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Quantum computers and simulators promise to enable the study of strongly correlated quantum systems. Yet,

surprisingly, it is hard for them to compute ground states. They can, however, efficiently compute the dynamics

of closed quantum systems. We propose a method to study the quantum thermodynamics of strongly correlated

electrons from quantum dynamics. We define time-averaged classical shadows (TACS) and prove it is a classical

shadow(CS) of the von Neumann ensemble, the time-averaged density matrix. We then show that the diffusion

maps, an unsupervised machine learning algorithm, can efficiently learn the phase diagram and phase transition

of the one-dimensional transverse field Ising model both for ground states using CS and state trajectories using

TACS. It does so from state trajectories by learning features that appear to be susceptibility and entropy from a

total of 90 000 shots taken along a path in the microcanonical phase diagram. Our results suggest a low number

of shots from quantum simulators can produce quantum thermodynamic data with a quantum advantage.
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I. INTRODUCTION

Simulation of strongly correlated electrons in the context

of quantum chemistry and condensed matter physics is one

of the potential areas in which quantum computers will have

a significant advantage over their classical counterparts [1–3].

Strong interaction between the ostensibly simple electrons can

give rise to novel phases, including high-temperature super-

conductivity [4,5], strange metallic behavior [6], fractional

excitations [7], and quantum spin liquids [8]. Condensed

matter physics aims to understand these novel behaviors

by studying their phase diagrams and phase-defining fea-

tures. However, failure of perturbation theory and exponential

scaling of the Hilbert space for strongly correlated elec-

trons presents a formidable challenge to classical simulation

methods such as exact diagonalization, density matrix renor-

malization group (DMRG) [9–11], quantum Monte Carlo

[12], and dynamical mean-field theory[13]. Whereas, this

same challenge provides an exciting opportunity for near-term

quantum computers.

Harnessing the power of a quantum computer to simulate

quantum systems [14] requires (i) algorithms that can be ex-

ecuted in a reasonable time and (ii) the ability to learn from

quantum experiments without exponentially many measure-

ments. Studying the phases via ground state preparation is a

QMA-complete problem [15–19], which cannot be carried out

in a reasonable time, even with quantum resources. However,

performing dynamics on a quantum state is known to be a

*These authors contributed equally to this work.

BQP-hard problem [20,21], possible within polynomial time.

Likewise, it has been shown that shadow tomography [22]

methods such as classical shadows (CS) [23–25] are effec-

tive at predicting properties using very few measurements.

Thus, if we could combine dynamics simulations and classical

shadows, we would have an efficient algorithm to simulate

condensed matter systems.
We need to prepare low-energy initial states to use dynam-

ics to simulate the dynamics of condensed matter systems and
exploit quantum ergodicity [26]. Although preparing ground
states of local Hamiltonian on a physical lattice is a challeng-
ing problem on a quantum device, it is always possible to
prepare some low-energy state with a constant-depth circuit
[27,28]. Ergodicity then provides a link between statistical
averages and time averages obtained from the dynamics of the
low-energy state. It is important that the observables of inter-
est, such as the order parameter, equilibrate before the qubits
decohere. Nevertheless, rapid equilibration for most local ob-
servables is a feature shared by many interacting quantum
systems [29–31]. Thus equilibrium dynamics of low-energy
states appear to be a promising route to studying equilibrium
quantum phases and phase transitions.

In this manuscript, we present an algorithm for identifying

phase diagrams and phase transitions of strongly correlated

systems motivated by how physical quantum systems operate.

It consists of (i) identifying an initial state, (ii) generating state

trajectories by evolving this state in time, (iii) using shadow

tomography to convert the quantum state to classical data,

and (iv) applying unsupervised machine learning methods to

discover phases of matter and their phase transitions [32–41].

A schematic overview of our approach is shown in Fig. 1.
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FIG. 1. Schematic overview of our study. (a) Classical shadows (CS) of ground states and time-averaged classical shadows (TACS) from

dynamics of a time-reversal invariant GHZ state are generated using quantum simulation. (b) The classical data from quantum simulation is

then fed into diffusion maps, an unsupervised machine learning algorithm to learn the phases.

We obtain numerical results using diffusion maps [42,43],

an unsupervised machine learning (UL) algorithm [44,45] to

learn phase features from unlabeled data. First, we bench-

mark diffusion maps on CS data from ground states of

a 100-qubit one-dimensional transverse field Ising model

(1DTFIM) simulation. Diffusion maps identifies the magnetic

phase transition, its continuous nature, and the magnetization

behavior as a function of the magnetic field (see Sec. II)—

another machine-learning-from-CS success story [23–25,46].

Generalizing CS to time-averaged CS (TACS), a shadow to-

mographic [22] representation of the time-averaged density

matrix [26], we then show, in Sec. III, on a 20 qubit 1DTFIM,

diffusion maps also identify the quantum critical region and

crossovers along a path in the microcanonical phase diagram

from a total of 90 000 shots on state trajectories. Diffusion

maps do so efficiently by learning features from TACS that ap-

pear to be susceptibility and entropy. Hence, we can efficiently

study the phases and phase transitions of strongly correlated

electrons by quantum-simulating state trajectories.

II. VON NEUMANN’S MICROCANONICAL ENSEMBLE

A central goal of quantum computing is to build qubits that

are completely isolated from their environment. While this is

not the case today, the current development of quantum error

correction techniques [47,48] promises to have noise-resilient

logical qubits in the future. Simulating quantum systems on a

quantum computer will therefore take place within the micro-

canonical ensemble. But quantum microcanonical dynamics,

the evolution of a closed quantum system under Schrödinger’s

equation, does not directly produce the microcanonical en-

semble.

Following von Neumann’s 1929 paper [26,49] on the quan-

tum ergodic theorem, it is straightforward to derive a link

between time averages and statistical averages using density

matrices. Assuming we start from an initial state |ψ (0)〉 and

evolve under a Hamiltonian H via a quantum circuit algorithm

to |ψ (t )〉, the equilibrium distribution is captured by the von

Neumann ensemble, the time average of the density matrix

ρvN = 1

T

∫ T

0

dt |ψ (t )〉〈ψ (t )| −−−−→
T →∞

ω

=
∑

n

Pn|ψ (0)〉〈ψ (0)|Pn, (1)

where Pn is a projector onto the nth degenerate subspace of the

energy eigenvalues, i.e., Pn = ∑

k∈n |Ek〉〈Ek|. The T → ∞
limit, obtained in exponential time [26,31,50,51], results in

equilibration of all observables. Existence of ρvN results in

the ergodic principle that time averages of observables should

be captured by the statistical averaging with respect to ρvN .

Specifically, in the Schrödinger picture,

〈O〉T = 1

T

∫ T

0

dt〈ψ (t )|O|ψ (t )〉 (2)

= 1

T

∫ T

0

dtTr(|ψ (t )〉〈ψ (t )|O) (3)

= Tr(ρvN O) −→
T →∞

Tr(ωO), (4)

where again the T → ∞ limit produces equilibration in the

sense that they are indistinguishable with respect to observ-

able O [31]. Thus the time-averaged density matrix is a link

between time averages and statistical averages governed by

the von Neumann ensemble ρvN , a link that holds regardless

of whether the system equilibrates.

