


SIGCSE 2024, March 20ś23, 2024, Portland, OR, USA Emma Hogan, Ruoxuan Li, Adalbert Gerald Soosai Raj, William G. Griswold, and Leo Porter

student outcomes, institutional climate (students’ relationship with

institutional staff) was associated with educational aspirations, and

both instructor and peer support were associated with positive

achievement motivation [27].

Conway applied andragogy theory [23] to teaching in prison,

noting the importance of adapting teaching practices to the context

of teaching and learning there, where łstudents assume responsi-

bility for their educations within settings that seek to constrain

and limit their freedom to pursue those goalsž [10]. Adult learners

are more intrinsically motivated to learn, which instructors can

leverage by creating a student-centered learning environment both

active and engaged. In addition, adult learners typically want to

understand the value of learning something before expending the

effort to do so. Differences amongst incarcerated students ś such

as time remaining in their sentences ś also impact what value they

hope to gain from a course, emphasizing the importance of under-

standing students’ goals and encouraging exploration. Lastly, adult

learners typically perceive themselves as being łresponsible for

their own lives and decisions,ž which leads to a łdeep psychological

need to be seen by others and treated by others as being capable

of self-directionž [10]. As incarceration denies self-direction, it is

not surprising that it can cause a number of mental health issues.

College programs present a unique opportunity to serve as a space

where students can take responsibility for their own success while

experiencing a level of autonomy [10] and intellectual freedom [11].

2.2 Teaching Computing in Prisons

In his 1990 experience report, Aman described the computer science

major offered in prison through Wilmington College in the 1970s

through the early 1990s, and the "problems and opportunities" of

teaching CS in prison [6]. A full sequence of courses for the major

was offered in the prison, where approximately 20% of the students

majored or minored in CS. Curriculum and GPA requirements were

the same for the prison program as on the main campus. The col-

lege maintained a computer lab in the prison where students were

able to transcribe and run their code. Students at the prison nom-

inally had access to the lab for three hours weekly, with further

limitations created by the volatile environment. Aman noted that

łcompared with the open lab on the [main] campus, this amount of

computer access is trivial.ž He emphasized this as one of the major

issues for CS education in a prison setting: łstudents learn by neces-

sity the importance of careful planning [of] programming projects.

They simply cannot afford the luxury of composing, testing, and

debugging at the keyboard.ž Beyond computing access, he found

that the two major differences between teaching CS courses in the

prison versus the main campus were students’ pre-college prepa-

ration and maturity. While many students in the prison had gaps

in academic preparation, their greater age and vastly different life

experiences showed up in the classroom as wisdom and maturity,

often generating questions that łprobe to the core of a subjectž [6].

Over three decades later, computing courses, as well as STEM

courses in general, are scarcely available in higher education prison

programs [3, 11, 19, 28]. A 2022 investigation into the experiences

of incarcerated college students found that technology available to

them is generally severely limited or unavailable, as well as outdated

and frequentlymalfunctioning [9]. However, momentum is growing

to expand these opportunities [3, 19, 36], and the technologies that

make them possible [4, 20]. Organizations such as The Last Mile

and Unlocked Labs currently offer training programs for coding

skills in prisons, heavily oriented towards landing students post-

release jobs in computing [1, 2]. These programs have made great

strides in equipping individual prisonswith computer labs and other

technical infrastructure in order to conduct these programs. Our

work additionally seeks to discover strategies to adapt computer

science education in the great majority of facilities where this is

not the case.

3 COURSE DESIGN AND ASSESSMENT

METHODOLOGY

3.1 Design Experiment Methodology

As there were many unknowns about teaching CS in the prison, the

authors were limited in our ability to optimize the course design

for the prison environment from the start. Having never learned

CS without an interpreter or been incarcerated ourselves, we also

had limited insight into the struggles students would face. As a way

to gather information about students’ experience in the course, we

incorporated weekly reflection assignments into the course, which

counted for a small number of points. Reflections included a mix of

multiple choice/Likert-scale questions and open-ended questions

that changed every week (often pertaining to pressing issues, such

as how the collaboration policy should be modified).

To help overcome these blind spots, we adopted the design ex-

periment methodology [7]. In researching communities of learning

in inner-city classrooms, Brown saw a need for this new research

methodology łto engineer innovative educational environments

and simultaneously conduct experimental studies of those innova-

tionsž [7]. She argued that using more complex methodologies, in-

stead of avoidingmultiplying confounds for the purpose of research,

was a necessary trade-off to capture the richness of the classroom

environment. Brown’s methodology was adopted in Wolfman’s

work on classroom technology, echoing that the best innovations

arise from users’ natural patterns of behavior, and allowed feedback

from instructors and students to shape the design of his tool [37].

