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C L I M AT O L O G Y

Enhanced Atlantic Meridional Mode predictability in a 
high- resolution prediction system
Qiuying Zhang1*, Ping Chang1,2, Dan Fu1, Stephen G. Yeager3, Gokhan Danabasoglu3,  
Frederic Castruccio3, Nan Rosenbloom3

Accurate prediction of sea surface temperatures (SSTs) in the tropical North Atlantic on multiyear timescales is of 
paramount importance due to its notable impact on tropical cyclone activity. Recent advances in high- resolution 
climate predictions have demonstrated substantial improvements in the skill of multiyear SST prediction. This 
study reveals a notable enhancement in high- resolution tropical North Atlantic SST prediction that stems from a 
more realistic representation of the Atlantic Meridional Mode and the associated wind- evaporation- SST feedback. 
The key to this improvement lies in the enhanced surface wind response to changes in cross- equatorial SST gradi-
ents, resulting from Intertropical Convergence Zone bias reduction when atmospheric model resolution is in-
creased, which, in turn, amplifies the positive feedback between latent and sensible surface heat fluxes and SST 
anomalies. These advances in high- resolution climate prediction hold promise for extending tropical cyclone fore-
casts at multiyear timescales.

INTRODUCTION
Sea surface temperature (SST) variability in the tropical North 
Atlantic (TNA) plays a crucial role in various important weather and 
climate hazards, most notably seasonal tropical cyclone (TC) activ-
ity. In particular, the main development region (MDR; see Fig. 1A) 
within TNA serves as a vital area where many TCs form and inten-
sify (1–3). Thus, enhancing the predictive capacity for MDR SST is a 
critical prerequisite for developing a reliable TC prediction system 
at climate timescales. However, the intricate and multifaceted mech-
anisms governing SST evolution in MDR pose a substantial chal-
lenge to improve SST prediction skill.

Observational analyses have demonstrated that MDR SSTs are 
strongly influenced by the Atlantic Meridional Mode (AMM), which is 
characterized by a cross- equatorial gradient of SST anomaly (SSTA) 
and wind anomalies that traverse the equator, varying on multiyear 
timescales (4–7). A positive AMM features positive SSTA in TNA ac-
companied by a C- shaped northward cross- equatorial wind anomaly 
(5, 6, 8).

Previous studies have proposed that the emergence of AMM 
may be attributed to both remote influences and a local thermo-
dynamic air- sea coupling mechanism known as wind- evaporation- 
SST (WES) feedback (5, 9). Remote influences include factors such 
as the El Niño–Southern Oscillation (ENSO), the North Atlantic 
Oscillation (NAO), and subpolar North Atlantic (SPNA) SST vari-
ability (10–14). In contrast, the WES feedback in the tropical Atlantic 
involves the interplay between cross- equatorial wind anomalies, 
wind- induced turbulent heat fluxes, and SST (4, 5, 15). AMM ac-
counts for ~66% of the monthly SST variance in the tropical Atlantic 
coupled system after removing ENSO influences (4) and, thus, can 
potentially contribute substantially to tropical Atlantic SST predict-
ability. Because the WES feedback is directly linked to the interac-
tion between cross- equatorial SST gradient and wind anomalies, it 

is highly sensitive to the location of the Intertropical Convergence 
Zone (ITCZ) (12). The seasonal migration of the ITCZ contributes 
to a strong seasonality of the WES feedback. This feedback develops 
during boreal winter, reaches its peak in boreal spring when the 
ITCZ moves closest to the equator, and gradually weakens as the 
ITCZ shifts northward.

While simulated AMM in models participating in the Cou-
pled Model Intercomparison Projects (CMIPs) shows a similar 
spatial pattern to observations, its development appears highly 
unrealistic. In these models, wind anomalies during boreal win-
ter are exaggerated, but their response to SST anomalies in the 
subsequent spring is much weaker than observed, indicating a 
flawed representation of AMM genesis (4). This modeling issue, 
potentially linked to an underestimated coupling strength be-
tween the atmosphere and ocean, may compromise SST predic-
tion skill in TNA. However, a recent study comparing low-  and 
high- resolution climate prediction systems based on the Com-
munity Earth System Model version 1 (CESM1) shows that in-
creased resolution notably improves SST prediction skill over 
multiyear timescales (16). The present study aims to uncover the 
reasons behind the enhanced SST prediction skill in TNA within 
the high- resolution CESM1.