The connection to Boltzmann’s microcanonical ensemble,

obtained by quantizing the classical microcanonical ensem-

ble, is achieved by taking the thermodynamic limit, measuring

only coarse-grained observables, requiring nondegenerate en-

ergy level spacings/gaps, and considering “typical” initial
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states. The coarse-grained observables used by von Neumann

were a commuting set of generators of global symmetries,

a restriction more recently generalized [52] as part of the

development of quantum thermodynamic resource theories

[53]. The typical initial states were the first recorded use of

typicality arguments [49]. Under these circumstances, von

Neumann obtained

ω ∼ ρmc = 1

�

∑

E<En<E+�

|En〉〈En|. (5)

Namely, for the purposes of computing Tr(Oω), there is no

difference between using ω and ρmc, a maximally mixed

state within an energy window [E , E + �] containing �

states. Von Neumann extended this claim to a second ensem-

ble, ρ ′
vN = |ψ (T )〉〈ψ (T )|, that also satisfies ρ ′

vN ∼ ρmc. The

equivalence to ρmc is also readily proven with the seemingly

stronger requirement that each eigenstate satisfies the eigen-

state thermalization hypothesis [54–56]. So, in this way, ρvN

reproduces ρmc.

A central new ingredient in von Neumann’s approach to

describing the microcanonical ensemble is the initial state,

which is never fully forgotten under a unitary evolution. For

each initial condition, it’s necessary to check whether the time

series was run long enough for relevant observables to reach

equilibrium. The same observable will equilibrate at different

times depending on the initial conditions. It turns out, this time

depends on the effective dimension given by deff = 1/
∑

p2
k ,

where pk = | 〈ψ | |Ek〉 |2 [50,51]. Here, the overlaps pk mea-

sure how many energy eigenstates have a significant weight in

|ψ〉. Remarkably, a large effective dimension results in rapid

equilibration. Furthermore, there is a bound on the equilibra-

tion time given by the second largest pk if it is significantly

smaller than 1/deff [50]. The distribution of the pk’s likely also

affects equilibration times [57]. These arguments suggest we

choose initial conditions that exhibit a small overlap with most

energy levels and or a macroscopic occupation of a single

energy level.

Because we will use a machine learning method as part

of our study of von Neumann’s microcanonical ensemble, we

need to compare it to what we already know to validate the

approach. In the next section, Sec. III, we will turn to a CS

data-driven ground state before continuing to our TACS data-

driven thermodynamic study in Sec. V.

III. GROUND STATE DATA

To verify our approach to phase classification and

phase-defining feature identification, we first apply it to

ground states of the ferromagnetic 1DTFIM defined by the

Hamiltonian:

H1DTFIM = −
∑

〈i, j〉
ZiZ j + hx

∑

i

Xi, (6)

where 〈.〉 denotes nearest neighbors, Zi is the Pauli Z op-

erator, and hx is a parameter proportional to the transverse

magnetic field. At zero temperature, this model has a ferro-

magnetic phase for |hx| < 1, and a paramagnetic phase for

|hx| > 1. The ground state study uses diffusion maps to detect

the second-order phase transition at hx = 1 for a 100 site

1DTFIM. The ground states were generated using density

matrix renormalization group (DMRG) [9–11] with ITENSOR

package [58]. Training datasets were generated using two

kinds of measurements on these ground states: (i) compu-

tational basis measurements to obtain the Z dataset and (ii)

measurements on a random Pauli basis to obtain the CS

dataset.

A. Classical shadows

Obtaining any meaningful information from a quantum

computer requires performing measurements on a quantum

state, which is destructive to the quantum information by

nature. Since the dimension of the Hilbert space increases

exponentially in the number of qubits, a naive strategy to learn

the state requires an exponentially large number of copies.

Aaronson [22] introduced an alternative method using the

notion of shadow tomography, an approximate classical de-

scription of the quantum state, in which M properties of a

quantum state can be estimated with error ε by only O(
log4 M

ε2 )

copies of the state. We can think of a shadow as an approxi-

mation of a quantum state ρ by summing over measurement

outcomes x, obtained by performing measurements on bases

b for a quantum state x, i.e.,

S[ρ] =
∑

b,x

P(b)Pb,xρPb,x, (7)

where Pb,x is a projector onto the measurement outcome x on

basis b, and P(b) is the probability of choosing b.

Based on this notion, Huang et al. [23–25] devel-

oped an algorithm called classical shadows and showed

that it is highly successful at learning the properties of a

many-body system. Two kinds of measurement protocols

were proposed to construct classical shadows- (i) random

Clifford measurements on the entire Hilbert space and (ii)

random single-qubit Pauli measurements. Protocol (ii) re-

sults in very shallow measurement circuits and thus is more

suitable for the NISQ-ERA [59] hardware. After measuring

each of the qubits in some random Pauli basis X , Y , or Z

with outcomes ±1, the post-measurement wavefunction is

given by the product state |s(n)〉 = ⊗L
l=1 |s(n)

l
〉. Here, |s(n)

l
〉 ∈

{|0〉, |1〉, |+〉, |−〉, |i+〉, |i−〉} is a Pauli basis state to which

the lth qubit has collapsed. The classical shadow SN [ρ] is

obtained by summing over N such randomized measurement

outcomes as follows [also see Fig. 2(b)]

SN [ρ] = 1

N

N
∑

n=1

|s(n)〉 〈s(n)| (8)

= 1

N

N
∑

n=1

∣

∣s
(n)
1

〉 〈

s
(n)
1

∣

∣ ⊗ · · · ⊗
∣

∣s
(n)
L

〉 〈

s
(n)
L

∣

∣ . (9)

The underlying quantum state ρ can be approximated by

adding the reduced classical shadows [see Fig. 2(a)]. This sum

simplifies to the following expression from Ref. [23–25]

ρ ≈ ÃN (ρ) = 1

N

N
∑

n=1

Ã
(n)
1 ⊗ · · · ⊗ Ã

(n)
L , (10)

where

Ã
(n)
l

= 3
∣

∣s
(n)
l

〉〈

s
(n)
l

∣

∣ − I. (11)
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FIG. 2. Diagrammatic description of classical shadows showing

a linear relationship between SN [ρ] and estimator ÃN [ρ] ≈ ρ. (a) The

full-density matrix ρ can be approximated by summing over reduced

classical shadows with a coefficient that grows exponentially in the

number of remaining qubits. (b) A classical shadow SN [ρ] is ob-

tained by summing over N measurement outcomes on random Pauli

bases. For a given N , a reduced density matrix, that involves smaller

coefficients in the expansion, can be approximated more accurately

compared to the full density matrix.

The definition of SN (ρ) presented above is different from

Refs. [23,24] which defines it to be the dataset of shots itself

and not the density matrix obtained from these shots. But both

definitions are complete for Fig. 2 (whose derivation from

tensor network diagrams is presented in Appendix A) shows

the density matrix SN (ρ) defined above is linearly related

to the estimator ÃN (ρ) of the quantum state ρ obtained by

Refs. [23–25]. Hence, the two definitions are informationally

equivalent.

