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Abstract

The Unruh-DeWitt particle detector model has found success in demonstrating quan-

tum information channels with non-zero channel capacity between qubits and quantum

fields. These detector models provide the necessary framework for experimentally realiz-

able Unruh-DeWitt quantum computers with near-perfect channel capacity. We propose

spin-qubits with gate-controlled coupling to Luttinger liquids as a laboratory setting for

Unruh-DeWitt detectors and explore general design constraints that underpin their fea-

sibility in this and other settings. We present several experimental scenarios including

graphene ribbons, edges states in the quantum spin Hall phase of HgTe quantum wells,

and the recently discovered quantum anomalous Hall phase in transition metal dichalco-

genides. Theoretically, through bosonization, we show that Unruh-DeWitt detectors can

carry out quantum computations and identify when they can make perfect quantum com-

munication channels between qubits via the Luttinger liquid. Our results point the way

toward an all-to-all connected solid state quantum computer and the experimental study

of quantum information in quantum fields via condensed matter physics.
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1 Introduction

Unruh-DeWitt (UDW) detectors originated as a thought experiment by Unruh [1] (later ex-

tended by DeWitt [2]) to model an accelerating qubit in a vacuum. Unruh showed that an

accelerating observer would view the ground state of a quantum field as a mixed state and see

a loss of quantum information hidden behind the Killing horizon [3]. Today, there are parallel

efforts to utilize UDW detectors to advance science in cosmology, high energy physics, and

condensed matter physics. Cosmologists use them to model information in highly accelerated

frames of reference (e.g. in and around black holes), high energy theorists use them without

acceleration to study quantum information flow via quantum fields, a field called relativistic

quantum information [4±10]. Condensed matter experimentalists use UDW detectors such

as nitrogen-vacancy centers and superconducting interference devices, calling the detectors

ªquantum sensorsº, to sensitively detect electromagnetic fields produced by a wide variety of

systems from quantum materials to systems outside of condensed matter like cancer cells. But

currently, experimentalists demand much less from the UDW detectors than theorists, having

yet to use them to study the flow of quantum information in complex systems.

A feature that theorists require of UDW detectors is the ability to turn their coupling to

their environment on and off rapidly. Consider a spin qubit coupled to a one-dimensional wire

modeled as a Kondo-like impurity. A simple look at such a quantum computer is displayed

in Fig. 1 which showcases natural scalability as a feature that preserves all-to-all quantum

communication. A setup such as this is capable of sensing the flow of small currents in the

wire. Turning the Kondo-like coupling on and off rapidly, however, turns it into an emitter that

sends signals through the wire, signals to be picked up by another such spin qubit acting as a

detector. The net result of this communication amounts to a quantum gate that acts unitarily

on the combined qubit-wire system. In Fig. 7, we take this idea to the next level: the design

of an all-to-all connected solid-state quantum computer where gates can be applied to distant

qubits enabled by communication via quantum coherent wires. The possibility that a quantum

wire could achieve such communication dates back to at least as early as 2007 [11,12]. Control

over timing, therefore, enables the UDW detector to emit and receive quantum information.

This propagation of quantum information offers clear benefits to quantum technology.

In addition to practical applications in quantum computing and communication, timing-

controllable UDW detectors would allow the study of complex quantum systems in a new

way. Careful construction of quantum information channels through these systems allows for
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(a) Qubit A can access all

qubits on the system via left-

and right-movers.

(b) Opening up qubits will

cause interactions with the

left- and right-movers.

(c) Adding another block of

qubits restricts of our left- and

right-movers to paths (1) or

(2).

(d) Opening the bulk between

the blocks gives Qubits B and C

direct access to the entirety of

the qubits.

Figure 1: Figures (a-d) show a simplistic view of our quantum bus. Qubits (such as

qubits A and B) are placed around the edges of a Luttinger liquid. The potential wall

is lowered, as in Fig. (b) and the qubits are able to interact with the topological edge

states. Figures (c) and (d) indicate how scaling up this system can be done easily by

adjusting where the bulk of our fields lives through raising and lowering the potential

barrier.

a deeper understanding of their quantum properties without directly carrying out projective

measurements on the system or inferring them through measurements of expectation values.

Simulating channel capacity, for example, would show how entanglement spreads within them

and how quantum information becomes scrambled. If we could similarly study physical sys-

tems, we could directly probe their entanglement properties.

Studying quantum information channels into and out of complex quantum systems pro-

vided by UDW detectors will also enable these systems to become part of quantum technology.

For example, a system described by a quantum field could become a component in a quantum

computer that can carry out computations (these fields are known as flying qubits). The grand

application of such a computer would then be to simulate quantum field theory, a task long

predicted to be a consequence of quantum computing [13±16]. Such a simulator, for exam-

ple, could simulate Dirac fermions directly without needing to overcome the fermion doubling

problem caused by discretization.

One possible system to achieve simulation of Dirac fermions is known as the Yao-Kivelson

model, which has been studied in Ref. 17. The Yao-Kivelson model provides a solvable model of

topological edge states that can be expressed as Majorana fermions. Dangling qubits near the

edge state provide a comparable model to a UDW detector and offer helpful insights regarding
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restrictions to our system. In Sec. 2.2 we discuss this system as it pertains to our own in more

detail. In the near term, we expect a UDW quantum computer that utilizes a quantum bus like

that of Fig. 1 to be better equipped at enhancing error-correcting codes by exploiting all-to-all

connectivity. So we see that timing-controlled UDW detectors will have both fundamental and

technological applications.

