety), and are derived from signals
that inundate our senses every single moment (big velocity).
Everything is done in real-time in a resilient and robust
multiprocessor architecture that is so energy efficient that it
barely produces enough heat to keep itself warm in the winter.
Hence we believe that a brain-inspired approach that employs
unconventional processing offers an alternative paradigm for
such computing task.

The approach taken here is brain-inspired because at the
level of representation, in neural computation, the temporal
dynamics of spiking neurons encode information as UNARY
representation. Spikes in biology or digital events in silicon
systems can encode graded (analog) signals in time while at
the same time employing the robustness of binary signaling.
At this level we design abstract computational structures
optimized for minimum energy that exploit UNARY based
representations to compute likelihoods in graphical probabilis-
tic models of inference and cognition. Such a probabilistic
event based approach that was first proposed and used in
engineered systems [20] provides a principled description of
event generation rules that maximize the information transfer,
while limiting the number of energy expensive events (spikes)
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that need to be communicated between successive layers in a
neural architecture. In this work we incorporate Probabilistic
Address Event representation (PrAER) [21] first introduced
in [20] and subsequently used in other systems [22]. PrAER
is a unary data representation that extends the original address
event representation [23]-[26]. Hence, the design methodology
adopted in this paper combines and merges key ideas from
bio-inspired processing with basic concepts from the field of
stochastic computation [27]-[31], yielding a heterogeneous
approach where unary data is represented as both pulse density
modulation (PDM) or random pulse density (RPDM). The
system architecture comprises of multiple computing cores
on a multicast MESH AER network on chip from [32]. The
stochastic processing blocks are discussed with more detail
in [33] and algorithmic details of approximate probabilistic
inference through sampling can be found in these two publi-
cations [34], [35]. An overview and historical perspective of
Al inference including neuromorphic systems can be found
here [36].

In this paper we discuss a system architecture for a real-
time high velocity BD processing that originates in large
format tiled imaging arrays used in wide area motion imagery
ubiquitous surveillance. High performance and high through-
put is achieved through approximate computing and fixed
point arithmetic in a variable precision (6 bits to 18 bits)
architecture. The architecture implements a variety of process-
ing algorithms classes ranging from convolutional networks
(ConvNets) to linear and non-linear morphological processing,
probabilistic inference using exact and approximate Bayesian
methods and Deep Neural Network based classification. In this
shared memory architecture, hardware development is done
with energy efficiency as the prime engineering constraint,
taking lead over other considerations and the overall approach
is depicted in the overview diagram Figure 2.

System
1” i . \\
{ ) Probabilistic Inference/Graphical Models \
Algorithms  ypE, MRF, Indian Buffet, Hierarchical Dirichlet Process
Parallelism / Array PmbabcllsudSmchasuc Heterogeneous
_ Computamn ~ Time Repr Multip
Architecture e n Architecture
and
Representation
Circuits and /Contlnunus antagg\ Continuous Voltage Ultra Low Volta,ge
Mixed Signals Continuous Time Discrete Time
"“ - &; “‘\A-m LWL ML CL
Devices and Memristors FLASH
Technological || ===7, = e
1 i ik i
\  Foundations ‘ ﬁf = F@ o S /
\ Emerging e _ n'ﬂr'._ /
T"—":h” ology ,/‘\,_7 Nano and 3D MemoryStmcturﬁ L

Fig. 2: The levels of abstraction in a computational system
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Interposer CHIP

Fig. 3: Overall Chiplet solution with the interconnection of
three of the four CMPs, an FPGA and a 3D-DiRAM stack. All
of these chips will connect through an interposer fabricated in
1pm process with a size of 50mm by 64mm.

