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With the ever-expanding toolkit of molecular viewers, the ability to visual-
ize macromolecular structures has never been more accessible. Yet, the id-
iosyncratic technical intricacies across tools and the integration complexities
associated with handling structure annotation data present significant barri-
ers to seamless interoperability and steep learning curves for many users. The
necessity for reproducible data visualizations is at the forefront of the cur-
rent challenges. Recently, we introduced MolViewSpec (homepage: hitps://
molstar.org/mol-view-spec/, GitHub project: https:// github.com/molstar/mol-
view-spec), a specification approach that defines molecular visualizations, de-
coupling them from the varying implementation details of different molecu-
lar viewers. Through the protocols presented herein, we demonstrate how to
use MolViewSpec and its 3D view—building Python library for creating so-
phisticated, customized 3D views covering all standard molecular visualiza-
tions. MolViewSpec supports representations like cartoon and ball-and-stick
with coloring, labeling, and applying complex transformations such as super-
position to any macromolecular structure file in mmCIF, BinaryCIF, and PDB
formats. These examples showcase progress towards reusability and interoper-
ability of molecular 3D visualization in an era when handling molecular struc-
tures at scale is a timely and pressing matter in structural bioinformatics as well
as research and education across the life sciences. © 2024 The Authors. Current
Protocols published by Wiley Periodicals LLC.

Basic Protocol 1: Creating a MolViewSpec view using the MolViewSpec
Python package

Basic Protocol 2: Creating a MolViewSpec view with reference to
MolViewSpec annotation files

Basic Protocol 3: Creating a MolViewSpec view with labels and other ad-
vanced features Bittrich et al.
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INTRODUCTION

The Protein Data Bank (PDB) (Crystallography: Protein Data Bank, 1971; Velankar et al.,
2021; wwPDB consortium, 2019) is the single global repository for experimentally de-
termined structures of macromolecules. Established in 1971, the PDB contains more than
220,000 atomic-level structures of proteins, nucleic acids, and their complexes with other
macromolecules and a diverse array of small chemicals. Open-access macromolecular
structure data through the PDB has been fundamental to understanding biological pro-
cesses and elucidating molecular interactions and functions. Furthermore, visualizing
three-dimensional (3D) structures of macromolecules and their interactions with small
molecules/ligands is vital for understanding reaction mechanisms and deriving insights
into biological function at the atomic level.

The recent emergence of computational structure prediction methods has led to a dra-
matic increase in the availability of predicted structures (Danneskiold-Samsge et al.,
2023; Rossi Sebastiano et al., 2022; Varadi et al., 2022), offering unparalleled insights
into biological mechanisms at a molecular level (Bordin et al., 2023; Mosalaganti et al.,
2022). New-generation Al-powered tools like AlphaFold (Jumper et al., 2021), ESMFold
(Lin et al., 2023), RoseTTAFold (Baek et al., 2021), and others employ advanced algo-
rithms to provide a bounty of predicted protein structures (or computed structure models)
that have significantly broadened the scope of accessible molecular data. Databases such
as the AlphaFold Protein Structure Database (Varadi et al., 2024), ESM Metagenomic
Atlas (Lin et al., 2023), and ModelArchive (Schwede et al., 2009) encompass nearly a
billion predicted structures, representing an increase of three orders of magnitude since
structure prediction tools became available. This increase is not just a matter of numbers;
it signifies a qualitative enhancement in our capability to access a more comprehensive
array of 3D biostructures, many previously unattainable, and form new scientific hy-
potheses based on them.

The sudden influx of data availability presents dual facets for bioinformaticians: an op-
portunity for deeper, more comprehensive analysis and a challenge to manage and inter-
pret an overwhelming amount of data (Varadi et al., 2023). One of the primary methods
of interacting with these 3D structures is through molecular graphics viewers. Various
viewers—such as Mol* Viewer (Sehnal et al., 2021), Jalview (Procter et al., 2021), Py-
MOL (Rosignoli & Paiardini, 2022), ChimeraX (Meng et al., 2023), and many others,
each with unique rendering capabilities—offer diverse perspectives on the same molec-
ular data. The web portals of the Research Collaboratory for Structural Bioinformatics
Protein Data Bank (RCSB PDB) and Protein Data Bank in Europe (PDBe) are also sup-
ported by molecular viewers that allow users to visually inspect and analyze the details
of macromolecular structures (Burley, Bhikadiya, Bi, Bittrich, Chao, et al., 2022; Burley
et al., 2023; Varadi et al., 2022). A researcher’s choice of viewer can significantly impact
the interpretation and understanding of their structural data.
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Each molecular viewer employs distinct techniques and logic for rendering 3D struc-
tures, leading to a lack of standardization in visual representation beyond the limited set
of commonly used visualization conventions such as cartoons, ribbons, and ball-and-stick
representations. This limitation may result in inconsistencies and potential misinterpre-
tation when comparing visualizations across different platforms, underscoring the need
for a unified standard in molecular visualization.

In the following protocols, we present MolViewSpec (homepage: https://molstar.org/
mol-view-spec/, GitHub project: https://github.com/molstar/mol-view-spec), a novel
specification methodology designed to standardize molecular visualizations, thereby dis-
sociating them from the diverse implementation specifics inherent to various molecular
viewers. The protocols described here demonstrate the application of Mol ViewSpec cou-
pled with its Python-based 3D view-building library to craft intricate and tailored 3D
visualizations. The protocols cover a range of standard visualization techniques, from
cartoon and ball-and-stick models to advanced features like coloring, labeling, and im-
plementing complex transformations such as superposition on macromolecular structure
files in formats including PDB, mmCIF, and BinaryCIF. These protocols highlight the
strides made towards enhancing the reusability and interoperability of molecular 3D visu-
alizations, a critical development in structural bioinformatics, particularly in large-scale
molecular structure analysis. At the moment, MolViewSpec files are only supported by
the Mol* 3D viewer. However, the specification was designed to be independent of any
particular 3D viewer and nothing prevents other developers from adapting this standard.