3.2 Analysis Methods

After the course concluded, we returned to the above-mentioned

reflections for a more thorough analysis. A third-party removed

identifying information from all the submissions, which were then

transcribed. The first two authors performed open coding on the

responses pertaining to collaboration policies and the format of

code examples. As a student response often contained more than

one idea, we applied all labels relevant to the response. In this

process, we first coded all of the responses independently, compiling

independent initial code books. We then met to compare our codes,

and agreed on one combined code book before moving onto a

second round of coding. In the second round, we again coded all of

the responses independently, using our combined code book. For

both the collaboration and code example responses, we were able to

reach an acceptable inter-rater reliability (IRR=0.837 and IRR=0.849,

respectively) after two rounds of coding.

To assess student learning, we included the ten łbenchmarkingž

questions detailed in Simon et al. [35] on the final exam. We report

513



Challenges and Approaches to Teaching CS1 in Prison SIGCSE 2024, March 20ś23, 2024, Portland, OR, USA

the average scores of our students on these questions covering core

topics from the course, which included code tracing, explaining, and

writing, three types of common questions in CS1 [25].

4 COURSE LOGISTICS

Aspects of prison environments themselves limit higher education

programs in prison [11], as discussed in Section 2.1. Although the

course was conducted at a maximum-security male prison, it was

conducted on a yard where the students had relatively more privi-

leges, including newly debuted individual laptops for educational

use and relatively more freedom to meet with one another outside

of class. The demographics of these students had the nuances of

the particular facility and the yard they were on. Most of the stu-

dents were middle-age or older adults who had been incarcerated

for a decade or more, and had little or no experience with modern

computers going into the course.

Both instructors and students lose a great amount of control

in a prison environment: instructors have less control over the

successful running of the course, and students have less control

over their ability to succeed. We note two specific occurrences

as examples: 1) Nearly half of the students were prohibited from

attending the first lecture, as one of the two housing units where

students came from was under quarantine for Covid. As attending

the lecture or watching a recording were not an option, we adjusted

the course schedule to catch students up the following week. 2) Two

weeks before the final exam, all student laptops were confiscated for

security reasons, leaving themwithout access to resources available

through Canvas. While we printed and delivered some of these

resources to them as soon as we could, there was still a delay in

their ability to access important study material.

4.1 Access to Resources

Students were given laptops immediately before the course began.

Student reactions to the new technology were mixed: some excited,

and many overwhelmed at first. The laptops have access to a modi-

fied version of the Canvas LMS, closely monitored by the prison,

and Microsoft Office. In the months prior, it was unclear whether

the prison would allow Python to be installed on the computers,

which was eventually denied without explanation. In this first it-

eration of the course, we did not rely on Canvas for any part of

the course for several reasons: student laptops regularly malfunc-

tioned, many students were still learning the basics of using the

laptops, and there was a constant threat of them being confiscated

to handle security issues. All of these were related to the laptops

being introduced just as we were starting the course.

4.2 Lecture, Office Hours, and Exams

Lectures occurred once per week for 2.5 hours, and there were no

lab hours. While neither the students nor the instructor were able

to access the internet from inside the prison, the classroom was

equipped with a projector and large screen, and the instructor was

able to project from a personal laptop.

Space and staff availability is a significant inhibitor to programs

in prisons, sowewere fortunate to have 2.5 hours per week available

for office hours. It was not unusual for nearly all 26 students to

come for the entire duration. On reflection assignments (Section 3.1),

students reported that the most helpful activity during office hours

was a long example on the board. Taking the students’ advice, we

began using office hours exclusively for this purpose. In presenting

the example, we would take suggestions from the class to write the

program on the board line by line. Then, we would visualize the

running of the program by drawing a memory diagram and tracing

its execution. Finally, the instructor would switch to live coding

the same program with edits suggested by the students.

The course had two exams, a midterm and a final. These exams

took up lecture time, as no additional time was allotted to hold

either exam. Consequently, there was a strict time limit on the

exam. Exams in the prison were conducted on paper, as they are in

our CS1 course on campus as well. Students were allowed a sheet of

notes, but exams were otherwise closed-book. Both exams included

a variety of question types, including multiple choice, short answer,

explain in plain English, tracing, code writing, and a stack diagram.