The CESM1 high- resolution decadal prediction system (HRDP) 
(16) has a finer horizontal resolution (0.25° for atmosphere and land 
and 0.1° for ocean and sea ice) than the CESM1 decadal prediction 
large ensemble (DPLE) (17), which uses a standard low horizontal 
resolution (1°). Both use similar initialization procedures based pri-
marily on forced ocean sea- ice simulations (FOSIs) with consistent 
respective resolutions, using observation- based atmospheric forcing 
from the Ocean Model Intercomparison Project (OMIP) (18, 19). 
For direct comparison, we select predictions initialized on the same 
dates, every other 1 November from 1976 to 2016, totaling 21 en-
sembles. Each HRDP ensemble comprises 10- member 5- year pre-
diction runs, while DPLE has 40- member 10- year prediction runs. 
To analyze the resolution sensitivity of intrinsic AMM and WES 
feedbacks, we also compare preindustrial simulations (PI) at high 
resolution (PI- HR) (20) and standard low resolution (PI- LR) (21). 
Further details are in Materials and Methods.
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RESULTS
SST prediction skill at one to five lead years
SST prediction skill, assessed using five–lead year average (LY1- 5) 
anomaly correlation coefficient (ACC) scores (see Materials and 
Methods), reveals HRDP consistently outperforming DPLE by up to 
0.2 in the TNA basin (Fig. 1, A to C). This improvement is substan-
tial, considering that ACC in DPLE is already above 0.8 in many 
areas and the ACC value cannot exceed one. The enhanced ACC in 
HRDP shows seasonal variations, with the maximum ACC differ-
ence (∆ACC) in TNA between HRDP and DPLE occurring during 
boreal spring (fig. S1). This timing coincides with the peak season of 
AMM and WES feedback (4, 12).

A substantial portion of the high ACC scores can arise from ex-
ternally forced response (22–25). To remove this forced component 
and focus on the internal component related directly to the initial 
ocean states, we subtract the forced change from the predicted and 
observed SST anomalies (see Materials and Methods) (26–29). The 
remaining internal component driven by natural climate variability 
shows even higher relative ACC scores in HRDP compared to DPLE 
in the TNA, particularly in the MDR, where ∆ACC shows a value 
approaching 0.8 (Fig. 1F). This suggests that while external forcing 
dominates the SST predictability in DPLE, a substantial fraction of 
the predictable SST signal variance in the TNA region is attributable 
to natural climate variability captured by HRDP.

To identify the dominant mode of natural variability, we conduct 
an empirical orthogonal function (EOF) analysis on the observed 
pentadal natural SSTA after regressing out Niño3 and NAO indices 
that may affect TNA SST variations remotely according to previous 
studies (11–13). The analysis of the remote impact will be discussed in 
a later subsection. The first EOF, explaining ~50% of the SST variance, 
depicts a dipole- like SSTA, and the regressed wind stress anomalies 
show a northward C- shaped cross- equatorial flow. This pattern repre-
sents the well- known characteristics of AMM (Fig. 2A) (6). We then 
regressed LY1- 5 predicted SSTA and wind stress anomalies onto the 

first observed principal component (PC) of SST and assessed the de-
gree to which the predicted SSTA and wind stress anomaly pattern 
(Fig. 2, B and C) can replicate the observed AMM (Fig. 2A). The re-
sults show that HRDP captures the observed AMM pattern more re-
alistically than DPLE, with a pattern correlation of over 0.4 for TNA 
SSTAs compared to ~0.1 in DPLE. The predicted cross- equatorial 
flow over the western Atlantic is also much stronger and closer to the 
observations in HRDP than in DPLE.

To further investigate whether AMM is more realistically cap-
tured by HRDP, we conduct a maximum covariance analysis (MCA) 
on predicted SST and wind stress anomalies at LY1- 5, as well as the 
corresponding observed pentadal fields, after removing the forced 
response and remote influences from ENSO and NAO (see Materi-
als and Methods). Although the leading MCA modes, which explain 
79.9, 73.2, and 78.4% of the squared covariance in observations, 
HRDP, and DPLE, respectively, depict similar characteristics of 
AMM, the pattern in HRDP more closely resembles the observa-
tions both in terms of strength and structure compared to DPLE 
(Fig. 3, A to C). In particular, both the magnitudes of SST and wind 
stress are much weaker in DPLE, and the maximum near- equatorial 
meridional SST gradient is too diffuse and extends too far south-
ward. These findings provide an initial indication that HRDP is 
more skillful in predicting AMM due to its increased horizontal 
resolution. This claim is further validated by regressing the LY1- 5 
predicted TNA SSTA onto the observed leading MCA SST pattern 
(Fig. 3A) and correlating the resultant time series with the corre-
sponding time series from the observed MCA. HRDP yields an en-
semble mean correlation value of ~0.7, significantly higher than 
DPLE’s value of ~0.5. Thus, these analyses support the notion that 
HRDP is more skillful in predicting AMM compared to DPLE.