II. SYSTEM ARCHITECTURE

In this work, the design of four large chips is presented
(17.466mm by 14.133mm) designed in 55nm GF process.
Three of the four designed chip multiprocessors (CMPs) will
be mounted on an interposer chip (1um process of size 50mm
by 64mm), along with a state-of-the-art die form FPGA
(Xilinx Zynq 7100 FPGA) and a 3D-DiRAM memory (pro-
vided by Tezzaron Semiconductor). Several different options
were considered for interconnecting all of the chips, but an
interposer chip resulted to be the best one when power needs
to be reduced as much as possible. The main advantage in
building an interposer for connecting all of the units is that
the capacitance of the lines in the interposer is much less
than in a PCB, and additionally the overall design achieved
is much more compact. This is depicted in Figure 3. Each
of the four chips multiprocessor will perform processing on
images of up to 400Mpixels through the usage of massively
parallel processors. All of the CMPs will have access to
an on-interposer 3D-DiRAM memory stack and additionally
will communicate with an on-interposer FPGA. Each of these
CMPs is composed of either 64 or 128 processing units (PUs).
With the selection of different types of PUs on each chip,
different image-processing flows can be achieved, and it is for
this reason that the choice of these different PUs is desired
to be something that can be easily changed without having
to start the design of each chip all over again. The different
types of PUs will be addressed in one of the lasts chapters,
because there is no need in knowing what the PUs will do at
this point. A picture of the interposer is shown in Figure 4.

In the designed chips modularity was exploited as much
as possible, with the main objective of easing the task of
assembling the final four chip designs. If no consideration is
given to the content of each of the processing units on each
chip, only on core chiplet design with 128 PUs. The chiplet
with comprises of eight rows of 16 PUs each. The whole
point in building modular chips using chiplets is that major
changes can be applied to it without spending any additional
time redesigning everything.

For the communication in between nodes a buffer-less mesh
network was designed. This network will be called the L2
network (L2 stands for level two), and it has very particular
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* Silicon interposer: 4 x (32 mm x 25)
mm reticles stitched together.

* 5 metal layers

* Standard C4 pads on Chiplets to allow
for flexible configuration of SOC

Fig. 4: Interposer picture. Picture of the fabricated interposer.
Four 32mm by 25mm reticles stiched together, with 5 metal
layers and standard C4 pads.

and convenient characteristics that will be addressed in a later
section. If a standard interface from the L2 network node to
each processing that does not rely on any particular clock
(asynchronous interface), then the top level design of the 128
PUs CMPs can be completely abstracted from the content of
each of the PUs. Each of the PUs can have its own clock tree
completely independent from any other clock in the system.
This is the reason why a four phase handshaking interface was
designed for the communication of each PU with the L2 net-
work. This allows to place “dummy” PUs in the core chiplet,
and replace them later with the final desired PUs. The L2
network can be seen in Figure 5 . The connection to the FPGA
for the 128 PU chiplet is done through network nodes, (1,0).
The communication between the FPGA and its network node
uses the same protocol any of the PUs uses with its own node,
with the difference that serializers and deserializers needed to
be used for the FPGA due to the extremely wide network bus,
which is over 300 bits. Additionally, so that throughput to and
from the FPGA could be increased, bidirectional pads were
used for the communication in between the L2 network and
the FPGA.

Access to DDR memory is granted to each of the PU by in-
corporating an additional network. This network will be called
L1 network, and it will facilitate communication for each of
the PUs with the DDR memory through the DDR DRAM
PHY block. This block translates read and write requests from
the PUs to the 3D-DiRAM memory. This network is formed
by independent token-ring networks on each of the rows in
both designs. Each of these token-ring networks will have a
dedicated DDR DRAM PHY port. A total of eight different
token-ring networks will be present for this LI network, and
each PU will communicate with its LI network again through
a four phase handshake interface. The LI network can be seen
in Figure 6.

When communicating outside of the chips, it can either be
done through the DDR memory or through the L2 network
connecting to the on-interposer FPGA (see Figure 3). The
L2 network will have an additional node, apart from the
128 previously mentioned nodes. This node has access only
to the L2 network, and the processing unit assigned to this
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node is the external FPGA to which the L2 network connects
through the left side pads of the chip. The FPGA is able to
send and receive packets to and from the L2 network using
the four phase handshaking protocol, and also has its own
address, making the communication between FPGA and PUs
completely transparent. The utilization of this asynchronous
protocol in communicating the FPGA with the L2 network is
very convenient as it does not require the equalization of any
of the data bits lines with respect to a received clock.

