Challenges and Approaches to Teaching CS1 in Prison

Emma Hogan

Ruoxuan Li

Adalbert Gerald Soosai Raj

emhogan@ucsd.edu ruli@ucsd.edu asoosairaj@ucsd.edu
UC San Diego UC San Diego UC San Diego
William G. Griswold Leo Porter
bgriswold@ucsd.edu leporter@ucsd.edu
UC San Diego UC San Diego

ABSTRACT

Efforts to bring incarcerated and formerly incarcerated individuals
into the field of computing stand to improve equitable access to
both computing jobs, and consequently the benefits of our tools
and innovations through the inclusion of more diverse perspec-
tives. This report describes the design and execution of a college
level introductory computing course conducted with 26 students
currently incarcerated at a prison in the United States in Fall 2022.
We discuss the ways that the prison environment and the student
body differ from traditional college computing classes, and how
this impacted the design and execution of the course. We found
that despite significant environmental barriers to learning to pro-
gram, such as not having access to a code interpreter, there were
unique affordances of the student population, including maturity
and community, that could be leveraged in the course design and
policies. We conclude with many lessons learned for the purpose
of improving future offerings of computing courses in prisons.

CCS CONCEPTS

« Social and professional topics — Computing Education;
CS1; Adult education.

KEYWORDS
CS1; Prison Education; Adult Learners

ACM Reference Format:

Emma Hogan, Ruoxuan Li, Adalbert Gerald Soosai Raj, William G. Griswold,
and Leo Porter. 2024. Challenges and Approaches to Teaching CS1 in Prison.
In Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2024), March 20-23, 2024, Portland, OR, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3626252.3630802

1 INTRODUCTION

The United States has the largest prison population in the world and
a justice system that disproportionately targets those in poverty and
people of color [28]. Additionally, while over 96% of incarcerated
people are eventually released, over 50% return to prison within
three years and 83% within nine years [5].

Education is the most effective known means of lowering re-
cidivism rates [16]. In particular, participation in higher education

® This work is licensed under a Creative Commons Attribution
— International 4.0 License.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0423-9/24/03.
https://doi.org/10.1145/3626252.3630802

programs in prison has been shown to reduce the likelihood of
returning to prison by over 50% [16]. A 2016 survey of incarcerated
adults found that only one in five was currently pursuing any for-
mal degree or credential. Yet, 79% of those not currently enrolled
reported interest in doing so [15, 33]. Postsecondary opportunities
are even more rare [18, 28], and only a handful offer college-level
computing courses [28]. Soon, however, more computer science
educators may have the opportunity to teach courses in prisons.
Postsecondary opportunities are increasing as recent changes in US
policy have restored eligibility for Pell Grants to incarcerated peo-
ple. Approximately 760,000 incarcerated people are newly eligible
for federal funding to pursue college in prison [21].

With this emerging opportunity arises the concern that there
is scant recorded experience on how best to approach the unique
challenges of teaching computer science in a prison environment.
Given the constraints of the prison setting, a key question is what
resources and capabilities are available to the instructor and incar-
cerated students to help overcome those challenges.

In this report, experiences teaching an introductory program-
ming course in an adult prison are described. With just a little
guidance on adapting an introductory college computing course
to the prison context [6], a course was designed with a few broad
considerations in mind, and then adaptations made along the way
through listening and responding to the concerns and suggestions
of students. In addition to the generally unpredictable nature of
working in prisons, students did not have access to Python in-
terpreters on which they could run their code. Outcomes of the
course, including class performance on the final exam and students’
perspectives on the need for collaboration, are reported. Finally,
we share many lessons learned which will serve to inform future
offerings of computing courses in prisons.

2 RELATED WORK

2.1 Teaching and Learning in Prisons

There are well-documented nuances of teaching [11, 30] and learn-
ing [20, 28] at the college-level in prison environments. Teachers
in prison have knowledge and skills gaps in adapting instructional
styles to adults in prison [30] and are required to be more flexi-
ble [11]. Documented student struggles include limited access to
resources, inadequate preparation in pre-requisite classes, limited
choice of and available funding to pursue courses, and lack of
places to study [28]. Meyer’s work on identifying factors affecting
student outcomes in college in prison programs found that high
school credential type (having a diploma instead of a an equiv-
alency credential) was significantly related to the most positive

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

student outcomes, institutional climate (students’ relationship with
institutional staff) was associated with educational aspirations, and
both instructor and peer support were associated with positive
achievement motivation [27].

Conway applied andragogy theory [23] to teaching in prison,
noting the importance of adapting teaching practices to the context
of teaching and learning there, where “students assume responsi-
bility for their educations within settings that seek to constrain
and limit their freedom to pursue those goals” [10]. Adult learners
are more intrinsically motivated to learn, which instructors can
leverage by creating a student-centered learning environment both
active and engaged. In addition, adult learners typically want to
understand the value of learning something before expending the
effort to do so. Differences amongst incarcerated students — such
as time remaining in their sentences — also impact what value they
hope to gain from a course, emphasizing the importance of under-
standing students’ goals and encouraging exploration. Lastly, adult
learners typically perceive themselves as being “responsible for
their own lives and decisions,” which leads to a “deep psychological
need to be seen by others and treated by others as being capable
of self-direction” [10]. As incarceration denies self-direction, it is
not surprising that it can cause a number of mental health issues.
College programs present a unique opportunity to serve as a space
where students can take responsibility for their own success while
experiencing a level of autonomy [10] and intellectual freedom [11].