Improved WES feedback by increasing model resolution
We next examine and compare the WES feedback in observations, 
HRDP, and DPLE because it lies at the heart of AMM dynamics 

Fig. 1. LY1- 5 SST annual prediction skill measured by ACC. ACC scores for (A and D) 10- member HRDP, (B and E) 10- member DPLE, and (C and F) ACC differences 
(∆ACC) between HRDP and DPLE for [(A) to (C)] total and [(D) to (F)] natural variability. All the ACC scores are relative to HadISST. Dots in (A), (B), (D), and (E) indicate ACC 
below 95% significant level, and dots in (C) and (F) indicate that ACC score in HRDP is within the 0.95/0.05 quantile values of bootstrapped 10- member DPLE ACC scores. 
The black box (70°W to 20°W and 7.5°N to 22.5°N) in (A) is the MDR.
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Fig. 2. Predicted AMM pattern at LY1- 5. SST (color shading; °C) and wind stress vector (vectors; in newtons per square meter) anomalies regressed on the normalized 
leading PC of HadISST in (A) observations, (B) 10- member HRDP, and (C) 10- member DPLE. The EOF analysis of pentadal observed SST is based on the region 75°W to 15°E 
and 12°S to 28°N. The scale of wind stress vectors in (A) is 0.002 N/m2, twice that of (B) and (C).

Fig. 3. AMM and annual mean ITCZ at LY1- 5. (A to C) The leading MCA mode in SST (color shading; °C) and wind stress vector (vectors; in newtons per square meter) in 
observations, 10- member HRDP, and 10- member DPLE, respectively. (D to F) WSAAs (in newtons per square meter) regressed onto the normalized expansion coefficient 
in observations, 10- member HRDP, and 10- member DPLE, respectively. (G to I) Annual mean precipitation (color shading; in millimeters per day) and wind stress vector 
(vectors; in newtons per square meter) in observations, 10- member HRDP, and 10- member DPLE, respectively. The wind stress vectors in (A) to (C) share the same scale 
that is shown in (A), and those in (G) to (I) share the same scale that is shown in (G). (B), (C), (E), and (F) are the average of the regressions from individual members.
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(5, 27). This is achieved by regressing the observed and predicted 
LY1- 5 wind stress amplitude anomalies (WSAAs) onto the normal-
ized SST expansion coefficient of the leading MCA (Fig. 3, D to F). 
We opt to use WSAA instead of turbulent heat flux anomalies due to 
high uncertainties associated with the latter in observations. In the western 
TNA, a clear relationship between positive SSTA and negative WSAA 
is observed. This relationship signifies positive feedback between 
SST and turbulent heat fluxes because the reduced WSAA over the 
positive SSTA can lead to a reduction in latent and sensible heat re-
lease from the ocean, amplifying the positive SSTA. This positive 
feedback is a fundamental aspect of the WES feedback (5, 27). Al-
though both HRDP and DPLE exhibit weaker WSAA strength 
compared to observations, only HRDP realistically captures the 
negative maximum over the western TNA, indicating a more robust 
and realistic WES feedback in HRDP than DPLE.

Accompanied with the superior performance of WES feedback 
in HRDP, the predicted position of ITCZ in HRDP aligns more 
closely with the observation compared to DPLE. In HRDP, the ITCZ 
is confined between the equator and 10°N from the west coast of 
Africa, extending to ~40°W, as shown by the climatological annual 
mean precipitation and wind stress (Fig.  3, G to I). In contrast, 
DPLE exhibits a broader and weaker double ITCZ. The spatial cor-
relation of precipitation between observation and HRDP over the 
ocean domain (60°W to 0°) can reach 0.90 in the deep tropics (10°S 
to 10°N), while it is 0.78 between observation and DPLE. Given the 
simultaneous improvements in WES and ITCZ, we hypothesize that 
the improved ITCZ location in HRDP plays an important role in the 
enhanced prediction skill of AMM through improving WES feed-
back. We will delve deeper into this hypothesis in the subsequent 
section.

Because AMM and WES are intrinsic to the coupled climate sys-
tem, the impact of model resolution on the representation of AMM 
and WES can be assessed using the long PI- HR and PI- LR simula-
tions without the influence of initialization. To align with the record 
length of the observations, we randomly choose 20 independent 
52- year- long monthly samples from PI- HR and PI- LR. MCA analysis is 
then conducted for each sample, and the sample mean of model lead-
ing MCAs is compared to the observed leading MCA. Recognizing 
amplitude differences, we normalized all MCAs by dividing each by 
its maximum value for a more effective comparison of pattern dif-
ferences (see Materials and Methods). Although all the leading 
MCAs during boreal spring (March to April to May), which is the 
peak season of WES feedback in TNA, show similar overall patterns, 
the MCA in PI- HR more closely mirrors the observed pattern than 
that in PI- LR, particularly in the deep tropics where the cross- 
equatorial SST gradient and C- shaped cross- equatorial wind anom-
alies in PI- LR are notably weaker, with most variability of SST and 
wind stress anomalies shifted to the northern TNA (fig. S2, A to F).