In this paper we propose and assess three potential systems for realizing the study of

quantum information flow via timing-controlled UDW detectors coupled to quantum mate-

rials: HgTe/CdTe heterostructures in the quantum spin Hall phase [18, 19], graphene spin

qubits [20±24], and Moiré transition metal dichalcogenides (TMDs), in either the anomalous

or spin quantum-Hall regime [25, 26]. Each of these systems contains spin qubits coupled

to Luttinger liquids. We begin with a theoretical analysis combining the formalism of UDW

detectors with the bosonization of Luttinger liquids. This innovation gives us the ability to

engineer new systems for exploring quantum information flow through quantum fields. Using

the results of Simidzija et al. [5±7], we show that a non-zero channel capacity should exist in

these systems. We provide a library of Hamiltonians that characterize the qubit-field quantum

transduction constraints demonstrated in this paper, bolstering the natural viability of quan-

tum electronics/communication. We assess the experimental viability of the three proposed

systems. We close by discussing future theoretical work, outlining the many new avenues of

information research generated by the timing-controlled UDW detectors proposed here.

2 Quantum information flow in quantum materials

The trend for scaling up quantum computing consists of larger and larger numbers of qubits

carrying out linear operations over longer length scales. This approach at scaling seems natural

as error correcting codes are more accurate with more qubits [27±29]. However, topological

systems such as the fractional quantum Hall effect could provide a quantum bus of all-to-

all connected qubits which offer a robust error correcting code [13] that scales at least like

Fig. 1. The all-to-all communication channels provide situational error-correcting codes based

on stabilizer codes [30] and the periodic condition of our quantum bus resolve length scales.

The most important question is thus: how well does our system process quantum informa-

tion? Undertaking this task involves devising quantum channels displaying maximal channel

capacity.

2.1 Devising the quantum channel

Quantum channels present the necessary formalism to analyze entanglement propagation

through a quantum circuit [31, 32]. Recently, high-energy physicists have made progress in-

vestigating quantum channels as they exist between fields and qubits. As mentioned in the

introduction, they use UDW detector formalism that utilizes a smearing function to spread

a two-dimensional Hilbert space onto an infinite-dimensional space. This formalism carries

a series of complications such as limitations due to the no-cloning theorem and information

spreading due to Huygen’s principle in spatial dimensions higher than one [5, 33]. In this

regard, an analogy to classical wireless communication is not possible. Instead, advancing

quantum devices such as quantum wires may prove more profitable.

Using quantum gate formalism, we evaluate the quantum coherent information, a figure

of merit for the channel, which is analogous to mutual information in classical information

theory. For the systems discussed in this paper, quantum coherent information is computed

according to the circuit shown in 2. The construction of candidate unitaries, such as UA and

UB in Fig. 2, needed for our quantum channel, is done carefully in Sec. 3. For now, we will
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Input Output

Noisy Channel

Qubit C

Qubit A

Field

Qubit B

|ψCA⟩

|ψCB⟩UA

|S⟩
A

φ Internal Interactions

UB

φ′

|0⟩
B

tA tB

Figure 2: Quantum coherent information is a measure of quantum information flow-

ing through a quantum channel. To compute it, we use the above circuit diagram.

Initially, Qubit A is entangled with Qubit C in a Bell state. Then Qubit A coupled

to the Field φ through UA and later Qubit B |0〉B is similarly coupled through UB.

Finally, the entanglement is measured between Qubit B and Qubit C. If these qubits

are entangled, then the coherent information is positive and quantum information

flowed through the noisy channel.

outline some design constraints of these unitaries that enable them to successfully transport

quantum information.

Simidzija et al. as well as others, have recently laid the groundwork for models that suc-

cessfully outline the necessary conditions of just such a channel [5±7, 34]. They have shown

that UDW unitaries which behave as controlled unitary gates, lead to entanglement-breaking

channels when processed alone. However, carefully applying two of these rank-one unitaries

breaks the controlled-gate structure of the circuit, allowing them to properly encode (or de-

code) information from a spin structure onto a scalar bosonic field. In other words, the chan-

nel created by gates with these unitaries can have a positive-valued coherent information that

scales with coupling and smearing parameters.

More elusive is a schematic for strongly coupled fermionic systems using UDW detectors.

As we will demonstrate, the formalism describing quantum channels, traces over the field and

results with a correlator of field operators. Mapping fermions to bosons through bosonization

has an equivalence at the level of the correlators. We find that through the bosonization of our

Luttinger liquid, we can create different approaches to solve this problem. Section 3 aims to

provide a library of these gates which enable channels with non-zero capacity. Furthermore, we

claim that careful parameter selection can theoretically create a near-perfect quantum channel.

2.2 Design parameters governing channel performance

There are many parameters governing a field-mediated quantum channel between two qubits.

We can separate the channel into two components, gates between the qubit and field and the

propagation pathway the quantum information travels along within the field itself.

Generally, a gate between a qubit and a field is governed by a coupling function J(x , t). We

can break this function into three factors as is common in the relativistic quantum information

literature. One is a switching function χ(t) normalized to
∫

d t χ(t) = 1 that turns the gate on

and off. Another is a smearing function p(x , y) that couples a qubit at x to the field at various

points y . It too is normalized with
∫

d y p(x , y) = 1. Ideally, both χ(t) and p(x , y) are

non-negative functions. Presumably, p(x , y) is non-zero only inside the quantum dot (Qdot)

hosting the qubit. Finally, there is the overall dimensionless strength of the coupling J . Hence

the coupling function J(x , t) is naturally parameterized by this strength J , a switching time

tsw and a smearing length λs.
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For our models in Sec. 3, we use a Dirac delta-like switching function with tsw = 0, a

mathematically convenient but physically impossible situation. It allows the gate to produce

a change in the field that remains perfectly localized within the smearing length. For tsw > 0,

during the action of the gate information will spread away from the qubit at the velocity v, the

effective speed of light governing the relativistic field. Hence, if we have tsw < λs/v, the effect

of the gate will remain nearly localized within the smearing length, and a physically realizable

gate will behave similarly to our idealized gates.