Although estimating the exact density matrix requires

N → ∞, we still desire to predict various linear as well as n

onlinear functions of ρ [e.g., Tr(Oρ) and Tr(ρln(ρ)) respec-

tively]. This can be achieved with N ∝ ln(L)4k/ε2 copies of

the state, where k is the locality of operator O [46]. It was

shown in Ref. [24] that classical machine learning algorithms

can efficiently predict the ground state properties of gapped

Hamiltonians in finite spatial dimensions after learning the

classical shadows from a training set. An example of interest

is classifying the quantum phases of matter. Classifying the

symmetry-breaking phases is conceptually simple because it

involves calculating tr(ρO) for some k-local observable O,

such that tr(ρO) � 1 ∀ ρ ∈ phase A and tr(ρO) � −1 ∀ ρ ∈
phase B. Here, phase A includes all the symmetry-preserving

states whereas B includes the symmetry-breaking ones.

In contrast to classifying symmetry-breaking phases,

capturing continuous phase transitions and classifying

topological phases involves nonlinear-in-ρ observables like

critical exponents and entropy, which are harder to estimate

than linear observables. Learning such nonlinear functions

requires an expressive ML model. A central object in kernel-

based ML is the kernel function, a local similarity measure in

the feature space where the samples live. Ref. [24] proposed

a kernel based on mapping from classical shadows to a

high-dimensional feature space that includes the polynomial

expansion of many-body reduced density matrices. Learning

nonlinear functions requires access to k-body reduced density

matrices, where k may be large, but with enough shots,

classical shadows can accomplish this. Using such a kernel,

Ref. [24] found a rigorous guarantee that a classical ML

algorithm can efficiently classify phases of matter, including

the topological phases. We will employ this kernel to study

the continuous phase transition in the 1DTFIM.

B. Machine learning method: diffusion maps

Let’s now turn to the final step in our approach: applying

an unsupervised machine learning method called diffusion

maps [42,43] to extract features from the shadow tomog-

raphy data. A diffusion map is a nonlinear dimensionality

reduction technique that relies on learning the underlying

manifold from which the data points have been generated.

Recently, this method was used to identify phases and phase

transitions in systems with complex order parameters, which

are difficult to learn using linear methods (such as principal

component analysis (PCA)). Examples of such phase learning

studies include: topological phases and phase transitions [39],

incommensurate phases, and many-body localized phases in

quantum systems [41], and topological quantum phase transi-

tion [40].

In the application of diffusion maps, we imagine a random

walk on a dataset X (x1, x2, . . . , xS ), where the xs are esti-

mators ÃN (ρ) (see Sec. III A) of density matrices ρ obtained

from different points in the phase diagram. These estimators

are collections of shots arranged into N × L matrices; here, L

is the number of qubits. The transition probability P( j\i) of

jumping from xi to x j in a single “time step” is proportional

to the kernel function k(xi, x j ), a non-negative similarity mea-

sure between the two data points. Here we use the classical

shadow kernel function prescribed in Ref. [24], defined to be

for two points x and x̃ in the dataset

k(shadow)(x, x̃) = k(shadow)(ÃN (ρ), ÃN (ρ̃))

= exp

⎛

⎝

N
∑

n,n′=1

Ä

N2
exp

(

γ

L

L
∑

l=1

Tr
[

Ã
(n)
l

Ã̃
(n′ )
l

]

)

⎞

⎠.

(12)

γ and Ä are hyperparameters.This kernel measures the local

similarity between x and x̃ by comparing the trace distance

between the CS estimates of all k-reduced density matrices.

For the diagonal components (x = x̃) of the kernel matrix, the

trace distance between the k-reduced density matrices is the

2nd Renyi entropy. We then construct a transition probability

matrix P such that

P( j\i) = k(shadow)(i, j)
∑

s k(shadow)(i, s)
. (13)

After t time steps of the random walk, the transition probabili-

ties are given by the matrix Pt , where Pt
i j gives the probability

of going from xi to x j in t time steps, it’s a sum of the prob-

abilities associated with all of the possible paths to go from

xi to x j in t time steps. As t increases, the diffusion process

unfolds, where data points situated along the overall geomet-

ric structure of the dataset become more strongly connected

because of the abundance of strongly connected intermediate

points along the way.
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Given this random walk, we can define a “diffusion dis-

tance” to quantify this idea of connectivity between two data

points:

Dt (xi, x j )
2 =

S
∑

s=1

∣

∣Pt
is − Pt

s j

∣

∣

2
, (14)

where the bigger the diffusion distance, the weaker the con-

nection between them. This allows us to map the data points

onto a new ‘diffusion space’ so that the diffusion distance in

data space is equal to the Euclidean distance in this new space.

Following Ref. [42], we will do so with the map:

xi → yi =
[

λt
1ψ1(i), λt

2ψ2(i), · · · , λt
S−1ψS−1(i)

]

(15)

where λk and ψk are eigenvalues and right eigenvectors of the

matrix Pt , ψk (i) is the ithe element of the kth eigenvector.

Then the diffusion distance is,

D2
t (xi, x j ) = |yi − y j |2 =

S−1
∑

k=1

(

λt
k

)2
[ψk (i) − ψk ( j)]2. (16)

Plotting data in this new space provides an intuitive geometric

picture of the data manifold.

The map provides several features we can exploit when in-

terpreting the data. In Eqs. (15) and (16) the k = 0 component

is ignored because the leading eigenvector, ψ0(i) = 1√
S
, λ0 =

1, is constant for all i by the Perron-Frobenius theorem,

but this constant eigenvector impacts the other eigenvectors.

We note that adding a constant term ψk (i) → ψk (i) + C to

all other eigenvectors preserves the diffusion distance. Ad-

ditionally, Eq. (16) suggests a dimensionality reduction, as

the terms with bigger λk will dominate the sum increasingly

as t → ∞. So plotting the data xi in the truncated space

[λt
1ψ1(i), λt

2ψ2(i), λt
M . . . , ψM (i) with M determined by keep-

ing only the significant eigenvalues λm � λM+1, implies they

are accurately separated by distance Dt (xi, x j ). Lastly, we

see that t is arbitrary, and choosing a different t rescales the

lengths of each component of the vector y. Hence, the data

exists on a hyperplane in Euclidean space up to a certain shift

in the origin and a one-parameter rescaling of the axes.

So, using the properties of the diffusion space, we can

define diffusion coordinates dc1(i) = A(ψ1(i) + C), dc2(i) =
B(ψ2(i) + C), . . . that map the data xi onto a Euclidean space

that through the choice of constants A, B,C, . . . allow us to in-

terpret the coordinates of each point and visualize the geometry

of the data.

