

ACCEPTED MANUSCRIPT • OPEN ACCESS

Mid-latitude clouds contribute to Arctic amplification via interactions with other climate feedbacks

To cite this article before publication: David B Bonan *et al* 2025 *Environ. Res.: Climate* in press <https://doi.org/10.1088/2752-5295/ada84b>

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2025 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <https://creativecommons.org/licenses/by/4.0>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.

1
2
3
4
5
6
7
8
9 **1 Mid-latitude clouds contribute to Arctic amplification via**
10 **2 interactions with other climate feedbacks**

13 **3 David B. Bonan**

14 **4 Environmental Science and Engineering, California Institute of Technology, Pasadena, CA**

15 **5 E-mail: dbonan@caltech.edu**

18 **6 Jennifer E. Kay**

19 **7 Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO**
20 **8 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO**

23 **9 Nicole Feldl**

24 **10 Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA**

27 **11 Mark D. Zelinka**

28 **12 Lawrence Livermore National Laboratory, Livermore, CA**

31 **13 Abstract.** Traditional feedback analyses, which assume that individual climate
32 feedback mechanisms act independently and add linearly, suggest that clouds do not
33 contribute to Arctic amplification. However, feedback locking experiments, in which
34 the cloud feedback is disabled, suggest that clouds, particularly outside of the Arctic,
35 do contribute to Arctic amplification. Here, we reconcile these two perspectives by
36 introducing a framework that quantifies the interactions between radiative feedbacks,
37 radiative forcing, ocean heat uptake, and atmospheric heat transport. We show
38 that including the cloud feedback in a comprehensive climate model can result in
39 Arctic amplification because of interactions with other radiative feedbacks. The
40 surface temperature change associated with including the cloud feedback is amplified
41 in the Arctic by the surface-albedo, Planck, and lapse-rate feedbacks. A moist
42 energy balance model with a locked cloud feedback exhibits similar behavior as the
43 comprehensive climate model with a disabled cloud feedback and further indicates
44 that the mid-latitude cloud feedback contributes to Arctic amplification via feedback
45 interactions. Feedback locking in the moist energy balance model also suggests that
46 the mid-latitude cloud feedback contributes substantially to the intermodel spread in
47 Arctic amplification across comprehensive climate models. These results imply that
48 constraining the mid-latitude cloud feedback will greatly reduce the intermodel spread
49 in Arctic amplification. Furthermore, these results highlight a previously unrecognized
50 non-local pathway for Arctic amplification.

53 **33 Keywords:** Arctic amplification, cloud feedbacks, climate change, climate models

55 **34 Submitted to:** *Environ. Res.: Climate.*

Mid-latitude clouds and Arctic amplification

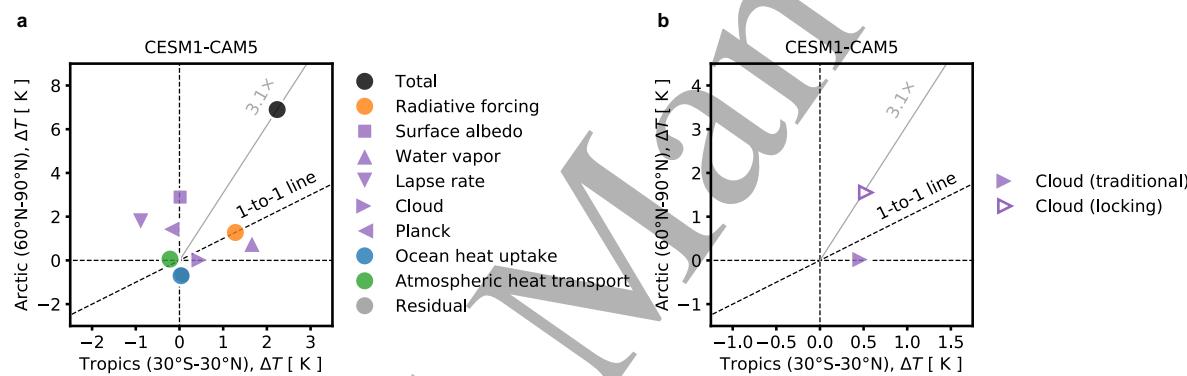
35 1. Introduction

The Arctic warms more than the global average in response to increased greenhouse gas concentrations. This phenomenon, referred to as ‘Arctic amplification’, has been a robust feature of climate change simulations for several decades (Manabe and Wetherald, 1975; Manabe and Stouffer, 1980; Holland and Bitz, 2003) and has recently become evident in observations (Polyakov et al., 2002; Serreze et al., 2009; England et al., 2021). Arctic amplification has been attributed to numerous processes, including sea ice changes (Manabe and Wetherald, 1975; Holland and Bitz, 2003; Winton, 2006; Graversen and Wang, 2009; Feldl and Merlis, 2021), increased poleward energy transport (Holland and Bitz, 2003; Hwang et al., 2011; Singh et al., 2017; Merlis and Henry, 2018; Beer et al., 2020), local radiative forcing and radiative feedbacks (Pithan and Mauritsen, 2014; Payne et al., 2015; Stuecker et al., 2018; Henry et al., 2021; Hahn et al., 2021), and interactions between poleward energy transport and radiative feedbacks (Bonan et al., 2018; Russotto and Ackerman, 2018; Russotto and Biasutti, 2020; Feldl et al., 2020; Beer and Eisenman, 2022; Chung and Feldl, 2024; England and Feldl, 2024). However, despite extensive research on the mechanisms of Arctic amplification, contemporary climate models continue to show considerable spread in its magnitude under greenhouse-gas forcing (Feldl et al., 2020; Hahn et al., 2021).

54 The factors contributing to Arctic amplification are typically quantified by examining
 55 changes in the local atmospheric energy budget under warming (Crook et al., 2011;
 56 Pithan and Mauritsen, 2014; Feldl et al., 2017; Goosse et al., 2018; Hahn et al., 2021).
 57 This method, which we hereafter refer to as the ‘traditional feedback-forcing framework’,
 58 attributes the change in surface temperature (ΔT) to partial temperature contributions
 59 from radiative forcing (\mathcal{F}), radiative feedbacks (λ), ocean heat uptake (ΔG), and the
 60 change in atmospheric heat transport ($\Delta(\nabla \cdot F)$) via

$$\Delta T = \frac{1}{\lambda_0} \left(-\mathcal{F} - \lambda \Delta T + \Delta G + \Delta(\nabla \cdot F) - \epsilon \right), \quad (1)$$

61 where λ_0 is the global- and annual-mean Planck feedback, and the net radiative feedback
 62 is


$$\lambda = \sum_{i \neq 0} \lambda_i, \quad (2)$$

63 where i denotes an individual radiative feedback (e.g., surface-albedo feedback) and the
 64 Planck feedback at regional scales is represented by deviations from λ_0 . Note that ϵ is a
 65 residual term and usually quite small (Caldwell et al., 2016; Zelinka et al., 2020; Hahn
 66 et al., 2021).

68 The traditional feedback-forcing framework has been powerful in understanding the
69 magnitude, seasonality, and intermodel spread of Arctic amplification across climate

1
2 *Mid-latitude clouds and Arctic amplification* 3

3
4
5 models (e.g., Pithan and Mauritsen, 2014; Hahn et al., 2021). For example, applying
6 this framework to a simulation in which atmospheric carbon dioxide concentrations
7 are abruptly doubled in CESM1-CAM5—a widely used comprehensive climate model
8 (Hurrell et al., 2013)—reveals that the Arctic (60°N–90°N) warms $3.1 \times$ more than the
9 Tropics (30°S–30°N) due to the surface-albedo, Planck, and lapse-rate feedbacks (Fig.
10 1a), consistent with previous studies (Pithan and Mauritsen, 2014; Previdi et al., 2020;
11 Hahn et al., 2021). This decomposition, applied to CESM1-CAM5 and other climate
12 models participating in Phase 5 and 6 of the Coupled Model Intercomparison Project
13 (CMIP5 and CMIP6; Taylor et al., 2012; Eyring et al., 2016), indicates that the cloud
14 feedback does not contribute to warming in the Arctic (Fig 1a; Pithan and Mauritsen,
15 2014; Previdi et al., 2020; Hahn et al., 2021).
16
17
18
19
20
21

34
35 **Figure 1. Contributions to Arctic amplification in CESM1-CAM5.** (a) Contributions to
36 surface temperature change in the (x-axis) Tropics (30°S-30°N) and (y-axis) Arctic (60°N-90°N) for
37 years 100–150 of a CESM1-CAM5 abrupt-2xCO₂ simulation. The black dot denotes the total surface
38 temperature change and each colored symbol denotes a specific mechanism in Eq. (1). The colored
39 symbols sum to the black dot. (b) Contribution of the cloud feedback to surface temperature change in
40 the (x-axis) Tropics (30°S-30°N) and (y-axis) Arctic (60°N-90°N) for a CESM1-CAM5 abrupt-2xCO₂
41 simulation diagnosed from the traditional feedback-forcing perspective (purple triangle) and diagnosed
42 from the feedback locking perspective (white triangle). The grey lines and numbers indicate the
43 magnitude of Arctic amplification.