Each of the CMP chiplets is 17466m by 14133um in size.
Because of these large dimensions, it is impossible to expect
the Place & Route tool to create clock trees with very low skew
and slew. It is for this reason that a custom architecture was
designed for the clock trees in the design. Long clock tree cells
of size = 1500um by ~ 50um were designed. These cells take
a clock input and generate several clock outputs along one
or both long sides, with a skew of only 30ps, allowing clock
speeds of up to 1.25GHz to be propagated through these cells.
These cells allow clock trees to be built local to the outputs of
these clock tree cells, making these clock trees much smaller
and more reliable. In Figure 5 and 6 the different clock cells
that allow both networks to be completely in sync can be seen.
Similar cells were used for distributing asynchronous reset to
the network.

III. DATA REPRESENTATION

One key innovation in the architecture described in this
paper is the adoption of an internally heterogeneous rep-
resentations for the mixed signal computational structures.
These can be currents, voltages, charges or more formally the
the signal representations shown in the panel Figure 7. The
first two correspond to Continuous Value Continuous Time
(CVCT) and Continuous Value Discrete Time (CVDT) and
are often termed ‘“analog”. These include charge injection
devices (CID), charge coupled devices (CCD) or switched
capacitors (SC). The third is Discrete Value Discrete Time
(DVDT) or what is known as digital and employed in Boolean
computations. The last two panels depict the fourth less known
signal representation for computational structures, the Discrete
Value Continuous Time (DVCT) representation.

In the communication literature DVCT is known as pulse
time modulation (PTM). PTM has become popular in the field
optical communication because it is simple to implement, re-
quires no digital codes, and the pulse format of the modulated
carrier makes the scheme immune to channel nonlinearity. We
will rely on the temporal representation of information,
such as PTM for implementing arithmetic functions and
memory in the design of this system because this allows to
attain accuracy and dynamic range in the sub-micron and
deep-submicron CMOS technologies. The switching speeds
of the devices in the deep-submicron technologies are in the
in the sub-20 ps range, hence investigating unconventional
computational structures that exploit such temporal resolution
is exciting. PTM techniques can be divided into two main
classes. Isochronous PTM techniques, such as pulse width
modulation (PWM), pulse position modulation (PPM) and
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Fig. 5: L2 network for the 128 PUs chiplet. Communication
to the FPGA is done through the (1, 3) node. The communi-
cation between node (0,3) and the FPGA is done through
bidirectional pads placed on the left of the chip. Each of
the packets in the network contains 256 bits of data, making
it really difficult to have that same number of pads in that
communication. A serializer and deserializer are being used
to send and receive between the N2 network and the FPGA.
The green blocks distribute reset and clock signals.

pulse density or pulse frequency modulation (PDM or PFM),
carry information in some characteristic of the pulse with
respect to a predetermined time frame. In anisochronous
PTM (APTM) techniques, there is no time-frame but pulses
can occur in continuous time. Neural spikes correspond
to anisochronous PFM. The Address Event Representation
(AER) employed in this project is also an APTM technique,
where each event encodes the time of the event and the
address of the encoding processing node, so in this instance
the event is not a single pulse (one bit) but rather a small
numbers of bits encoding . Stochastic pulse time computation
(SPTM) encodes the stochastic sampling of a probability
density function of a signal or data at the originating node
and is a key representation employed in the architecture.
SPTM allows the processing of signals are low signal to noise
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Fig. 6: L1 network for the 128 PUs chiplet. Eight different
token-ring networks communicate with the DDR DRAM PHY.
The communication between the DDR DRAM PHY and the
DDR is done through two DDR buses, where each bus is
composed of 66 signals, 64 data signals and two complemen-
tary clocks. The required pads communicating with the DDR
memory are placed on the right side of the chips.

ratio and hence with high energy efficiency. Finally, pulse
code modulation (PCM) is the traditional encoding of digital
information as a series of ordered pulses/events in the time
series and since this represents the traditional approach of
digital computing will not be further discussed here.