2.2 Teaching Computing in Prisons

In his 1990 experience report, Aman described the computer science
major offered in prison through Wilmington College in the 1970s
through the early 1990s, and the "problems and opportunities" of
teaching CS in prison [6]. A full sequence of courses for the major
was offered in the prison, where approximately 20% of the students
majored or minored in CS. Curriculum and GPA requirements were
the same for the prison program as on the main campus. The col-
lege maintained a computer lab in the prison where students were
able to transcribe and run their code. Students at the prison nom-
inally had access to the lab for three hours weekly, with further
limitations created by the volatile environment. Aman noted that
“compared with the open lab on the [main] campus, this amount of
computer access is trivial” He emphasized this as one of the major
issues for CS education in a prison setting: “students learn by neces-
sity the importance of careful planning [of] programming projects.
They simply cannot afford the luxury of composing, testing, and
debugging at the keyboard.” Beyond computing access, he found
that the two major differences between teaching CS courses in the
prison versus the main campus were students’ pre-college prepa-
ration and maturity. While many students in the prison had gaps
in academic preparation, their greater age and vastly different life
experiences showed up in the classroom as wisdom and maturity,
often generating questions that “probe to the core of a subject” [6].

Over three decades later, computing courses, as well as STEM
courses in general, are scarcely available in higher education prison
programs [3, 11, 19, 28]. A 2022 investigation into the experiences
of incarcerated college students found that technology available to
them is generally severely limited or unavailable, as well as outdated
and frequently malfunctioning [9]. However, momentum is growing

513

Emma Hogan, Ruoxuan Li, Adalbert Gerald Soosai Raj, William G. Griswold, and Leo Porter

to expand these opportunities [3, 19, 36], and the technologies that
make them possible [4, 20]. Organizations such as The Last Mile
and Unlocked Labs currently offer training programs for coding
skills in prisons, heavily oriented towards landing students post-
release jobs in computing [1, 2]. These programs have made great
strides in equipping individual prisons with computer labs and other
technical infrastructure in order to conduct these programs. Our
work additionally seeks to discover strategies to adapt computer
science education in the great majority of facilities where this is
not the case.

3 COURSE DESIGN AND ASSESSMENT
METHODOLOGY

3.1 Design Experiment Methodology

As there were many unknowns about teaching CS in the prison, the
authors were limited in our ability to optimize the course design
for the prison environment from the start. Having never learned
CS without an interpreter or been incarcerated ourselves, we also
had limited insight into the struggles students would face. As a way
to gather information about students’ experience in the course, we
incorporated weekly reflection assignments into the course, which
counted for a small number of points. Reflections included a mix of
multiple choice/Likert-scale questions and open-ended questions
that changed every week (often pertaining to pressing issues, such
as how the collaboration policy should be modified).

To help overcome these blind spots, we adopted the design ex-
periment methodology [7]. In researching communities of learning
in inner-city classrooms, Brown saw a need for this new research
methodology “to engineer innovative educational environments
and simultaneously conduct experimental studies of those innova-
tions” [7]. She argued that using more complex methodologies, in-
stead of avoiding multiplying confounds for the purpose of research,
was a necessary trade-off to capture the richness of the classroom
environment. Brown’s methodology was adopted in Wolfman’s
work on classroom technology, echoing that the best innovations
arise from users’ natural patterns of behavior, and allowed feedback
from instructors and students to shape the design of his tool [37].

3.2 Analysis Methods

After the course concluded, we returned to the above-mentioned
reflections for a more thorough analysis. A third-party removed
identifying information from all the submissions, which were then
transcribed. The first two authors performed open coding on the
responses pertaining to collaboration policies and the format of
code examples. As a student response often contained more than
one idea, we applied all labels relevant to the response. In this
process, we first coded all of the responses independently, compiling
independent initial code books. We then met to compare our codes,
and agreed on one combined code book before moving onto a
second round of coding. In the second round, we again coded all of
the responses independently, using our combined code book. For
both the collaboration and code example responses, we were able to
reach an acceptable inter-rater reliability (IRR=0.837 and IRR=0.849,
respectively) after two rounds of coding.

To assess student learning, we included the ten “benchmarking”
questions detailed in Simon et al. [35] on the final exam. We report

Challenges and Approaches to Teaching CS1 in Prison

the average scores of our students on these questions covering core
topics from the course, which included code tracing, explaining, and
writing, three types of common questions in CS1 [25].