44
45
46 While the traditional feedback-forcing framework can explain climate model behav-
47 ior under greenhouse gas forcing, it assumes feedback mechanisms act independently
48 and add linearly, which hinders our mechanistic understanding of surface temperature
49 change. Studies have addressed this limitation by conducting feedback locking experi-
50 ments (Wetherald and Manabe, 1988; Hall, 2004; Vavrus, 2004; Graversen and Wang,
51 2009; Langen et al., 2012; Mauritsen et al., 2013; Merlis, 2014; Voigt et al., 2019; Mid-
52 dlemas et al., 2020; Chalmers et al., 2022), in which the radiative effect of a physical
53 process, such as water vapor or clouds, is disabled, and its impact on climate is exam-
54 ined in simulations both with and without the process. For example, Middlemas et al.
55 (2020) and Chalmers et al. (2022) showed that when the cloud feedback is disabled in
56 the same greenhouse-gas forcing CESM1-CAM5 simulation as above, the magnitude of
57
58
59
60

1
2 *Mid-latitude clouds and Arctic amplification* 4
3
45 warming is substantially reduced across the globe. In this approach, the effect of the
6 cloud feedback on surface temperature change can be quantified as the difference be-
7 tween the greenhouse-gas forcing simulation where the cloud feedback is active, and the
8 greenhouse-gas forcing simulation where the cloud feedback is inactive. This perspective
9 suggests that the cloud feedback contributes to approximately 0.5 K of warming in the
10 Tropics and 1.5 K of warming in the Arctic (right white triangle, Fig. 1b). This di-
11 rectly contradicts the traditional feedback-forcing perspective, which suggests the cloud
12 feedback does not contribute to Arctic warming (right purple triangle, Fig. 1b). In
13 fact, warming is still 3.1 \times larger in the Arctic when compared to the Tropics (grey line,
14 Fig. 1b), indicating that the cloud feedback contributes to Arctic amplification when
15 quantified from the feedback locking perspective.
16
1718
19 Additional feedback locking work by Middlemas et al. (2020) showed that the cloud
20 feedback outside of the Arctic contributes most to Arctic warming. This finding sug-
21 gests an important non-local mechanism through which clouds contribute to Arctic
22 amplification, which is not accounted for in the traditional feedback-forcing framework.
23
24 Arguably, feedback locking shows the true impact of a climate feedback on the climate
25 response as no process operates in isolation. Climate feedbacks instead influence one
26 another and interact with other parts of the climate system, such as atmospheric heat
27 transport, to determine the overall climate response. A limitation of feedback locking,
28 when applied to the full range of climate feedbacks, is that the warming contributions
29 from individual feedbacks do not fully account for the total warming, as interactions
30 between feedbacks also play a role. Still, it is unclear if other climate models exhibit
31 similar behavior as the CESM1-CAM5 simulations with inactive clouds. Moreover, it
32 is unclear which region controls the cloud-induced Arctic amplification. Given that the
33 cloud feedback is the primary source of uncertainty in future climate projections (Soden
34 and Held, 2006; Dufresne and Bony, 2008; Schneider et al., 2017; Zelinka et al., 2017,
35 2020) and exhibits considerable intermodel spread at regional scales (Ceppi et al., 2017;
36 Zelinka et al., 2020), it is imperative to reconcile these two perspectives and holistically
37 quantify the contribution of clouds to Arctic amplification.
38
3940
41 In this study, we quantify the influence of clouds on Arctic amplification by introducing a
42 framework that unites the traditional feedback-forcing method with the feedback locking
43 method. We first show that the cloud feedback contributes to Arctic amplification in
44 CESM1-CAM5 by interacting with other climate feedbacks. Specifically, the surface
45 temperature change resulting from including the cloud feedback is amplified by the
46 surface-albedo, Planck, and lapse-rate feedbacks. We then show that a one-dimensional
47 moist energy balance model (MEBM) exhibits similar behavior as CESM1-CAM5 and
48 indicates that Arctic amplification from cloud-locking experiments results from including
49 the mid-latitude cloud feedback. We use the MEBM as a surrogate model to quantify
50 cloud feedback locking across a broader suite of climate models from CMIP5 and
51 CMIP6 and show that the mid-latitude cloud feedback also contributes significantly
52
53
54
55
56
57
58
59
60

1
2 *Mid-latitude clouds and Arctic amplification*
3
4

5

135 to the intermodel spread in Arctic amplification across climate models. These results
136 confirm that clouds can contribute to Arctic amplification and suggest that reducing the
137 intermodel spread in the mid-latitude cloud feedback will reduce the intermodel spread in
138 Arctic amplification. More broadly, these results highlight the need to better understand
139 the interactions between climate feedbacks and their impact on surface temperature
140 change.13
14 **2. Data and Methods**
1516 *2.1. CESM1-CAM5 experiments*
1718
19 We analyze a set of CESM1-CAM5 (Hurrell et al., 2013) simulations in which the cloud
20 radiative feedback was disabled (Chalmers et al., 2022). Briefly, two pairs of simulations
21 are used. In the first pair, atmospheric carbon-dioxide concentrations are abruptly dou-
22 bled (abrupt-2xCO₂) from pre-industrial control (piControl) levels and held constant
23 for 150 years. The second pair of simulations are a repeat of the first pair but with
24 the cloud radiative feedback disabled (Middlemas et al., 2020; Chalmers et al., 2022).
25 The cloud radiative feedback is disabled by prescribing cloud radiative properties at
26 2-hourly timesteps from a neutral El Niño-Southern Oscillation piControl year in the
27 atmospheric model radiation calculations, while leaving the rest of the climate system to
28 freely evolve. The abrupt-2xCO₂ cloud-locked simulation is compared with a piControl
29 cloud-locked simulation. For more detailed information, see Chalmers et al. (2022).
30
3132
33 We use the values of \mathcal{F} and λ calculated in Chalmers et al. (2022). The individual
34 components of λ are calculated using the radiative-kernel method (Soden and Held, 2006;
35 Shell et al., 2008; Soden et al., 2008) with CESM1-CAM5 radiative kernels (Pendergrass
36 et al., 2018). Following Pendergrass et al. (2018), each radiative feedback is found by
37 taking the difference in the climate variable between the fully-coupled piControl and
38 fully-coupled abrupt-2xCO₂ simulations, and multiplying the variable by the respective
39 radiative kernel. \mathcal{F} is calculated from abrupt-2xCO₂ simulations under fixed-SST
40 conditions (Smith et al., 2020). The other variables, ΔT , ΔG , and $\Delta(\nabla \cdot F)$, are
41 calculated as the change between years 100 – 150 in the abrupt-2xCO₂ simulations
42 and the piControl simulations. ΔT is calculated as the change in near-surface air
43 temperature, ΔG is calculated as the change in net surface heat fluxes, and $\Delta(\nabla \cdot F)$
44 is calculated as the change in the difference between the net top-of-atmosphere and net
45 surface heat fluxes. All variables are annual averages.
46
4752
53 *2.2. CMIP5 and CMIP6 output*
5455
56 To examine the impact of cloud feedback locking in a broader suite of climate mod-
57 els, we use all CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring et al., 2016) climate
58 models that provide monthly output from the piControl and abrupt-4xCO₂ simulations
59
60

1
2 *Mid-latitude clouds and Arctic amplification*
3
4

6

5 172 and the necessary variables to calculate annual averages of \mathcal{F} , λ , ΔT , ΔG , and $\Delta(\nabla \cdot F)$.
6
78 173
9 174 We use the values of \mathcal{F} and λ calculated in Hahn et al. (2021). Briefly, the individual
10 175 components of λ are calculated using the radiative-kernel method (Soden and Held,
11 176 2006; Shell et al., 2008; Soden et al., 2008) with CESM1-CAM5 radiative kernels (Pen-
12 177 dergrass et al., 2018). We also use the individual components of λ calculated with other
13 178 radiative kernels as detailed in Hahn et al. (2021) to assess the sensitivity to radiative
14 179 kernel choice. These include radiative kernels from Soden et al. (2008), Shell et al.
15 180 (2008), Block and Mauritzen (2013), Huang et al. (2017), and Smith et al. (2018). For
16 181 more detailed information, see Hahn et al. (2021).
17
18219 183 Each feedback is found by taking the difference in the climate variable of the abrupt-
20 184 4xCO₂ simulations and the concurrent piControl climatology and multiplying the vari-
21 185 able by the respective radiative kernel. Note that the difference is a 31-year climatology
22 186 centered on year-100 of each simulation. A 21-year running average is also applied to
23 187 the piControl simulations to account for model drift before computing anomalies be-
24 188 tween abrupt-4xCO₂ and piControl simulations. This helps to isolate anomalies due to
25 189 greenhouse-gas forcing rather than model drift. \mathcal{F} is calculated as the y-intercept of the
26 190 regression between top-of-atmosphere radiation anomalies at each grid point against the
27 191 global-mean ΔT for the first 20 years after abrupt-4xCO₂ (Gregory et al., 2004). This
28 192 calculation of \mathcal{F} is different from the calculation of \mathcal{F} from the CESM1-CAM5 simu-
29 193 lations because not all climate models provide fixed-SST carbon-dioxide quadrupling
30 194 experiments. Smith et al. (2020) noted that this 20-year regression produces \mathcal{F} values
31 195 that closely match methods using fixed sea-surface temperatures (Hansen et al., 2005).
32 196 Note that this method for calculating λ includes both the true temperature-mediated
33 197 feedbacks and the rapid adjustments that occur immediately upon carbon-dioxide qua-
34 198 drupling. However, it is important to note that locking the cloud feedback that contains
35 199 rapid cloud adjustments in a MEBM, as done in this study, is akin to disabling the entire
36 200 cloud feedback in a climate model.
37
3839 201
40 202 The other variables, ΔT , ΔG , and $\Delta(\nabla \cdot F)$, are calculated as the 31-year climatological
41 203 change centered on year-100 in the fully-coupled abrupt-4xCO₂ simulations relative
42 204 to the fully-coupled piControl simulations (after removing the model drift). ΔT is
43 205 calculated as the change in near-surface air temperature, ΔG is calculated as the change
44 206 in net surface heat fluxes, and $\Delta(\nabla \cdot F)$ is calculated as the change in the difference
45 207 between the net top-of-atmosphere and net surface heat fluxes.
46
4748 208 *2.3. Moist energy balance model (MEBM)*
49
5051 209 To perform cloud feedback locking across a broader suite of climate models, we simulate
52 210 zonal-mean ΔT using a MEBM with prescribed CMIP5 and CMIP6 output. MEBMs
53 211 have been shown to effectively emulate zonal-mean ΔT from climate models under
54
55