In this work, we present three Basic Protocols for creating MolViewSpec views plus
two Support Protocols that are useful for processing data needed as input. Basic Proto-
col 1 showcases the general workflow of the MolViewSpec library and demonstrates its
features for loading and visualizing the alignment of two structures. The accompanying
Support Protocol 1 provides details on how to compute the required transformation ma-
trix using publicly available tools. Basic Protocol 2 demonstrates a data-driven approach
that leverages additional annotation files to customize selections and conveniently add
annotations to scenes. The related Support Protocol 2 provides details on how to cre-
ate annotation files programmatically. Basic Protocol 3 covers global settings, such as
changing the background color of the canvas or controlling the overall camera position
of the scene.

CREATING A MOLVIEWSPEC VIEW USING THE MOLVIEWSPEC
PYTHON PACKAGE

This protocol describes how the MolViewSpec Python library can be used to show the
superposition of two structures: chain A of PDB ID 10j6 and chain A of PDB ID 5mjd.
This example demonstrates basic functionality of the library such as the common protocol
of obtaining structure data, parsing said data, specifying which biological assembly to
visualize, creating relevant components, and adding representations for components.

All of these steps are modular and can be combined to create complex molecular scenes.
The same actions can be applied multiple times to different source data, which effectively
allows users to share or reuse snippets between visualization protocols. The modular
nature of the library limits the amount of choices at each step and also guides users to the
next applicable action as the library is aware of the current context and all possible next
steps that are supported at any given time.

The aim of this protocol is to use the MolViewSpec Python library to create a
MolViewSpec state file that defines the desired view and then opens this file in the Mol*
3D viewer to reliably and consistently recreate this view.

Current Protocols
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Necessary Resources

Internet connection

Device capable of supporting a web browser, WebGL, and Python

Up-to-date web browser (e.g., Google Chrome, Firefox, Apple Safari) with WebGL
support

Python 3.9 or higher with pip or other Python package installer

Text editor (e.g., Gedit, Notepad++-) or integrated development environment (IDE,
e.g., VSCode)

. Install the MolViewSpec Python package.

MolViewSpec is publicly available using PyPl at https:/pypi.org/project/
molviewspec/. It can be installed locally using package manager (e.g., pip).

pip install molviewspec

The expected output is a confirmation that you have successfully installed the most
recent version of the Mol ViewSpec package.

. Create a Python script.

Create a script that will hold all relevant code for this protocol. Create a file called
“protocoll.py” (see Supporting Information) using a text editor or IDE. Jupyter or
Google Colab notebooks are convenient options as well.

. Import Mol ViewSpec.

Import dependencies in the header section of your Python script. For convenience,
the molviewspec module is aliased as mvs. All further access should be done in
the format

mvs.method ().

import molviewspec as mvs

. Instantiate a Mol ViewSpec builder.

The MolViewSpec builder manages the scene description and can eventually emit
JSON format that can reproduce a particular scene. By calling functions, which
are provided by the builder, one can gradually add elements to the scene and con-
figure the desired visualization. Thus, it is necessary to instantiate a dedicated
MolViewSpec builder for each scene that should be composed.

builder = mvs.create builder ()

This code snippet uses the imported MolViewSpec library from step 3, instantiates
a new builder instance, and assigns it to a variable called builder, which can be
used in subsequent steps. The builder is typed and provides suggestions on applica-
ble actions. Initially, only actions for adding structure data (see step 5) and global
properties such as the background color of the canvas are available.

. Specify the source of structural data.

The first builder action to take is to specify the source of structural data. Invoke
the .download () function exposed by the builder instance and provide the URL
of the structural data using the url parameter of the function. In this example, an
mmCIF file describing PDB ID 10j6 is used as the source of structural data. The
function returns a new reference of the builder that holds the provided ur1 argument
in its internal state and provides a new set of relevant functions that will be explained
below (see step 6). This reference is stored in the variable downloadl.

downloadl = builder.download (url=" hitps://files.wwpdb.org/download/10j6.cif ')

download2 = builder.download (url=" hittps://files.wwpdb.org/download/Smjd.cif ' )
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It is important to note that the download step and all subsequent steps can be taken
multiple times on the builder variable. This allows users to add multiple struc-
tures to the same view, and is helpful when visualizing structure alignments or com-
posing complex views with multiple distinct protein structures such as mesoscale
models of whole cells. A second structure is added to the builder by invoking the
.download () function once more with a different url argument. The resulting
builder state is stored in download2, which will be used to perform subsequent
actions regarding PDB ID 5mjd.

Specify the format of the atomic coordinates file.

Several established formats exist to exchange structural data. The . parse () func-
tion is used to specify which type of atomic coordinates file was provided. Provide
the corresponding format via the format parameter. Allowed values are: “mmcif”
(mmClIF), “beif” (BinaryCIF; Sehnal et al., 2020), or “pdb” (legacy PDB format).
Both files are in mmCIF format.

parsel = downloadl.parse (format='mmcif’)

parse2 = download2.parse (format='mmcif’)
Specify which assembly to generate.

mmCIF files can contain multiple biological assemblies that are identified by a
unique identifier. Ordinarily, the first assembly has key “1”, the second assembly
has key “2”, and so on. You can generate the desired assembly by using the .as-
sembly structure () method and passing the corresponding assembly id
as argument.

structurel = parsel.assembly structure(assembly id='1")

structure2 = parse2.assembly structure(assembly id='1")

Depending on the use-case, it can also be desired to visualize the asymmetric unit.
This can be accomplished by the .model structure () method, which has no
mandatory parameters. The asymmetric unit corresponds to the deposited coordi-
nates in the source file. No instance copies will be generated, which might be the
case when requesting biological assemblies.