4 COURSE LOGISTICS

Aspects of prison environments themselves limit higher education
programs in prison [11], as discussed in Section 2.1. Although the
course was conducted at a maximum-security male prison, it was
conducted on a yard where the students had relatively more privi-
leges, including newly debuted individual laptops for educational
use and relatively more freedom to meet with one another outside
of class. The demographics of these students had the nuances of
the particular facility and the yard they were on. Most of the stu-
dents were middle-age or older adults who had been incarcerated
for a decade or more, and had little or no experience with modern
computers going into the course.

Both instructors and students lose a great amount of control
in a prison environment: instructors have less control over the
successful running of the course, and students have less control
over their ability to succeed. We note two specific occurrences
as examples: 1) Nearly half of the students were prohibited from
attending the first lecture, as one of the two housing units where
students came from was under quarantine for Covid. As attending
the lecture or watching a recording were not an option, we adjusted
the course schedule to catch students up the following week. 2) Two
weeks before the final exam, all student laptops were confiscated for
security reasons, leaving them without access to resources available
through Canvas. While we printed and delivered some of these
resources to them as soon as we could, there was still a delay in
their ability to access important study material.

4.1 Access to Resources

Students were given laptops immediately before the course began.
Student reactions to the new technology were mixed: some excited,
and many overwhelmed at first. The laptops have access to a modi-
fied version of the Canvas LMS, closely monitored by the prison,
and Microsoft Office. In the months prior, it was unclear whether
the prison would allow Python to be installed on the computers,
which was eventually denied without explanation. In this first it-
eration of the course, we did not rely on Canvas for any part of
the course for several reasons: student laptops regularly malfunc-
tioned, many students were still learning the basics of using the
laptops, and there was a constant threat of them being confiscated
to handle security issues. All of these were related to the laptops
being introduced just as we were starting the course.

4.2 Lecture, Office Hours, and Exams

Lectures occurred once per week for 2.5 hours, and there were no
lab hours. While neither the students nor the instructor were able
to access the internet from inside the prison, the classroom was
equipped with a projector and large screen, and the instructor was
able to project from a personal laptop.

Space and staff availability is a significant inhibitor to programs
in prisons, so we were fortunate to have 2.5 hours per week available
for office hours. It was not unusual for nearly all 26 students to
come for the entire duration. On reflection assignments (Section 3.1),

514

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

students reported that the most helpful activity during office hours
was a long example on the board. Taking the students’ advice, we
began using office hours exclusively for this purpose. In presenting
the example, we would take suggestions from the class to write the
program on the board line by line. Then, we would visualize the
running of the program by drawing a memory diagram and tracing
its execution. Finally, the instructor would switch to live coding
the same program with edits suggested by the students.

The course had two exams, a midterm and a final. These exams
took up lecture time, as no additional time was allotted to hold
either exam. Consequently, there was a strict time limit on the
exam. Exams in the prison were conducted on paper, as they are in
our CS1 course on campus as well. Students were allowed a sheet of
notes, but exams were otherwise closed-book. Both exams included
a variety of question types, including multiple choice, short answer,
explain in plain English, tracing, code writing, and a stack diagram.

5 COURSE DESIGN AND ADAPTATIONS

The course is a CS1 course using Python that taught variables,
loops, conditionals, functions, lists, and strings. The course fulfilled
the computing requirement toward the undergraduate degree in
sociology, the only bachelor’s degree offered at this prison so far. All
26 students in the bachelor’s program were enrolled in the course.
Best practices from the computing literature [8] were included in
the teaching of the course, including Peer Instruction [12, 31], Live
Coding [34], and other forms of active learning such as in-class
worksheet exercises [17].

As described in Section 3.1, our approach to designing the course
was modeled off of Brown’s "design experiment" methodology [7],
relying heavily on students’ feedback and articulation of their learn-
ing experiences to guide course design decisions. We were also com-
mitted to making changes to adapt as soon as we became aware
of an issue or potential solution in the interest in student success.
This methodology facilitated more rapid discovery of best practices
(and mistakes to avoid) for teaching CS1 in prisons, as presented in
this paper, and enabled us to ground course design decisions in the
experience of the students.

5.1 Adaptations to No Code Interpreter

With the decision by the prison to not allow Python to be installed
on the laptops approximately three months before the start of the
course, we recognized an opportunity to explore the potential ben-
efits of alternative teaching and learning methods. A challenge in
standard classrooms is that students have access to interpreters
which allow for a hack-until-it-works mentality, whereas recent
work emphasizes the importance of teaching conceptual under-
standing early in a programming course [13, 14]. This restriction by
the prison became an opportunity to stress conceptual understand-
ing. We decided to structure the course assignments to split the
grade percentage that would normally be just programming assign-
ments between code-based programming assignments and problem
sets that tested conceptual understanding using paper-based activi-
ties such as tracing, short answer, and fill-in-the-blank questions.
We also recognized the importance of the in-person instruction
time, as live coding [34] in lecture was the only chance students

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

had to experience code being run. Below, we describe other major
adaptations given the lack of a code interpreter.