Given λs, tsw, and v, we now have two dimensionless parameters governing the design of

a gate: the coupling strength J and the gate-localization quality Q loc = tswv/λs. A small Q loc is

a design constraint for a UDW quantum computer. If it is too large, quantum information will

spread over large distances and during the action of the gate making, it is difficult to recapture.

A small J , however, implies the gate has little effect. Hence for good channel performance, we

will want gates with a small Q loc and large J .

Earlier studies, Refs. 17, 35 identify another design constraint of quantum information

channels in condensed matter physics. Though different from an UDW Quantum Computer,

Refs. 17,35 provide an approach to carry out such a process by modeling a dangling qubit near

a topologically protected edge state or an end spin of a spin chain. Their perturbative approach

offers no analytic limits of a perfect quantum information channel (a proof can be found in the

discussion surrounding Eq. 16 of Ref. 5). However, it offers other insights, including identifying

internal interactions that promote scrambling. This study therefore highlights an important

design criteria: to study quantum information in a quantum material, it must flow and be

picked up within the scrambling time ts of the material or it will be lost.

We therefore need to understand how, as the information propagates, it is subject to scram-

bling by interaction effects [36±38]. Measurements on the target qubit may detect the onset of

quantum chaos caused by the system’s inherent disorder [36,39,40]. Similarly, if the informa-

tion runs into a magnetic impurity acting like an uncontrolled qubit, it may be stolen by it and

never reach the intended qubit [41]. The information could also be taken away by phonons

and spread throughout the host material [42]. So this intermediate stage is simultaneously an

opportunity to study the physics of the host quantum material at a quantum information level

and a constraint on the performance of the communication Ðit limits the distance between

communicating qubits to v/ts.

Given the above design constraints, we next turn to the question; in ideal circumstances,

does a perfect communication channel exist for qubits coupled to Luttinger liquids?

3 Coupling quantum dots and Luttinger liquids to create Unruh-

DeWitt detectors

3.1 Dirac fermions meet qubits

3.1.1 Reframing the Unruh±DeWitt Hamiltonian

Massless Dirac fermions evaluated in UDW detector models have been a promising endeavor

for relativistic quantum information processes [34,43,44]. However, scalar field theories have

been more successful in producing simulations of quantum information channels in relativistic

quantum information [5,7,34]. In this section, we aim to show that bosonization is a tool that

provides a convenient bridge between these two approaches.

Unruh±DeWitt detectors are commonly used when coupling a two-level system to a field

[9]. This can be utilized in one of two ways. Firstly, an observer (detector) experiencing ac-

celeration is subjected to radiation (the Unruh effect [3]) that an inertial observer would not
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be exposed to. The detector would then be in an excited state as it interacts with the ther-

mal bath of radiation. The second usage of UDW detectors for qubit-field couplings exists as

an interaction that passes excitations back and forth between qubits and fields. This excita-

tion can include quantum information in a method known as ªentanglement harvestingº [6].

For this note, we specifically utilize the second scenario, with intent to design field mediated

communication channels through LLs.

In non-perturbative theories, they are most readily studied if the coupling is linear. In

the case of a helical Luttinger liquid (HLL), the field is a 1+1 dimensional Dirac fermion,

but a linear coupling to a Dirac fermion would violate fermion number conservation [34].

Fortunately, when quadratically coupled to this field, the interaction can be modeled as linearly

coupled to a bosonic field, through bosonization. Hence, bosonization is a powerful method

to aid the analysis of UDWs in Luttinger liquids. Specifically, we relate fermions and bosons

at the level of the correlator as this is the result of tracing over the field in the formalism of

quantum channels [5,31]. At the level of the correlator, bosonization is a true duality between

fermions and bosons [45].

To describe UDWs in HLLs, we need to define a physical two-level system and find its

coupling to the HLL. The redundancy in chiral indices of a HLL model gives us a ªspinless-

likeº model [46, 47], but spin is still physically present. Spin-up travels one way around the

edge of the system, our ª+º mover, while spin-down travels the other, our ª−º mover. So the

simplest two-level system would be a spin qubit with a finite spatial extent p that we take to

be approximately Gaussian

p(x , y) =
1p

2πσ2
e
−
�

(y−x)2

2σ2

�

. (1)

If the spin qubit is a single atom, it would presumably have a σ of order the size of the atom,

lattice spacing, and k−1
F . But if synthesized as a quantum dot, σ would be the size of the dot,

and thus much larger in extent than the atomic scale.

Introducing a Dirac delta type switching function χ(t) that provides control over the cou-

pling between the qubit and field, yields a UDW detector Hamiltonian with a z-component

Kondo-like interaction

Hint(t) = χ(t)

∫

R

d y p(x(t), y)Jα,zµα(t)(ψ
²
+(y)ψ+(y)−ψ²

−(y)ψ−(y)) . (2)

Here ψ− (ψ+) denote our spin-down, left-moving (spin-up, right-moving) fermions. This

interaction term assumes the Qdot limit where factors of e±2ikF y have been suppressed as we

restrict σ >> 1
kF
[48]. We will return to this assumption in Sec. 3.3. Notice that Eq. 2

has many familiar properties, but the introduction of the smearing and switching functions

demonstrate the exact form of a UDW Hamiltonian [49]. Since this model is a Kondo-like

model, some may recognize our two-level system as the Kondo-like impurity given by

Jα,zµα(t) = JxzSx(t) + JyzSy(t) + JzzSz(t) (3)

=
J

2
(S+e−iΩt + S−e+iΩt)≡ Jµ(t) . (4)

Where the second equality follows by choosing Jα,z = J X̂α to point along a new X̂ direction

and time dependence generated by Hamiltonian H0 = −gµB B⃗ · S⃗ ≡ ΩSZ with Ẑ perpendicular

to X̂ . We’ve added the magnetic field to show that this system is a two-level system.