There four PTM data encodings that are employed. These
encodings represent analog information as digital data on the
time axis. Let’s us define a frame 77 and the minimum
attainable temporal resolution in a given technology 7Tr. Let
us also define the pulse width 7y minimum pulse width
Tarrnv- In the isochronous or anisochronous and random pulse
density modulation (PDM) , (APDM), (RPDM) if a wire must
represent the probability of a variable A taking a value of
one i.e. P(A) = 1 is encoded by N events/pulses such that
N =Tp /TN Similarly the probability of a value equal to
the least significant bit i.e. P(A) = LSB is represented by just
a single event/pulse within the frame T’». In the pulse width
modulation (PWM), the probability of P(A) = 1 corresponds
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to a pulse of width Ty = Tr and P(A) = LSB is represented
by a pulse width Ty = 17 . In addition to regular numbers,
PTM representations enable the representation of probabilities,
the currency at the heart of the inference algorithms.

IV. ALGORITHMS AND MIXED-SIGNAL CIRCUITS
CO-DESIGN

A reconfigurable computing based, processing pipeline ar-
chitecture (Figure 8) was developed to emulate the com-
putational structures for a 2.5D system that was fabricated
in the 55nm CMOS technology. Mapping the algorithms on
a reconfigurable computing platform has a dual goal: (i)
algorithm exploration and (ii) architecture exploration. The
processing flow begins with raw pixel values from a camera
and implements de-Bayer interpolation, non-uniformity cor-
rection, camera motion compensation, background/foreground
segmentation, object attributes extraction, object tracking and
object classification. The processing pipeline is implemented
entirely using event based neuromorphic and stochastic com-
putational primitives. The system is capable of processing in
real-time 160 x 120 raw pixel data running on a reconfigurable
computing platform (5 Xilinx Kintex-7 FPGAs).
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Fig. 8: Processing pipeline.

As a way of example to the structure of the computations,
the following three sub-sections provide details for three
specific components of the processing pipeline: the De-Bayer
transformation, the change point detection and the morpholog-
ical processing (median filtering/connected component analy-
sis) that removes the noise after the change point detection step
in the segmentation process. Unfortunately space limitations
do not allow the full discussion of the algorithms and im-
plementation; references in the bibliography and forthcoming
publications will detail the mapping of the algorithm into the
architecture. In WAMI data streams the spatial resolution of
the imagery is relatively poor hence limiting the usefulness of
appearance based object detectors. A typical object such as
a car or a truck corresponds to only a few pixels (10-100).
The motion of such relatively small size objects means that
objects can move over large distances with current state of
the art cameras that often have only 2-3 frames per second
temporal resolution (see the large truck in the four frames
sequence, bottom frame in Figure 1). The adopted motion
imagery processing pipeline shown in Figure 8.

1) De-Bayer transformation (Pre-processing): The de-
Bayer algorithm employed here is chosen for simplicity and
to demonstrate the validity and performance of the adopted
data representation (RPDM) and the computational structures
(multiplexes and counters) that implement the multiplication
and summing operations. The algorithm is a simple linear
interpolation as discussed in Section 2.1 of the overview paper
by Mashal et. al. [37]. Figure 9 (top) shows the 8 bit de-
Bayered image processed using regular arithmetic. The image
processed using the probabilistic event base computational
structures that emulate the hardware are shown in Figure 9
(middle) for 256 events/time slots i.e. 8 bit and in Figure 9
(bottom) for 32 events/time slots i.e 5 bit. The computations
for the de-Bayered processing were done with mixed signal
vector-vector multiplier/processing blocks. Five generations
of test chips where fabricated and tested with experimental
results for mixed signal vector-vector multiplication that in-
clude power dissipation and energy efficiency can be found in
Technical Reports #58 and #59.

2) On-line Change Point Detection (Segmentation):
Change point analysis (CPA) also known as change point
detection (CPD) is the identification of sudden and often small
changes to the parameters or the output of a system that is in
the form of sequential data. Often CPA is employed for the
segmentation of a signal to facilitate the process of tracking,
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Fig. 9: De-Bayered color image: regular 8 bit arithmetic (top), 8 bit
probabilistic (middle), 5 bit probabilistic (bottom)
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TABLE I: Algorithms in the image processing pipeline.