5.1.1 Handwriting Code. Since students could not run code on
their laptops, as well as their unpredictable availability, we decided
to have students hand-write code for programming assignments.
Later in the course, we made it an option to submit typed code (in
a Word document) on Canvas, but only a handful of students chose
this option and many were more comfortable with hand-writing.
In order for students to see the output of their code (and adjust
based on errors or unexpected output), the instructor typed and
ran their handwritten code, printed the output, and returned this
to the students. The instructor picked up and dropped off printed
output with comments 2-3 times per week total.

5.1.2 Grading. We transcribed the students’ code exactly as it
was written, including all errors. Students were held to the same
standard for their code as the CS1 students on our campus and only
received full points for fully working code. However, we decided
it was necessary to give partial credit, given the limited ability for
students to debug their code. To this end, we created detailed rubrics
for each programming assignment. Additionally, we accumulated
a running list of common errors (described in section 5.1.3). In
grading, we counted the total number of errors and took off a certain
number of points per error that was a much smaller deduction than
missing a key element of the program defined in the rubric items.

5.1.3 Common Errors Resource. A problem that quickly arose with
the system of dropping off printed output was the extremely limited
amount of information students could gather from this output, only
showing the first error to occur. The students needed a way to
get more information. One option was to provide detailed written
feedback on all errors in the code, not just the one showing in
the output. However, this was infeasible due to the sole instructor
of the course being the only grader. Our solution was to create a
running list, which we called "Common Errors" 1 Each time an
error occurred in a code submission, we added examples of this
specific error to the list, along with an explanation of the error and
how to fix it. By the end of the course, this list had 47 errors.

We believe the Common Errors resource was ultimately a success.
Along with students’ feedback on reflections and course evaluations
that this was a helpful resource, it served multiple purposes in
the course. First, it was a more feasible way to provide necessary
additional feedback for students to debug more than one error per
submission. Instead of providing written feedback for each error,
we could point to that numbered description in the assignment.
Second, while we do not have confirmation that it had this effect,
we intended for this to lessen the emotional toll on students [22] of
seeing errors in their code by showing that they were not alone.

5.2 Course Policies

We began the course with essentially the same course policies we
had in our CS1 course on campus. However, we quickly came to
realize (with the help of the students) that some of these policies
did not work in the prison. The two major areas of change in course
policy were homework re-submissions and collaboration.

IThe Common Errors resource can be found here: https://perma.cc/CXH3-MBKG

515

Emma Hogan, Ruoxuan Li, Adalbert Gerald Soosai Raj, William G. Griswold, and Leo Porter

Type Primary Q. Topics Difficulty | Avg
Q1 | Trace Compound conditionals easy 92.0%
Q2 | Trace Variable assignment easy 40.0%
Q3 | Write Swap variables medium | 59.1%
Q4 | Trace Conditionals easy 84.0%
Q5 | Trace Complex conditionals easy 52.0%
Q6 | Trace Loop, conditional, and lists | medium | 24.0%
Q7 | Explain | Loop and conditional easy 24.0%
Q8 | Explain | Loop hard 16.7%
Q9 | Write Loop and lists medium | 27.9%
Q10 | Write Loop and lists medium | 42.9%

Table 1: Benchmarking questions from Simon et al. [35] and
the average scores from the students in the class.

5.2.1 Mastery Learning. Mastery learning in CS1 is both theoreti-
cally supported [29], and necessary in the prison where students
have limited attempts to run code before submitting. In our CS1
courses on campus, students are given a single deadline for their
programming assignments. Given our students’ lack of access to
a Python interpreter, we adapted this policy and allowed students
unlimited re-submissions of their programming assignments. We
had initial concerns that this might cause students to procrastinate,
but we found that our students were eager for any feedback they
could receive and consistently turned in assignments on time and
kept submitting until they were correct. This was an overall positive
adjustment we will keep for future offerings.

We used the midterm exam as another opportunity to incor-
porate mastery learning into our course. Students were given the
opportunity to submit corrections on their Midterm after the fact,
and receive credit back. Partial credit was awarded similar to the
programming assignments (Section 5.1.2).

5.2.2 Collaboration Policy. After beginning the course with a strict
no-collaboration policy on programming assignments, students
raised valid concerns in class and on reflection assignments (Sec-
tion 6.2.1). In response, we decided to try an open policy allowing
collaboration on all assignments.

6 COURSE OUTCOMES

6.1 Student Performance

Results of the benchmarking questions [35] are shown in Table 1,
including the type of each question, topics involved in the question,
question difficulty?, and results from the most recent class. Some
trends emerged in these findings: First, students did better on ques-
tions that stressed a single concept rather than multiple concepts.
This is a common challenge in computer science assessments, as
questions must often combine multiple concepts [32]. Second, stu-
dents did poorly with code explaining questions. These questions
ask students to take a block of code and explain its purpose. This is
a common practice employed by software developers but is chal-
lenging for novices [25]. Third, the students performed reasonably
well on code writing questions despite having no access to a Python
interpreter all term.