IV. PHASE CLASSIFICATION OF GROUND STATES

For the ground state study, we used two datasets, one the

computational basis measurements and the other generated

via CS tomography. The first (Z dataset) contains qubit mea-

surements only along the Z axis [in Eq. (7), P(b) = 1 for

b = Z , P(b) = 0 for all other b]. While the other (CS dataset)

has randomized Pauli measurements using the CS method

[P(b) = 1
3

for b ∈ {X,Y, Z}]. Both of them contain 200,

100-spin 1DTFIM ground state shots for each state obtained

from different hx values (hx ranging from 0.1 to 100). Since

the Z magnetization is the order parameter for TFIM, the

FIG. 3. Learning phases from ground state (CS and Z) data.

(a) and (c) show the ten largest eigenvalues of the P matrix (ex-

cluding the trivial k = 0) for (a) Z data and (c) CS data datasets.

(b) Z data points in 5D diffusion space visualized in 2D, using metric

MDS. Clustering clearly emerges based on the two phases of the

model. (d) CS data points in 2D diffusion space, the figure reveals

the symmetry-breaking phase transition. In this case, there is a direct

correlation of relevant parameters, the z magnetization and the hx

values, with machine-learned diffusion coordinates dc1 and dc2, re-

spectively. Notice the CS data show one cluster in (d) with nontrivial

geometry associated with the critical point, while the Z data show

two clusters in (b) with trivial geometry and no understanding of the

critical point.

unsupervised learning algorithm should be able to learn the

phases of the model from the Z dataset. Using this knowledge,

we compare the Z dataset and the CS data to see if the UL

algorithm can successfully identify phases in each case and if

so how it does so.

By deploying diffusion maps armed with the shadows

kernel function in Eq. (12), utilized for both data sets as our

UL model, we are able to identify the phases from both the Z

data and the CS data. In both cases, we set Ä = 1, γ = 1. For

the Z data, we chose the first five nontrivial eigenvectors as

the diffusion space basis vectors because the P-matrix, given

in Eq. (13), eigenvalue spectrum shows the first five eigen-

values to be larger than others as demonstrated in Fig. 3(a).

Mapping the states from Z data onto this five-dimensional

diffusion space, we found that clear clustering emerges based

on the phases of the states. We used multidimensional scaling

(MDS), a dimensionality reduction method [60] that seeks to

preserve point-to-point distances, to project these states onto a

2D plane. We see a clear separation of the two phases even on

this 2D reduced space [see Fig. 3(b)], indicating the machine’s

success in identifying the two phases.

From the CS data, the unsupervised learning algorithm

was also able to learn about the phases and the underlying

parameters of the model. We can see in Fig. 3(c) that the

P matrix has two nontrivial eigenvalues larger than the rest.

The eigenvectors corresponding to these two eigenvalues are

the basis vectors of the reduced diffusion space. Figure 3(d)

shows all of the ground state classical shadows projected onto
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this two-dimensional plane. It shows three groups- the top left

and the bottom left are the all-up and all-down states, whereas

the group on the center-right are states in the disordered phase.

This closely resembles the spontaneous symmetry-breaking

phase transition of 1DTFIM [61]. The learned diffusion co-

ordinates (dc1 and dc2) have direct correlations with the

magnetization 〈Mz〉 and the field values hx respectively, as

shown in Fig. 8 and demonstrated in Appendix C.

The above-mentioned clustering is dependent on the

number of snapshots N for a given state. However, the dimen-

sionality reduction and the subsequent clustering will settle

down after a minimum value of N has been reached (Nc). In-

creasing the value of N beyond that point does not change the

results in any significant way. We find Nc (Z data) < Nc (CS

data), so it is easier for the algorithm to learn the phase space

structure of the Z data (hence fewer snapshots are required)

than the CS data.

A striking feature of the diffusion map results presented in

Fig. 3 is the geometry it reveals about the data. In the case of

Z data, it finds the data is separated into two distinct clusters

[Fig. 3(b)], while in the CS data case, it finds only one cluster

but that this cluster has a nontrivial geometry with three curves

meeting at the critical point [Fig. 3(d)]. This geometry is

directly a consequence of visualizing of the data space through

the lens of the kernel function that defines distances between

data points via Eqs. (13) and (14). Another kernel function

might see the same CS data as separate clusters. Hence, it is a

striking feature of the kernel of Eq. (12) that it can capture the

full geometry of phase defining features in the TFIM model.

V. MICROCANONICAL DYNAMICS OF THE 1DTFIM

Despite the successful identification of the ground state

phases with the CS+ML model, the fact remains that the

problem of calculating ground states is a QMA-hard problem

[18]. We now turn to an algorithm built using Schrödinger

dynamics, a known BQP class algorithm, that aims to reveal

the microcanonical phase diagram as a proxy for a ground

state study.

Consider now Fig. 4, a sketch of the thermodynamic

phase diagram of the 1DTFIM relating internal energy E =
〈ψ (0)|Ĥ |ψ (0)〉 to the transverse magnetic field hx inspired by

Ref. [62]. this phase diagram is relevant for a microcanonical

dynamics study governed by the entropy S(E , hx ). It exists

even for a simulation over a finite time T and with a finite

number of spins N and a specific choice of initial conditions

but with finite T , finite N , and initial choice-dependent errors

that round phase transitions. We present in this figure our

expectations for the phase diagram in this context, pointing

out phase transitions where the phase diagram will sharpen

in the thermodynamic limit. We further highlight the path

through the phase diagram carried out by our simulations

below, showing that we expect it to cross the quantum critical

region, and so be sensitive to the phase diagram at a rounded

level even in the long-T , large-N limit.

To reveal the phase diagram expected from microcanonical

dynamics presented in Fig. 4, we need an experimentally pro-

ducible classical representation of the quantum data obtained

from a microcanonical dynamics simulation. Noticing that the

time-averaged integral amounts to an expectation value of the

1 10

−1

0

1

hx

E
n
er

gy
=
〈H

〉

Ferromagnetic Phase

Ferro

Initial State
Quantum Critical

Anti-ferro

Initial State

Quantum Paramagnetic

Phase

Quantum Disorder

Classical Paramagnetic

Phase

FIG. 4. A sketch of the expected 1DTFIM phase diagram at finite

T and finite N as a function of internal energy E and transverse

magnetic field hx . This diagram is a modification of the canonical

ensemble representation of the phase diagram in Ref. [62], adapted

to the microcanonical ensemble. The spectrum is mirror symmetric

about E = 0 due to the chiral symmetry C = ZY ZY ZY . . .

pure state density matrix |ψ (t )〉〈ψ (t )| over the probability dis-

tribution PT (t ) = (1/T )(�(T − t〉) − �(−t )), where �(x) is

the Heaviside step function, we see we can construct time-

averaged classical shadows (TACS) by the quantum channel

TACS[ρ] = lim
T →∞

∫

dt
∑

b,Ã

PT (t )P(b)Pb,Ã |ψ (t )〉〈ψ (t )|Pb,Ã .

(17)

Hence by sampling the joint probability distribution PT (t )P(b)

to obtain (ti, bi ), i = 1, . . . , N , and then measuring one shot Ãi

from |ψ (ti)〉 in basis bi we obtain a finite-shot TACS via

TACSN [ρ] =
N

∑

i=1

|tibiÃi〉〈tibiÃi|. (18)

This approach captures the power of CS tomography and

enables an experimental study of microcanonical thermody-

namics.