More advanced options are also available at this step, such as addressing assem-
blies or mmCIF data blocks by their index, selecting individual NMR models, or
generating crystal lattices by a radius cutoff or Miller indices.

Optional: Transform coordinates.

The aim of this protocol is to show the superposition of both structures. Merely
loading both files would place both assemblies somewhere in the 3D space. To
actually superimpose their atomic coordinates, one structure must be rotated and
translated accordingly. An optional transform action can be applied to the result
of step 7 using the . transform () function. This function has two optional pa-
rameters: rotation (a 9-dimensional vector, representing a 3x3 rotation ma-
trix with column-major or Fortran-style indexing) and translation (a 3D vec-
tor). The following arguments for rotation and translation were com-
puted ahead of time using the RCSB PDB Pairwise Structure Alignment application
(https://alignment.rcsb.org) (Burley, Bhikadiya, Bi, Bittrich, Chen, et al., 2022; see
Support Protocol 1 for details).

structure2 = structure2.transform(rotation=[-0.39652203922082313, 0.918022802798312,
0.002099036562725462, 0.9068461182538327, 0.39133670281585825, 0.1564790811487865,
0.14282993460796656, 0.06395090751149791, -0.9876790426086504],

translation=[-17.636085896690037, 7.970761314734439, 88.54613248028247])
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10.

11.

Note that this step is only applied to the second structure (PDB ID 5mjd) to transform
its position in 3D with respect to the first structure (PDB ID 10j6).

Create components of interest.

All steps to this point have prepared the visualization of 3D structure data. Next, the
components need to be defined. Components are the result of selections of varying
granularity. They can describe a whole protein structure, an individual chain, an
individual amino acid residue via its sequence position, or even individual atoms.

Components are created by invoking the . component () method provided by the
returned object of steps 7-8. This method has a single optional parameter, selec-
tor. If the selector parameter is not specified, the whole structure will be se-
lected and represented as a single component. The same behavior can be achieved by
calling . component (selector='all’). The following snippet selects poly-
mer chains from both structures and groups them into a component. Furthermore,
ligands are selected and grouped into a distinct component.

polymerl = structurel.component (selector='polymer’)

ligandl = structurel.component (selector=’'1ligand’)

polymer2 = structure2.component (selector='polymer’)

ligand2 = structure2.component (selector='1ligand’)

Built-in selectors include: “all”, “polymer”, “protein”, “nucleic”, “branched” (for
oligosaccharides), “ligand”, “ion”, and “water”.

Create representations for components.

Components can then be used to create representations, which are things that will
be rendered on the canvas. The following representations are supported: “cartoon”,
“surface” (molecular surface), and “ball_and_stick”. Similar to the previous step,
the method can be invoked without passing any arguments. In that case, the builder
will default to a cartoon representation. In our example, polymeric components from
both structures will be represented by a cartoon stylization, whereas ligands will be
depicted as ball-and-stick.

polymer_ representationl = polymerl.representation() # default: ‘cartoon’

ligand_representationl = ligandl.representation(type=‘ball_and stick’)

polymer_representation2 = polymer2.representation (type=‘'cartoon’)

ligand_representation2 = ligand2.representation(type=‘ball_and_ stick’)
Optional: Adjust color of representations.

Lastly, it is helpful in structure alignments to assign distinct colors to all struc-
tures to help distinguish them visually. The representation variables provide
a .color () method, which has a single color parameter that sets the color. Col-
ors should be provided in their hex representation. Any of the recognized SVG color
names (https://www.w3.org/ TR/SVG11/types.html#ColorKeywords) are supported
as well.

polymer representationl.color (color='#el9039’) # orange

ligand representationl.color (color='#eecl90’) # desaturated orange

polymer representation2.color (color='#4b7fcc’) # blue

ligand_representation2.color (color='#9cb8e3’) # desaturated blue

There is no need to store the result of these function calls in variables as this re-
sembles the deepest level of nesting. No more fine-grained actions are supported.
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Figure 1 Result of Basic Protocol 1. Chain A of PDB ID 10j6 (orange) is aligned with chain A of
PDB ID 5mjd (blue) in cartoon representation. Heme ligands are shown in ball-and-stick represen-
tation.

In general, the . color () method returns a reference to the representation and can
streamline the specification of multiple colors for different selections by chaining
operations.

12. Export the builder state.

At this point, the builder instance is fully populated with all data sources, pars-
ing information, and details on how to depict a structural alignment of both struc-
tures. In order to pass this information to a local file or a compatible 3D viewer,
the .get state () method of the builder variable can be used. The following
statement acquires the state of the Mol ViewSpec builder in MVSJ format (which is
a JSON representation of the state with additional metadata) and prints it to the con-
sole using the print () function. By default, the resulting JSON will be indented
by two whitespaces, but this can be configured by passing an integer using the indent
parameter.

print (builder.get_state())

This console output can be stored in a file called “protocoll.mvsj” (see Supporting
Information) and captures the complete builder state that was modularly composed
by all previous steps. Save this file in your local file system to persist your results.
We refer to this file as Mol ViewSpec state file.

13. Open MolViewSpec file in a compatible 3D viewer.

Drag and drop the “protocoll.mvs;j” file from step 12 into an instance of the Mol*
3D viewer (e.g., https://molstar.org/viewer/). Mol* will recognize the file format
and create the scene described by the MVS] file, as seen in Figure 1 and at this link.
The resulting view shows chain A of PDB ID 10j6 in orange superimposed with
chain A from PDB ID 5mjd in blue.

CREATING A MOLVIEWSPEC VIEW WITH REFERENCE TO
MOLVIEWSPEC ANNOTATION FILES

This protocol describes how the Mol ViewSpec Python library can be used to build molec-
ular views that reference additional data resources known as MolViewSpec annotation
files. This data-driven visualization approach allows us to separate the view description
from the actual data (e.g., colors assigned to individual residues), resulting in better code
and data reusability. This protocol describes how to build the view description (i.e., the
MolViewSpec state file), assuming we already have our data prepared in MolViewSpec
annotation files. For the process of creating the MolViewSpec annotation files them-
selves, see Support Protocol 2.