5 COURSE DESIGN AND ADAPTATIONS

The course is a CS1 course using Python that taught variables,

loops, conditionals, functions, lists, and strings. The course fulfilled

the computing requirement toward the undergraduate degree in

sociology, the only bachelor’s degree offered at this prison so far. All

26 students in the bachelor’s program were enrolled in the course.

Best practices from the computing literature [8] were included in

the teaching of the course, including Peer Instruction [12, 31], Live

Coding [34], and other forms of active learning such as in-class

worksheet exercises [17].

As described in Section 3.1, our approach to designing the course

was modeled off of Brown’s "design experiment" methodology [7],

relying heavily on students’ feedback and articulation of their learn-

ing experiences to guide course design decisions. We were also com-

mitted to making changes to adapt as soon as we became aware

of an issue or potential solution in the interest in student success.

This methodology facilitated more rapid discovery of best practices

(and mistakes to avoid) for teaching CS1 in prisons, as presented in

this paper, and enabled us to ground course design decisions in the

experience of the students.

5.1 Adaptations to No Code Interpreter

With the decision by the prison to not allow Python to be installed

on the laptops approximately three months before the start of the

course, we recognized an opportunity to explore the potential ben-

efits of alternative teaching and learning methods. A challenge in

standard classrooms is that students have access to interpreters

which allow for a hack-until-it-works mentality, whereas recent

work emphasizes the importance of teaching conceptual under-

standing early in a programming course [13, 14]. This restriction by

the prison became an opportunity to stress conceptual understand-

ing. We decided to structure the course assignments to split the

grade percentage that would normally be just programming assign-

ments between code-based programming assignments and problem

sets that tested conceptual understanding using paper-based activi-

ties such as tracing, short answer, and fill-in-the-blank questions.

We also recognized the importance of the in-person instruction

time, as live coding [34] in lecture was the only chance students

514



SIGCSE 2024, March 20ś23, 2024, Portland, OR, USA Emma Hogan, Ruoxuan Li, Adalbert Gerald Soosai Raj, William G. Griswold, and Leo Porter

had to experience code being run. Below, we describe other major

adaptations given the lack of a code interpreter.

5.1.1 Handwriting Code. Since students could not run code on

their laptops, as well as their unpredictable availability, we decided

to have students hand-write code for programming assignments.

Later in the course, we made it an option to submit typed code (in

a Word document) on Canvas, but only a handful of students chose

this option and many were more comfortable with hand-writing.

In order for students to see the output of their code (and adjust

based on errors or unexpected output), the instructor typed and

ran their handwritten code, printed the output, and returned this

to the students. The instructor picked up and dropped off printed

output with comments 2-3 times per week total.

5.1.2 Grading. We transcribed the students’ code exactly as it

was written, including all errors. Students were held to the same

standard for their code as the CS1 students on our campus and only

received full points for fully working code. However, we decided

it was necessary to give partial credit, given the limited ability for

students to debug their code. To this end, we created detailed rubrics

for each programming assignment. Additionally, we accumulated

a running list of common errors (described in section 5.1.3). In

grading, we counted the total number of errors and took off a certain

number of points per error that was a much smaller deduction than

missing a key element of the program defined in the rubric items.

5.1.3 Common Errors Resource. A problem that quickly arose with

the system of dropping off printed output was the extremely limited

amount of information students could gather from this output, only

showing the first error to occur. The students needed a way to

get more information. One option was to provide detailed written

feedback on all errors in the code, not just the one showing in

the output. However, this was infeasible due to the sole instructor

of the course being the only grader. Our solution was to create a

running list, which we called "Common Errors" .1 Each time an

error occurred in a code submission, we added examples of this

specific error to the list, along with an explanation of the error and

how to fix it. By the end of the course, this list had 47 errors.

We believe the Common Errors resource was ultimately a success.

Along with students’ feedback on reflections and course evaluations

that this was a helpful resource, it served multiple purposes in

the course. First, it was a more feasible way to provide necessary

additional feedback for students to debug more than one error per

submission. Instead of providing written feedback for each error,

we could point to that numbered description in the assignment.

Second, while we do not have confirmation that it had this effect,

we intended for this to lessen the emotional toll on students [22] of

seeing errors in their code by showing that they were not alone.

5.2 Course Policies

We began the course with essentially the same course policies we

had in our CS1 course on campus. However, we quickly came to

realize (with the help of the students) that some of these policies

did not work in the prison. The two major areas of change in course

policy were homework re-submissions and collaboration.