With this shadow tomography method in mind, we ran

quantum dynamics simulations of 1DTFIM using the TDVP

algorithm [63,64] starting from the GHZ state |ψ (0)〉 =
|000···〉+|111···〉√

2
to generate TACS data from 500 randomly sam-

pled dimensionless time values between t = 10.0 to 20.0 and

187 randomly sampled hx field values between hx = 0.1 to

10.0. An example code to generate TACS dataset for 1DTFIM

is available in our github repository [65]. These 187 TACS

were the data points with which we performed unsupervised

learning by constructing the 187 × 187 kernel matrix using

the shadow kernel in Eq. (12) and then using diffusion maps

for dimensionality reduction.

A key element needed to obtain reasonable results from

the above calculation is an initial state that equilibrates within

the chosen time window for observables of interest that

are accurately captured by the chosen method of shadow

tomography. In the above case, we started from a GHZ state
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FIG. 5. Phase identification from dynamics data. The eigenvalue

spectrum (inset) obtained from diffusion maps shows the two largest

eigenvalues corresponding to the two dominant diffusion coordinates

dc1 and dc2 (the trivial point k = 0, is not shown). The TACS data

point largely fall on a two-stranded curve parameterized by hx in

this 2D reduced diffusion space. The quantum critical region [see

Appendix D 2] (in green) coincides with the inflection point neigh-

borhood of the curve, with points on the left strand belonging mostly

to the ordered phase while points on the right strand belong to the

disordered phase.

because it equilibrated efficiently for local observables, as

shown in Appendix C. Presumably, this equilibration would

occur even faster if we broke the integrability of the 1D TFIM

model by adding certain additional terms to the Hamiltonian.

Hence, up to possibly finite size effects, thermodynamic ob-

servables in our results should behave as expected.

Figure 5 shows our results. The first two eigenvectors were

chosen as our diffusion space basis vectors because as Fig. 5

(inset) shows, those are the two dominant nontrivial eigen-

values in the spectrum. The rest of the eigenvectors go to

zero as data points increase. Projecting the states onto this

two-dimensional diffusion space, we see that the states all

fall on a curve in this hyperplane along which the value of

hx increases monotonically, and the inflection point neighbor-

hood of the curve coincides with the quantum critical region

(see Appendix D 2). Therefore, as in the ground state study,

it is apparent that the unsupervised learning algorithm was

able to infer two phases from the data via a single cluster

with nontrivial geometry. Presumably, taking paths through

the phase diagram closer to the critical point, we would see

the inflection point sharpen, leading to a singular point in the

data manifold at the critical point. However, unlike the ground

state study, it is not obvious what the two diffusion coordinates

dc1 and dc2 correspond to. To identify these, we need to study

observables capable of capturing the phase-defining features

and see which correlate with these learned coordinates.

As a preliminary exploration of phase-defining observ-

ables, a straightforward first approach is to check whether

the diffusion coordinates obey power laws consistent with

the known quantum critical point. In Fig. 6(a), we plot dc2,

which diverges as it approaches the critical point with critical

exponents p− = 0.58 ± 0.05 and p+ = 0.7 ± 0.1. We have

shifted the diffusion coordinates by C = −0.0027 since the

(a)

(b)

FIG. 6. Interpretation of dc1 and dc2 for microcanonical dynam-

ics of 1DTFIM. The divergent behavior of dc2 qualitatively matches

the xx component of the susceptibility, computed using 100k shot

TACS data for a ten-site 1DTFIM, denoted by orange circles (b) dc1

matches the Bayesian inference estimate for the second Renyi en-

tropy per site (S2/n) in the thermodynamic limit (n = ∞). Bayesian

inference is performed on n-body entropies for n = 1–5, also com-

puted using the ten-site dataset.

diffusion distance is invariant under an overall shift of the

origin as mentioned in Sec. III B and this renders it positive.

Remarkably, this shift simultaneously renders both dc1 and

dc2 positive. However, our errors in the exponents are hard

to estimate. Suppose we view the unknown variable C as a

Gaussian distribution. In that case, the corresponding distri-

bution of p± from our predictions is highly non-Gaussian (see

Appendix D 4). The closest known critical exponent is ν = 1

[66] (see also Wikipedia [67]). However, we found that the

observable that qualitatively matches the diverging behavior

at hx = 1 is an xx component of the susceptibility, which we

define as

χab = 1

L2

∑

i j

〈

Ã a
i Ã b

j

〉

, (19)

where Ã a ∈ {X,Y, Z} is a 2 × 2 Pauli matrix. This is differ-

ent than the usual definition obtained by summing over the

connected correlations. The resemblance between dc2 and

susceptibility here is only qualitative, so the critical exponents

do not match. Since there are a number of observables, such as

χxx, χyy, and χzz, that are equally likely candidates to define

the phases, we conjecture that dc2 could be some combination

of these.

This leaves the puzzle of determining dc1, which neither

diverges nor shows a power law behavior. When inverted,

it appears qualitatively similar to the ZZ component of

the susceptibility (see Sec. D 3) but we turn to calculate

the second Renyi entropy given the diagonal components

of the kernel function capture this quantity. Entropy is the

key thermodynamic potential of the microcanonical ensemble
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that certainly captures phase transitions and from which all

important phase-defining features could be extracted. It is

also known that the quantum critical region features the in-

terplay of equilibrium and quantum fluctuations leading to the

entropy being maximized [62,68]. Renyi entropy is a lower

bound for the von Neumann entropy and has the same limits—

it vanishes for pure states and reaches N for the maximally

mixed state. We do so by first computing the purity using

Eq. (10) as follows:

γ [ρ] = Tr[ρ2] (20)

≈ 1

N2

N
∑

n �=n′=1

Tr
[

Ã
(n)
1 Ã

(n′ )
1

]

× · · · × Tr
[

Ã
(n)
L Ã

(n′ )
L

]

,

(21)

then the Renyi entropy is S2 = − ln2 γ .

Figure 6(b) presents the Renyi entropy as calculated from

TACS shots on a L = 10 qubit system using exact diagonal-

ization. We use Bayesian inference, as detailed in Appendix E

(see also Ref. [69]) to extract the large-n, large-N predictions

with N = 100 000 shots per hx value and 35 hx values between

hx = 0.1 and 3.3. The range of time sampled for this particular

calculation was between t = 5 and 25. The results show clear

evidence that entropy is maximized in the quantum critical

region around hx = 1 as expected from Fig. 2 of Ref. [62].

Error estimates for these values were obtained in Ref. [70],

and given by

N �
4n+1γ

ε2δ
(22)

Where 1 − δ is the probability of obtaining a good TACS

dataset and ε is the additive error. For a δ = 0.33 (67

percentile), and N = 100 000 shots, we find an additive error

for the n = 5 entropy curve plotted in Fig. 6 at hx = 1.0

of S2/n ≈ 0.5 ± 0.24. This is larger than the observed error

shown via error bars in Fig. 6 but only within a factor of order

1. Hence, by using 3 300 000 shots, we have estimated the

thermodynamic entropy as a function of hx that reproduces

the expected maxima at the critical point.