An important point to notice here is that the coupling presented above is not exact to

that of a Kondo impurity. We have specifically ignored physical effects such as RG Flow and

Kondo screening. Instead we utilize the dimensionless coupling constant above as having no

quantum corrections for simplicity. However, stress, strain, and temperature have potential to
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|SA〉
UA

ρψ
UB

|SB〉

Figure 3: |Si〉 is the state of the Qdot and ρψ represents the state of the left and right

chiral fermions.

dramatically alter the effective coupling utilized. To realize the experimental systems proposed

in Sec. 4, these theoretical questions need to be further investigated.

Our formulation takes the usual convention of a HLL and implants it into the UDW model

to describe a quantum channel between distant spin qubits communicating via Dirac fermions.

It allows for an elegant promotion to a quantum circuit model by constructing the Hamiltonian

in the following way

H
(r,ν)
int
(t) = Jχ(t)µ(t)⊗O²

νr(t)Oνr(t) , (5)

where ν specifies the interacting spin-qubit (ν ∈ {A, B} in Fig. 1), r ∈ {±}, and we absorb

the smearing functions into the field observables Oνr as is common in detector literature. The

delta-like switching function χ(t), can be seen as the instance of time tν of interaction for

qubit ν such that we can express the coupling as Jν = Jχ(tν) . We can then construct a set of

unitary operators UA and UB that take the form

U (ν) = exp (−iJνµν(t)⊗O²
νr(t)Oνr(t)) . (6)

3.1.2 Unruh±DeWitt quantum channels

It is crucial that a channel utilizing this gate (depicted in the circuit diagram given by Fig. 3)

can propagate the entanglement. If we encode information onto quantum fields through gate

UA at time tA we need to decode that information effectively through UB at some later time

tB. To determine the effectiveness of this channel we can utilize the metric of quantum ca-

pacity. Following the prescription of Sec. IV in Ref. [5] we find that the quantum channel

and subsequently quantum capacities rely on field correlators. Bosonization allows one to re-

place fermionic operators with a bosonic counterpart, which are equivalent at the level of the

correlator [45].

3.2 Bosonizing the Hamiltonian

As mentioned in Sec. 1, our goal here is to evaluate if a quantum channel through our system

has a non-zero channel capacity. One method to explore channel capacity is to find if the states

are separable at any given point in the circuit. If separable states exist, then we are left with

classical information. The channel is then said to be a ªquantum-to-classicalº channel (i.e. the

channel is entanglement breaking [31]). As mentioned previously, the literature points us in

a direction where non-zero capacity quantum channels can be realized through unitary gates.

However, the fields employed for strongly coupled processes are bosonic.

Working in the interaction picture, as we are above, is enabled in bosonization by multi-

plying the fermionic creation and annihilation operators by a phase of e±iv|k|t , so long as our

left- and right-moving bosons in Eq. 8 are massless [50]. Below, we introduce a quick primer

to the bosonization process, while mostly remaining in the interaction picture.

8



SciPost Phys. Core 7, 019 (2024)

When bosonizing our fermionic fields, we utilize the interaction picture and consider vari-

able z with z = −i(x−vt) and Åz = i(x+vt). Without the interaction picture, the point-splitting

process used to evaluate the bosonized forms of our fermionic fields will artificially eliminate

necessary terms. At the level of the unitary gates, we can consider the Schrödinger picture, as

our switching function is of delta form.

Standard bosonization procedures [45, 47, 50, 51] to find bosonized fermionic operators

are of the form

ψ+→
1p
2π

e−i
p

4πφ(z) , ψ−→
1p
2π

ei
p

4π Åφ(z) . (7)

Where φ(z) is a real scalar field given in the interaction picture by

φ(z) =

∫

k>0

dk

2π

1p
2k
[b(k)e−kz + b²(k)ekz] , (8)

Åφ(Åz) =

∫

k>0

dk

2π

1p
2k
[Åb(k)e−kÅz + Åb²(k)ekÅz] . (9)

Consistent with the literature, these fields are a natural result of the mode expansions

ϕ(x) =

∫

dk

2π

√

√ v

2ω(k)
[b(k)eikx + b²(k)e−ikx] , (10)

Π(x) =

∫

dk

2π

√

√ω(k)

2v
[b(k)eikx + b²(k)e−ikx] , (11)

with ω(k) ≡ v|k|. Equation 10 is related to φ through a duel boson ϑ by φ = 1
2(ϕ + ϑ)

and Åφ = 1
2(ϕ − ϑ). Under this formalism, the normal-ordered density operators become

ρ− = : ψ²
−ψ− : = − ip

π
∂zφ which allows us to rewrite our Hamiltonian linearly as

HBos
int (t) = Jν

∫

R

d y p(x(t), y)µ(t)

�

1p
π
(∂zφ + ∂Åz

Åφ)

�

(12)

= Jν

∫

R

d y p(x(t), y)µ(t)

�

1p
π
Π

�

. (13)

We can see here that the right- and left-movers can be combined into a single equation that

provides us with a simple rank-one unitary gate. After including the smearing function into

our conjugate momentum field Π, equation 6 becomes

U (ν) = exp (iJνµν ⊗Πν). (14)

This simple rank-one unitary is nice for transferring information onto and off of the field,

but to build a quantum channel that does not break entanglement we need more.

3.3 A library of gates

3.3.1 Simple rank one unitary gates

We have in Eq. 14 the first gate of our quantum computer. If we consider a channel that

connects Qubit A directly to Qubit B (as described in Fig. 1(a)), then in essence we have

created a channel, which at some point processes classical information. A ªmeasurementº

takes place [31]. In order to effectively transfer entanglement onto and off of our fields we

need to have, minimally, two rank-one simple unitary transformations [5,7],

U (ν) = exp (iJν2µν2 ⊗Oν2)exp (iJν1µν1 ⊗Oν1) . (15)

9
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The first naive attempt at expressing our Hamiltonian as two rank-one unitaries may be un-

derstood better if we ignore the time-reversal symmetry of our system and instead write a new

combination of field densities. More specifically, we set up a toy model to designed to realize

this task. Let us revisit the relationships we discuss in Sec. 3.2. Namely,

ρ+ = : ψ²
+ψ+ : =

ip
π
∂zφ ,

ρ− = : ψ²
−ψ− : = − ip

π
∂Åz

Åφ ,

(16)

which provides us with two field densities that are bosonized in the following way:

ρ = ρ+ +ρ− =
1p
π
∂xϕ ,

j = ρ+ −ρ− =
1p
π
Π .