Further information about the WES feedback is obtained from 
analyzing the expansion coefficient of SST and wind stress from 
MCA. Lead- lag correlation analyses reveal comparable values be-
tween PI- HR and observations but notably lower values in PI- LR, 
suggesting a stronger coupling in the former than in the latter (fig. S2G). 
Comparing SST and wind stress variances across calendar months 
indicates that PI- HR captures better the observed variability, high-
lighting the strong atmospheric variability during boreal winter as 
the initial driver of TNA SSTA, which is then amplified through the 
WES feedback in the subsequent spring season (fig. S2, H and I). In 
contrast, PI- LR exhibits comparable peak winter wind variance but 

a delayed peak in SST variance in the summer season, indicating an 
underestimated SST feedback on the atmosphere (fig. S2J). Com-
bining these findings, we attribute the improved SST prediction skill 
in TNA in HRDP to the realistic representation of AMM and the 
associated WES feedback.

Potential factors shaping the WES feedback
To identify factors contributing to the WES feedback disparities be-
tween high-  and low- resolution simulations, we conduct an AMM 
event composite (Fig. 4). Again, to facilitate a more effective com-
parison of pattern differences between simulations and observa-
tions, we normalize all the composites by dividing each by its 
maximum value of the AMM event period (see Materials and Method). 
In both PI- HR and PI- LR, warm anomalies initially appear in the 
northeastern TNA during October to November of the preceding 
AMM year (Oct0 to Nov0), accompanied by the negative WSAA. A 
notable difference is that in subsequent development, anomalies in 
PI- LR remain relatively stationary, while in PI- HR, they propagate 
westward and equatorward, consistent with observations. During 
February to March (Feb1 to Mar1), PI- HR exhibits pronounced 
cross- equatorial wind stress anomalies and a stronger SSTA gradi-
ent near the equator, contrasting with PI- LR’s strong anomalies re-
maining in the northeastern TNA. As the AMM peaks in April 
to May (Apr1 to May1), observation and PI- HR both display stron-
ger WSAA negative maximum in the western deep tropics as a 
part of strong cross- equatorial wind stress anomalies, while PI- LR 
shows much weaker SST gradient and wind stress anomalies near 
the equator.

Precipitation anomalies are closely linked to surface wind con-
vergence and divergence anomalies. In PI- HR, a dipole pattern of 
precipitation anomalies forms during Dec0 to Jan1, peaks in Apr1 to 
May1, and weakens subsequently, while in PI- LR, a larger- scale di-
pole precipitation anomaly manifests only during Apr1 to May1 
(Fig.  4). These differences in precipitation anomalies are likely 
linked to the notable differences in the seasonal variations (location 
and strength) of the precipitation between PI- HR and PI- LR, which 
can influence the AMM and WES feedback (12). It is worth noting 
the reduction of the notorious double- ITCZ bias in PI- HR, resulting 
in a more realistic ITCZ compared to PI- LR.

To further ascertain the impact of atmosphere versus ocean resolu-
tion, we analyzed two sets of uncoupled simulations. The first set has 
high- resolution (0.1°) and low- resolution (1°) FOSIs (FOSI- HR and 
FOSI- LR, respectively; see Materials and Methods), and the second set 
has high- resolution (0.25°) and low- resolution (1°) atmospheric model 
intercomparison project style simulations (AMIP- HR and AMIP- LR, 
respectively; see Materials and Methods). Comparing AMM event 
composites in FOSI- HR and FOSI- LR reveals similar amplitudes of the 
simulated meridional SST gradient (Fig. 5, A, E, I, and M) under the 
same atmospheric forcing (Fig. 5, B, F, J, and N), suggesting a minimal 
impact of ocean resolution changes. However, in AMIP- HR, a 50% in-
crease in the amplitude of meridional wind stress anomalies compared 
to AMIP- LR (Fig. 5H), coupled with AMIP- HR more robust precipita-
tion dipole during February to May (Fig. 6), indicates a substantial im-
pact of atmospheric resolution on the strength of WES. These findings 
underscore the greater impact of increasing atmospheric resolution on 
enhancing WES feedback, leading to the conclusion that the strength-
ening of the WES feedback in high- resolution simulations is primarily 
attributable to the increase in atmospheric resolution, enhancing the 
near- equatorial atmospheric response to SSTA gradient.
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Role of remote impact in SST prediction
While the above analyses emphasize the primary role of AMM and WES 
feedback in TNA SST prediction, remote impacts also play a role in in-
fluencing regional SST dynamics. The impact of remote factors on SST 
prediction can vary on the basis of the characteristics of a chosen index 
itself and the regression pattern onto the index. In the following, we ex-
amine and compare both these factors between HRDP and DPLE.