1The Common Errors resource can be found here: https://perma.cc/CXH3-MBKG

Type Primary Q. Topics Difficulty Avg

Q1 Trace Compound conditionals easy 92.0%

Q2 Trace Variable assignment easy 40.0%

Q3 Write Swap variables medium 59.1%

Q4 Trace Conditionals easy 84.0%

Q5 Trace Complex conditionals easy 52.0%

Q6 Trace Loop, conditional, and lists medium 24.0%

Q7 Explain Loop and conditional easy 24.0%

Q8 Explain Loop hard 16.7%

Q9 Write Loop and lists medium 27.9%

Q10 Write Loop and lists medium 42.9%

Table 1: Benchmarking questions from Simon et al. [35] and

the average scores from the students in the class.

5.2.1 Mastery Learning. Mastery learning in CS1 is both theoreti-

cally supported [29], and necessary in the prison where students

have limited attempts to run code before submitting. In our CS1

courses on campus, students are given a single deadline for their

programming assignments. Given our students’ lack of access to

a Python interpreter, we adapted this policy and allowed students

unlimited re-submissions of their programming assignments. We

had initial concerns that this might cause students to procrastinate,

but we found that our students were eager for any feedback they

could receive and consistently turned in assignments on time and

kept submitting until they were correct. This was an overall positive

adjustment we will keep for future offerings.

We used the midterm exam as another opportunity to incor-

porate mastery learning into our course. Students were given the

opportunity to submit corrections on their Midterm after the fact,

and receive credit back. Partial credit was awarded similar to the

programming assignments (Section 5.1.2).

5.2.2 Collaboration Policy. After beginning the course with a strict

no-collaboration policy on programming assignments, students

raised valid concerns in class and on reflection assignments (Sec-

tion 6.2.1). In response, we decided to try an open policy allowing

collaboration on all assignments.

6 COURSE OUTCOMES

6.1 Student Performance

Results of the benchmarking questions [35] are shown in Table 1,

including the type of each question, topics involved in the question,

question difficulty2, and results from the most recent class. Some

trends emerged in these findings: First, students did better on ques-

tions that stressed a single concept rather than multiple concepts.

This is a common challenge in computer science assessments, as

questions must often combine multiple concepts [32]. Second, stu-

dents did poorly with code explaining questions. These questions

ask students to take a block of code and explain its purpose. This is

a common practice employed by software developers but is chal-

lenging for novices [25]. Third, the students performed reasonably

well on code writing questions despite having no access to a Python

interpreter all term.

2Question difficulty is determined based on the average student performance reported
in Simon et al. [35], where if students in that study earned greater than 80% we denote
this as an łeasyž question, 60-80% as łmediumž, and less than 60% as łhardž.

515



Challenges and Approaches to Teaching CS1 in Prison SIGCSE 2024, March 20ś23, 2024, Portland, OR, USA

6.2 Student Reflections

6.2.1 Collaboration Policies. By the third week of the course, it

became apparent that a change would have to be made to the

collaboration policies for the students to succeed. On the next

reflection assignment we asked students what they would make

the collaboration policy if they were teaching the course, and why.

The majority of responses said that they would allow increased

collaboration (N=10): making all work collaborative (N=2), more

of the work collaborative (N=5), or stating that collaboration was

necessary for them to succeed (N=3). While some student responses

acknowledged that some individual work was still important, no

response requested keeping the collaboration policy as is.

A major argument for allowing more collaboration was the lack

of access to outside resources, tutors, or the instructor outside of

class time (N=4). Several students added that it was particularly

difficult to grasp the concepts in an environment with limited tech-

nology (N=5), with one student writing: "The material is new to

all of us, the concept is alien to most." Other students talked about

the usefulness of running their code by classmates to "debug" in

the absence of a code interpreter (N=3), writing: "Because we do

not have access to the Python App ... we cannot troubleshoot our

code, however as a group we can help each other to troubleshoot."

Similarly, students wrote about going to each other as a means of

getting "unstuck" (N=2). Multiple students talked about the culture

amongst the students of helping each other (N=4), saying "when a

few people get it, they help others," and some students characterized

this as "pooling" or "concatenating" their knowledge (N=2). Many

students said that collaboration promoted better learning overall

(N=5), comparing their understanding of the concepts (N=2) and

resolving misconceptions (N=1). Others mentioned the benefits of

hearing things explained a different way by classmates (N=2), and

one student noted in particular how students with learning disabil-

ities may struggle to pick up concepts during lecture that could be

resolved through collaboration with peers. Finally, students wrote

that collaboration with classmates guided new understanding (N=2),

and gave students more equal opportunities to succeed (N=1).