(17)

Notice now, if we choose our coupling carefully, we can craft an interaction Hamiltonian of

which the bosonized form is

HNaive
int (t) =

∫

R

d yp(x(t), y)(J+µ+(t)ρ + J−µ−(t) j) (18)

=

∫

R

d yp(x(t), y)
1p
π
(J+µ+(t)∂xϕ + J−µ−(t)Π) , (19)

and yields a gate similar to 15 in the form of

U (ν) = exp (iJ−µ− ⊗Π)exp (iJ+µ+ ⊗ ∂xϕ) . (20)

3.3.2 Chiral Luttinger liquid gates

For the naive Hamiltonian, we were explicit about breaking our time-reversal symmetry. The

remainder of the gates in our library we focus on systems that more likely to be physically

realizable but leave the numerical quantum capacity simulations for future work.

Consider for example, our Hamiltonian from Eq. 2. If we were to rewrite this equation

with separated left- and right-mover channels as

HLR
int(t) =

∫

R

d y p(x(t), y)(Jαµα(t)ψ
²
+ψ+ − Jβµβ (t)ψ

²
−ψ−) , (21)

where Jα = 0 for left-movers only, and Jβ = 0 to suppress right-movers then we find a similar

construction to Eq. 12 without the ability to combine the fields as we did previously. From here

we can construct conjugate momentum 1
v ∂tφ and 1

v ∂t
Åφ for right- and left-movers respectively.

Then evaluate an ªall left-moving channelº or an ªall right-moving channelº, yielding the same

form as Eq. 20. Experimentally this construction may be accomplished by restricting how the

Qdot interacts with the HLL or through a chiral Luttinger liquid such as found in the recently

discovered anomalous quantum Hall effect in Moiré heterostructures [25].

3.3.3 Including the cross-terms

Another gate might be found in the cross terms suppressed by the factor of e±2iKF x . If instead

of suppressing these interactions we allow the backscattering terms á la Ref. [48], we gain

10
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coupled degrees of freedom that yield promising unitaries as well. These terms written out

explicitly take the form

HCT
int (t) = Jν

∫

R

d y p(x(t), y)µ(t)(e−i2KF xψ²
+ψ− − e+i2KF xψ²

−ψ+) . (22)

Using the above definitions of our bosonized fermions with added Klein factors to preserve

anticommutation relations of the fermions [45,50,51], we find a bosonized Hamiltonian

HCT
int = Jνµ(t)

�

1

2π
cos
p

4π(ϕ)

�

. (23)

Combining Eqs. 23 and 13 provides a very interesting but non-linear interaction. A unitary

gate

3.3.4 Non-chiral Luttinger liquid gates

Often when considering the gates in Sec. 3.3.3, one wants to include both the spin and charge

sectors. This scenario describes Dirac fermions that are free to spin and propagate in either

direction. Following the usual bosonization prescription, we introduce two bosons ϕ↑ and ϕ↓,
that are related by the charge and spin bosons

ϕc =
1p
2
(ϕ↑ +ϕ↓) , ϕs =

1p
2
(ϕ↑ −ϕ↓) , (24)

as well as chiral fields φc,s and Åφc,s. Using these definitions, we can see that our bosonized

Hamiltonian can be split into two sections, forward-scattering and back-scattering. The

forward-scattering terms are without the factors of e±2ikF x , and simplify using the same point-

scattering methods used in deriving Eq. 13. The forward-scattering bosonized Hamiltonian is

given by

HF
int = Jνµ(t)

�

2p
π
(Πc + ∂xϕs)

�

, (25)

which is of the same form as Eq. 19 but our starting point was 2, so this Hamiltonian preserves

time-reversal symmetry.

Since the fermion fields in the back-scattering (cross-terms) anticommute, we can straight-

forwardly bosonize the fermions. The resulting back-scattering Hamiltonian is

HBS
int = Jνµ(t)

�

1

2π
cos
p

2π(ϕc + ϑs)

�

. (26)

Notice here if we suppress the spin terms (make the system spinless) we retrieve the same

Hamiltonian we would by combining Eqs. 13 and 23. When we consider both spin and charge,

we have two noncommuting observables that could be used to create an arrangement of op-

erators to explore novel quantum channels of information.

3.3.5 Dirac Hamiltonian gates

Another coupling that may be experimentally present is similar to the Kondo-like coupling of

Eq. 2, but instead, a free Dirac fermion according to the Dirac Hamiltonian is coupled to our

spin-qubit as follows

HD
int(t) = Jν

∫

R

d y p(x(t), y)µ(t)(ψ²
+∂xψ+ −ψ²

−∂xψ−) . (27)

11
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Figure 4: Graphene nanoribbons, as proposed by Ref. 11, as a possible scenario for

realizing UDW detectors.

This equation has the well-known bosonized form of [47,50]

HD
int = Jν

∫

R

d y p(x(t), y)µ(t)(Π2 + (∂xϕ)
2) . (28)

Hamiltonians like Eq. 28 have been addressed with great success through perturbative ap-

proaches [34]. Our system, in contrast, provides a unique opportunity to explore the strong

coupling of a quadratic interaction. However, since [ϕ2(x),Π2(x ′)]=2i{ϕ(x),Π(x ′)}δ(x − x ′),
exponentiation into simple unitary gates is not as straightforward.