Given an estimate of the entropy, we lastly turn to plotting

it alongside dc1 to discover that it is highly correlated with

this observable. Although dc1 was calculated using only 500

shots per hx value, orders of magnitude less than the number

of shots needed for accurate Bayesian inference estimation,

the diffusion process is able to combine information across

different hx values without any supervision.

In summary, the diffusion map was able to learn phase-

defining features from TACS and used these features to map

the data points as a function of the model parameter hx onto a

curve in the two-dimensional plane with geometry that reveals

the quantum phase transition.

VI. OUTLOOK

In this paper, we have identified an approach to studying

quantum thermodynamics on a quantum computer in a way

that is suitable for studying quantum materials, their phases,

and their phase transitions. This approach consists of

(1) preparing a low-depth initial state for which relevant

observables are observed to equilibrate within the coherence

time of the quantum computer,

(2) time evolving this state using a quantum algorithm to

a randomly chosen time point t within some time interval,

(3) extending shadow tomography methods to obtain a

physically useful representation of the von Neumann ensem-

ble such as TACS used in this paper, and

(4) employing an unsupervised machine learning method

to discover the phase diagram, with kernel methods such

as diffusion maps employing well-designed kernels showing

promise.

Our approach parallels statistical mechanics calculations

on classical Hamiltonians, where a random initial state is

prepared, a METROPOLIS Monte Carlo algorithm is run begin-

ning from this state, and data is collected and analyzed using

traditional observables and more recently machine learning

methods. Our results, demonstrating the existence of a quan-

tum phase transition and the ability to map out regions of the

phase diagram by a careful choice of initial conditions, show

promise.

There are several resources needed to carry out the mi-

crocanonical dynamics simulations. A key resource is a

low-energy state that equilibrates within the accessible time

scale and can also be prepared easily. For local Hamiltonians

on physical lattices, we can always find low-energy states that

can be prepared with constant-depth circuits [27]. Another re-

source to carry out dynamics simulations to a time T in which

the relevant local observables equilibrate (T = 25 in our sim-

ulations). It allows one to exploit advances in variational time

evolution algorithms [71–73], which are especially suitable

for the NISQ-ERA due to robustness to noise and ability to go

beyond the coherence time of quantum computers. Finally,

we need the ability to perform time averages by sampling

the state |ψ (t )〉〈ψ (t )| at least at the Nyquist rate determined

by the bandwidth, which is linear in the system size. We

produced a TACS dataset consisting of 500 shots from the

equilibrium dynamics starting from a GHZ state at each of

187 points in the phase diagram; these resources were all

that were required for diffusion maps to learn the phases and

identify the phase transition for a 20-qubit system. Somewhat

different resources, a system size of L = 10, and N = 100 000

shots at 33 points in the phase diagram were required for

Bayesian inference to obtain reasonable estimates for the ther-

modynamic entropy.

We believe these resources are significantly smaller than

those of other proposed methods for studying thermodynam-

ics on quantum computers. For example, the overhead from

using ancillas as a heat bath in the existing methods to study

thermodynamics on a quantum computer [74–76] is not an

issue with our approach. The resources required also open

up an exciting possibility of employing a new generation

of quantum simulators [77,78] to study quantum thermody-

namics as they too can simulate quantum dynamics and are

capable of performing randomized measurements. We are

currently working on the calculation of sample complexity

and establishing rigorous bounds for our predictions. Finally,

a possible direction for future research would be to identify

and benchmark a strongly interacting system with initial states

that will yield a quantum advantage in the near term.
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APPENDIX A: DIAGRAMATIC UNDERSTANDING OF

CLASSICAL SHADOWS

In this section, we will develop a diagrammatic under-

standing of the classical shadows. We will work in the

superoperator formalism where the indices of the density ma-

trix ρi j are grouped together to make a vector |ρ〉〉 and the

product AρB translates to an operator A ⊗ BT acting on the

vector |ρ〉〉.
In general, we can view the outcomes obtained from many

classical shadows measurements on the same prepared state ρ

as defining an ensemble of states S[ρ], where

S[ρ] =
∑

b,x

P(b)Pb,xρPb,x =
[

∑

b,x

P(b)Pb,x ⊗ PT
b,x

]

|ρ〉〉,

(A1)

and Pb,x is the projector in basis b onto qubit state |x〉. To

break this down into manageable parts, let’s start from the

one-qubit case and work our way up to N qubits.

One-qubit case. In the one-qubit case, we generate classical

shadows samples for bases b ∈ {X,Y, Z} with uniform prob-

abilities, i.e., P(b) = 1/3. We can thus express the one-qubit

version of (A1) with the following diagram:

(A2)

Using cap and cup notation, we can redraw this in the super-

operator form:

(A3)

The highlighted box can be viewed as a superoperator acting

on the space of linear operators ρ. Remarkably, this particular

superoperator consisting of a product of two projection oper-

ators simplifies substantially, i.e.,

(A4)

They amount to the sum of an identity and a cup-cap product.

Using this simplification we recognize the one-qubit case as

the depolarizing map

(A5)

where we further simplified using

(A6)

Inverting, we can extract the original density matrix (full

tomography) via

(A7)

Going from diagrammatic results to equations gives

S[ρ] = 1
3
(ρ + I ) ⇒ ρ = 3S[ρ] − I, (A8)

which is a single-qubit depolarizing channel.

Two-qubit case. In the two-qubit case, the CS map of

Eq. (A1) takes the form

(A9)

Again, we can add cups and caps to express it in superoperator

form:

(A10)

This diagram shows that the two-qubit projection operators

produce the same structure on each qubit as they did in the

one-qubit case. Applying the same simplification as before,

we arrive at

(A11)

where again we used Tr[ρ] = 1. This expression amounts to a

simple sum of all possible reduced density matrices. We can
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invert our diagram for the two qubit case by first tracing over

one of its qubits to get

(A12)

This allows us to rewrite the reduced density matrices in terms

of the partially summed S[ρ]. Using this relation, we then

arrive at the inverse of the two-qubit classical shadow

(A13)

As for the one-qubit case, we can convert our diagrams back

to algebraic expressions. The results of this two-qubit case

amount to the forward expression

S[ρ] = 1
9
(ρ + I ⊗ Tr1[ρ] + Tr2[ρ] ⊗ I + I ⊗ I ) (A14)

and the inverse expression

ρ = 9S[ρ] − 3I ⊗ Tr1S[ρ] − 3Tr2S[ρ] ⊗ I + I ⊗ I (A15)

N-qubit case. The formulas we have derived for the one- and

two-qubit cases readily extend to N-qubits. They are

S[ρ] = 1

3L

⎛

⎝ρ +
∑

l

Trlρ +
∑

l �=l ′

Trll ′ρ + . . . + I

⎞

⎠ (A16)

for the forward map and for the inverse map

ρ = 3LS[ρ] − 3L−1
∑

l

TrlS[ρ]

+ 3L−2
∑

l �=l ′

Trll ′S[ρ] + . . . + (−1)LI, (A17)

where we have suppressed the presence of identity operators

that replace traced out regions for ease of notation. These

expressions satisfy Tr[ρ] = 1 and S[ρ] � 0. The inverse map

is not non-negative in general, but should be for the density

matrices resulting from this map. Equation (A17) may also be

written as

ρ = 1

N

N
∑

n=1

L
⊗

l=0

(

3
∣

∣b
(n)
l

; Ã
(n)
l

〉 〈

b
(n)
l

; Ã
(n)
l

∣

∣ − 1
)

, (A18)

where l denotes the site-index and n denotes the shot index.