2Question difficulty is determined based on the average student performance reported
in Simon et al. [35], where if students in that study earned greater than 80% we denote
this as an “easy” question, 60-80% as “medium”, and less than 60% as “hard”.

Challenges and Approaches to Teaching CS1 in Prison

6.2 Student Reflections

6.2.1 Collaboration Policies. By the third week of the course, it
became apparent that a change would have to be made to the
collaboration policies for the students to succeed. On the next
reflection assignment we asked students what they would make
the collaboration policy if they were teaching the course, and why.

The majority of responses said that they would allow increased
collaboration (N=10): making all work collaborative (N=2), more
of the work collaborative (N=5), or stating that collaboration was
necessary for them to succeed (N=3). While some student responses
acknowledged that some individual work was still important, no
response requested keeping the collaboration policy as is.

A major argument for allowing more collaboration was the lack
of access to outside resources, tutors, or the instructor outside of
class time (N=4). Several students added that it was particularly
difficult to grasp the concepts in an environment with limited tech-
nology (N=5), with one student writing: "The material is new to
all of us, the concept is alien to most." Other students talked about
the usefulness of running their code by classmates to "debug” in
the absence of a code interpreter (N=3), writing: "Because we do
not have access to the Python App ... we cannot troubleshoot our
code, however as a group we can help each other to troubleshoot."
Similarly, students wrote about going to each other as a means of
getting "unstuck” (N=2). Multiple students talked about the culture
amongst the students of helping each other (N=4), saying "when a
few people get it, they help others," and some students characterized
this as "pooling” or "concatenating” their knowledge (N=2). Many
students said that collaboration promoted better learning overall
(N=5), comparing their understanding of the concepts (N=2) and
resolving misconceptions (N=1). Others mentioned the benefits of
hearing things explained a different way by classmates (N=2), and
one student noted in particular how students with learning disabil-
ities may struggle to pick up concepts during lecture that could be
resolved through collaboration with peers. Finally, students wrote
that collaboration with classmates guided new understanding (N=2),
and gave students more equal opportunities to succeed (N=1).

6.2.2 Student Preferences for Presentation of Code Examples. In
the fifth week of the course, we asked students which format they
preferred for presenting code examples during lecture and office
hours. Initially, we had intended for students to compare live coding
with static coding examples as we typically define them in CS
education literature. However, many students interpreted this more
generally about which format (including writing code on the white
board, pre-written code examples in slides, and projecting live
coding from the instructor’s computer) they preferred to see code
examples. These results are reported in Table 2, showing that the
most popular responses were writing code on the white board, or a
combination of both the white board and live coding.

Students who preferred code examples to be written on the white
board gave reasons including a) the white board was helpful for
breaking down code (N=2), b) the students were used to the white
board (N=1), c) it was hard to read code on the screen (N=1), d)
they liked seeing code written out step-by-step on the white board
(N=3), e) the white board was used in previous math courses to
show proofs (N=1), and f) seeing code written on the white board
was easier to follow (N=1) and visualize (N=3).

516

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

7 DISCUSSION
7.1 Lessons Learned

Leverage the Strong Student Community. In addition to the
adult students being mature and self-sufficient, there was a deep
sense of collective effort to succeed —often born out of situations
of collective struggle— that shaped a thriving learning community.
On reflection assignments, students often wrote in terms of "we" as
opposed to "I". Students formed study groups in the limited space
and time available to them outside of class (access to a room where
they could meet was limited to 6-8 hours per week), where they
described having struggling students write their code on the white
board, and they would together draw a memory diagram and trace
through the code to help identify the errors. Higher performing
students would walk to the other side of the classroom during Peer
Instruction activities to sit with students who were struggling.

Make Students a Resource for Each Other. Sometimes there
were only a few students who picked up a specific topic well during
lecture. In the absence of outside resources, students relied on
each other to fill in the gaps. It seemed that no student was left
behind, and that overall there were many positive relationships
formed between lower- and higher-performing students. However,
the collaboration was difficult to control, given this dependency on
others for information outside of the limited lecture and office hour
time. This was likely a sizable factor in the majority of students
struggling to write code independently on the exams.

Code Resubmission Policies are Critical. One of the most
significant hurdles for the students was the absence of a code in-
terpreter to test their programs before submitting. In addition to
making it extremely difficult to have programs work on the first
few tries, students were also robbed of the critical learning that
happens through debugging. Our approach was to offer unlimited
resubmissions on programming assignments, and encourage stu-
dents to take advantage of this by "debugging” their code based on
the output and instructor feedback on the original submission.

Mix Live Coding with Long Examples on the Board. Live
coding during lecture had a unique significance in the prison class-
room, as this was the only opportunity for students to actually
see code run in real time. Still, students had a strong desire for
code being written on the board as well. What worked best was to
write out a long example program first on the board, then trace its
execution in a memory diagram, and finally project its execution
in a code interpreter (as described in Section 4.2).