3.4 Constructing a realistic quantum channel

We have shown several scenarios where the bosonization of a Luttinger liquid leads to uni-

tary gates like that of Eq. 15. Particularly some of these gates that consist of two rank-one

unitaries are of the same form used by Simidzija et al. to simulate coherent information, as

shown in Fig. 4 of Ref. 5. This result demonstrates that coherent information asymptotically

approaches one as the strength of the coupling Jν1 grows with respect to the width of the

Gaussian smearing function σ.

Furthermore, while our latter systems do not produce the same unitary gates as that of

Ref. 5, they are not inherently entanglement-breaking. Future studies of nonlinear Hamilto-

nians, like those of Eqs. 23 and 28, will be needed to understand if the same relationship is

present. Regardless, our toy-model demonstrates a possibility that an electron gas of some 2D

materials has the potential to transport quantum information in a near-perfect way up to some

corrections.

4 Experimental scenarios

There are many scenarios for experimentally realizing a UDW quantum computer. Here we

consider three to give a sense of how they might be designed. The first is to upgrade the

graphene ribbon proposal of Ref. 11 to define gates between the spin qubits and the conducting

channels. The second scenario is to build solid state quantum dots (Qdots) and embed them

in a HgTe/CdTe quantum well. The third scenario is to build transition metal dichalcogenide

(TMD) qubits and place them in a heterostructure exhibiting the recently discovered quantum

anomalous Hall effect phase. Other possibilities include quantum spin chains acting as the

field [35, 52] (they can be viewed as fermions through the Jordan-Wigner transformation),

and silicon nanowires [53].

12
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Table 1: Temperature T , magnetic field B0, electron-spin resonance frequency

fe = γeB0

�

2π, and thermal spin polarization pth = tanh (ħhγeB0

�

2kbT ). In

the previous formulas, γe is the electron gyromagnetic ratio, ħh is the reduced

Planck’s constant, and kb is Boltzmann’s constant. In computing fe and pth we

assume γe = 2π × 28.0 GHzT−1, appropriate for a g = 2 electron, and use

ħhγe

�

2kb = 0.672 K T−1.

T [K] B0 [T] fe [GHz] pth

4.2 1.4 39.2 0.22

4.2 4.5 126. 0.62

4.2 9.0 252. 0.89

2.1 9.0 252. 0.99

Let us review the graphene ribbon scenario proposed in Ref. 11 and assess its potential for

building UDW detectors. Figure 4 presents the scenario: a graphene nanoribbon with gates

applied to trap electrons, leaving conducting channels between the gates. The scenario works

because of the Klein effect that enhances the conduction of Dirac fermions in the channels in-

stead of suppressing it. The speed of electrons in graphene [54] is between v = 0.8×106 m s−1

and 3 × 106 m s−1. Using units on the nanoscale, this translates to a slowest velocity of

v = 1 × 106 nmns−1. The qubit, according to Ref. 11, is about 30 nm in length. This qubit

size suggests we take the smearing length to be λs = 30 nm. Hence, for a gate-localization

quality Q loc ≈ 1 we require a switching time of roughly tsw = λs/v = 3× 10−5 ns= 30 fs.

There is precedent for achieving electrical switching on such a fast timescale using sub-

100 fs light pulses, and we can build on this precedent to design our quantum computer. One

approach would be to employ a small-area metal electrode as an electrical gate to inject an

electron into the qubit, with the gate fabricated on a thin tunneling (i.e. oxide) gap beneath a

semiconductor dot. Using the non-linear electrical conductivity of the tunneling gap, electrons

could be rapidly injected into the gate using terahertz pulses, as in junction-mixing scanning-

tunneling microscope experiments [55±59]. Another approach would be to inject electrons

into the gate using optical pulses illuminating a nearby photoswitch [59±62]. While it would

be extremely challenging to build electrical waveguides good enough to achieve sub-100 fs gate

switching using voltage pulses alone, we note that recent progress in fabricating nanodiodes

[63] may make such ultrafast electrical switching feasible in the near future.

In addition to fast switching times, we also need to consider initialization. For initial-

ization, one would need the electron spin of the qubit to be fully polarized, which in turn

requires working at high field and low temperature. Table 1 shows the thermal spin polar-

ization pth expected at various temperatures and fields. Also shown is the associated electron

spin resonance frequency for a g = 2, donor-bound electron. Employing cryogenic chip-scale

microwave sources [64,65] operating at cryogenic temperatures [66]would allow one to work

at magnetic fields up to B0 = 9 T and therefore at a relatively high temperature of T = 4.2 K

(liquid helium) or 2.1 K (pumped liquid helium). At B0 = 9T and T = 2.1 K the electron-spin

polarization is pth = 0.99, and the electron spin is nearly perfectly initialized.

The previous experimental scenario would place a UDW detector in a non-chiral Luttinger

liquid. To place it in a helical Luttinger liquid (HLL), we could consider HgTe/CdTe quantum

wells in their quantum spin Hall effect phase [67, 68] and implant quantum dots acting as

qubits close to the edge states. We consider this case in detail in our simulations below (see

Figs. 6 and 7). Our edge-state simulations predict a velocity of v = 0.54×106 nmns−1, slower

than graphene by a factor of 2. This scenario would thus require a switching time of about

55 fs, somewhat less demanding than the first scenario.
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The qubits in the HgTe-CdTe scenario could be either chemically synthesized Qdots em-

bedded in HgTe during deposition, doped silicon Qdots analogously embedded in the HgTe,

or Qdots defined by gate electrodes. One could then employ gate-induced initialization and

tunneling readout of the electron spins in the Qdots [69,70], as discussed above.

Working with gate-defined Qdots in HgTe is convenient, but short electron relaxation times

are a concern. Silicon Qdots will require more work to embed into the HgTe quantum well,

but shallow dopants in silicon are known to be excellent qubits [69, 70]; T1 decreases with

field [71±73], but is still favorably long, T1 ≈ 50 ms, at T ≈ 100 mK at B0 = 5 T in natural

abundance silicon [73].