APPENDIX B: SYMMETRIES OF 1DTFIM

1. Z2 symmetry

The 1DTFIM is invariant under global flipping of the

z component of the spin, the Z2 symmetry. This unitary sym-

metry can be expressed as

S =
∏

i

Xi. (B1)

We can check that the symmetry operator S commutes with

the TFIM Hamiltonian i.e. [S, H1DTFIM] = 0. This allows us

to write H1DTFIM in block diagonal form with each block

corresponding to eigenvalues 1 (even parity) and −1 (odd

parity) of S . States in these sectors evolve independently of

each other. If we start in GHZ state

|GHZ〉 = |00 · · · 0〉 + |11 · · · 1〉√
2

, (B2)

a time reversal even state, we remain in the even sector under

time evolution. Since the magnetization of this state is 0, the

magnetization will stay at this value forever. Thus equilibra-

tion of the order parameter is not an issue. Since the 1DTFIM

Hamiltonian is purely real, it is symmetric under complex

conjugation K, and consequently, the eigenvalues are also

real. Hence, it is also symmetric under T = SK, i.e., time

reversal symmetry.

2. Chiral symmetry

The 1DTFIM is also symmetric under the following chiral

operator:

C = ZY ZY · · · ZY. (B3)

We can check that C anticommutes with H1DTFIM, i.e.,

{C, H1DTFIM} = 0, so for every energy eigenstate E , there

exists an eigenstate with −E , which makes the spectrum of

1DTFIM mirror symmetric about zero energy.

APPENDIX C: EQUILIBRATION FROM INITIAL STATES

An important resource for studying microcanonical phases

using quantum dynamics is an initial state that equilibrates

within the time scale T accessible to a quantum device.

The initial state sets the energy and the symmetry sector of

the microcanonical ensemble resulting from time-averaging

over [0, T ].

In Fig. 7, we present a numerical assessment of equili-

bration for some observables in the 1DTFIM. Specifically,

we plot the evolution of expectation values for operators

〈Z〉, 〈X 〉 and 〈ZZ〉 corresponding to two initial states: the

ferromagnetic (|00 . . .〉) and GHZ ( 1√
2
(|00 . . .〉 + |11 . . .〉))

states, respectively. We observe that the T -odd operators such

as Z do not equilibrate for the all-up state within the sampling

window whereas they are forced to be 0 for the GHZ state

by the T symmetry. Likewise, we find that T -even operators

such as X , ZZ equilibrate and are identical for both initial

states, also due to the T symmetry (the ferromagnetic state is a

superposition of T -even and T -odd states, and the expectation
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FIG. 7. Time evolution of 〈Z〉, 〈X 〉 and 〈ZZ〉 for ferromagnetic

(all up) and GHZ (all up plus all down) states for ten sites and

hx = 0.8. t ∈ [5, 25] (highlighted in orange) is the sampling window

used for generating the TACS data. The order parameter 〈Z〉 for the

ferromagnetic state doesn’t equilibrate in this window.

value of T -even operator for a T -odd state yields 0). Finally,

we observe all equilibrating observables equilibrate within a

time scale of 5. For this reason, all of the dynamics results pre-

sented in the main manuscript used this numerical evidence

time interval to [5,25] (shown in the highlighted region in

Fig. 7 for time averages. Hence, we find numerical evidence

for equilibration of local observables, evidence that formed

an important basis upon which we carried out our dynamics

simulations.

APPENDIX D: INTERPRETING DIFFUSION MAPS

1. Learning physical parameters from 1DTFIM ground

state data

The unsupervised learning method we implemented was

able to unveil the symmetry-breaking phase transition of

1DTFIM from ground state CS data [Fig. 3(d)]. It did so by

generating diffusion coordinates that are related to relevant

parameters, the order parameter Mz, and the model parameter

hx of 1DTFIM. Figure 8 shows the correlation between the

diffusion coordinates and these parameters.

2. Quantum criticality in TACS kernel matrix

The microcanonical phase diagram being studied here has

three characteristically distinct regions—namely, the ordered

phase, the quantum critical region, and the disordered phase.

The quantum critical region, although does not include the

(b)

FIG. 8. Learning 1DTFIM model parameter and order parameter

from ground state CS data. Correlation between (a) dc1 and order

parameter Mz and (b) dc2 and model parameter hx .

(c(c))

(a) (b)

FIG. 9. The three distinct regions of the microcanonical phase

diagram depicted via the kernel matrix K . (a) shows the diagonal

elements of K against their respective hx values. The quantum critical

region is inferred from this plot. (b) shows three different rows of K ,

each belonging to a different region in the microcanonical phase dia-

gram. (c) portrays the full matrix K itself, where the distinct regions

(ordered, quantum critical, and disordered) can be seen. [Diagonal

elements have been ignored in (b) and (c) for better visualization.]

phase transition point, exhibits critical behavior characterized

by a singularity in the order parameter and the response

functions. This behavior manifests itself in the feature space

accompanying the shadows kernel function [Eq. (12)] as it

contains the polynomial expansion of the reduced density

matrices [24] and can be analyzed from the kernel matrix.

Figure 9 displays how the microcanonical phases reveal

themselves in the kernel matrix. Figure 9(a) shows a max-

imum in the diagonal elements of the kernel matrix in the

quantum critical region due to increased correlation length.

In the figure, we delineate the quantum critical region in

the neighborhood of this peak. Likewise, Figs. 9(b) and 9(c)

demonstrate how the kernel function between states behaves

in different regions. The ordered states have low entropy;

hence, greater “similarity” among themselves makes the

kernel function take a higher value than the other regions,

dropping sharply as we go out of that region. The disordered

states have roughly uniform values for the kernel function

with all other states due to their high entropy, and a peak in

the critical region as discussed above. These character traits

of each of these regions help us identify them from the kernel

matrix. However, we don’t use the kernel matrix for phase

classification. We let the probabilities diffuse and use the

diffusion matrix and resulting diffusion coordinates.