Previous studies suggest that modes of variability, such as ENSO, 
NAO, and SPNA SST, can remotely influence SST variability in 
TNA. In our analysis, we focus on ENSO and NAO, along with two 
SST indices in the southeastern Pacific (SEP) and the eastern Pacific 
Southern Ocean (EPSO), where HRDP has shown significant skill 
improvement (16). However, we exclude examining the influence 
from the SPNA SST, as prediction skill in this region degrades in 

Fig. 4. Development of AMM event composite. (First to third rows) Normalized composite of anomalous SST (color shading) and wind stress vector (vectors) in (row 1) 
HadISST/ERA5 (labeled as OBS), (row 2) PI- HR, and (row 3) PI- LR. (Fourth to sixth rows) Normalized composite of WSAA in (row 4) ECMWF Reanalysis v5 (ERA5), (row 5) PI- HR 
and (row 6) PI- LR. (Seventh to ninth rows) Normalized composite of precipitation anomalies in (row 7) Global Precipitation Measurement (GPM), (row 8) PI- HR, and (row 9) 
PI- LR. (10th to 12th rows) Precipitation climatologies (in millimeters per day) in (row 10) GPM, (row 11) PI- HR, and (row 12) PI- LR. Each column shows a 2- month average 
from October before the AMM event year (Oct0) to July (Jul1).
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HRDP compared to DPLE. The ACC scores of the predicted Niño3, 
NAO, SEP, and EPSO indices at LY1- 5 in HRDP and DPLE are sum-
marized and compared in table S1. A bootstrap analysis with 10 ran-
domly selected ensemble members from 40- member DPLE is used 
to test whether the difference in ACC scores between HRDP and 
DPLE is significant.

HRDP generally exhibits higher ACC scores than DPLE for pre-
dicting these four indices (table S1), indicating improved prediction 
skill. However, the improved ACC score for Niño3 in HRDP falls 
within the SD of the ACC score in DPLE, while the predicted NAO 

index at LY1- 5 does not pass the significant test in either HRDP 
(0.21) or DPLE (−0.11). HRDP only demonstrates significant skill 
improvement for SEP and EPSO, suggesting that remote influences 
from the South Pacific may contribute to enhanced SST predic-
tion in TNA.

Remote impacts are also influenced by the regression pattern 
onto these indices (fig. S3). The regression of predicted SSTA at LY1- 
5 onto each of these four indices reveals that both HRDP and DPLE 
tend to overestimate the remote impacts from Niño3, SEP, and 
EPSO at multiyear timescales compared to observations. However, 

Fig. 5. Evolution composites of anomalous meridional SST gradient and wind stress at AMM event year for uncoupled simulations. Zonal averages between 45°W 
and 15°W of (first and third columns) meridional SST gradient anomalies from FOSI- HR (red line) and FOSI- LR (blue line) and (second and fourth columns) meridional wind 
stress anomalies from AMIP- HR (red line) and AMIP- LR (blue line).

Fig. 6. Precipitation anomalies from AMM event composite for uncoupled AMIP simulations. (Top two rows) Composite of precipitation anomalies (in millimeters 
per day) in (row 1) AMIP- HR and (row 2) AMIP- LR. (Bottom row) The composite differences of precipitation anomalies between AMIP- HR and AMIP- LR. Each column shows 
2- month average from October in the prevous AMM event year (Oct0) to July (Jul1).
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HRDP, relative to DPLE, exhibits smaller remote impact biases in 
the deep tropics (between 0° and 10°N) and along the western 
boundary of the South Tropical Atlantic from Niño3 and SEP 
(fig. S3, M and O) and in almost the whole North Tropical Atlantic 
from EPSO (fig.  S3P). As a result, HRDP demonstrates improve-
ments in both factors influencing remote impacts over DPLE. These 
enhancements suggest that remote impacts from Niño3, SEP, and 
EPSO may also contribute to the improved SST prediction in HRDP.

That said, the enhancements in remote impact are predominant-
ly observed within the deep tropics in HRDP. In contrast, the im-
proved SST prediction extends across a broader area in TNA, 
particularly along a diagonal from the western deep tropics to the 
west coast of North Africa (Fig. 1, C and F). In addition, the NAO- 
related remote impact in HRDP exhibits a larger bias in the TNA 
compared to DPLE (fig. S3N), despite the higher ACC score of the 
predicted NAO index. Taking all these factors into account, we con-
clude that the role of remote impacts in the enhanced SST predic-
tion in HRDP is secondary.