1
2 *Mid-latitude clouds and Arctic amplification*
3
4

7

5 greenhouse gas forcing (Flannery, 1984; Hwang and Frierson, 2010; Roe et al., 2015;
6 Siler et al., 2018; Bonan et al., 2018; Armour et al., 2019; Bonan et al., 2023). MEBMs
7 assume the change in poleward atmospheric energy transport ΔF is proportional to the
8 change in the meridional gradient of near-surface moist static energy $\Delta h = c_p \Delta T + L_v \Delta q$,
9 where $c_p = 1005 \text{ J kg}^{-1} \text{ K}^{-1}$ is the specific heat of air, $L_v = 2.5 \times 10^6 \text{ J kg}^{-1}$ is the latent
10 heat of vaporization, and Δq is the change in near-surface specific humidity (assuming
11 fixed relative humidity of 80%). This gives
12

$$14 \quad 15 \quad 16 \quad 17 \quad 18 \quad 19 \quad 20 \quad 21 \quad 22 \quad 23 \quad 24 \quad 25 \quad 26 \quad 27 \quad 28 \quad 29 \quad 30 \quad 31 \quad 32 \quad 33 \quad 34 \quad 35 \quad 36 \quad 37 \quad 38 \quad 39 \quad 40 \quad 41 \quad 42 \quad 43 \quad 44 \quad 45 \quad 46 \quad 47 \quad 48 \quad 49 \quad 50 \quad 51 \quad 52 \quad 53 \quad 54 \quad 55 \quad 56 \quad 57 \quad 58 \quad 59 \quad 60$$

$$\Delta F = -\frac{2\pi p_s}{g} D (1 - x^2) \frac{d\Delta h}{dx}, \quad (3)$$

219 where $p_s = 1000 \text{ hPa}$ is the surface air pressure, $g = 9.81 \text{ m s}^{-2}$ is the gravitational
220 acceleration, D is a constant diffusion coefficient (with units of $\text{m}^2 \text{ s}^{-1}$), x is the sine of
221 the latitude, and $1 - x^2$ accounts for the spherical geometry of Earth.

222 On long timescales, the change in net heating of the atmosphere must balance the
223 divergence of ΔF , resulting in

$$26 \quad 27 \quad 28 \quad 29 \quad 30 \quad 31 \quad 32 \quad 33 \quad 34 \quad 35 \quad 36 \quad 37 \quad 38 \quad 39 \quad 40 \quad 41 \quad 42 \quad 43 \quad 44 \quad 45 \quad 46 \quad 47 \quad 48 \quad 49 \quad 50 \quad 51 \quad 52 \quad 53 \quad 54 \quad 55 \quad 56 \quad 57 \quad 58 \quad 59 \quad 60$$

$$\mathcal{F} + \sum_i \lambda_i \Delta T - \Delta G = \Delta(\nabla \cdot F), \quad (4)$$

225 which is a single differential equation that can be solved numerically for ΔT and ΔF
226 given zonal-mean profiles of \mathcal{F} , λ , and ΔG and a value (or zonal-mean profile) of D .
227 Note that we have written λ as the sum of all individual radiative feedbacks, including
228 λ_0 . We set $D = 1.02 \times 10^6 \text{ m}^2 \text{ s}^{-1}$, which is the multi-model mean value from the pre-
229 industrial control simulations. Changes in the magnitude and pattern of D have been
230 shown to not significantly affect zonal-mean ΔT (Chang and Merlis, 2023; Ge et al.,
231 2024).

232 Following Beer and Eisenman (2022) and Bonan et al. (2024), cloud feedback locking in
233 the MEBM is performed by taking the cloud feedback that is diagnosed from climate
234 model output, removing it from Eq. (4) and then solving for ΔT and ΔF . We perform
235 cloud feedback locking across the global domain and regional domains. Note that in this
236 MEBM, \mathcal{F} and ΔG cannot change when the cloud feedback is locked since \mathcal{F} and ΔG
237 are prescribed based on climate model output. However, as discussed below, the change
238 in \mathcal{F} and ΔG when the cloud feedback is locked in a comprehensive climate model has
239 little impact on the surface temperature change in the Arctic and Tropics. The zonal-
240 mean ΔT attributed to including the cloud feedback in the MEBM can be found by
241 taking the difference between the normal MEBM, where all feedbacks are active and
242 the locked MEBM, where the cloud feedback is locked.

244 3. Climate feedback interactions and Arctic amplification

245 We begin by introducing a framework that reconciles the traditional feedback-forcing
246 and feedback locking approaches. The two approaches can be reconciled by applying

1
2 *Mid-latitude clouds and Arctic amplification* 8
3
45
6
7
8
9
247 Eq. (1) to the normal greenhouse-gas forcing simulation and the one in which the cloud
248 feedback was disabled. We denote the normal greenhouse-gas forcing simulation as n
249 and the cloud-locked greenhouse-gas forcing simulation as l . Thus, the difference of any
250 variable χ between the two simulations can be expressed as

10
11
$$\chi_{n-l} = \chi_n - \chi_l. \quad (5)$$

12

13
14
15
16
251 By applying Eq. (1) to the two simulations and taking the difference, while also noting
252 that Eq. (5) can be rearranged such that $\chi_l = \chi_n - \chi_{n-l}$, we can derive a diagnostic
253 equation that expresses cloud-induced surface temperature change ΔT_{n-l} as

17
18
$$\Delta T_{n-l} = \frac{1}{\lambda_0} \left(- \underbrace{\mathcal{F}_{n-l}}_{(a)} - \underbrace{\lambda_{n-l} \Delta T_n}_{(b)} - \underbrace{\lambda_l \Delta T_{n-l}}_{(c)} + \underbrace{\Delta G_{n-l}}_{(d)} + \underbrace{\Delta(\nabla \cdot F)_{n-l}}_{(e)} - \underbrace{\epsilon_{n-l}}_{(f)} \right), \quad (6)$$

19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
254 where each term is a partial temperature contribution to ΔT_{n-l} , with (a) denoting
255 interactions between clouds and radiative forcing, (b) denoting the change in the net
256 radiative feedback, (c) denoting interactions between cloud-induced temperature change
257 and other radiative feedbacks, (d) denoting interactions between clouds and ocean heat
258 uptake, (e) denoting interactions between clouds and atmospheric heat transport, and
259 (f) denoting the residual term. Note that if only the cloud feedback were disabled and
260 no other component of the climate system were to change, the cloud feedback contribu-
261 tion diagnosed from the traditional feedback-forcing framework would be equal to Eq.
262 (6) through Term (b). However, in what follows, we will show that Term (c), which
263 denotes interactions between other radiative feedbacks, significantly contributes to Eq.
264 (6). Note that λ_l is defined in Eq. (2) and does not contain λ_0 .38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
265
266 In the Arctic, ΔT_{n-l} is larger when compared to the Tropics primarily because of Term
267 (c), which denotes ΔT_{n-l} resulting from interactions between the cloud-induced surface
268 temperature change and other radiative feedbacks (cyan dot, left panel, Fig. 2a). A
269 breakdown of λ_l into individual radiative feedback components shows that this amplifi-
270 cation occurs primarily because of the surface-albedo, Planck, and lapse-rate feedbacks
271 (cyan symbols, Fig. 2b). In other words, the cloud-induced temperature change is am-
272 plified by the surface-albedo, Planck, and lapse-rate feedbacks in the Arctic. Term (b),
273 which denotes ΔT_{n-l} due to changes in the net radiative feedback, approximates the
274 diagnostic contribution of the cloud feedback quite well (compare right purple triangle
275 in Fig. 1a and red dot in Fig. 2a). In fact, Term (b) suggests a warming contribution
276 of approximately 0.5 K in the Tropics and 0 K in the Arctic (Fig. 2a) and the diag-
277 nistic approach suggests a warming contribution of approximately 0.4 K in the Tropics
278 and 0 K in the Arctic (Fig. 1a). This occurs because the other individual radiative
279 feedbacks change very little (red symbols, Fig. 2b). Most of the change in the net
280 radiative feedback occurs because of the disabled cloud feedback (sideways red triangle,
281 Fig. 2b) and the lapse-rate and water-vapor feedbacks cancel each other out (upward