3. Qualitative similarity between dc’s and susceptibility

Susceptibility is an important quantity of interest to us

because it diverges at the critical point. Although our micro-

canonical dynamics take place at an energy above-the-ground

state, we expect the signature of this divergence to be present
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FIG. 10. xx, yy, and zz components of the magnetic susceptibility

for a ten-site 1DTFIM, computed using 10 000 shot TACS dataset.

in the quantum critical region. With the experience that dif-

fusion coordinates correspond to phase-defining observables

in the case of ground states, we plotted the xx, yy, and zz

components of the susceptibility in Fig. 10 computed using

the 100k shot TACS dataset for the 1DTFIM to compare

against dc1 and dc2. Although χzz, a natural candidate for dc1,

looks qualitatively similar to dc1 when inverted, we find that

the second Renyi entropy is a better fit. Similarly, χxx behaves

qualitatively similar to dc2 in the sense that both are sharply

peaked at the critical value of hx = 1. However, they do not

share the same critical exponents, hence, we cannot make as

strong of a claim as for dc1.

4. Estimating the critical exponent from the TACS

diffusion coordinates

In Fig. 11(a) below, we see that the second diffusion coor-

dinate dc2 in TACS diffusion maps approximates a power law

in the quantum critical region. In order to estimate the critical

exponent, we modeled dc2 as

dc2(hx; a, p) = a|hx − 1|−p + C, (D1)

where a and p are fitting parameters and ν is the critical

exponent.

It is evident that our estimate of p depends on our choice of

C. Figure 11 shows that dependence on either side of the crit-

ical point (hx = 1). We can obtain a probability distribution

P(C) on C by modeling the Bayesian estimate of the second

Renyi entropy S2/n as a function of dc1:

S2/n(hx; α,C) = α(dc1
(

hx

)

− C). (D2)

Here, α and C are fitting parameters. The ordinary least

squares fit gives us the optimum value for C (Copt) with the

least square error(ε). We then model P(C) as a normal distri-

bution, P(C) = N (Copt, Ã = ε2) and plot it together with the

dependence of p on the shift C in Fig. 11 to visualize how an

error in C translates to an error in ν.

APPENDIX E: BAYESIAN INFERENCE EXTRAPOLATION

OF ENTROPY DATA

To infer the entropy in the limit of large N , the number

of shots, and large n, the number of qubits, we need to

extrapolate the estimates we obtain from CS data. At first

glance, this would seem hard to do because the error in our

FIG. 11. Modeling the power-law behavior of dc2 in the critical

region. (a) shows the dc2 value of each TACS plotted against their

respective hx values, as well as the power law fit on either side of the

critical point. (b) log-log plot of |hx − 1| vs (dc2 − C), along with

straight-line fits, the slopes give us the p values. Here C = −0.0027.

(c) and (d) show the dependence of the (c) p+ and (d) p−, estimated

power law exponents on the shift in the diffusion coordinates C dis-

cussed in Sec. III B (blue) [dashed line shows the optimum C-value,

which was chosen in (a) and (b)], along with the modeled normal

distribution on C obtained from error estimates on the shift needed

to render dc1 positive near hx = 0 (orange). Chosen range of C is

[Copt − 3Ã,Copt + 3Ã ].

estimates grows exponentially with the locality of the ob-

servables and entropy is not a local observable. However, the

dynamics data we have obtained represents a mixed state with

volume-law entanglement and, due to the finite energy—the

microcanonical stand-in for temperature—typically has expo-

nentially decaying correlations beyond a correlation length.

Hence, we expect the entropy of the reduced density matrix of

a region A with nA qubits will obey S ∝ nA even for small nA.

Our approach to extrapolate the entropy is therefore to build a

probability model p(X |θ ) with parameters θ that captures our

estimated entropy value data X .

To simplify the calculation of entropy, we will compute

the second Renyi entropy of a subregion A: SA = − ln2 γA,
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(b)

(c)

(d)

(e)

(a)

FIG. 12. Developing a model for purity γ = N (μγ , Ãγ ) from CS data on the maximally mixed state. (a) μγ is linear in 1

N
, so it takes the

form: μγ = a0(n) + a1 (n)

N
. (b) The intercept a0(n) can be modeled as an inverse exponential function of n, a0(n) = ae−bn (c) The slope, a1(n),

can be modeled as an exponential in n, a1(n) = cedn. (d) and (e) show that the variance Ã 2
γ can be closely approximated by an exponential

function in n and linear in 1

N2 , Ã 2
γ = ee f n/N2.

γ = Trρ2
A. To obtain a model of this entropy as a function of

the number of CS shots N and qubits nA, a data set of values

Y given by the entropy SA and dependent variables X given by

(N, nA), we generated data from the maximally mixed state

ρ = (1/d )I , d = 2n
A the size of the Hilbert space. The results

fit a model of the form (see Fig. 12):

μγ (n, N ) = ae−bn + cedn/N, Ãγ = ee f n (E1)

with positive parameters a, b, c, d , e, f . Namely, we found the

purity γ is linear in 1/N but exponential in n.

Given the mean and variance as modeled above, we can

then model the probability distribution from which a given

data point (�x, y) ∈ (X,Y ) is a sample as a Gaussian:

P(y\θ, �x) = 1
√

2πÃ 2(�x; θ )
e−(y−μ(�x;θ ))2/2Ã 2(�x;θ ). (E2)

Then by Bayes Law, we can learn the posterior

p(θ\Y, X ) =
∏

(�x,y)∈(X,Y ) P(y\θ, �x)P(θ )

P(Y \X )
, (E3)

where P(X,Y ) =
∫

dθ
∏

(X,Y ) P(�x, y\θ )P(θ ) is called the ev-

idence that provides a sense of how well the model is

performing.

The probability of observing a new data point (�x′, y′) is

then given by the posterior predictive

P(�x′, y\X,Y ) =
∫

dθ p(�x′, y′\θ )P(θ\X,Y ). (E4)

An estimate of which is obtainable from a set of samples �

drawn from P(θ\X,Y )

P(�x′, y\X,Y ) = 1

|�|
∑

θ∈�

p(�x′, y′\θ ). (E5)

We are then specifically interested in the mean and standard

deviation of P((∞,∞), y\X,Y ). Knowing this, we solve the

problem of extrapolating the entropy from a finite number of

shots and qubits for the entropy is the mean and our uncer-

tainty in obtaining it is the standard deviation.

It remains then to obtain samples from the posterior

P(θ\X,Y ). We could do so using a straightforward Monte

Carlo algorithm. For example, starting with an initial choice

for the parameters θ0, we pick a random direction in parameter

space and move an amount δ in that direction to obtain θtrial.

We then compute

ln(r) = ln
P(θtrial\X,Y )

P(θ0\X,Y )

=
∑

(�x,y)∈(X,Y )

(ln P(�x, y\θtrial) − ln P(�x, y\θ0))

+ ln P(θtrial) − ln P(θ0), (E6)

which simplifies if we choose a uniform distribution for P(θ ).

We keep the trial, setting θ1 = θtrial if a random number q

between 0 and 1 satisfies q < r and reject otherwise. Either

way, we repeat the process generating ultimately a list � of

correlated samples θi from which we can estimate the entropy

and uncertainty from P((∞,∞), y\X,Y ).

However, a better approach than the METROPOLIS algorithm

is to use the NUTS algorithm available in PyMC instead. This

algorithm automatically chooses parameters in Hamiltonian

Monte Carlo (HMC) and is more efficient than METROPOLIS

for Bayesian inference. See Ref. [79].
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