Stage Algorithm
Preprosessing De-Bayer [37] (3x3 interpolation)
Non-uniformity correction (8bit offset and gain correction)
De-Warp [38] (bilinear transformation with 3x3 interpolation for address re-mapping
Segmentation Stauffer / Grimson [39] (Gaussian mixture models)
Change Point Detection [40] (exact Bayesian inference)
Morphological processing [41] (connected component, median filter)
Tracking Mean-shift [42] / Convolutional Network on binary blobs
Kalman Filter [43]
Object Atributes Morphological processing [41] (blob attributes, geometry)
Classification Convolutional [44] / Deep Neural Networks

identification or recognition. Here we use the algorithm by
Adams/McKay for online Change Point Detection [40].

The algorithm is fully implemented as VHDL code in
the reconfigurable computer architecture. To demonstrate the
validity of emulation in VHDL towards a full custom ASIC
CMOS implementation we show here results from a test chip.
The test chip architecture employs probabilistic event repre-
sentation and computational structures that natively operate
on probabilities. A fully programmable quad core CPD pro-
cessor was synthesized from VHDL in 55nm CMOS Global
Foundries technology and is tested as fully functional. All
of the cores in the chip can be programmed, but they are
all programmed in the same way, meaning that all of their
parameters have to be the same for all of them. The random
number generators used in the chip are programmable so
that the LFSRs used can change their period depending on
the computational time required, demonstrating the “precision
on demand” capabilities in the architecture. The maximum
number of bits in our LFSRs is 20 bits, and with this structure
LFSRs of period from 22° —1 to 23 — 1 can be accomplished.
The CPD processor occupies an area of approximately 1mm
x Imm. The chips were mounted on a custom design board
that communicates with an OpalKelly board featuring a Xilinx
Spartan3 FPGA. The communication between the FPGA and
the chip was done through two high-density connectors. All
the signals driving the chip were provided by the FPGA, even
the clock signal, giving the versatility of programming the chip
clock frequency from the computer.

A Matlab program and VHDL code was written for testing
the chip. This program, depending on the statistical parameters
of the signals that need to be analyzed, calculates all the
parameters for the CPD algorithm. Those parameters are
translated into values that are sent to the chip to program
the behavior of the processors. Figure 10 shows the results
from the chips. All the four cores function properly, showing
results comparable to the floating point implementation of the
algorithm in Matlab.

3) Morphological Processing (Feature Extraction): The
morphological processor is based on the simplicial [41], [45],
[46] cellular neural network architecture and consists of three
different modules: the cell array, the control module, and the
function memory. The cell array contains a 64x64 dimensional
array of units that need to access memory to perform a
nonlinear programmable function. Each cell is interconnected
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Fig. 10: Results from the CPD test chip compared with the
implementation of the CPD algorithm in Matlab. All four cores
on the chip are fully functional and operate at the simulated
frequency (only data from two cores are shown here).

with five neighboring cells (that can be configured in an ”x” or
”+” configuration) and has two registers for storage namely, X
and U, two registers for intermediate computation results, a 1-
bit ALU (that can implement the following functions: and, or,
nor, xor), two 5-bit equal comparator and several multiplexers.
The Morphological Processor operation can be programmed to
execute different programs depending on the memory content.
In the application under study, the objective is to take an input
frame produced by the Change Point Detection (CPD) block
and apply image processing to determine whether there is an
object in the scene. The output produced by the CPD is a
frame where every pixel is represented by 1 bit. An example
of a “program” with basic instructions employed to cleanup
noisy binary data coming from the CPD processor is: dilation,
erosion, erosion, erosion, dilation, dilation, median. Figure 11
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shows one of the frames produced by the CPD and the output
of the sequence of operations performed by the Morphological
Processor.

Fig. 11: (top) Frame produced by the CPD; (bottom) Output
of the Morphological Processor.

A screen shot of results from the image processing pipeline
up to the segmentation and feature extraction stage is shown
in Figure 13. The system architecture outlined in this report
has demonstrated real-time processing of 160 x 120 raw pixel
data running on a reconfigurable computing platform (5 Xilinx
Kintex-7 FPGAs). The image data is generated by standard
cameras and hence the value of the pixels is encoded using
pulse density modulation (PDM) so that it is compatible with
the computational infrastructure.