60

1
2 *Mid-latitude clouds and Arctic amplification* 9
3
45 282 and downward red triangles, Fig. 2b). Note that for these regional domains, \mathcal{F} and ΔG
6 283 change very little with a disabled cloud feedback, meaning Terms (a) and (d) in Eq.
7 284 (6) are approximately zero. Similar results are obtained when comparing Arctic surface
8 285 temperature change to a global average (not shown).9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60286 The above result shows that the difference between the traditional feedback-forcing
287 framework, which suggests that clouds contribute little to warming in the Arctic and
288 Tropics, and the feedback-locking approach, which suggests that clouds contribute
289 significantly to warming in the Arctic and Tropics, can be attributed to climate feedback
290 interactions. In the Arctic, the cloud-induced surface temperature change is amplified
291 by the surface-albedo, Planck, and lapse-rate feedbacks, which change very little in
292 response to an inactive cloud feedback. In the Tropics, the cloud feedback as diagnosed
293 from the traditional-feedback forcing accounts for most of cloud-induced warming as
294 suggested by cloud feedback locking.295 3.1. *Cloud feedback locking in an energy balance model*296 3.1.1. *Comparison to CESM1-CAM5* Can the results of cloud feedback locking from a
297 single climate model be trusted? The CESM1-CAM5 simulations suggest that an active
298 cloud feedback contributes to Arctic amplification. However, the cloud feedback shows
299 considerable intermodel spread at both global (Soden and Held, 2006; Dufresne and
300 Bony, 2008; Schneider et al., 2017; Zelinka et al., 2017, 2020) and regional (Ceppi et al.,
301 2017; Zelinka et al., 2020) scales. This spread implies that cloud feedback locking in
302 other climate models could yield different climate responses. Nonetheless, conducting
303 cloud feedback locking across climate models is challenging due to its computational
304 cost and the substantial differences in cloud model components.305
306307 In recent years, a number of studies have shown that one-dimensional MEBMs, which
308 simulate atmospheric heat transport as downgradient diffusion of near-surface moist-
309 static energy, capture the behavior of climate models under greenhouse-gas forcing,
310 including the magnitude of Arctic amplification (Roe et al., 2015; Bonan et al., 2018;
311 Siler et al., 2018; Feldl and Merlis, 2021). This suggests that MEBMs can serve as surro-
312 gate models for exploring the impact of cloud feedback locking on Arctic amplification.
313 However, it remains unclear whether the simplicity of MEBMs affects their ability to
314 accurately replicate the behavior of CESM1-CAM5 with locked cloud feedback. Note
315 that Beer and Eisenman (2022) conducted feedback locking experiments in a MEBM
316 but did not examine whether it produces similar behavior as a comprehensive climate
317 model. Here, we compare cloud feedback locking in a MEBM to the CESM1-CAM5
318 abrupt-2xCO₂ simulation with an inactive cloud feedback. Because the other radiative
319 feedbacks in CESM1-CAM5 change very little in response to an inactive cloud feedback
320 (red symbols, Fig. 2b), we hypothesize that removing the cloud feedback from a MEBM
321 will result in a similar response as the cloud-locked CESM1-CAM5 simulations.

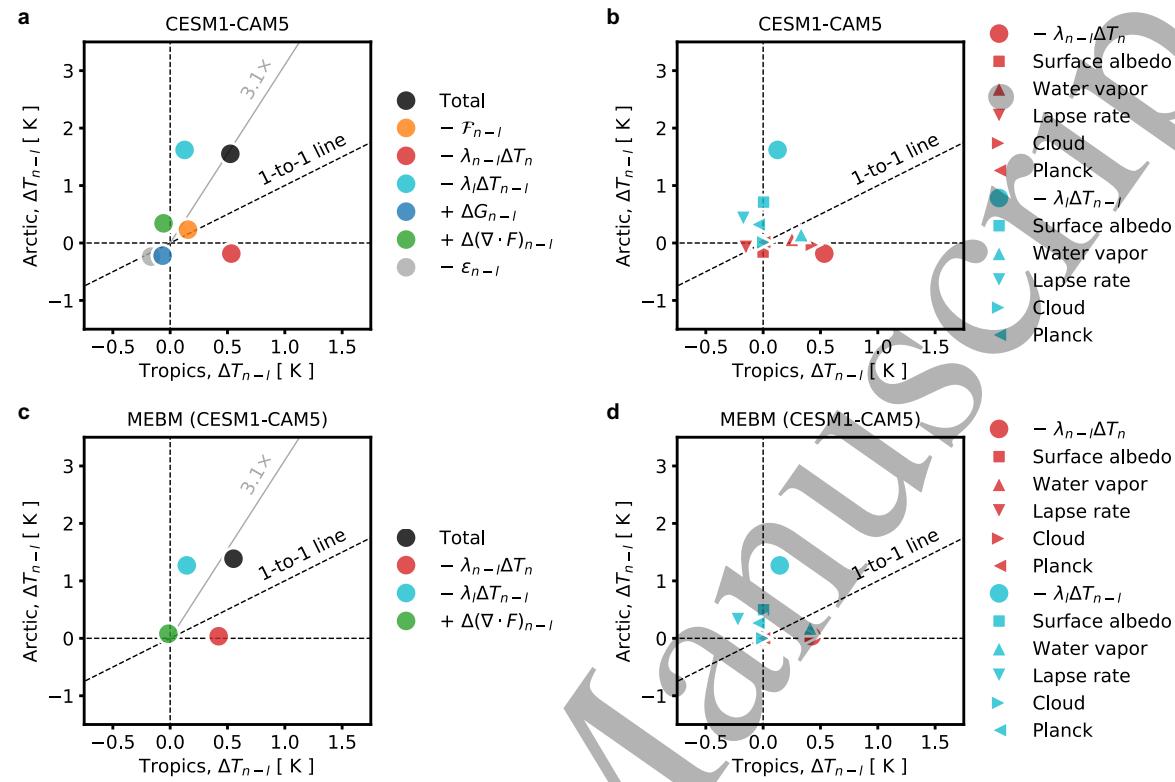
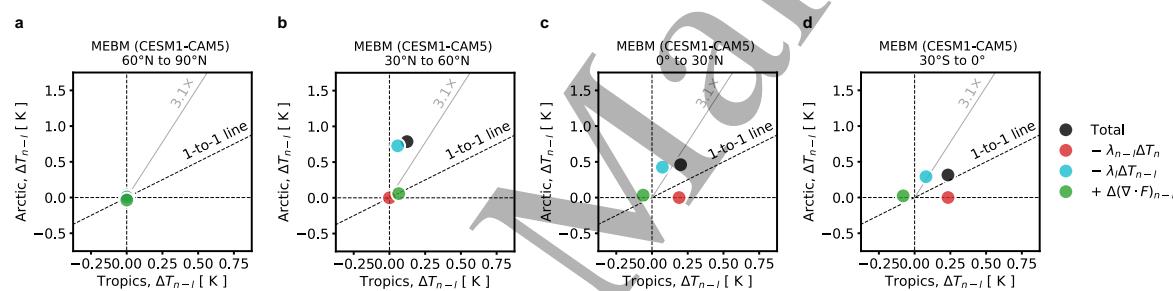

1
2
3
4
5 *Mid-latitude clouds and Arctic amplification*

Figure 2. Contributions to cloud-induced Arctic amplification. Contributions to cloud-induced surface temperature change ΔT_{n-l} in the (x-axis) Tropics (30°S-30°N) and (y-axis) Arctic (60°N-90°N) for CESM1-CAM5 abrupt-2xCO₂ simulations. Panel (a) denotes each mechanism in Eq. (6). The colored dots sum to the black dot. The orange dot denotes interactions with radiative forcing, the red dot denotes changes in radiative feedbacks, the cyan dot denotes interactions between other radiative feedbacks, the blue dot denotes interactions with ocean heat uptake, and the green dot denotes interactions with atmospheric heat transport. Panel (b) shows the individual radiative feedbacks for the red and cyan dots in the left panel. The red and cyan squares and triangles sum to the red and cyan dots, respectively. Panel (c) and panel (d) are the same as panel (a) and panel (b) but based on including the CESM1-CAM5 abrupt-2xCO₂ cloud feedback in the MEBM. The grey lines and numbers in the left panels of (a) and (c) indicate the magnitude of Arctic amplification from the normal abrupt-2xCO₂ CESM1-CAM5 simulation.


322
323 MEBM cloud feedback locking is performed by removing the prescribed cloud feedback
324 based on CESM1-CAM5 output and comparing it to a standard MEBM simulation in
325 which all CESM1-CAM5 output is prescribed, thus activating all feedbacks. Eq. (3) is
326 applied to the MEBM simulations, but note that \mathcal{F} and ΔG cannot change when the
327 cloud feedback is locked, since they are prescribed. As a result, Terms (a) and (d) in
328 Eq. (3) are zero when using the MEBM.