Use Relevant Examples. For this first offering, we used pro-
gramming assignments similar to those in the CS1 at our university.
Some students commented that they would like the assignments to
be more relevant to their life experiences. Andragogy advises that
adult learners want to understand the value of learning something
before putting in the effort to do so (Section 2.1), and encourages
the incorporation of a greater variety of prior life experiences com-
pared to younger learners. Existing frameworks such as culturally
relevant pedagogy both acknowledge and leverage students’ di-
verse backgrounds in the classroom [24], and have been effective
amongst K-12 students from underrepresented groups in CS [26]. In
the future, we plan to incorporate these theories into our practice by
creating examples for lectures and assignments that are culturally
relevant to adult students in prison.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Emma Hogan, Ruoxuan Li, Adalbert Gerald Soosai Raj, William G. Griswold, and Leo Porter

Preferred Method of Presenting Code Examples
Code N | % Properties Examples
white board 7 | 46.7%| 1.Prefer writing code "live" on the white | "Writing on the white board is easier because what we are used
board to is the white board, and breaking down code point by point
allows me to grasp each part and put it together”
pre-written 4 26.7%| 1. Prefers pre-written code examples (on | "I prefer the pre-written code examples. It seems that once we
slides) switch to "live" it starts to get confusing. This may be because
we are not using the computer ourselves.
live coding 2 13.3%| 1. Prefers live coding (projected on screen) | "Writing code "live’ works better for me...it kinda slows everying
down a bit such that I'm better able to digest the material”
combination | 8 53.3%| 1. Prefers a combination of white board | "I like both methods. Going through prewritten code gives me
and live coding the opportunity to really focus on the code. Writing live code
gives me the opportunity to see the execution”
no preference | 4 | 26.7%| 1. Both methods are equally effective "Both were instrumental and effective in enhancing learning."
2. No preference, or left blank

Table 2: Qualitative coding results for open-ended reflection question about preferred method for presenting code examples.

Make Use of Students’ High Engagement in Lecture. Peer
instruction worked particularly well during lectures. Students were
not only cooperative in gathering with their groups to discuss, but
they would also often self-organize such that high-performing stu-
dents moved to sit with lower-performing students. Students were
overall fully engaged in productive discussion about differing opin-
ions. After the fact, some students wrote on their course evaluations
that they found this part of the lecture particularly helpful.

Students are Skilled Independent Learners. Similar to the
impact of students’ maturity discussed by Aman [6], many students
in the prison had much experience with self-teaching during their
incarceration. For example, correspondence courses are a common
way for incarcerated students to pursue higher education, and re-
quire an immense amount of discipline and independent learning.
Given the the lack of any reliable communication with the students
outside of class, and having no tutors/TAs, we have seen the im-
portance of providing students additional resources for learning
outside of class. This includes textbook readings or other written
resources, as well as uploading video tutorials when possible (given
students’ varying comfort with and access to the laptops).

Create Opportunities for Self-Expression. In addition to al-
lowing programming assignment resubmissions, we also offered
students the opportunity to submit any other code written for prac-
tice or for fun. Similar to the programming assignments, we would
transcribe the code, print the output, and deliver this back to them.
Many students, both higher-performing and lower-performing,
took advantage of this opportunity throughout the quarter to sub-
mit programs that were often personal in nature and creatively
expressive. In future iterations of the course, we plan to explore
how we can encourage this creative expression more.

7.2 Limitations and Future Work

There are many possible contributors to our results, particularly
student performance on the exam. While these findings provide us
with areas of improvement for our next offering, the benchmarking
questions might have been easier for students in Simon et al. [35]
than for our students in this course, perhaps due to limitations of
this first offering of the course. We observed that exams seemed to
be particularly emotional and stressful for students in the prison.

517

In fact, multiple students would leave entire sections incomplete,
later citing this as a result of mental and emotional reactions to
the exam setting itself on weekly reflections. While many students
who are not in prison also experience exam stress, we believe that
this deserves special consideration in the prison setting. Students in
prison are more likely to have failure and trauma as part of their past
educational experiences, as well as exposed to a highly-stressful
environment in the prison. In the future, we plan to consider ways
we can reduce the stress of exams in the course, as well as including
more comprehensive ways of assessing students’ performance.
Prison environments are idiosyncratic by nature, and ours was
no exception. Available resources, rules and restrictions differ across
correctional facilities, and will also change over the course of time
as educational opportunities expand. That being said, many prisons
share some or all of the restrictions described here. In the future, we
plan to study programming courses in different facilities, as well.

8 CONCLUSION

The expansion and improvement of computing opportunities in
prison college programs has the potential to benefit not only incar-
cerated students, but also the advancement of the computing field
and society as a whole. In this report, we described our experience
teaching CS1 in a college in prison program. Obstacles included
students not having access to code interpreters or outside resources.
However, students in the prison were skilled independent learners,
and found ways to simulate the debugging process in study groups
outside of class. In addition, we discovered several strategies to
adapt to the limitations of the environment —with the guidance
of students’ feedback throughout the course— such as combining
live coding with writing code examples on the white board, and
annotating code submissions using a list of common errors to make
the debugging process more feasible with fewer opportunities to
run code. Finally, we share our takeaways from this experience that
will be used to improve future offerings of the course in prison.