DISCUSSION
The improved prediction skill of AMM- related SST in TNA in 
HRDP holds notable implications for climate- scale predictability, 
especially concerning North Atlantic TCs. Given the robust connec-
tion between TC activities, ITCZ, and AMM, particularly in the 
Caribbean (2, 6, 7, 10, 12, 30–32), HRDP, with its ability to explicitly 
simulate TC- like features, is expected to demonstrate useful skill in 
predicting TC track density anomalies. This expectation holds true 
at LY1, where the ACC between observed and HRDP- predicted TC 
track density during the TC season (June to November) reveals high 
values in the western TNA region centered around the Caribbean 
Sea, with peak scores approaching 0.7 (Fig.  7A). These high skill 
scores align with the high ACC values of the corresponding SSTA in 
the same region (Fig. 7B), affirming the substantial impact of local 
SST conditions on TC activity.

However, the analysis of ACC for TC track density anomalies 
reveals a rapid deterioration in skill scores beyond LY1 (fig. S4), in-
dicating HRDP struggles to maintain its high skill beyond 1 year. A 
potential contributor to this declining skill at longer lead times is 
HRDP’s cold SST bias in TNA, which escalates notably with increas-
ing lead time (fig. S5). At LY1, the predicted climatological mean 
SST in the Caribbean Sea is ~0.5°C colder than the observations, but 
these moderate SST cold biases double to −1.1°C at LY3. Similarly, 
the averaged SST cold biases in MDR increases from −0.9°C at LY1 
to −1.4°C at LY5. Numerous previous studies underscore its nega-
tive impacts on TC simulations (33), which can potentially con-
strain the HRDP’s long- term prediction skills.

Nevertheless, TC empirical indices, such as MDR SST index and 
relative SST index (RSST; see Materials and Methods) (3), can offer 
some insights into HRDP’s potential for longer- term TC prediction. 
In Table 1, the ACC values of these indices during June to November 
at different lead years are compared between HRDP and DPLE. The 
MDR index consistently demonstrates higher values in HRDP than 
in DPLE for all lead years. Similarly, the RSST index also exhibits 
higher values in HRDP compared to DPLE, except for LY1- 5.

Another substantial improvement in HRDP compared to DPLE 
is the relationship between AMM and North Atlantic TC numbers. 
Notably, the correlation between AMM and TCs reaches 0.63 in 
HRDP (fig. S6A), indicating that ~40% of the pentadal TC number 
variance can be explained by AMM. Note that this high correlation 
between AMM and TCs in HRDP aligns with observational analysis 
(2), suggesting that AMM serves as valuable predictor of TCs in 
TNA in both HRDP and observations. In contrast, the correlation 
coefficient is insignificant in DPLE (0.34; fig. S6B), indicating that 
DPLE not only poorly simulates TCs due to its low resolution but 
also fails to accurately represent the observed AMM- TC relation-
ship. This enhancement in AMM- TC relationship in HRDP high-
lights its potential for multiyear TC prediction in the North Atlantic.

Last, we acknowledge the complexity of the coupled prediction 
system and recognize that there may be additional factors contributing 

Fig. 7. HRDP prediction skill of TC track density and corresponding SST from June to November at LY1. ACC scores for (A) TC density and (B) SST. Gray dots in (A) 
indicate ACC skill that passes 95% significance, but in (B), those indicate ACC below 95% significant level.
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to the enhanced SST prediction that have not yet been fully account-
ed for. One such factor requiring careful examination in the future 
is the difference in ocean initial conditions between HRDP and 
DPLE. Preliminary analysis shows higher TNA SST ACC scores in 
HRDP than in DPLE at initialization (lead month 1; fig. S7, A to C). 
However, the ACC score of upper ocean heat content, representing 
ocean memory for multiyear prediction (34), only exhibits higher 
values than DPLE along the western boundary of the tropical Atlantic 
and in the northeastern TNA (fig. S7, D to F). However, over the 
central region of the TNA, where SST prediction is improved in 
HRDP, the upper ocean heat content score shows degradation 
compared to DPLE, raising questions about whether improved ini-
tial conditions contribute to enhanced SST prediction in TNA. This 
hypothesis gains further support from comparing SST ACC scores 
averaged over MDRs between HRDP and DPLE, where relatively 
minor differences are observed in LY1 and LY2 compared to LY3 
to LY5 (fig. S8). In addition, remote impacts may not solely be lim-
ited to the four indices discussed in this study. Other factors with 
better prediction skill may also influence TNA remotely, necessi-
tating further analysis. Moreover, quantifying the contributors to 
the boosted prediction skill will be the focus of future research 
endeavors.

In summary, the enhanced model horizontal resolution holds 
promising advancements in multiyear SST prediction in the 
TNA. This progress is linked to a more realistic portrayal of the 
AMM and the associated WES feedback, suggesting the poten-
tial for multiyear prediction of Atlantic TCs. Realizing this po-
tential, however, hinges on addressing the prevalent cold SST 
bias in the TNA across many climate models. While flux adjust-
ment techniques have proven effective in mitigating SST bias 
and achieving valuable skills in predicting TCs at seasonal tim-
escales (35), further research is necessary to better understand 
the root cause of the cold bias in the TNA, enabling the reduc-
tion of its adverse impact on TC prediction within fully coupled 
prediction systems.