329
330 The MEBM accurately simulates the cloud-induced Arctic amplification suggested by
331 the CESM1-CAM5 cloud-locked simulations (Fig. 2c). The MEBM produces a cloud-
332 induced Arctic-to-Tropics warming ratio that is slightly smaller than the CESM1-CAM5

1
2 *Mid-latitude clouds and Arctic amplification* 11
3
4

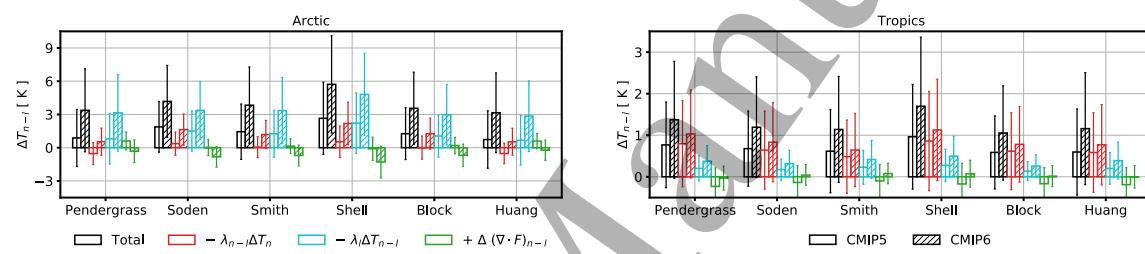
5 cloud-induced Arctic-to-Tropics warming ratio of 3.1. However, the MEBM shows that
6 cloud-induced Arctic amplification occurs because of Term (c), which describes the in-
7 teraction between cloud-induced surface temperature changes and the surface-albedo,
8 Planck, and lapse-rate feedbacks (cyan dots, Fig. 2c-d). This finding is consistent with
9 the CESM1-CAM5 simulations.
10
11

12 The success of the MEBM in emulating the CESM1-CAM5 cloud locking experiments
13 suggests the MEBM can be used to examine how the cloud feedback in different regions
14 affects Arctic amplification. Middlemas et al. (2020) showed that the cloud feedback
15 outside of the Arctic contributes most to the cloud-induced Arctic warming. But it is
16 still unclear which region outside of the Arctic is contributing most to the cloud-induced
17 Arctic warming. To examine this, we use the MEBM to lock the cloud feedback in four
18 different regional domains, spanning 30° latitude bands from 90°N to 30°S.
19
20

35 **Figure 3. Impact of regional cloud locking on Arctic amplification.** Contributions to cloud-
36 induced surface temperature change ΔT_{n-1} in the (x-axis) Tropics (30°S-30°N) and (y-axis) Arctic
37 (60°N-90°N) based on including the cloud feedback in the MEBM that is diagnosed from the CESM1-
38 CAM5 abrupt-2xCO₂ simulation. Each panel denotes when the cloud feedback was included from (a)
39 60°N to 90°N, (b) 30°N to 60°N, (c) 0° to 30°N, and (d) 30°S to 0°. Each dot denotes a mechanism in Eq.
40 (6). The colored dots sum to the black dot. The red dot denotes changes in radiative feedbacks, the
41 cyan dot denotes interactions between other radiative feedbacks, and the green dot denotes interactions
42 with atmospheric heat transport. The grey line and number in each panel indicate the magnitude of
43 Arctic amplification from the normal abrupt-2xCO₂ CESM1-CAM5 simulation.
44

45
46 The MEBM suggests the mid-latitude (30°N-60°N) cloud feedback contributes most to
47 the cloud-induced Arctic amplification (black dot, Fig. 3b). When the mid-latitude
48 cloud feedback is included, the Arctic warms by 0.8 K while the Tropics warm by 0.1 K,
49 producing an Arctic-to-Tropics warming ratio of 8. This warming is also related almost
50 entirely to Term (c), the interaction of the cloud-induced warming with other climate
51 feedbacks local to the Arctic (cyan dot, Fig. 3b). The Arctic (60°N-90°N) cloud feed-
52 back contributes little to Arctic amplification (black dot, Fig. 3a)—consistent with
53 Middlemas et al. (2020). Cloud feedbacks in the Tropics (30°S-30°N) contribute some
54 to Arctic warming but little to Arctic amplification (black dots, Fig. 3c-d). Across all
55 regions, the interaction of the cloud-induced warming with other radiative feedbacks is
56 the primary contributor to Arctic warming and Arctic amplification (cyan dots, Fig. 3).
57
58
59
60

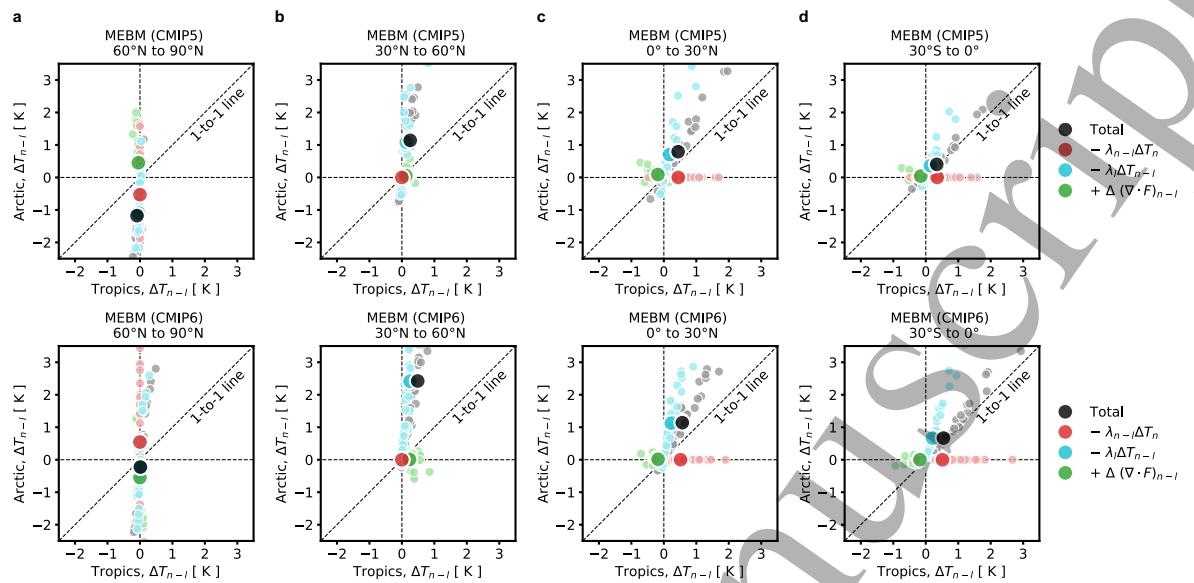
1
2 *Mid-latitude clouds and Arctic amplification*
3
45 358
6
7

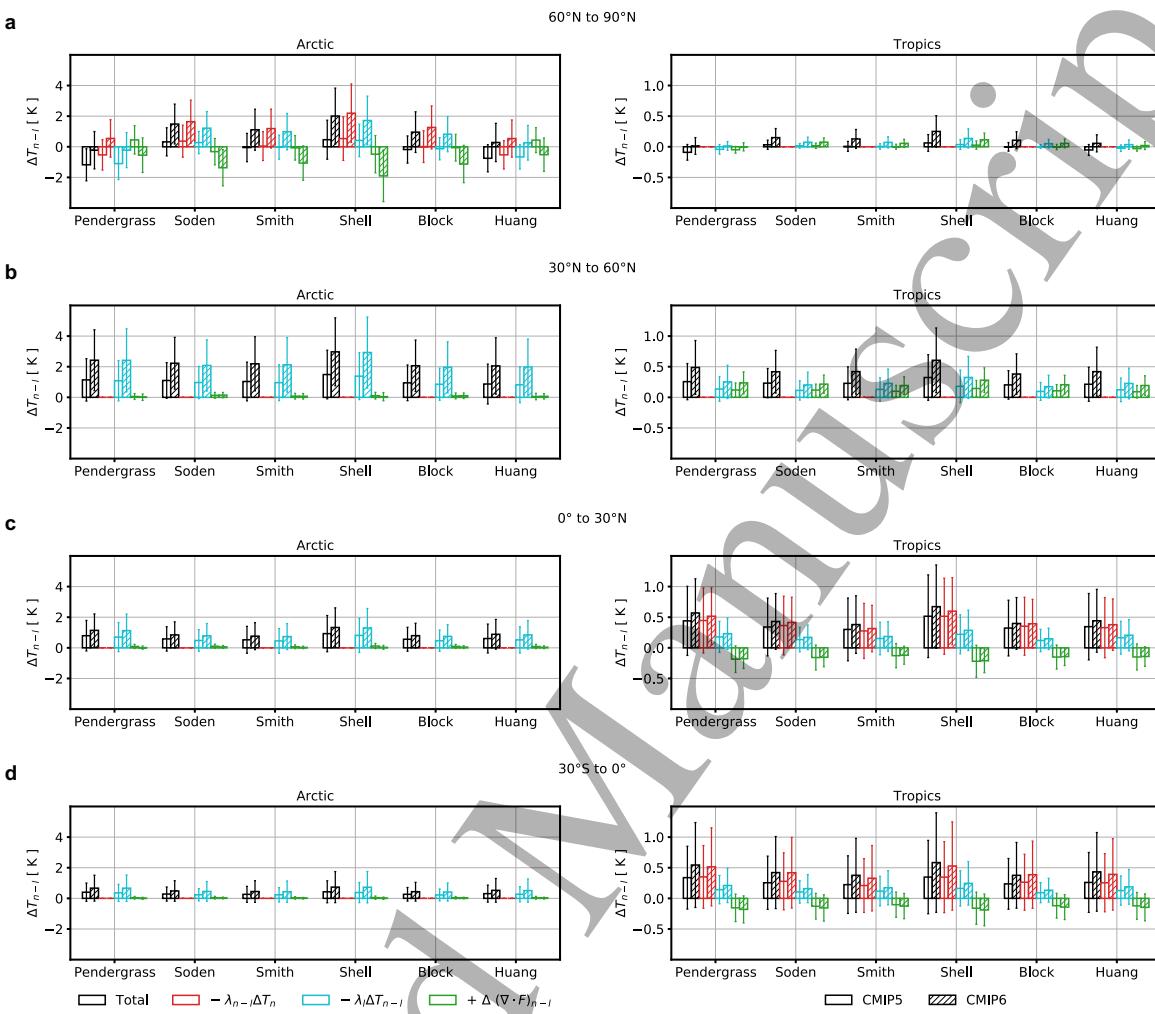

20 **Figure 4. Global cloud locking in CMIP5 and CMIP6.** Contributions to cloud-induced surface
21 temperature change ΔT_{n-l} in the (x-axis) Tropics (30°S - 30°N) and (y-axis) Arctic (60°N - 90°N) based
22 on including the cloud feedback globally in the MEBM that is diagnosed from (a) CMIP5 and (b)
23 CMIP6. Each dot denotes a mechanism in Eq. (6). The colored dots sum to the black dot. The red
24 dots denote changes in radiative feedbacks, the cyan dots denote interactions between other radiative
25 feedbacks, and the green dots denote interactions with atmospheric heat transport. The large dots
26 denote the multi-model mean and the small dots denote an individual CMIP5 and CMIP6 climate
27 model.