9 ACKNOWLEDGMENTS

This work is supported by the Ford Foundation Fellowship and NSF
Award #2315909. We thank Dr. Jim Aman for his valuable feedback,
and for continuing to graciously share his unique wisdom with us.

Challenges and Approaches to Teaching CS1 in Prison

REFERENCES

(1]
(2]
(3]

(4]

(5

=

(6]
(71

(8]
(9]

[10

[11]

[12

[13]

[14]

[18]

[19]

[20]

[21]

[n.d.]. The Last Mile - Paving The Road To Success. https://thelastmile.org/
[n.d.]. Unlocked Labs. https://www.unlockedlabs.org/

2020. STEM Opportunities in Prison Settings (STEM-OPS). https://stemforall2020.
videohall.com/presentations/1801

2022. Building the Technology Ecosystem for Correctional Education: Brief and
Discussion Guide. Brief. Office of Career, Technical, and Adult Education, U.S.
Department of Education. https://lincs.ed.gov/sites/default/files/tech-ecosystem-
correctional-ed.pdf

Mariel Alper, Matthew R Durose, and Joshua Markman. 2018. 2018 Update on
Prisoner Recidivism: A 9-year Follow-up Period (2005-2014). US Department of
Justice, Office of Justice Programs, Bureau of Justice. https://bjs.ojp.gov/content/
pub/pdf/18upr9yfup0514.pdf

James R Aman. 1990. Computer science in correctional education. ACM SIGCSE
Bulletin 22, 1 (1990), 147-151.

Ann L Brown. 1992. Design experiments: Theoretical and methodological chal-
lenges in creating complex interventions in classroom settings. The journal of
the learning sciences 2, 2 (1992), 141-178.

Neil CC Brown and Greg Wilson. 2018. Ten quick tips for teaching programming.
PLoS computational biology 14, 4 (2018), €1006023.

Erin L. Castro, Caisa E. Royer, Stephanie Gaskill, and Estefanie Aguilar-Padilla.
2022. “It’s Useless, to Put it Politely”: Experiences with Technology Among In-
carcerated Students Receiving Second Chance Pell at Four Institutions. Brief 9.
Collaborative for Higher Education Research and Policy, The University of Utah.
https://cherp.utah.edu/projects/pell_is_not_enough.php#publications-slide
Patrick Filipe Conway. 2022. Andragogy in prison: Higher education in prison
and the tenets of adult education. Adult Education Quarterly 72, 4 (2022), 361-379.
Trevor Craft, Nicholas Gonzalez, Kevin Kelleher, Miki Rose, and Ofu Takor.
2019. A Second Chance: College-in-Prison Programs in New York State. Technical
Report. Nelson A. https://eric.ed.gov/?id=ED605777 Publication Title: Nelson A.
Rockefeller Institute of Government ERIC Number: ED605777.

Catherine H. Crouch and Eric Mazur. 2001. Peer instruction: Ten years of experi-
ence and results. American Journal of Physics 69 (2001).

Quintin Cutts, Matthew Barr, Mireilla Bikanga Ada, Peter Donaldson, Steve
Draper, Jack Parkinson, Jeremy Singer, and Lovisa Sundin. 2019. Experience
Report: Thinkathon - Countering an I Got It Working” Mentality with Pencil-
and-Paper Exercises. ACM Inroads (2019).

Quintin Cutts and Maria Kallia. 2023. Introducing Modelling and Code Compre-
hension from the First Days of an Introductory Programming Class. In Proceedings
of 7th Conference on Computing Education Practice (Durham, United Kingdom)
(CEP °23). Association for Computing Machinery, New York, NY, USA, 21-24.
https://doi.org/10.1145/3573260.3573266

Lois M. Davis. 2019. Higher Education Programs in Prison: What We Know Now
and What We Should Focus on Going Forward. (2019).

Lois M. Davis, Robert Bozick, Jennifer L. Steele, Jessica Saunders, and Jeremy N. V.
Miles. 2013. Evaluating the Effectiveness of Correctional Education: A Meta-Analysis
of Programs That Provide Education to Incarcerated Adults. Rand Corporation.
Scott Freeman, Sarah L Eddy, Miles McDonough, Michelle K Smith, Nnadozie
Okoroafor, Hannah Jordt, and Mary P Wenderoth. 2014. Active learning increases
student performance in science, engineering, and mathematics. Proceedings of
the National Academy of Sciences of the United States of America (2014).
Stephanie Gaskill, Mary R. Gould, Ved Price, Erin L. Castro, and Amy Lerman.
2023. The Landscape of Higher Education in Prison, 2020-2021. Technical Report.
Alliance for Higher Education in Prison. http://higheredinprison.org

Jo Hardin, Karl Haushalter, and Darryl Yong. 2020. Turning STEM Education
Inside-Out: Teaching and Learning Inside Prisons. (2020).