MATERIALS AND METHODS
Experimental design
All simulations are based on the CESM1. Four distinct experiment 
groups are considered, with each group further divided into high 
and low resolutions. Simulations at high horizontal resolution are 
based on CESM1.3 using 0.25° for atmosphere and land compo-
nents coupled with 0.1° ocean and sea ice components (20). Cou-
pled simulations at low horizontal resolution are based on CESM1.1 
at nominal 1°. Uncoupled simulations at low resolution are based on 
CESM1.3 at nominal 1°.

Group 1: Decadal predictions
The introductions and comparisons between the CESM1 HRDP and 
DPLE at low resolution are described in detail by Yeager et al. (16). 
Briefly, HRDP has 10 members and 62- month integrations for each 
start year and is initialized from an FOSI simulation at high reso-
lution based on the OMIP2 (19). The initial dates are every other 
1 November between 1976 and 2016, that is, 21 start years. DPLE 
has 40 members and 122- month integrations for each start year and 
is initialized from an FOSI simulation at low resolution based on 
OMIP version 1 (OMIP1) (18). The ensemble members for both are 
generated by randomly perturbing the initial atmospheric tempera-
ture field at the round- off error level. The same forecast months and 
start years are used for comparing DPLE with HRDP.
Group 2: PI
The last 270 years of a 519- year PI- HR are used, with configuration 
details described by Chang et al. (20). In contrast, the PI- LR (21) has 
been integrated for 2200 years, and the period from 1900 to 2169 is 
extracted for comparison. Twenty independent samples including 
52 model years each, avoiding the overlapping model years on pur-
pose, are randomly selected from PI- HR and PI- LR, respectively. 
The purpose of the PI group is to provide a clean comparison be-
tween LR and HR that excludes the impacts of initializations and 
transient external forcings and only focuses on the possible differ-
ences of internal dynamical mechanisms at different resolutions.
Group 3: Uncoupled FOSI simulations
The FOSI simulations use forcing prescribed by OMIP2 at resolu-
tions of nominal 0.1° (FOSI- HR) and 1° (FOSI- LR), respectively. 
They are used to investigate the sensitivity of the response of SST 
gradient anomalies to observation- based cross- equatorial wind anom-
alies at different ocean resolutions. The analysis period is between 
1970 and 2016.
Group 4: Uncoupled AMIP simulations
Both AMIP- HR (three members) and AMIP- LR (five members) use 
a spectral element dynamical core at resolutions of 0.25° and 1°, re-
spectively, forced by the same high- resolution (0.25°) observed SST 
(36). Round- off perturbations to the initial atmospheric potential 
temperature field are applied to generate ensembles. The analysis pe-
riod is 1970–2005.

Observation validation
Prediction skill and AMM mechanism verification are relative to 
the following observational datasets: HadISST1 (37) and Met Of-
fice EN4.2.1 (38) for SST and upper ocean temperatures, respec-
tively; ECMWF Reanalysis v5 (39) for wind stress and sea level 
pressure (SLP); the Global Precipitation Measurement (GPM) 
(40) for precipitation; and the international best track archive for 
climate stewardship dataset (41) for observed TC tracks. Only 

Table 1. Prediction skill of TC- related SST indices from June to November. Italicized values indicate that the coefficient in HRDP is within the 0.95/0.05 
quantile values of bootstrapped 10- member DPLE coefficients.

Index

LY1 LY1- 2 LY1- 3 LY1- 4 LY1- 5

HRDP DPLE HRDP DPLE HRDP DPLE HRDP DPLE HRDP DPLE

MDR 0.78 0.69 0.78 0.68 0.85 0.77 0.88 0.77 0.89 0.82

RSST 0.51 0.37* 0.56 0.25* 0.55 0.34* 0.49 0.41* 0.57 0.59

*The coefficient does not pass 95% significance level.
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those TCs with lifetime maximum intensity exceeding 34 knots 
(17.5 m/s) or higher are considered. Observations except GPM 
used for prediction verification are from November 1976 to 
December 2021 to align with HRDP and DPLE. Observed annual 
precipitation from GPM is used from 2001 to 2019 each other 
year to compare the same period of LY1- 5 precipitation in HRDP 
and DPLE. Observations used to compare PI simulations are from 
January 1970 to December 2021. The observed composite of 
AMM events is from January 2001 to December 2021.

Prediction skill metrics
Prediction skill is evaluated by comparing observed anomalies 
with ensemble mean hindcast anomalies. The hindcast climatology 
is defined as the function of lead time. ACC is the Pearson cor-
relation coefficient between hindcast anomalies and observational 
anomalies.