All the steps in this protocol can be freely combined with any steps described in Basic
Protocol 1 to build custom views. For example, one can define components in the regular
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way using the . component () method and then apply colors based on MolViewSpec
annotation using . color from uri ().

Necessary Resources

Internet connection

Device capable of supporting a web browser, WebGL, and Python

Up-to-date web browser (e.g., Google Chrome, Firefox, Apple Safari) with WebGL
support

Python 3.9 or higher with pip or other Python package installerFiles

MolViewSpec annotation files. In this example, we use “annotations-1hOt.cif”; see
Supporting Information; see Support Protocol 2 for more details.

1. Install the MolViewSpec Python package, create a script, instantiate builder, and spec-
ify structural data.

The first few steps of this protocol are in essence the same as in Basic Protocol 1. Per-
form the setup and build the view description down to the structure level as described
there (see Basic Protocol 1, steps 1-7). After performing these steps, our Python script
“protocol2.py” (see Supporting Information) might look like this:

import molviewspec as mvs
builder = mvs.create_builder ()

structure = (builder
.download (url="https:/files.wwpdb.org/download/1h9t.cit")
.parse (format="mmcif’)
.model_structure ()

)
2. Create components using MolViewSpec annotations.

protein = structure.component from uri (

uri="'./annotations-1h9t.cif’, format=‘cif’,

block header='1h9t_annotations’, category name=‘'components’,

field name='component’, field values='Protein’, schema='‘'chain’)
dna = structure.component from uri (

uri="'./annotations-1h9t.cif’, format=‘cif’,

category name=‘'components’, field values='DNA’, schema=‘'chain’)
ions = structure.component_ from_ uri (

uri="'./annotations-1h9t.cif’, format=‘cif’,

category name='components’, field values=[‘'Gold’, ‘Chloride’],

schema=‘'chain’)

Data-driven structure components can be created using the .compo-
nent from uri () method. Provide the location (uri) and format of the
MolViewSpec annotation file in which the components are defined. This snippet
uses a relative URI “./annotations.cif”’, which will be resolved against the URI of the
MVSI file itself, e.g., if we serve the MVSI file at “https://example.org/view.mvsj”,
then the annotation file will have to be at “https://example.org/annotations- 1 h9t.cif”.
The value of the format parameter can be “cif”’, “bcif”, or “json”, depending on
the format of the annotation file.

Parameters block header and category name are used to indicate a specific
block and category in the annotation file (only applicable for annotation files in CIF
or BinaryCIF format). These parameters can be omitted, indicating the first category
of the first block.
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Parameters field name and field values are used to specify a subset of anno-
tation rows that should be included in the created component. Namely, field name
indicates one of the columns in the annotation table, and field values indicates
the values in that column to be included (field name can be omitted if the col-
umn name is “component”). Omitting these parameters indicates that the whole table
should be included in the component.

Finally, the schema parameter defines the granularity of the created component.
In our example, schema=’'chain’ means that we are selecting whole chains
and the component is defined by columns “label_asym_id” and “label_entity_id”
in the table (detailed information on mmCIF fields can be found at hrtps:/
mmcif.wwpdb.org/dictionaries/mmcif _pdbx_v50.dic/Index/). Use the schemas “en-
tity”, “chain”, “residue”, “residue_range”, and “atom” to select components based
on the mmCIF numbering (columns prefixed with “label_"); use “auth_chain”,
“auth_residue”, “auth_residue_range”, and “auth_atom” to select components based
on author-provided numbering (columns prefixed with “auth_”). The wildcard
schema “all_atomic” can be used to take into account all columns present in the an-

notation table.

3. Create representations.

protein repr = protein.representation (type=’cartoon’)
dna_repr = dna.representation(type='ball and stick’)

ions_repr = ions.representation (type=’'surface’)

Creating representations is achieved by the .representation () method, re-
gardless of whether the component was created by . component () or .compo-
nent from uri (). The result of this step is shown in Figure 2.

4. Apply coloring using Mol ViewSpec annotations.

protein repr.color from uri (
uri='./annotations-1h9t.cif’, format='cif’,
block header=’1h9t_annotations’, category name='annotations’,
field name='color’, schema='residue_range’)
dna_repr.color from uri (
uri='./annotations-1h9t.cif’, format='cif’,
category name='annotations’, schema='residue_range’)
ions_repr.color_from uri (
uri='./annotations-1h9t.cif’, format='cif’,

category name=’annotations’, schema=’'residue_range’)

Data-driven coloring can be added to a representation via the
.color from uri () method.

The meaning of parameters uri, format, block header, category name,
and schema is the same as for . component from uri ().

Parameter field name indicates the column that holds the color values (can be omit-
ted if the column name is “color”). The color values in the annotation file should be in
the same format as the colors used in the Mol ViewSpec state file (i.e., either a name
like orange or a hex code like #e19039).

If multiple annotation rows apply to the same part of the structure, this part will in
the end be colored by the last applied color. For instance, if the first row applies
red to residues 1-100 and the second row applies blue to residues 100-120, then
residue 100 will be blue. The same logic applies when multiple colors are applied to
the same representation (e.g., protein repr.color(color = ‘gray’).
color from uri (..)). The result of this step is shown in Figure 3.
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Figure 2 Result of Basic Protocol 2 after step 3. Loaded representations for components in 1h9t
(visualized by Mol* Viewer).

5. Add labels using MolViewSpec annotations.

structure.label from uri (
uri=’'./annotations-1h9t.cif’, format='cif’,
block header=’1h9t_annotations’, category name='annotations’,

field name='label’, schema='residue_range’)

Data-driven labels can be added to a structure via the .label from uri ()
method.