28
29
30
31 3.1.2. *Cloud locking in CMIP5 and CMIP6* Having shown that the MEBM emulates
32 the CESM1-CAM5 cloud locking experiments and that the mid-latitude cloud feedback
33 contributes most to Arctic amplification, we now examine the impact of cloud feedback
34 locking on Arctic amplification across broader range of climate models. To do this,
35 we conduct the same analyses as above with the CESM1-CAM5 simulations but with
36 a broader suite of CMIP5 and CMIP6 climate models under abrupt-4xCO₂ (see Sec-
37 tion 2.2). More specifically, we perform a normal MEBM simulation by prescribing the
38 patterns of \mathcal{F} , λ and ΔG from each CMIP5 and CMIP6 climate model in the MEBM
39 and compare that to a MEBM simulation in which the cloud feedback diagnosed from
40 each climate model is removed. We then calculate the terms in Eq. (3) for the MEBM
41 simulations.

42
43
44
45
46
47 When the cloud feedback is included in the MEBM globally, there is large surface tem-
48 perature change in the Arctic and Tropics (Fig. 4). On average, CMIP5 climate models
49 exhibit a cloud-induced warming of approximately 1 K in both the Tropics and Arctic
50 (Fig. 4a), while CMIP6 climate models exhibit more warming in the Arctic of approx-
51 imately 3.5 K (Fig. 4b). CMIP6 climate models exhibit stronger cloud-induced Arctic
52 warming than CMIP5 climate models because of less negative Arctic cloud feedbacks
53 (red dots, Fig. 4), which has been noted previously by Hahn et al. (2021), and be-
54 cause of stronger climate feedback interactions (cyan dots, Fig. 4). The less-negative
55 cloud feedbacks are related to a less-negative shortwave low-cloud amount and scattering
56 feedbacks (Zelinka et al., 2020). However, there is considerable intermodel spread in the
57
58
59
60

1
2 *Mid-latitude clouds and Arctic amplification* 13
3
4


5 amount of cloud-induced Arctic surface temperature change across CMIP5 and CMIP6
6 (Fig. 4). For example, in CMIP5, the cloud-induced surface temperature change results
7 in a temperature range of -2 K to 8 K in the Arctic (grey dots, Fig. 4a). In CMIP6, the
8 cloud-induced surface temperature change results in an even larger temperature range
9 of -2 K to 10 K in the Arctic (grey dots, Fig. 4b). Similar to the CESM1-CAM5 simu-
10 lations, the intermodel spread in surface temperature change in the Arctic under cloud
11 locking is primarily associated with Term (c), which represents climate feedback inter-
12 actions (cyan dots, Fig. 4). In contrast, the intermodel spread in surface temperature
13 change in the Tropics under cloud locking is mainly linked to the cloud feedback itself
14 (red dots, Fig. 4).



21
22 **Figure 5. Sensitivity of global cloud locking to radiative kernels.** Contributions to cloud-
23 induced surface temperature change ΔT_{n-l} in the (left) Arctic (60°N - 90°N) and (right) Tropics (30°S -
24 30°N) based on including the cloud feedback globally in the MEBM and using feedbacks derived from
25 various radiative kernels. Each bar denotes a mechanism in Eq. (6). The colored bars sum to the black
26 bars. The red bars denote changes in radiative feedbacks, the cyan bars denote interactions between
27 other radiative feedbacks, and the green bars denote interactions with atmospheric heat transport. The
28 errorbars denote a \pm one standard deviation of all MEBM simulations. The open bars denote CMIP5
29 and the hatched bars denote CMIP6. Note that the y-axis limits differ between the left and right
30 panels.

40
41 Global cloud locking in the MEBM, based on CMIP5 and CMIP6 feedbacks derived
42 from different radiative kernels, produces similar results (Fig. 5). However, some ra-
43 diative kernels indicate greater warming from cloud locking, particularly in the Arctic
44 (black bars, Fig. 5). For instance, when CMIP5 and CMIP6 feedbacks are estimated
45 using radiative kernels from Shell et al. (2008), cloud locking results in more Arctic
46 warming when compared to the Pendergrass et al. (2018) radiative kernels (left panel,
47 black bars, Fig. 5). This occurs because of differences in Term (b), which describes the
48 Arctic cloud feedback itself, and Term (c), which describes feedbacks interactions (left
49 panel, red and cyan bars, Fig. 5). In the Tropics, global cloud locking in the MEBM
50 shows similar behavior across feedbacks derived from different radiative kernels (right
51 panel, Fig. 5).

52
53 When the cloud feedback is included in different regional domains, the impact on surface
54 temperature change becomes even more striking. In contrast to the MEBM cloud feed-
55
56
57
58
59
60

1
2
3
4
5 *Mid-latitude clouds and Arctic amplification*24 **Figure 6. Impact of regional cloud locking on Arctic amplification in CMIP5 and CMIP6.**25 Contributions to cloud-induced surface temperature change ΔT_{n-l} in the (x-axis) Tropics (30°S-30°N)
26 and (y-axis) Arctic (60°N-90°N) based on including the cloud feedback from (a) 60°N to 90°N, (b) 30°N
27 to 60°N, (c) 0° to 30°N, and (d) 30°S to 0° in the MEBM. The feedbacks are derived from (top) CMIP5
28 and (bottom) CMIP6 output. Each dot denotes a mechanism in Eq. (6). The colored dots sum to the
29 black dot. The red dots denote changes in radiative feedbacks, the cyan dots denote interactions between
30 other radiative feedbacks, and the green dots denote interactions with atmospheric heat transport. The
31 large dots denote the multi-model mean and the small dots denote an individual CMIP5 and CMIP6
32 climate model.33
34
35 back locking with CESM1-CAM5 output, MEBM cloud feedback locking with CMIP5
36 and CMIP6 output indicates a more diverse range of surface temperature changes in the
37 Arctic and Tropics (Fig. 6). Both CMIP5 and CMIP6 climate models suggest on aver-
38 age the Arctic warms little or cools slightly when the Arctic (60°N-90°N) cloud feedback
39 is included, but there is a large intermodel spread that ranges from -2 K to 3 K (Fig.
40 6a). Still, the mid-latitude (30°N-60°N) cloud feedback contributes most to the cloud-
41 induced Arctic amplification (Fig. 6b). CMIP5 and CMIP6 climate models suggest
42 that on average, the mid-latitude cloud feedback contributes to an Arctic-to-Tropics
43 warming ratio of 5-6, with substantial intermodel spread that is solely related to Term
44 (c), which describes feedback interactions (cyan dots, Fig. 6b). As with CESM1-CAM5,
45 including the cloud feedback from 30°S-30°N does not contribute much to Arctic ampli-
46 fication but does contribute strongly to warming in both the Arctic and Tropics (Fig.
47 6c-d), consistent with Bonan et al. (2018). The cloud-induced surface temperature in
48 the Tropics occurs primarily because of Term (b), which describes the cloud feedback
49 itself (red dots, Fig. 6c-d).50
51
52
53
54
55
56
57 Regional cloud locking performed in the MEBM using CMIP5 and CMIP6 feedbacks
58 derived from different radiative kernels produces similar results, indicating that mid-
59 latitude cloud feedback significantly contributes to Arctic warming and Arctic amplifi-
60

1
2 *Mid-latitude clouds and Arctic amplification* 15
3

38 **Figure 7. Sensitivity of regional cloud feedback locking to radiative kernels.** Contributions
 39 to cloud-induced surface temperature change ΔT_{n-l} in the (left) Arctic (60°N - 90°N) and (right) Tropics
 40 (30°S - 30°N) based on including the cloud feedback from (a) 60°N to 90°N , (b) 30°N to 60°N , (c) 0° to
 41 30°N , and (d) 30°S to 0° in the MEBM and using feedbacks derived from various radiative kernels. Each
 42 bar denotes a mechanism in Eq. (6). The colored bars sum to the black bars. The red bars denote
 43 changes in radiative feedbacks, the cyan bars denote interactions between other radiative feedbacks,
 44 and the green bars denote interactions with atmospheric heat transport. The errorbars denote a \pm
 45 one standard deviation of all MEBM simulations. The open bars denote CMIP5 and the hatched bars
 46 denote CMIP6. Note that the y-axis limits differ between the left and right panels.
 47

48
 49 cation (Fig. 7b). However, as with global cloud locking, the results can vary depending
 50 on the specific radiative kernels used to estimate individual feedbacks. For instance,
 51 CMIP5 and CMIP6 feedbacks derived from some radiative kernels (e.g., Soden et al.,
 52 2008; Shell et al., 2008) result in strong Arctic warming when the Arctic cloud feedback
 53 is included (left panel, Fig. 7a). In contrast, this effect is not observed with feedbacks
 54 based on radiative kernels from Pendergrass et al. (2018) or Huang et al. (2017). This
 55 discrepancy arises primarily because of Term (b), which shows that the Arctic cloud
 56 feedback is more positive with the Soden et al. (2008) and Shell et al. (2008) radia-
 57
 58
 59
 60

1
2 *Mid-latitude clouds and Arctic amplification* 16
3
4
5
6
7
8
9

433 tive kernels, and because of Term (c), which shows that feedback interactions are also
434 stronger (red and cyan bars, Fig. 7a). In the Tropics, regional cloud locking results
435 in similar amounts of warming across feedbacks derived from different radiative kernels
436 (Fig. 7c-d).