V. DESIGN FOR EXTREME ENERGY AWARENESS

An energy aware and constraint design methodology must
be applied at all levels of the system Figure 2, algorithmic,
architectural, circuit and device. Techniques and improvements
at the highest level of abstraction such as algorithmic and
architectural will likely to produce energy efficient designs
under the strict constraint budget while meeting the system
level performance requirements. We begin with a simple
calculation of how much is a pico-Joule. What is a pico-Joule
(pJ)? A pico Joule is the energy to pass one pico ampere of
current (10~ '2A) in a circuit operated at 1Volt for a duration
of 1 second. Alternatively, a pico Joule is the energy to charge
a 1 pF (10~12F) capacitor up and down an potential of 1Volt.

The energetic requirements for the computational structures
has yielded important insights on the research and devel-
opment for this project. At every level of abstraction in
the Figure 2 there are methods to reduce power that have
ramifications to the other levels. More important, any decisions
and optimizations done at a given level must be consistent
with the adjacent levels. The general design principles to yield
an energy aware design are summarized here going from the
lowest level of abstraction to the highest.

A. Technology/Device Level

1) The overall design methodology in the project is con-
straint by the technology, i.e. as technology scales there
are severe limitations on the power supply voltage.
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Typical power supplies can not exceed 1.8 Volts. It is
possible that a non state of the art process is employed
that has high voltage devices that can operate at 2.5 Volts
but this is not an option available to this project.
Modern fabrication processes, offer devices that have
multiple threshold voltages (typically three) and multiple
gate oxide thickness (typical two). These devices can
be employed judiciously in the circuits to improve
performance and meet energy efficiency requirements.
Noise (shot-noise) power and bandwidth (parasitic ca-
pacitances at nodes) impose fundamental constraints on
the precision (in bits) available at each node in the
circuits.

2)

3)

B. Circuits

1) Traditional wisdom suggests that the most effective way
to operate with maximum efficiency is to reduce the
power supply voltage and operate in sub threshold or
near threshold, for both digital (DVDT) and non-digital
circuits.

All digital (DVDT) computational blocks will be de-
signed using an ultra low voltage design methodol-
ogy with transistors operating in the sub threshold or
near voltage threshold (NVT). A CMOS library was
specifically designed to address the necessity for NVT
operation.

All non-digital computational blocks will also be de-
signed with devices operating in sub-threshold region
and deep sub-threshold region with current levels in the
pA range and 100fA range. This has ramifications on
the bandwidth available which is going to be only a few
100Hz.

The circuit design methodology that has been
adopted in this project focuses on pulse time modula-
tion (PTM) signal representations, with computations
in what is traditionally known as ‘“‘analog” (CVCT)
being adjunct to the PTM based computations. This
is because with the power supply of 1.8 Volts available
in the fabrication technology energy efficient circuits in
the traditional view point (CVCT) are problematic.

2)

3)

4)

C. Architecture and Representation

1) At the architecture and representation levels, we make
the ultimate decisions as to which aspects of the process-
ing will employ the particular representation i.e. CVCT
(analog), DVDT (digital), as well as CVDT and DVCT
(APTM).

The key architectural decision at the architecture level
is the adoption of massive parallelism and pipelining
in all signal representations. This allows for operating
the circuits at lower speeds. Lower speed in the digital
components of the system translates to lower voltages,
that yield quadratic improvements in energy. Lower
speed in the analog computational structures translates to
reduced bandwidth and reduced integrated noise power.

2)
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D. Algorithms

1) Any algorithm that will be developed needs to be
compatible with the low precision hardware (4 to 8
bits) available in the non-digital (non-DVDT) circuits
and something like 8-16 bit fixed point available in
digital (DVDT) ultra-low voltage circuits. It necessitates
a complete re-thinking of the algorithm so that it
will enable both parallelism and low precision i.e.
approximate computation.

At the algorithmic level we will also incorporate prior
knowledge about the statistics of the input signal. This
ultimately determines the ultimate encoding to minimize
unnecessary switching activity for the digital part of the
system or bias currents for the analog sub-systems.

2)

E. System

1) A detail and careful analysis of the energetics in pro-
cessing requirements of the project has revealed some
rather surprising findings. The actual energy cost of
computation is relatively small as compared to the
cost of the interfaces to the non-digital computational
structures, and communications, i.e. moving data
from one place to the other so that computations
can be carried out.