To realize UDW detectors in a chiral Luttinger liquid we suggest a third scenaio Ð a transi-

tion metal dichalcogenide (TMD) sample consisting of AB-stacked MoTe2/WSe2 heterobilay-

ers in which a quantum anomalous Hall(QAH) effect was discovered recently [25]. TMDs are

potentially excellent materials for quantum information applications owing to the naturally

occurring low density of nuclear spins. One candidate for qubits are the antisite defects pro-

posed in Ref. 74. These defects can occur in WSe2, suggesting the experimental scenario in

Fig. 5.

We can estimate the velocity of the edge electrons in the QAH phase from the bandwidth

W and Moiré lattice constant aM. These are expected to take the values W ∼ 1 to 100 meV

and aM ∼ 5 to 10 nm [75]. Assuming these are correlated, we can take W = 1 meV and

aM = 10 nm to get

v ∼ W

ħhπ
�

aM

= 5000 nm ns−1. (29)

The smearing length λs will have to be at least aM to make use of the nearly flat bands of

the Moiré system. Taking it to be 10 nm, we get a switching time of tsw = 2 ps. Hence,

Moiré-pattern materials have significantly slower electrons and longer switching time. This

time scale places it in the vicinity of picosecond electrical pulses such as those achieved in

nanoplasmas [76], junction-mixing scanning-tunneling microscope experiments [55±59], and

optically driven photoswitches [59±62].

In the above scenarios a conservative estimate was obtained for the time scales needed to

operate the gate. These time scales ranged from 50 fs to 2 ps. In each case, significantly longer

QA
H Ed

ge
Sta

tes

J
1(x, t)

J2
(x,

t)

Antisi
te De

fects

Optical Control

Optical Control

WSe2

MoTe2

Nuclear-spin-free Substrate

Figure 5: TMD scenario for realizing UDW detectors. Here we envision qubits formed

from antisite defects in WSe2 as proposed in Ref. 74 and the quantum anomalous Hall

effect edge states as discovered in WSe2/MoTe2 heterostructures. This heterostruc-

ture is then placed on a substrate which is ideally not hBN due to the presence of

nuclear moments in this material. The UDW detector scenario is then to couple the

qubits to these edge states with a controllable couplings J1(x , t) and J2(x , t).
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Figure 6: Simulation of HgTe QW edge state on a 200×400 atom (130×260 nm) bar.

What is shown is the density of states summed over an energy window of −10meV

to 10 meV.

time scales would still enable the entanglement of qubits coupled to the field, but the theoreti-

cal description of these cases breaks down in this limit. What ultimately limits the experiment

is a smearing length of order the coherence length, such as the 2 µm coherence length of edge

states in HgTe QWs [77]. At this length scale, the switching time-scale estimates above would

be increase by several orders of magnitude, possibly reaching nanoseconds. At this times scale,

electrical gating can be straightforwardly implemented using electrical waveguides and volt-

age pulses.

By conducting experiments inspired by these scenarios, strong evidence could be obtained

for the realization of UDW detectors, which could be used to study of quantum information

flow in condensed matter systems and potentially implement all-to-all connectivity in a solid-

state quantum computer. Furthermore, the proposed designs could be operated, with consider-

ably less stringent switching requirements, as a long-range all-to-all connected qubit network.

This network would, by itself, already be a singular technical advancement.

5 Simulating the gated edge state

In Sec. 3, we established gates describing Unruh-DeWitt detectors in Luttinger liquids and

identified those that allow for non-zero quantum information channels. Conveniently, the ma-

terials that exhibit the phenomenon associated above are achievable and well understood in

a laboratory setting. If the velocity of the edge mode is low enough, it will allow for electri-

cal control of the gates, though this will require picosecond electronics such as those using

nanoplasmas [76]. We aim to simulate such control in this section with the practical conse-

quences of achieving electrical control an all-to-all connected solid-state quantum information

processors or the study of quantum information flow in quantum materials.

Among the three experimental scenarios presented in the previous section, here we will

consider the case of a CdTe-HgTe-CdTe quantum well (HgTe QW) in its quantum spin Hall

phase whose microscopic parameters are well-known from experiment. It has topologically

protected HLL edge states that govern electron transport with an insulating bulk. These states

are coherent over [77] 2 µm, a scale achievable with simulation.

The simulations are carried out using the Bernevig-Hughes-Zhang(BHZ) model [78] placed

on a lattice following Ref. 79. It has a mass parameter M , a band width controlling parameter

ε, and a hybridization parameter λ. The tight-binding Hamiltonian on the square lattice with

periodic boundary conditions is

HTB(k) =
�

M − ε(cos kx + cos ky)
�

Γ5 +λ sin kxΓx −λ sin k yΓy , (30)

where, using two sets of Pauli operators σx ,y,z , τx ,y,z , acting on spin and orbital indices re-

spectively, Γ5 = I ⊗ τz , Γx = σz ⊗ τx , and Γy = −I ⊗ τy . The three parameters map to the

parameters in the BHZ continuum model via ε → −2B, M → −4B + M , λ → A, where the
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Figure 7: A new electronic quantum bus for spin qubits. a A gated region moves

the edge state. b A local magnetic field penetrates the edge state in two pieces. c

A snapshot of a 12 qubit all-to-all connected device, 10 qubits at 15.0 V local gate

(appear dark in these electron density plots), two qubits at 0.0 V gate exposed to the

edge state. d A 20 qubit device with gates placed in a regular grid to create trapped

electron qubits. e Releasing the gate between two of the qubits and center region

enables communication.