The meaning of parameters uri, format, block header, category name,
and schema is the same as for . component from uri ().

Parameter field name indicates the column that holds the label values (can be omit-
ted if the column name is “label”).

By default, each annotation row results in one label in the 3D view. However, if the
annotation table contains a column named “group_id”, this column will be used to
group rows with the same group_id value and apply only one label per group. Rows

with missing group_id (represented in CIF by the special value “.””) behave as separate
groups. The result of this step is shown in Figure 4.
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Figure 3 Result of Basic Protocol 2 after step 4. Applied colors from MolViewSpec annotations
(visualized by Mol* Viewer).

6. Add tooltips using MolViewSpec annotations.

structure.tooltip from uri (
uri='./annotations-1h9t.cif’, format='cif’,
block header=’1h9t_annotations’, category name='annotations’,

field name='label’, schema='residue_range’)

A tooltip, as opposed to a label, refers to text that is not an integral part of the visu-
alization but is presented to users when they interact with a structure component as
shown in Figure 5. The exact behavior can vary between viewers, but typically the
tooltip will be shown somewhere on the screen when the user hovers over the com-
ponent. In some contexts (e.g., when rendering static images), tooltips do not apply
at all.

Data-driven tooltips can be added to a structure via the . tooltip from uri ()
method.

The meaning of parameters uri, format, block header, category name,
and schema is the same as for . component from uri ().

Parameter field name indicates the column that holds the tooltip values (can be
omitted if the column name is “tooltip™). In our example, we take the tooltips from
the same column as the labels.
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Figure 4 Result of Basic Protocol 2 after step 5. Added labels from MolViewSpec annotations
(visualized by Mol* Viewer).

7. Export the builder state.

builder.save_state(destination='protocol2.mvsj’,

title='An example with MVS annotations’, indent=2)

The created state can be exported in JSON-based MVSJ format using the methods
.get_state () (to get as a string) and .save state () (to save into a file).
The format can be customized by the optional indent parameter, and additional
information can be saved with the state by the optional title, description, and
description_ format parameters.

8. Ensure availability of the annotation files.

At this stage, we must ensure that the referenced annotation files are available to the
viewer. There are multiple scenarios, as the URI reference can be either absolute or
relative and can use various protocols.

a. The annotation file URI uses “http(s)” scheme (or the annotation file URI reference
is relative and the state file URI uses “http(s)” scheme, i.e., the state file is served
from the web). To achieve this, you must host your annotation file on a server and
make it publically available. Also make sure CORS is enabled for the hosted files.

b. The annotation file URI uses “file” scheme (or the annotation file URI reference is
relative and the state file URI uses “file” scheme, i.e., the state file is loaded from
disk). This is applicable for desktop viewers and command-line applications that
have access to the disk (such as the Mol* command-line utility mvs - render). It
is not applicable for web viewers because, even when the state file is loaded from
the disk (via either a menu or drag-and-drop), the browser does not allow access to
other files on the disk for security reasons. Therefore, dragging and dropping the
state file into an instance of the Mol* 3D viewer (see Basic Protocol 1, step 13)
will not work in this case.
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DNA-binding

Figure 5 Result of Basic Protocol 2 after step 6. Added tooltips from MolViewSpec annotations
are shown in the interface of Mol* Viewer. The tooltip text “DNA-binding” is visible in the bottom
right corner when hovering over the respective part of the structure.

c. The annotation file URI reference is relative and the state file with the annotation
file are packed together in an MVSX archive. Technically, an MVSX archive is sim-
ply a ZIP archive containing the state file named as “index.mvsj” and any number
of other files (can be MVS annotation files but also structure files). The extension
.mvsx is used to distinguish it from a regular .zip archive, but the structure is the
same. Therefore, it is very easy to create via a Python script:

import zipfile

with zipfile.ZipFile (’protocol2.mvsx’, mode='w’) as z:
z.write (’protocol2.mvsj’, arcname='index.mvsj’)

z.write (’annotations-1h9t.cif’, arcname=’'annotations-1h9t.cif’)

In this case, the relative URI reference in the state file will resolve to the other file
stored in the archive. Thanks to this, the MVSX archive can simply be loaded into
Mol* Viewer by dragging and dropping, and can also be served from the web.

9. Open MolViewSpec file in compatible 3D viewer.

Open the created state file, e.g., drag and drop the MVSX file into an in-
stance of the Mol* 3D viewer or go to https://molstar.org/viewer/Tmvs-
format={FORMAT } &mvs-url={URL}, where {URL} specifies the URL
where the state file is hosted and {FORMAT} specifies the format of the state
file (mvsj/mvsx). The resulting view is shown in Figure 5 and at this link:
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https://molstar.org/viewer/ ?mvs-format=mvsj&mvs-url=https %o 3A %2 F %
2Fmolstar.org %2 Fmol-view-spec %2 Fexamples %2 Fannotations %2 F state.
mvsj&hide-controls=1.

NOTE: Thanks to the structure of the CIF (and BinaryCIF) format, a single file can
accommodate both structural data and Mol ViewSpec annotations. To reference these
annotations, you can use component from source, color from source,
label from source, and tooltip from source methods, which behave
in the same way as their _from_uri counterparts but load the annotation from the
same CIF (or BinaryCIF) file from which the structural data are loaded. These meth-
ods also take the same parameters, except for uri and format, which are obviously
not necessary.

CREATING A MOLVIEWSPEC VIEW WITH LABELS AND OTHER
ADVANCED FEATURES

This protocol describes more advanced features of the Mol ViewSpec Python library such
as assigning labels to components, adding tooltips, and specifying global canvas proper-
ties (e.g., background color and custom camera orientation). The aim of this protocol is
to use the MolViewSpec Python library to create a more detailed JSON file that defines
the desired view and then open this file in the Mol* 3D viewer to reliably and consistently
recreate this view.