437

12 **4. Discussion and conclusions**

15 438 This study has several key findings. First, we reconciled two different perspectives on
16 439 how climate feedbacks influence surface temperature change. In particular, we show the
17 440 traditional feedback-forcing framework (e.g., Pithan and Mauritsen, 2014; Hahn et al.,
18 441 2021), which suggests that the cloud feedback contributes little to warming in the Arc-
19 442 tic, can be reconciled with the feedback locking framework (e.g., Middlemas et al., 2020;
20 443 Chalmers et al., 2022), which suggests that clouds contribute significantly to warming in
21 444 the Arctic, by accounting for interactions with other climate feedbacks. In the Tropics,
22 445 the cloud feedback contribution diagnosed using the traditional feedback-forcing frame-
23 446 work is similar to the contribution from feedback locking, indicating that the traditional
24 447 feedback-forcing framework works well in estimating the cloud warming contribution for
25 448 tropical regions. Second, we showed that a MEBM with no cloud feedback exhibits sim-
26 449 ilar behavior as a coupled climate model with a disabled cloud feedback (Fig. 2), which
27 450 suggests that MEBMs can be used to examine the impact of feedback locking on other
28 451 climate processes. Finally, we showed that the mid-latitude cloud feedback contributes
29 452 to Arctic amplification by interacting with other climate feedbacks. The surface tem-
30 453 perature change resulting from including the mid-latitude cloud feedback is amplified
31 454 in the Arctic by the surface-albedo, Planck, and lapse-rate feedbacks (Fig. 3).

455

38 456 Our study underscores the uncertain role of the Arctic cloud feedback in Arctic climate
39 457 change. Middlemas et al. (2020) used CESM1-CAM5 to show that including the Arctic
40 458 cloud feedback under greenhouse gas forcing has minimal impact on Arctic warming. In
41 459 contrast, our analysis across a broader suite of climate models shows that including the
42 460 Arctic cloud feedback can result in either large cooling or large warming (Fig. 6). We
43 461 also found that the magnitude of Arctic surface temperature change with MEBM-based
44 462 cloud locking depends on the specific radiative kernels used to diagnose individual feed-
45 463 backs (Fig. 7), adding complexity to understanding the role of Arctic cloud feedback in
46 464 climate change. Some of the differences in surface albedo and shortwave cloud feedbacks
47 465 across radiative kernels could potentially be reconciled by applying the approximate par-
48 466 tial radiative perturbation (APRP) technique (Taylor et al., 2007; Morrison et al., 2019;
49 467 Chalmers et al., 2022). Of course, our results may already be biased because contempo-
50 468 rary climate models exhibit substantial cloud biases, leading to underestimation of both
51 469 Arctic and non-Arctic cloud feedbacks (Tan and Storelvmo, 2019; Morrison et al., 2019;
52 470 Cesana et al., 2021; Mülmenstädt et al., 2021; Tan et al., 2022, 2023). For example, Tan
53 471 and Storelvmo (2019) showed that correcting biases in the representation of supercooled
54 472 and Storelvmo (2019) showed that correcting biases in the representation of supercooled

55

56

57

58

59

60

1
2 *Mid-latitude clouds and Arctic amplification* 17
3
45 473 liquid in mixed-phase clouds globally can either enhance or reduce Arctic amplification,
6 474 depending on the microphysical cloud characteristics. This highlights the need to im-
7 475 prove our understanding and constraints on both Arctic and non-Arctic cloud feedbacks,
8 476 as they likely play a critical role in determining the magnitude of Arctic amplification.
9
10 47711 478 While the feedback-locking framework does not alleviate concerns about climate model
12 479 biases, it does help offer an approach to assess how other components of the climate
13 480 system interact to shape the patterns of climate change. For example, diagnostic as-
14 481 sessments indicate that ocean heat transport contributes little to Arctic amplification
15 482 (Pithan and Mauritsen, 2014; Feldl et al., 2020; Hahn et al., 2021). However, exper-
16 483 iments in which ocean heat transport was disabled or unable to change suggest that
17 484 ocean heat transport does contribute to Arctic amplification (Singh et al., 2017; Beer
18 485 et al., 2020; England and Feldl, 2024). The feedback-locking framework implies that
19 486 these two perspectives can likely be reconciled by accounting for climate system inter-
20 487 actions. Applying this framework to other mechanism denial experiments might better
21 488 indicate the factors influencing the climate response to external forcing and help to con-
22 489 strain future climate projections.
23
24 49025 491 Importantly, our results demonstrate a non-local pathway for Arctic amplification and
26 492 suggest that constraining the intermodel spread in the mid-latitude cloud feedback
27 493 across contemporary climate models will reduce the intermodel spread in Arctic
28 494 amplification. Arguably, the feedback locking approach demonstrates a more impactful
29 495 way of reducing the intermodel spread in the climate response to greenhouse gas forcing,
30 496 as no feedback process operates in isolation. Instead, climate feedbacks interact with
31 497 each other and other components of the climate system, such as atmospheric heat
32 498 transport, to shape the climate response. Further quantification of climate feedback
33 499 interactions and assessment of their impact on other features of climate change should
34 500 remain a focus of the climate science community.
35
3637 501 **Acknowledgements**
38
3940 502 The authors thank the climate modeling groups for producing and making available
41 503 their model output, which is accessible at the Earth System Grid Federation (ESGF)
42 504 Portal (<https://esgf-node.llnl.gov/search>). The CESM1-CAM5 model output is
43 505 available on Globus Collection (/glade/campaign/univ/ucub0090/cloudlocking). D.B.B
44 506 was supported by the National Science Foundation (NSF) Graduate Research Fellowship
45 507 Program (NSF Grant DGE1745301). J.E.K. was supported by NSF Grant OPP-
46 508 2233420. N.F. was supported by NSF Grant AGS-1753034. M.D.Z.'s work was
47 509 supported by the U.S. Department of Energy (DOE) Regional and Global Model
48 510 Analysis program area and was performed under the auspices of the U.S. DOE by
49 511 Lawrence Livermore National Laboratory under contract DEAC52-07NA27344. Code
50 512 for the moist energy balance model and sample CMIP output can be found at [https:](https://)