6.2.2 Student Preferences for Presentation of Code Examples. In

the fifth week of the course, we asked students which format they

preferred for presenting code examples during lecture and office

hours. Initially, we had intended for students to compare live coding

with static coding examples as we typically define them in CS

education literature. However, many students interpreted this more

generally about which format (including writing code on the white

board, pre-written code examples in slides, and projecting live

coding from the instructor’s computer) they preferred to see code

examples. These results are reported in Table 2, showing that the

most popular responses were writing code on the white board, or a

combination of both the white board and live coding.

Students who preferred code examples to be written on the white

board gave reasons including a) the white board was helpful for

breaking down code (N=2), b) the students were used to the white

board (N=1), c) it was hard to read code on the screen (N=1), d)

they liked seeing code written out step-by-step on the white board

(N=3), e) the white board was used in previous math courses to

show proofs (N=1), and f) seeing code written on the white board

was easier to follow (N=1) and visualize (N=3).

7 DISCUSSION

7.1 Lessons Learned

Leverage the Strong Student Community. In addition to the

adult students being mature and self-sufficient, there was a deep

sense of collective effort to succeed Ðoften born out of situations

of collective struggleÐ that shaped a thriving learning community.

On reflection assignments, students often wrote in terms of "we" as

opposed to "I". Students formed study groups in the limited space

and time available to them outside of class (access to a room where

they could meet was limited to 6-8 hours per week), where they

described having struggling students write their code on the white

board, and they would together draw a memory diagram and trace

through the code to help identify the errors. Higher performing

students would walk to the other side of the classroom during Peer

Instruction activities to sit with students who were struggling.

Make Students a Resource for Each Other. Sometimes there

were only a few students who picked up a specific topic well during

lecture. In the absence of outside resources, students relied on

each other to fill in the gaps. It seemed that no student was left

behind, and that overall there were many positive relationships

formed between lower- and higher-performing students. However,

the collaboration was difficult to control, given this dependency on

others for information outside of the limited lecture and office hour

time. This was likely a sizable factor in the majority of students

struggling to write code independently on the exams.

Code Resubmission Policies are Critical. One of the most

significant hurdles for the students was the absence of a code in-

terpreter to test their programs before submitting. In addition to

making it extremely difficult to have programs work on the first

few tries, students were also robbed of the critical learning that

happens through debugging. Our approach was to offer unlimited

resubmissions on programming assignments, and encourage stu-

dents to take advantage of this by "debugging" their code based on

the output and instructor feedback on the original submission.

Mix Live Coding with Long Examples on the Board. Live

coding during lecture had a unique significance in the prison class-

room, as this was the only opportunity for students to actually

see code run in real time. Still, students had a strong desire for

code being written on the board as well. What worked best was to

write out a long example program first on the board, then trace its

execution in a memory diagram, and finally project its execution

in a code interpreter (as described in Section 4.2).

Use Relevant Examples. For this first offering, we used pro-

gramming assignments similar to those in the CS1 at our university.

Some students commented that they would like the assignments to

be more relevant to their life experiences. Andragogy advises that

adult learners want to understand the value of learning something

before putting in the effort to do so (Section 2.1), and encourages

the incorporation of a greater variety of prior life experiences com-

pared to younger learners. Existing frameworks such as culturally

relevant pedagogy both acknowledge and leverage students’ di-

verse backgrounds in the classroom [24], and have been effective

amongst K-12 students from underrepresented groups in CS [26]. In

the future, we plan to incorporate these theories into our practice by

creating examples for lectures and assignments that are culturally

relevant to adult students in prison.

516



SIGCSE 2024, March 20ś23, 2024, Portland, OR, USA Emma Hogan, Ruoxuan Li, Adalbert Gerald Soosai Raj, William G. Griswold, and Leo Porter

Preferred Method of Presenting Code Examples

Code N % Properties Examples

white board 7 46.7% 1. Prefer writing code "live" on the white

board

"Writing on the white board is easier because what we are used

to is the white board, and breaking down code point by point

allows me to grasp each part and put it together"

pre-written 4 26.7% 1. Prefers pre-written code examples (on

slides)

"I prefer the pre-written code examples. It seems that once we

switch to "live" it starts to get confusing. This may be because

we are not using the computer ourselves."

live coding 2 13.3% 1. Prefers live coding (projected on screen) "Writing code ’live’ works better for me...it kinda slows everying

down a bit such that I’m better able to digest the material"

combination 8 53.3% 1. Prefers a combination of white board

and live coding

"I like both methods. Going through prewritten code gives me

the opportunity to really focus on the code. Writing live code

gives me the opportunity to see the execution"

no preference 4 26.7% 1. Both methods are equally effective

2. No preference, or left blank

"Both were instrumental and effective in enhancing learning."