Necessary Resources

Internet connection

Device capable of supporting a web browser, WebGL, and Python

Up-to-date web browser (e.g., Google Chrome, Firefox, Apple Safari) with WebGL
support

Python 3.9 or higher with pip or other Python package installer

1. Perform common MolViewSpec actions to create empty structure.
Create a standard Mol ViewSpec scene as described (see Basic Protocol 1, steps 1-7).
The condensed “protocol3.py” Python code (see Supporting Information) will look
like this:

import molviewspec as mvs

builder = mvs.create_ builder ()

# note: updated CIF from PDBe provides explicit bond information to render nicely
download = builder.download (url="’ https://www.ebi.ac.uk/pdbe/entry-files/download/4hhb_updated.cif ')
parse = download.parse (format='mmcif’)

structure = parse.assembly_ structure (assembly id=’1")

This will load PDB ID 4hhb and create a structure object for its first biological as-
sembly.

2. Create a custom component expression.

When selections will be reused, it can make sense to store them in a variable.
Here, the iron atom (with “label_atom_id” = “FE”) from the first heme ligand (“la-
bel_asym_id” = “E”) is selected and assigned to the fe selector variable.

fe selector = mvs.ComponentExpression(label asym id='E’, label atom id='FE’)

The ComponentExpression class supports a plethora of properties that enable
the selection of individual atoms, residues, chains, or entities.
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3. Create a representation for the first heme ligand.

In this protocol, the first heme ligand of PDB ID 4hhb should be visualized. The
ligand can be uniquely identified by its “label_asym_id” as defined in the mmCIF
source file.

ligand = structure.component (selector=mvs.ComponentExpression(label_asym id='E’))
ligand.representation (type='ball_and_stick’) .color (color='#ffffff’) .color (selector=fe_

selector, color='#£f£f4500")

The 1igand variable now holds a reference to a component describing the first heme
ligand. In the second line, a ball-and-stick representation in white color is added.
Lastly, the . coloxr () method is used to change the color of the previously selected
iron ion (referenced by the fe selector variable) to an orange-red color.

. Add labels and tooltips to components.

Custom text labels can be defined and will appear close to the selected element in 3D.
The fe selector variable is used to create another component that captures only
the FE atom of the first heme ligand. The .label () method adds a text label to
components. Its content can be defined using the text parameter. Analogously, the
.tooltip () method assigns custom tooltips to components. These tooltips appear
in the bottom-right corner of the Mol* 3D viewer if hovering over the corresponding
element, providing a way of showing more detailed information.

NOTE: The selection mode must be changed to view the tooltip when hovering over
the iron ion. In Mol*, this can be achieved by clicking the mouse cursor icon (la-
beled “Toggle Selection Mode”) located in the top-right corner of the canvas. Subse-
quently, adjust the value of the newly revealed “Picking Level” dropdown menu from
“Residue” to “Atom/Coarse Element”.

fe = structure.component (selector=fe_selector)

fe.label (text='Iron Ion’).tooltip(text='Additional info that appears only on mouseover'’)
Specify global properties: Background color.

The builder supports a global . canvas () action that enables setting the background
color, e.g., to a light orange.

builder.canvas (background_color='#ffcfeb’)

Colors can be provided in hex representation or as SVG color names (https://www.
w3.0rg/TR/SVGI 1/types.html#ColorKeywords).

Specify global properties: Camera position.

The builder supports another global action via the . camera () method. This method
has two parameters: target and position, which are both 3D vectors. target
supplies the coordinates of the object to be viewed, whereas position defines the
location of the camera. A third optional parameter is up, another 3D vector that con-
trols what appears in the upper part of the canvas.

# camera to look at heme ligand, orthogonal to porphyrin group

builder.camera (target=(18, 18, 24), position=(30 , 12, 25))

Viewers implementing Mol ViewSpec will use their own protocol to orient the camera
relative to the visualized content. Truly reproducible views can only be defined by
explicitly setting the camera position.

Another way of controlling the camera position is to use the . focus () method,
which is exposed by all components. Invoking . focus () will position the camera
so that all elements of that selection are visible.
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Figure 6 Result of Basic Protocol 3. Ball-and-stick representation of first heme ligand (chain E)
of PDB ID 4hhb. This protocol employs more advanced features, such as changing background
color, positioning the camera, and assigning labels.

7. Export this view and open it in a compatible 3D viewer.

Export the state of the builder variable as JSON format with file name
“protocol3.mvsj” (see Supporting Information) as described (see Basic Protocol 1,
steps 12-13) and open it, e.g., by dragging and dropping it into an instance of the
Mol* 3D viewer. The resulting view is shown in Figure 6 and at this link. It shows a
single heme ligand of PDB ID 4hhb. The ligand is displayed in white, the coordinated
iron ion is in orange-red and labeled with custom text, and the background color is set
to orange. The camera is positioned so that it looks directly at the heme ligand from
above, orthogonal to the porphyrin group.

COMPUTING ROTATION AND TRANSLATION VECTORS

MolViewSpec supports structure alignments but requires users to provide appropriate
rotation and translation vectors that describe how the atomic coordinates of a structure
should be transformed. This protocol suggests one way to compute these values using
publicly available resources and showcases how to use the result in a Mol ViewSpec file.
Our example aligns chain A of 10j6 with chain A of 5mjd, but the approach works for any
identifier registered in the PDB archive or AlphaFold DB plus arbitrary structure data if
uploaded to a URL.

Necessary Resources

PC with text editor (e.g., Gedit, Notepad++) or integrated development
environment (IDE, e.g., VSCode)

1. Obtain alignment using the RCSB PDB Pairwise Structure Alignment application.

Navigate to the application (https://www.rcsb.org/alignment) and specify the two in-
puts: “10J6” and “SMJD”. This will populate the inputs for “Chain ID” and “Begin”
and “End” positions appropriately. Make sure to select the correct chain if chains
other than the first one should be aligned. Click the “Compare” button to compute
and visually validate the alignment.