At the system level we have made the important deci-
sions to incorporate the memory hierarchy as part of the
integrated 2.5 interposer and 3D memory stack.

The clock distribution network and local generation of
random numbers/variables is also part of the system
level. Furthermore, the adoption of an APTM technique
allows for the local generation of clocks without skew
concerns that tend to add complexity to the circuit design
of the clock distribution network in traditional digital
computing systems, with associated energy costs.

2)

3)

VI. PHYSICAL DESIGN METHODOLOGY FOR
MIXED-SIGNAL CMPs

When designing a system on chip, different approaches can
be taken. One can perform flat logical synthesis and Place &
Route, or a more modular bottom up approach can be taken.
The term logical synthesis will be given to the translation
of hardware description written in VHDL or Verilog, into a
netlist of logical cells belonging to a particular standard cell
library. On the other hand Place & Route tools will take that
translation from the logical synthesis, and will perform the
actual physical implementation of that netlist, laying down
the actual layout for every single cell and performing the
corresponding metal connections. For small areas, usually flat
Place & Route results in a more efficient outcome regarding
power, area and timing, mainly because the Place & Route
tools used are provided with all of the degrees of freedom
for the considered design. When bottom up approaches are
used, at every level of hierarchy considered, the degrees of
freedom are reduced, and then the result obtained might not
be optimum. In the flat Place & Route, logic that might be
repeated several times in different modules, could be just
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collapsed into a single unit, resulting in area reduction and less
power dissipation. So, when would a bottom up approach be
the answer? As technology advances, chip areas are increased,
and feature sizes decreased, resulting in very large relative
areas, for which the complexity and time used performing
Place & Route increases exponentially. Sometimes the time
span used in performing Place & Route very large designs
could be weeks, and it is just with a simple modification to
the architecture, that this process needs to be restarted. It is for
this reason that modular designs are becoming more attractive,
allowing to keep complexity limited at every level of hierarchy.
Bottom up approaches face challenges that flat designs do
not. A wider understanding of the involved physical design
is required. Power distribution and timing becomes more
challenging as these aspects need to be analyzed individually
for each block, and eventually their impact in an upper
level of hierarchy. Modular designs additionally necessitate
the specification of additional constraints, such as the timing
requirements in the signals connecting each block to a top
level. Dimensions need to be specified for each block. Shape
and size for hierarchical blocks need to be carefully chosen
when the broader picture is considered. The position of pins
on each block becomes an important issue. A poor choice for
their position might result in the passing of timing constraints
locally to the block, but the violation of them when timing is
analyzed in the upper level of hierarchy. Due to the complexity
of the designs presented in this work, modular design is a
must. Up to six levels of hierarchy were used in some of
the blocks that compose the solution that will be proposed,
making proper physical planning necessary. Fortunately, the
choice of this physical planning path allowed to reduce the
time performing Place & Route of the top level design for the
different chips designed in this project to under a day.
Concepts such as tiling, block abutment and module repe-
tition start showing up in large designs. In the face of tight
timing constraints, abutment of blocks becomes a necessity,
and with it, proper input/output delays need to be correctly
equalized as well as the position of the pins connecting all
of the abutting blocks. When having two blocks utilizing the
same clock signal, one block might send data to the other
block, and the later block might send data back as well. Let’s
consider the case of block A sending a bit of information
to block B. The input delay constraint for block B is the
time the bit at the output of block A takes to travel from
the closest register in block A to the physical block pin.
On the other hand the output delay for block A is the time
that the before-mentioned bit travels from the input pin in
block B to the closest register’s input still in block B. These
timings are shown in Figure 12. If the summation of the
input and output delays in the abutting blocks is not less than
the desired clock period, then no optimization in the upper
level of hierarchy will ever allow that clock frequency to
be achievable. It is for this reason that the choice of input
and output delays in a block is of the highest importance. In
the design proposed, the existence of several processing units
(PUs) will be shown. These units will need to abut with each
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other to create a compact overall design, where analysis of
these timing constraints need to take place. When performing
this abutment additional safe measures need to take place when
designing these units, such as Place & Route blockages that
will prevent any design rule violation, or cross-talk between
internal block signals at the place where blocks abut.