Table 2: Qualitative coding results for open-ended reflection question about preferred method for presenting code examples.

Make Use of Students’ High Engagement in Lecture. Peer

instruction worked particularly well during lectures. Students were

not only cooperative in gathering with their groups to discuss, but

they would also often self-organize such that high-performing stu-

dents moved to sit with lower-performing students. Students were

overall fully engaged in productive discussion about differing opin-

ions. After the fact, some students wrote on their course evaluations

that they found this part of the lecture particularly helpful.

Students are Skilled Independent Learners. Similar to the

impact of students’ maturity discussed by Aman [6], many students

in the prison had much experience with self-teaching during their

incarceration. For example, correspondence courses are a common

way for incarcerated students to pursue higher education, and re-

quire an immense amount of discipline and independent learning.

Given the the lack of any reliable communication with the students

outside of class, and having no tutors/TAs, we have seen the im-

portance of providing students additional resources for learning

outside of class. This includes textbook readings or other written

resources, as well as uploading video tutorials when possible (given

students’ varying comfort with and access to the laptops).

Create Opportunities for Self-Expression. In addition to al-

lowing programming assignment resubmissions, we also offered

students the opportunity to submit any other code written for prac-

tice or for fun. Similar to the programming assignments, we would

transcribe the code, print the output, and deliver this back to them.

Many students, both higher-performing and lower-performing,

took advantage of this opportunity throughout the quarter to sub-

mit programs that were often personal in nature and creatively

expressive. In future iterations of the course, we plan to explore

how we can encourage this creative expression more.

7.2 Limitations and Future Work

There are many possible contributors to our results, particularly

student performance on the exam. While these findings provide us

with areas of improvement for our next offering, the benchmarking

questions might have been easier for students in Simon et al. [35]

than for our students in this course, perhaps due to limitations of

this first offering of the course. We observed that exams seemed to

be particularly emotional and stressful for students in the prison.

In fact, multiple students would leave entire sections incomplete,

later citing this as a result of mental and emotional reactions to

the exam setting itself on weekly reflections. While many students

who are not in prison also experience exam stress, we believe that

this deserves special consideration in the prison setting. Students in

prison aremore likely to have failure and trauma as part of their past

educational experiences, as well as exposed to a highly-stressful

environment in the prison. In the future, we plan to consider ways

we can reduce the stress of exams in the course, as well as including

more comprehensive ways of assessing students’ performance.

Prison environments are idiosyncratic by nature, and ours was

no exception. Available resources, rules and restrictions differ across

correctional facilities, and will also change over the course of time

as educational opportunities expand. That being said, many prisons

share some or all of the restrictions described here. In the future, we

plan to study programming courses in different facilities, as well.

8 CONCLUSION

The expansion and improvement of computing opportunities in

prison college programs has the potential to benefit not only incar-

cerated students, but also the advancement of the computing field

and society as a whole. In this report, we described our experience

teaching CS1 in a college in prison program. Obstacles included

students not having access to code interpreters or outside resources.

However, students in the prison were skilled independent learners,

and found ways to simulate the debugging process in study groups

outside of class. In addition, we discovered several strategies to

adapt to the limitations of the environment Ðwith the guidance

of students’ feedback throughout the courseÐ such as combining

live coding with writing code examples on the white board, and

annotating code submissions using a list of common errors to make

the debugging process more feasible with fewer opportunities to

run code. Finally, we share our takeaways from this experience that

will be used to improve future offerings of the course in prison.

9 ACKNOWLEDGMENTS

This work is supported by the Ford Foundation Fellowship and NSF

Award #2315909. We thank Dr. Jim Aman for his valuable feedback,

and for continuing to graciously share his unique wisdom with us.

517



Challenges and Approaches to Teaching CS1 in Prison SIGCSE 2024, March 20ś23, 2024, Portland, OR, USA

REFERENCES
[1] [n.d.]. The Last Mile ś Paving The Road To Success. https://thelastmile.org/
[2] [n.d.]. Unlocked Labs. https://www.unlockedlabs.org/
[3] 2020. STEMOpportunities in Prison Settings (STEM-OPS). https://stemforall2020.

videohall.com/presentations/1801
[4] 2022. Building the Technology Ecosystem for Correctional Education: Brief and

Discussion Guide. Brief. Office of Career, Technical, and Adult Education, U.S.
Department of Education. https://lincs.ed.gov/sites/default/files/tech-ecosystem-
correctional-ed.pdf

[5] Mariel Alper, Matthew R Durose, and Joshua Markman. 2018. 2018 Update on
Prisoner Recidivism: A 9-year Follow-up Period (2005-2014). US Department of
Justice, Office of Justice Programs, Bureau of Justice. https://bjs.ojp.gov/content/
pub/pdf/18upr9yfup0514.pdf

[6] James R Aman. 1990. Computer science in correctional education. ACM SIGCSE
Bulletin 22, 1 (1990), 147ś151.