2. Obtain a 4 x4 transformation matrix from the alignment response.

Click the “Alignment API” button in the top-right corner of the user interface to access
the underlying application programming interface (API). This page will show the API
request made to align both entries. You will also see the API response after clicking
the play icon in the header bar of the user interface.
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The API response contains a property called transformations, an array that
contains the 4 x4 transformation matrix that will move the atomic coordinates of an
entry appropriately. The first matrix in the array is always the identity matrix because
coordinates of the reference structure will be fixed. The second matrix contains the
transformation that will superimpose the second structure onto the first. In this exam-
ple, the 4 x4 matrix looks like this:

[-0.3965220392, 0.9180228028, 0.0020990366, 0, // values 1.4
0.9068461183, 0.3913367028, 0.1564790811, 0, // values 5..8
0.1428299346, 0.0639509075, -0.9876790426, 0, // values 9..12

-17.6360858967, 7.9707613147, 88.5461324803, 1] // values 13..16
3. Convert to rotation and translation vectors.

The rotation vector is captured by values 1, 2, 3,5, 6, 7, 9, 10, and 11, whereas
values 13, 14, and 15 describe the t ranslat ion vector. Values in the fourth column
can be ignored.

The obtained values can then be used in the following fashion:

structure2 = structure2.transform(rotation=[-0.39652203922082313, 0.918022802798312,
0.002099036562725462, 0.9068461182538327, 0.39133670281585825, 0.1564790811487865,
0.14282993460796656, 0.06395090751149791, -0.9876790426086504],

translation=[-17.636085896690037, 7.970761314734439, 88.54613248028247])

CREATING A MOLVIEWSPEC ANNOTATION FILE

MolViewSpec annotations are used to define data for substructures (components), colors,
labels, and tooltips separately from the view description (state file). The state file can then
reference the annotation files instead of including all of the data. A state file can combine
references to many annotation files, and an annotation file can be referenced in many
state files, thus providing modularity and data reusability. This protocol describes how to
create a MolViewSpec annotation file; Basic Protocol 2 describes how to reference it in
a state file.

MolViewSpec currently allows three formats for encoding the annotations: CIF, BCIF
(BinaryCIF), and JSON. This protocol uses the CIF format, a table-based format that
is commonly used in structural biology to store structures or any kind of tabular data
(Evans et al., 2021). A CIF file is divided into one or more blocks, each containing
one or more categories. In the context of annotations, a category represents an an-
notation table and consists of columns (fields) and rows. BCIF format has the same
internal structure as CIF but uses different encoding that results in much smaller file
sizes, and is therefore the optimal choice when working with large data (Sehnal et al.,
2020). The third alternative is the JSON format. Its advantage is that most program-
ming languages provide support for reading and writing JSON. However, it lacks the
block-category structure, so it can only store a single annotation table. In Supporting
Information, we provide the same set of annotations encoded with all three formats (see
“Annotations-1h9t-components.json”, “Annotations-1h9t.bcif’, “Annotations-1h9t.cif”,
and “Annotations-1h9t-annotations.json”).

Necessary Resources

PC with text editor (e.g., Gedit, Notepad++) or integrated development
environment (IDE, e.g., VSCode)

1. Create a CIF file.

Create an empty text file named “annotation-1ht.cif”, which will hold the annota-
tions. Open the file in a text editor or IDE.
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2. Open a block.

Blocks in a CIF file are marked by a data_ directive immediately followed
by the name of the block (block header). In our case, the block header will be
“1h9t_annotations”:

data_1h9t_annotations

. Open a category and define the columns.

Within the block, each category (annotation table) is typically marked by a
loop  directive followed by the list of column names in the format {CATE-
GORY NAME} . {COLUMN NAME}:

loop
_components.label asym id

_components.component

This snippet opens a category named “components” with two columns named “la-
bel_asym_id” and “component”.

MolViewSpec annotations distinguish two types of columns. Independent variable
columns are used to select substructures; dependent variable columns assign values
such as color or label to these substructures. There is a predefined list of independent
variable columns (label_entity_id, label_asym_id, label_seq_id, beg_label_seq_id,
end_label_seq_id, label_atom_id, auth_asym_id, auth_seq_id, pdbx_PDB_ins_code,
beg_auth_seq_id, end_auth_seq_id, auth_atom_id, type_symbol, atom_id,
atom_index, group_id). Dependent variable columns can have any name.

In our example, “label_asym_id” is an independent variable column (selects substruc-
tures based on the chain identifier) and “component” is a dependent variable column
(assigns component name).

. Add annotation rows into the category.

Any number of annotation rows can be added. Each row must list values for each
column separated by spaces.

A Protein
B Protein
C DNA
D DNA
E Gold
H Gold
F Chloride
G Chloride

Chloride

.

This example defines four components: “Protein” consisting of chains A, B; “DNA”
with chains C, D; “Gold” with chains E, H; and “Chloride” with chains F, G, 1.

Optional: Add more categories.