M in the Lattice model of Ref. 79 is a different parameter than the M in the continuum BHZ

model. We fix these parameters to those of the sample described by the 9th row of Table 1

in Ref. 80: M = −14.6 meV, A = 0.55 eV, B = −1.87eV so that ε = 3.74, M = 7.4654, and

λ = 0.55. Finally, we switch to open boundary conditions, add a gate potential and local

magnetic fields to simulate the presence of a qubit, and generate sparse Hamiltonian matrices

of size 320, 000 × 320, 000 whose low energy eigenstates can be obtained using the Arnoldi

method on a 200 x 400 lattice of real dimensions 130nm× 260 nm.

An example of these edge states in a simulation is shown in Fig. 6. This simulation reveals

the density profile of the edge state for states between -10 meV and 10 meV. It does so by adding

up the magnitude squared of the eigenstate wave functions on each site. The results shows

edge states with a width of about 20 nm in the inset and illustrates propagation directions at

the top with spin up moving to the right and spin down moving to the left.

As shown in Fig. 7(a), if we apply a gate voltage on the edge, we do not destroy the edge

state but merely force it to propagate around the gated region. Namely, a gate can be used to

programmatically move the ªwiresº around. In this figure, we used a gate voltage of 15 V to

produce the semicircular dark region.

The above simulation could be upgraded to show quantum transduction by placing a spin

qubit on the edge, which is represented by a localized magnetic field in the simulation shown

in Fig. 7(b), where color denotes the spin direction, we see that the edge state is penetrated

at the location of the qubit. This effect is consistent with the ªKondo Insulatorº phase induced

by a strongly coupled spin impurity on the edge of quantum spin Hall insulators [81]. In

HgTe QW and other quantum spin Hall insulators, this penetration of the edge state has likely

been observed by the loss of coherence or finite Hall resistance due to spin impurities lying

in the vicinity of the edge. The edge states are known to have a coherence length of [77] 2

µm. But the quantum dot scenario would engineer such behavior and place it under control

so long as impurities are very sparse and the coherence length is longer than the edge state,

as assumed in this simulation. With a cleanly penetrated edge state, quantum information

carried by electrons will not pass by the qubit and instead terminate in or emanate from the

qubit introducing a strong coupling between the qubit and edge state.
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We now use the simulation to demonstrate all-to-all connectivity. In Fig. 7(c), we placed

12 cavities around the edge of the sample, each with a local gate controlling their coupling to

the edge state, each capable of housing a Kondo-like impurity. We selectively enable edge state

propagation to/from two of the cavities. Due to the quantum information transmissibility of

this channel, turning this coupling on for a short switching time, as discussed in the previous

sections, enables the transfer of quantum information between the hypothetical qubits without

allowing this information to spread far beyond the qubit during the application of the gate.

Hence, in principle, this approach further promises applications of high-fidelity gate operations

on just these two cavities, for the edge state circumnavigates all of the other cavities.

In practice, there is an engineering challenge to making qubits that are good at penetrating

the edge state to enable high-fidelity gates. One option is to study different spin impurities

placed on the edge states and study them using scanning tunneling spectroscopy. Another is

to work with Qdots and exploit the many years of research that have gone into engineering

their properties. This approach requires designing a suitable dot that can penetrate the edge

state (a possibility due to the long time an electron spends in the dot [82]).

An alternative device is shown in Fig. 7(d). Here gates at 15.0 V create the dark regions and

trap the electrons into 20 Qdots surrounding the outside of the system. Namely, this system

replaces the proposed Si Qdots of 7a-c with trapped electrons. If now a gate is altered near

two of these dots (Fig. 7(e)), they connect with the grey region in the middle which holds

conducting edge states that propagate on the boundary of this interior region. Similar to 7(c),

this connection translates into a gate operation between just the two qubits as it is turned on

and off. But now, the concern of whether the dot penetrates the edge state is replaced with

the degree to which we can control the tunneling of electrons in and out of the Qdots.

6 Future investigations

We focused the experimental proposal on HgTe quantum wells because these are well-known

and studied. But they are also hard to synthesize. Alternative materials include GaAs quantum

wells in large magnetic fields exhibiting the quantum Hall effect [83], Moiré pattern materials

exhibiting either the quantum anomalous Hall effect or quantum spin Hall effect [25], and

even ultra-clean single-wall nanotubes suitable for quantum information applications.

Beyond the engineering opportunities, we find a large list of theoretical gateways opened

through this exploration. Some of these include; calculating channel capacities of novel quan-

tum information channels, investigating and simulating the balance of the coherence lengths

to our gaussian-like time scales of the switching function, and understanding the zero modes

of our bosonization formalism and how that may play a role in quantum information prop-

agation. Furthermore, theoretical explorations into systems exploiting atomic quantum dots

implanted into Bose-Einstein condensates have been carried out in Refs. 84 and 85. The atomic

quantum dots behave as UDWs, similar to our own, and exhibit decoherence that compares

analogously to the decoherence of quantum information in an expanding cosmological model

of the universe. Extensions to our work could provide an information theoretic approach to

understand this problem deeper.

7 Conclusion

In this letter, we aimed to propose an experimental approach coupled with a theoretical un-

derstanding of a novel quantum computer. The Unruh-DeWitt detector model was deployed

as a means to explain quantum information metrics for the interaction between our Qdots and
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helical Luttinger liquid. This unification provided a library of unitary gates that allow us to

process quantum information through our system. To understand the potential of these gates

we evaluated the simplest ªtoy-modelº like gates and demonstrated they produce well known

results of high-capacity quantum channels. We showed variations in the theory that would

provide channels for processing quantum information in gates that more realistic physically

and that are not inherently entanglement-breaking.

Furthermore, we showed that the helical Luttinger liquid HeTe, with a controlled delta-like

interaction of a Qdot CdTe, gives us an experimental vision of how these Dirac fermions can

propagate as flying qubits. Further investigations are being carried out to not only bridge the

gap between these previously disconnected fields of physics but to understand how connecting

them in the methods presented in this paper can lead to new and exciting physics.
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