Forced response
The variability from forced response is defined from models in 
CMIP6. Considering the multimodel weighting, each model incor-
porates a single member serving as its representative. SST and wind 
stress are from 34 models, and SLP is from 35 models. Given the 
limited member size, traditional ensemble average may not be large 
enough to eliminate internal variability in particular signals related 
to atmosphere, such as SLP. Signal- to- noise maximizing EOF analy-
sis (S/N), which reveals the dominant mode where all ensemble 
members agree on the temporal evolution (26–28, 42, 43), is used to 
estimate the external forcing variability. Wills et al. (26) provided 
detailed descriptions and codes for the S/N method. Subsequently, 
the forced response originating from a particular dataset is ex-
plained using a linear regression on external forcing variability de-
rived from the multimodel S/N ensemble, following the approach 
outlined by Smith et al. (29). Note that we also apply two commonly 
used definitions of forced variability, namely, the linear trend (fig. S9, 
A to C) and the linear regression based on area- averaged global SST 
(fig. S9, D to F), to assess the sensitivity of SST ACC skill for natural 
variability (fig. S9). The results demonstrate the robustness of our 
findings shown in Fig. 1, with HRDP consistently exhibiting signifi-
cantly higher ACC skill compared to DPLE when forced variability 
is removed.

Remote influence
The remote influence on SST in TNA is quantified through linear 
regression on a specific normalized index. Niño3 index is defined as 
the area- averaged SST anomalies in the region defined by 5°N to 5°S 
and 150°W to 90°W, and NAO index is defined as the SLP difference 
between the Azores (40°N to 34°N and 30°W to 10°W) and Iceland 
(68°N to 63°N and 30°W to 10°W). SEP index is the area- averaged 
SST anomalies within 20°S to 5°S and 120°W to 80°W. EPSO in-
dex is the area- averaged SST anomalies within 75°S to 45°S and 
115°W to 70°W.

Maximum covariance analysis
MCA, which is also known as singular value decomposition, is ap-
plied to SST anomalies and combined wind stress anomalies (along-
and cross- equatorial direction) in the domain 12°S to 28°N and 
75°W to the African coastline. The results are consistent across 
various spatial extents within the tropical Atlantic. The time series 
from MCA are associated with the left and right singular vectors 

representing the coupled variability. The spatial patterns are from 
the projection of normalized expansion coefficient onto the SST 
anomalies and wind stress anomalies, respectively, showing the 
structure caused by coupling. Pentadal mean in the prediction sys-
tem and 3- month running mean in PI, FOSI, and AMIP are applied 
before analysis. In addition, both the forced response and the linear 
impact from remote indices (Niño3 index and NAO index) are sub-
tracted before performing MCA analysis. Same analysis is per-
formed to the corresponding observations. The normalization of 
leading MCA spatial pattern is defined as the regressed SSTAs/wind 
stress anomalies divided by the maximum absolute value of SSTA/
wind stress anomaly amplitude.

Composites of AMM event
AMM event is defined as the time when normalized SST expansion 
coefficient of MCA is larger than 1 (positive events) or lower than 
−1 (negative events). The AMM event composite is the difference of 
composites between positive and negative events. The results in PI- 
HR and PI- LR are derived from a 20- sample average after comput-
ing the composite of each sample. Composite normalization is 
defined as the AMM composite divided by the maximum absolute 
value from Oct0- Jul1.

TC detection, track density, MDR index, and RSST index
The HRDP- simulated TCs are detected and tracked using Tempest -
Extremes algorithm (44, 45) with 6- hourly instantaneous output 
data. The definition of TC detection follows Roberts et al. (46). TC 
track density is defined as the total number of TCs passing through 
per 2° by 2° area each year, considering both TC genesis locations 
and the subsequent 6- hourly track paths. Following Fu et al. (47), the 
raw TC track density fields were smoothed using a nine- point mov-
ing average weighted by distance from the center of the grid box.

MDR index is the area- averaged SST over the box defined by 
70°W to 20°W and 7.5°N to 22.5°N. RSST index is the difference 
between MDR index and the tropical mean SST2 (30°S to 30°N).

Statistical analysis
The significance test for ACC is Fisher Z- transformation. ACC score 
in HRDP is considered significantly different from ACC score in 
DPLE when HRDP score is higher/lower than 0.95/0.05 quantile val-
ues of bootstrapped (N = 500) 10- member DPLE ACC scores. In ad-
dition, ACC difference (∆ACC) between 10- member and 40- member 
DPLEs (fig. S10) does not exhibit any significant distinction in SST 
predictions at LY1- 5, in line with the results in (16). The median P 
value of bootstrapped (N = 500) 10- member DPLE determines the 
significant result in fig. S8. The results from PI- HR and PI- LR are 
the average of 20 random samples with the same time dimension as 
in observations.

Supplementary Materials
This PDF file includes:
Figs. S1 to S10
Table S1
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