A new category can be opened by using a 1oop_ directive again and defining the
column names and annotation rows for the new table. Category names must be unique
within the block.

loop_
_annotations.label_asym id
_annotations.beg_label seq id

_annotations.end label_seq id
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_annotations.color
_annotations.label

_annotations.group_id

A 9 83 ' #dd6600’ 'DNA-binding’

A 84 231 '#008800" 'Acyl-CoA binding’

B 9 83 '#cc8800 'DNA-binding’

B 84 231 '#008888" 'Acyl-CoA binding’

C . : ‘#1100aa’ 'DNA X’

D . . ' #dddddd’ 'DNA Y’

E . . "HEEEFOO ’Gold’

H . . "HEEE£00” ’Gold’

F . . '#00ddoo” ‘Chloride’

G . . "#00ddo0” ‘Chloride’

I . . "#00ddoo” ’Chloride’

A 57 57 ‘red’ ‘Ligand binding site’ 1
A 67 67 ‘red’ 'Ligand binding site’ 1
A 121 121 ‘red’ ‘Ligand binding site’ 2
A 125 125 ‘red’ 'Ligand binding site’ 2
A 129 129 ‘red’ 'Ligand binding site’ 2
A 178 178 ‘red’ ‘Ligand binding site’ 3
A 203 205 ‘red’ 'Ligand binding site’ 2
B 121 121 ‘red’ 'Ligand binding site’ 4
B 125 125 ‘red’ 'Ligand binding site’ 4
B 129 129 ‘red’ 'Ligand binding site’ 4
B 203 205 ‘red’ 'Ligand binding site’ 4

In this category, the independent variable columns (label_asym_id, beg_label_seq_id,
end_label_seq_id) select substructures based on the chain identifier and residue range,
while the dependent variable columns assign color and label. The special column
“group_id” groups annotation rows together to create more complex selections for
application of labels. For example, this annotation table creates three separate labels
saying “Chloride” (one per row), but only four labels saying “Ligand binding site”
(eleven rows are grouped into four groups).

This example also demonstrates how quotes can be used to include spaces and special
characters within string values (e.g., ‘Ligand binding site’, ‘#dd6600’). A value can
also be omitted using a period (.), e.g., the “DNA X” label is applied to the whole
chain C because the residue numbers are omitted. Here use multiple spaces between
values to align the columns, but this is just for visual clarity; using a single space
is sufficient. More details about the CIF syntax can be found in its documentation
(https://mmcif.wwpdb.org/).

Optional: Add more blocks.

At this point we can add more blocks, each started with a data__ directive and the
block header. Block headers must be unique within the whole file.

COMMENTARY

Background Information

MolViewSpec offers a standardized
mechanism for describing 3D molecular
visualizations, significantly increasing the
reproducibility of sophisticated interactive
renderings. A declarative, data-driven ap-
proach powers the comprehensive definition
and visualization of biomolecular entities.
MolViewSpec supports standardized 3D rep-
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resentation types, diverse coloring schemes,
and associated annotations covering struc-
tural, biological, and functional data (Table 1).
The 3D molecular graphics viewer Mol* inter-
prets the MolViewSpec format, enhancing the
accessibility and interpretability of complex
molecular data for researchers, educators, and
students.
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Table 2 Troubleshooting

Table 1 Visualization Features Supported by MolViewSpec

Supported feature

Explanation

Download
Parse

Structure

Transform
Component
Representation
Color

Label

Tooltip
Camera

Focus

Canvas

Annotations from

URI

Annotations from

source

Defines source of structural data
Parses structural data in various formats

Creates structure (including support for assemblies, crystal symmetry,
multi-model structures)

Applies rotation and translation to a structure

Selects substructures (components) of a structure

Defines standard structure representation modes

Defines custom colors for selections

Defines labels (textual representation in the 3D scene)

Defines tooltips (text shown when interacting with a component)
Sets camera position and orientation explicitly

Sets camera position and orientation automatically to focus a given
component

Sets background color

Creates component, coloring, labels, or tooltips based on MolViewSpec
annotations from an external file referenced by URI

Creates component, coloring, labels, or tooltips based on Mol ViewSpec
annotations within the source structure file (mmCIF or BCIF)

Problem

Possible cause

Solution

Script cannot be
executed

File parsing error

Annotations fail to load

Viewer fails to load
MolViewSpec state file

Dependency on Python 3.9

Trying to use unsupported
coordinate file format

Gzipped data not supported
Wrong URI

Server with annotations does
not support cross-origin
resource sharing (CORS)

Wrong format, block header,
category, or field name

Newer format version

Install MolViewSpec using Python interpreter 3.9 or higher

Use supported file formats such as mmCIF, BCIF, and PDB.
Check that the format parameter matches actual file format.

Use unzipped files.

Check the viewer tries to fetch the annotation file from the
correct location. If using relative URI references, check that
they resolve as intended (see Basic Protocol 2, step 8, for
ensuring the availability of the annotation files).

Ensure the server sends the annotation files with CORS
header; otherwise, the browser will block the request

Check that the parameters match actual file format and data

There are plans to extend the Mol ViewSpec functionality in
the future. Check that the version number included in the
MolViewSpec file is not higher than the viewer supports.
Update the viewer if necessary.

Bittrich et al.

20 of 23

Critical Parameters
The key parameters for instantiating a
new visualization are .download (url=)
and .parse (format=). The first defines
the URL from which the coordinates of  tion at https://github.com/molstar/molstar/
a molecular structure should be retrieved.

The second defines the data format of the
coordinates file (e.g., as “mmcif”, “pdb”,
or “bcif’). For an exhaustive list of sup-
ported data formats, visit the documenta-

blob/master/docs/file-formats.md.
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Troubleshooting

Table 2 lists issues that may arise with
these protocols and their possible causes
and solutions. Requests for further clarifi-
cations and error reports should be raised
in the MolViewSpec code repository on
GitHub (https:// github.com/molstar/mol-
view-spec/issues).

Understanding Results

MolViewSpec produces files that de-
fine how a macromolecule should be vi-
sualized in 3D. For a comprehensive list
of the supported visualization modes and
features, refer to the documentation at
https:// github.com/molstar/molstar/blob/
master/docs/ extensions/mvs/README.md.

The output files are currently only sup-
ported by MolStar (https://molstar.org)
(Sehnal et al., 2021), a widely used 3D
molecular graphics viewer that can parse
the specification and render molecular
views accordingly. As a viewer-agnostic
specification, the longer-term goal of
MolViewSpec is to be supported by other
popular molecular viewers such as Py-
MOL (https://pymol.org) and ChimeraX
(https://www.cgl.ucsf.edu/ chimerax/ Pet-
tersen et al., 2021).
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