[7] Ann L Brown. 1992. Design experiments: Theoretical and methodological chal-
lenges in creating complex interventions in classroom settings. The journal of
the learning sciences 2, 2 (1992), 141ś178.

[8] Neil CC Brown and Greg Wilson. 2018. Ten quick tips for teaching programming.
PLoS computational biology 14, 4 (2018), e1006023.

[9] Erin L. Castro, Caisa E. Royer, Stephanie Gaskill, and Estefanie Aguilar-Padilla.
2022. łIt’s Useless, to Put it Politelyž: Experiences with Technology Among In-
carcerated Students Receiving Second Chance Pell at Four Institutions. Brief 9.
Collaborative for Higher Education Research and Policy, The University of Utah.
https://cherp.utah.edu/projects/pell_is_not_enough.php#publications-slide

[10] Patrick Filipe Conway. 2022. Andragogy in prison: Higher education in prison
and the tenets of adult education. Adult Education Quarterly 72, 4 (2022), 361ś379.

[11] Trevor Craft, Nicholas Gonzalez, Kevin Kelleher, Miki Rose, and Ofu Takor.
2019. A Second Chance: College-in-Prison Programs in New York State. Technical
Report. Nelson A. https://eric.ed.gov/?id=ED605777 Publication Title: Nelson A.
Rockefeller Institute of Government ERIC Number: ED605777.

[12] Catherine H. Crouch and Eric Mazur. 2001. Peer instruction: Ten years of experi-
ence and results. American Journal of Physics 69 (2001).

[13] Quintin Cutts, Matthew Barr, Mireilla Bikanga Ada, Peter Donaldson, Steve
Draper, Jack Parkinson, Jeremy Singer, and Lovisa Sundin. 2019. Experience
Report: Thinkathon - Countering an ’I Got It Working’ Mentality with Pencil-
and-Paper Exercises. ACM Inroads (2019).

[14] Quintin Cutts and Maria Kallia. 2023. Introducing Modelling and Code Compre-
hension from the First Days of an Introductory Programming Class. In Proceedings
of 7th Conference on Computing Education Practice (Durham, United Kingdom)
(CEP ’23). Association for Computing Machinery, New York, NY, USA, 21ś24.
https://doi.org/10.1145/3573260.3573266

[15] Lois M. Davis. 2019. Higher Education Programs in Prison: What We Know Now
and What We Should Focus on Going Forward. (2019).

[16] Lois M. Davis, Robert Bozick, Jennifer L. Steele, Jessica Saunders, and Jeremy N. V.
Miles. 2013. Evaluating the Effectiveness of Correctional Education: AMeta-Analysis
of Programs That Provide Education to Incarcerated Adults. Rand Corporation.

[17] Scott Freeman, Sarah L Eddy, Miles McDonough, Michelle K Smith, Nnadozie
Okoroafor, Hannah Jordt, and Mary PWenderoth. 2014. Active learning increases
student performance in science, engineering, and mathematics. Proceedings of
the National Academy of Sciences of the United States of America (2014).

[18] Stephanie Gaskill, Mary R. Gould, Ved Price, Erin L. Castro, and Amy Lerman.
2023. The Landscape of Higher Education in Prison, 2020-2021. Technical Report.
Alliance for Higher Education in Prison. http://higheredinprison.org

[19] Jo Hardin, Karl Haushalter, and Darryl Yong. 2020. Turning STEM Education
Inside-Out: Teaching and Learning Inside Prisons. (2020).

[20] Susan Hopkins and Helen Farley. 2014. A Prisoners’ Island: Teaching Australian
Incarcerated Students in the Digital Age. (2014). https://doi.org/10.25771/4021
Publisher: Universtity of Bergen Library.

[21] The White House. 2023. FACT SHEET: Biden-Harris Administration
Takes Action During Second Chance Month to Strengthen Public Safety,

Improve Rehabilitation in Jails and Prisons, and Support Successful
Reentry. https://www.whitehouse.gov/briefing-room/statements-
releases/2023/04/28/fact-sheet-biden-harris-administration-takes-action-
during-second-chance-month-to-strengthen-public-safety-improve-
rehabilitation-in-jails-and-prisons-and-support-successful-reentry/

[22] Paivi Kinnunen and Beth Simon. 2010. Experiencing programming assignments
in CS1: the emotional toll. In Proceedings of the Sixth international workshop on
Computing education research. 77ś86.