An additional concept used in large designs is module
repetition. Repetition of modules not only allow to have a
more consistent timing and power distribution over the chip,
but it also simplifies the synthesis of the whole chip. This is the
case of the two networks on chip that have been implemented
in the design of the chips presented in this work, where each
node of these networks is a block that is repeated all over.

BLOCK A BLOCK B

ck_ ok |

RST RST

Input delay to BLOCK B i Output delay to BLOCK A

Fig. 12: Input/Output Delays in a synthesized block Two
different delays need to be taken into account when connecting
two blocks that are abutting is shown. The summation of both
delays shown need to be less than the desired clock period.

When designing large chips, problems such as clock tree
integrity, exponentially increasing time for synthesizing, plac-
ing and routing designs, and difficulty in performing minor
changes to the design, become more problematic. With very
long distances for a clock signal to travel, mismatch and
variations along the die will make it very difficult for a clock
tree to achieve the desired skew, slew and speed. Other options
such as building H-trees with very strong drivers will work,
but most likely a modular design will find this alternative very
difficult to deal with, because of the specific places the clock
drivers need to be placed. Tools such as Cadence Innovus will
take an amount of time in performing Place & Route on a
design that increases exponentially with the size of the design.
Consequently if modularity is not exploited enough, one can
be found in a situation where re-synthesizing projects could
take days to Place & Route, probably because of just a minor
change to the design. If on the other hand one can exploit
as much as possible the bottom up approach synthesis, taking
advantage of repetition in the design, the time spent could be
reduced significantly. All of the CMPs were designed in this
way, breaking the design into smaller and more approachable
problems. The only disadvantage to this approach is that one
has to have a very clear picture of the full chip layout, specially
when talking about power planning.

A highly conductive power grid was designed on top of all
of the chiplets. These grids hold the different power supplies
for different voltage domains across the chip and additionally
supply external and locally generated biases that are made
available to all of the processing units. The locally generated
biases are generated by a local band gap reference that will
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be placed as one of the PUs. 16 are the total number of
external biases and 16 is also the total number of locally
generated biases. These power grids were designed in metal
7 and 8, allowing the design of each processing unit to span
from metal 1 to metal 6. If a power supply or bias is locally
required in a processing unit, a simple connection to metal 7
can be generated. It is for this reason that it was decided that
providing a template with the exact position of the power grid
and standard pins connecting the PU to both networks was the
way to go for everybody designing PUs. This template would
ensure compatibility when placing or replacing PUs in the
network. Additionally, the clock provided to the PU from the
network node is a programmable one, so if more than one PU
slot was needed for a particular design, as long as the different
clocks provided to each of the PU slots are configured to have
the same frequency, these clocks would actually match also
in phase. This characteristic would allow local clock trees to
have more than one root, making local trees have a reduction
in their depth, allowing better reliability. This means that, the
person designing that multi-slot PU can rely on several clock
inputs that are in phase, reducing the complexity of the local
clock trees.

VII. CONCLUSIONS

We have described a chiplet based system to do real-time
big velocity BD processing that originates in large format
tiled imaging arrays used in wide area motion imagery ubig-
uitous surveillance. High performance and high throughput
is achieved through approximate computing and fixed point
arithmetic in a variable precision (6 bits to 18 bits) archi-
tecture. The architecture implements a variety of processing
algorithms in what we consider today as Third Wave AI and
Machine Intelligence ranging from convolutional networks
(ConvNets) to linear and non-linear morphological processing,
probabilistic inference using exact and approximate Bayesian
methods and Deep Neural Network based classification. The
processing pipeline is implemented entirely using event based
neuromorphic and stochastic computational primitives. An
emulation of the system architecture demonstrated processing
in real-time 160 x 120 raw pixel data running on a reconfig-
urable computing platform (5 Xilinx Kintex-7 FPGAs). The
reconfigurable computing implementation was developed to
emulate the computational structures for a 2.5D system the
nano-Abacus with chiplets fabricated in the 55nm GF CMOS
technology.
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