Susan Hopkins and Helen Farley. 2014. A Prisoners’ Island: Teaching Australian
Incarcerated Students in the Digital Age. (2014). https://doi.org/10.25771/4021
Publisher: Universtity of Bergen Library.

The White House. 2023. FACT SHEET: Biden-Harris Administration
Takes Action During Second Chance Month to Strengthen Public Safety,

518

[22

[23

S
=}

[25

[26

[27

[28

[30

[31

[32

(34

[35

[36

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Improve Rehabilitation in Jails and Prisons, and Support Successful
Reentry. https://www.whitehouse.gov/briefing-room/statements-
releases/2023/04/28/fact-sheet-biden-harris-administration- takes-action-
during-second- chance-month-to- strengthen-public-safety-improve-
rehabilitation-in-jails-and- prisons-and- support-successful-reentry/

Paivi Kinnunen and Beth Simon. 2010. Experiencing programming assignments
in CS1: the emotional toll. In Proceedings of the Sixth international workshop on
Computing education research. 77-86.

Malcolm S Knowles, Elwood F Holton III, and Richard A Swanson. 2014. The adult
learner: The definitive classic in adult education and human resource development.
Routledge.

Gloria Ladson-Billings. 2021. Culturally Relevant Pedagogy: Asking a Different
Question. Teachers College Press.

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Re-
lationships between Reading, Tracing and Writing Skills in Introductory Pro-

gramming. In Proceedings of the Fourth International Workshop on Computing
Education Research. ACM.

Tia C Madkins, Alexis Martin, Jean Ryoo, Kimberly A Scott, Joanna Goode,
Allison Scott, and Frieda McAlear. 2019. Culturally Relevant Computer Science
Pedagogy: From Theory to Practice. In 2019 Research on Equity and Sustained
Participation in Engineering, Computing, and Technology (RESPECT). IEEE, 1-4.
Stephen J. Meyer. 2011. Factors Affecting Student Success in Postsecondary
Academic Correctional Education Programs. Journal of Correctional Education 62,
2(2011), 132-164. https://www.jstor.org/stable/23282667 Publisher: Correctional
Education Association.

Stephen J. Meyer, Linda Fredericks, Cindy M. Borden, and Penny L. Richard-
son. 2010. Implementing Postsecondary Academic Programs in State Prisons:
Challenges and Opportunities. Journal of Correctional Education 61, 2 (2010), 148—
184. https://www.jstor.org/stable/23282637 Publisher: Correctional Education
Association.

Claudia Ott, Brendan McCane, and Nick Meek. 2021. Mastery Learning in CS1
- An Invitation to Procrastinate?: Reflecting on Six Years of Mastery Learning
(ITIiCSE ’21). 18-24.

Nicole Patrie. 2017. Learning to be a Prison Educator. (2017). https://doi.org/10.
25771/5528 Publisher: Universtity of Bergen Library.

Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert
McCartney, Daniel Zingaro, and Beth Simon. 2016. A Multi-institutional Study
of Peer Instruction in Introductory Computing. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education.

Leo Porter and Daniel Zingaro. 2014. Importance of Early Performance in CS1:
Two Conflicting Assessment Stories. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education. Association for Computing Machin-
ery.

Bobby D Rampey, Shelley Keiper, Leyla Mohadjer, Tom Krenzke, Jianzhu Li, Nina
Thornton, and Jacquie Hogan. 2016. Highlights from the US PIACC Survey of
Incarcerated Adults: Their Skills, Work Experience, Education, and Training—
Program for the International Assessment of Adult Competencies: 2014. NCES
2016-040. National Center for Education Statistics (2016).

Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live
Coding: A Review of the Literature. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1. ACM.

Simon, Judy Sheard, Daryl D’Souza, Peter Klemperer, Leo Porter, Juha Sorva,
Martijn Stegeman, and Daniel Zingaro. 2016. Benchmarking Introductory Pro-
gramming Exams: Some Preliminary Results. In Proceedings of the 2016 ACM
Conference on International Computing Education Research. ACM.

Julie E. Speer and Zain Clapacs. 2022. Creation of a Novel Biomedical Engineering
Research Course for Incarcerated Students. Biomedical Engineering Education 2,
2 (Sept. 2022), 157-165. https://doi.org/10.1007/s43683-022-00071-6

Steven A Wolfman. 2004. Understanding and promoting interaction in the classroom
through computer-mediated communication in the classroom presenter system. Ph.D.
Dissertation. Citeseer.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Teaching and Learning in Prisons
	2.2 Teaching Computing in Prisons

	3 Course Design and Assessment Methodology
	3.1 Design Experiment Methodology
	3.2 Analysis Methods

	4 Course Logistics
	4.1 Access to Resources
	4.2 Lecture, Office Hours, and Exams

	5 Course Design and Adaptations
	5.1 Adaptations to No Code Interpreter
	5.2 Course Policies

	6 Course Outcomes
	6.1 Student Performance
	6.2 Student Reflections

	7 Discussion
	7.1 Lessons Learned
	7.2 Limitations and Future Work

	8 Conclusion
	9 Acknowledgments
	References