[23] Malcolm S Knowles, Elwood F Holton III, and Richard A Swanson. 2014. The adult
learner: The definitive classic in adult education and human resource development.
Routledge.

[24] Gloria Ladson-Billings. 2021. Culturally Relevant Pedagogy: Asking a Different
Question. Teachers College Press.

[25] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Re-
lationships between Reading, Tracing and Writing Skills in Introductory Pro-
gramming. In Proceedings of the Fourth International Workshop on Computing
Education Research. ACM.

[26] Tia C Madkins, Alexis Martin, Jean Ryoo, Kimberly A Scott, Joanna Goode,
Allison Scott, and Frieda McAlear. 2019. Culturally Relevant Computer Science
Pedagogy: From Theory to Practice. In 2019 Research on Equity and Sustained
Participation in Engineering, Computing, and Technology (RESPECT). IEEE, 1ś4.

[27] Stephen J. Meyer. 2011. Factors Affecting Student Success in Postsecondary
Academic Correctional Education Programs. Journal of Correctional Education 62,
2 (2011), 132ś164. https://www.jstor.org/stable/23282667 Publisher: Correctional
Education Association.

[28] Stephen J. Meyer, Linda Fredericks, Cindy M. Borden, and Penny L. Richard-
son. 2010. Implementing Postsecondary Academic Programs in State Prisons:
Challenges and Opportunities. Journal of Correctional Education 61, 2 (2010), 148ś
184. https://www.jstor.org/stable/23282637 Publisher: Correctional Education
Association.

[29] Claudia Ott, Brendan McCane, and Nick Meek. 2021. Mastery Learning in CS1
- An Invitation to Procrastinate?: Reflecting on Six Years of Mastery Learning
(ITiCSE ’21). 18ś24.

[30] Nicole Patrie. 2017. Learning to be a Prison Educator. (2017). https://doi.org/10.
25771/5528 Publisher: Universtity of Bergen Library.

[31] Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert
McCartney, Daniel Zingaro, and Beth Simon. 2016. A Multi-institutional Study
of Peer Instruction in Introductory Computing. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education.

[32] Leo Porter and Daniel Zingaro. 2014. Importance of Early Performance in CS1:
Two Conflicting Assessment Stories. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education. Association for Computing Machin-
ery.

[33] Bobby D Rampey, Shelley Keiper, Leyla Mohadjer, Tom Krenzke, Jianzhu Li, Nina
Thornton, and Jacquie Hogan. 2016. Highlights from the US PIACC Survey of
Incarcerated Adults: Their Skills, Work Experience, Education, and Trainingś
Program for the International Assessment of Adult Competencies: 2014. NCES
2016-040. National Center for Education Statistics (2016).

[34] Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live
Coding: A Review of the Literature. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1. ACM.

[35] Simon, Judy Sheard, Daryl D’Souza, Peter Klemperer, Leo Porter, Juha Sorva,
Martijn Stegeman, and Daniel Zingaro. 2016. Benchmarking Introductory Pro-
gramming Exams: Some Preliminary Results. In Proceedings of the 2016 ACM
Conference on International Computing Education Research. ACM.

[36] Julie E. Speer and Zain Clapacs. 2022. Creation of a Novel Biomedical Engineering
Research Course for Incarcerated Students. Biomedical Engineering Education 2,
2 (Sept. 2022), 157ś165. https://doi.org/10.1007/s43683-022-00071-6

[37] Steven AWolfman. 2004. Understanding and promoting interaction in the classroom
through computer-mediated communication in the classroom presenter system. Ph.D.
Dissertation. Citeseer.

518


	Abstract
	1 Introduction
	2 Related Work
	2.1 Teaching and Learning in Prisons
	2.2 Teaching Computing in Prisons

	3 Course Design and Assessment Methodology
	3.1 Design Experiment Methodology
	3.2 Analysis Methods

	4 Course Logistics
	4.1 Access to Resources
	4.2 Lecture, Office Hours, and Exams

	5 Course Design and Adaptations
	5.1 Adaptations to No Code Interpreter
	5.2 Course Policies

	6 Course Outcomes
	6.1 Student Performance
	6.2 Student Reflections

	7 Discussion
	7.1 Lessons Learned
	7.2 Limitations and Future Work

	8 Conclusion
	9 Acknowledgments
	References