1
2 *Mid-latitude clouds and Arctic amplification* 18
34
5 513 [//github.com/dave-bonan/energy-balance-models.](https://github.com/dave-bonan/energy-balance-models)
67
8 514 **References**
910
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
515 1. Armour, K. C., Siler, N., Donohoe, A., and Roe, G. H. (2019). Meridional atmospheric heat
516 transport constrained by energetics and mediated by large-scale diffusion. *Journal of Climate*,
517 32(12):3655–3680.
518 2. Beer, E. and Eisenman, I. (2022). Revisiting the role of the water vapor and lapse rate feedbacks
519 in the Arctic amplification of climate change. *Journal of Climate*, 35(10):2975–2988.
520 3. Beer, E., Eisenman, I., and Wagner, T. J. (2020). Polar amplification due to enhanced heat flux
521 across the halocline. *Geophysical Research Letters*, 47(4):e2019GL086706.
522 4. Block, K. and Mauritsen, T. (2013). Forcing and feedback in the MPI-ESM-LR coupled model
523 under abruptly quadrupled CO₂. *Journal of Advances in Modeling Earth Systems*, 5(4):676–691.
524 5. Bonan, D. B., Armour, K. C., Roe, G. H., Siler, N., and Feldl, N. (2018). Sources of uncertainty
525 in the meridional pattern of climate change. *Geophysical Research Letters*, 45(17):9131–9140.
526 6. Bonan, D. B., Feldl, N., Siler, N., Kay, J. E., Armour, K. C., Eisenman, I., and Roe, G. H.
527 (2024). The influence of climate feedbacks on regional hydrological changes under global warming.
528 *Geophysical Research Letters*, 51(3):e2023GL106648.
529 7. Bonan, D. B., Siler, N., Roe, G. H., and Armour, K. C. (2023). Energetic constraints on the pattern
530 of changes to the hydrological cycle under global warming. *Journal of Climate*, 36(10):3499–3522.
531 8. Caldwell, P. M., Zelinka, M. D., Taylor, K. E., and Marvel, K. (2016). Quantifying the sources of
532 intermodel spread in equilibrium climate sensitivity. *Journal of Climate*, 29(2):513–524.
533 9. Ceppi, P., Brient, F., Zelinka, M. D., and Hartmann, D. L. (2017). Cloud feedback mechanisms and
534 their representation in global climate models. *Wiley Interdisciplinary Reviews: Climate Change*,
535 8(4):e465.
536 10. Cesana, G. V., Ackerman, A. S., Fridlind, A. M., Silber, I., and Kelley, M. (2021). Snow reconciles
537 observed and simulated phase partitioning and increases cloud feedback. *Geophysical Research
538 Letters*, 48(20):e2021GL094876.
539 11. Chalmers, J., Kay, J. E., Middelmas, E. A., Maroon, E. A., and DiNezio, P. (2022). Does
540 disabling cloud radiative feedbacks change spatial patterns of surface greenhouse warming and
541 cooling? *Journal of Climate*, 35(6):1787–1807.
542 12. Chang, C.-Y. and Merlis, T. M. (2023). The Role of Diffusivity Changes on the Pattern of
543 Warming in Energy Balance Models. *Journal of Climate*, 36(22):7993–8006.
544 13. Chung, P.-C. and Feldl, N. (2024). Sea ice loss, water vapor increases, and their interactions
545 with atmospheric energy transport in driving seasonal polar amplification. *Journal of Climate*,
546 37(8):2713–2725.
547 14. Crook, J. A., Forster, P. M., and Stuber, N. (2011). Spatial patterns of modeled climate
548 feedback and contributions to temperature response and polar amplification. *Journal of Climate*,
549 24(14):3575–3592.
550 15. Dufresne, J.-L. and Bony, S. (2008). An assessment of the primary sources of spread of global
551 warming estimates from coupled atmosphere–ocean models. *Journal of Climate*, 21(19):5135–
552 5144.
553 16. England, M. R., Eisenman, I., Lutsko, N. J., and Wagner, T. J. (2021). The recent emergence of
554 Arctic amplification. *Geophysical Research Letters*, 48(15):e2021GL094086.
555 17. England, M. R. and Feldl, N. (2024). Robust polar amplification in ice-free climates relies on
556 ocean heat transport and cloud radiative effects. *Journal of Climate*, 37(7):2179–2197.

1
2 *Mid-latitude clouds and Arctic amplification*
3
4

19

5 18. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.
6 (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental
7 design and organization. *Geoscientific Model Development*, 9(5):1937–1958.

8 19. Feldl, N., Bordoni, S., and Merlis, T. M. (2017). Coupled high-latitude climate feedbacks and
9 their impact on atmospheric heat transport. *Journal of Climate*, 30(1):189–201.

10 20. Feldl, N. and Merlis, T. M. (2021). Polar amplification in idealized climates: The role of ice,
11 moisture, and seasons. *Geophysical Research Letters*, 48(17):e2021GL094130.

12 21. Feldl, N., Po-Chedley, S., Singh, H. K., Hay, S., and Kushner, P. J. (2020). Sea ice and atmospheric
13 circulation shape the high-latitude lapse rate feedback. *NPJ Climate and Atmospheric Science*,
14 3(1):41.

15 22. Flannery, B. P. (1984). Energy balance models incorporating transport of thermal and latent
16 energy. *Journal of Atmospheric Sciences*, 41(3):414–421.

17 23. Ge, Q., Zheng, Z., Kang, L., Donohoe, A., Armour, K., and Roe, G. (2024). The sensitivity of
18 climate and climate change to the efficiency of atmospheric heat transport. *Climate Dynamics*,
19 62(3):2057–2067.

20 24. Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H., Docquier, D., Jonko, A.,
21 Kushner, P. J., Lecomte, O., Massonnet, F., et al. (2018). Quantifying climate feedbacks in polar
22 regions. *Nature Communications*, 9(1):1919.

23 25. Graversen, R. G. and Wang, M. (2009). Polar amplification in a coupled climate model with
24 locked albedo. *Climate Dynamics*, 33:629–643.

25 26. Gregory, J. M., Ingram, W. J., Palmer, M., Jones, G. S., Stott, P., Thorpe, R., Lowe, J. A.,
26 Johns, T., and Williams, K. (2004). A new method for diagnosing radiative forcing and climate
27 sensitivity. *Geophysical Research Letters*, 31(3).

28 27. Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M., and Donohoe, A. (2021). Contributions
29 to polar amplification in CMIP5 and CMIP6 models. *Frontiers in Earth Science*, 9:710036.

30 28. Hall, A. (2004). The role of surface albedo feedback in climate. *Journal of climate*, 17(7):1550–
31 1568.

32 29. Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G., Russell, G., Aleinov, I.,
33 Bauer, M., Bauer, S., et al. (2005). Efficacy of climate forcings. *Journal of Geophysical Research: Atmospheres*, 110(D18).

34 30. Henry, M., Merlis, T. M., Lutsko, N. J., and Rose, B. E. (2021). Decomposing the drivers of polar
35 amplification with a single-column model. *Journal of Climate*, 34(6):2355–2365.

36 31. Holland, M. M. and Bitz, C. M. (2003). Polar amplification of climate change in coupled models.
37 *Climate Dynamics*, 21(3):221–232.

38 32. Huang, Y., Xia, Y., and Tan, X. (2017). On the pattern of CO₂ radiative forcing and poleward
39 energy transport. *Journal of Geophysical Research: Atmospheres*, 122(20):10–578.

40 33. Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque,
41 J.-F., Large, W. G., Lawrence, D., Lindsay, K., et al. (2013). The community earth system
42 model: a framework for collaborative research. *Bulletin of the American Meteorological Society*,
43 94(9):1339–1360.

44 34. Hwang, Y.-T. and Frierson, D. M. (2010). Increasing atmospheric poleward energy transport with
45 global warming. *Geophysical Research Letters*, 37(24).

46 35. Hwang, Y.-T., Frierson, D. M., and Kay, J. E. (2011). Coupling between Arctic feedbacks and
47 changes in poleward energy transport. *Geophysical Research Letters*, 38(17).

48 36. Langen, P. L., Graversen, R. G., and Mauritsen, T. (2012). Separation of contributions from
49 radiative feedbacks to polar amplification on an aquaplanet. *Journal of climate*, 25(8):3010–3024.

50 37. Manabe, S. and Stouffer, R. J. (1980). Sensitivity of a global climate model to an increase of CO₂
51 concentration in the atmosphere. *Journal of Geophysical Research: Oceans*, 85(C10):5529–5554.

52

53

54

55

56

57

58

59

60

1
2 *Mid-latitude clouds and Arctic amplification*
3
4

20

5 605 38. Manabe, S. and Wetherald, R. T. (1975). The effects of doubling the CO₂ concentration on the
6 606 climate of a general circulation model. *Journal of Atmospheric Sciences*, 32(1):3–15.

7 607 39. Mauritsen, T., Graversen, R. G., Klocke, D., Langen, P. L., Stevens, B., and Tomassini, L. (2013).
8 608 Climate feedback efficiency and synergy. *Climate Dynamics*, 41:2539–2554.

9 609 40. Merlis, T. M. (2014). Interacting components of the top-of-atmosphere energy balance affect
10 610 changes in regional surface temperature. *Geophysical Research Letters*, 41(20):7291–7297.

11 611 41. Merlis, T. M. and Henry, M. (2018). Simple estimates of polar amplification in moist diffusive
12 612 energy balance models. *Journal of Climate*, 31(15):5811–5824.

13 613 42. Middlemas, E., Kay, J., Medeiros, B., and Maroon, E. (2020). Quantifying the influence of cloud
14 614 radiative feedbacks on Arctic surface warming using cloud locking in an Earth system model.
15 615 *Geophysical Research Letters*, 47(15):e2020GL089207.

16 616 43. Morrison, A., Kay, J. E., Frey, W., Chepfer, H., and Guzman, R. (2019). Cloud response to
17 617 Arctic sea ice loss and implications for future feedback in the CESM1 climate model. *Journal of
18 618 Geophysical Research: Atmospheres*, 124(2):1003–1020.

19 619 44. Mülmenstädt, J., Salzmann, M., Kay, J. E., Zelinka, M. D., Ma, P.-L., Nam, C., Kretzschmar, J.,
20 620 Hörnig, S., and Quaas, J. (2021). An underestimated negative cloud feedback from cloud lifetime
21 621 changes. *Nature Climate Change*, 11(6):508–513.

22 622 45. Payne, A. E., Jansen, M. F., and Cronin, T. W. (2015). Conceptual model analysis of the influence
23 623 of temperature feedbacks on polar amplification. *Geophysical Research Letters*, 42(21):9561–9570.

24 624 46. Pendergrass, A. G., Conley, A., and Vitt, F. M. (2018). Surface and top-of-atmosphere radiative
25 625 feedback kernels for CESM-CAM5. *Earth System Science Data*, 10(1):317–324.

26 626 47. Pithan, F. and Mauritsen, T. (2014). Arctic amplification dominated by temperature feedbacks
27 627 in contemporary climate models. *Nature Geoscience*, 7(3):181–184.

28 628 48. Polyakov, I. V., Alekseev, G. V., Bekryaev, R. V., Bhatt, U., Colony, R. L., Johnson, M. A.,
29 629 Karklin, V. P., Makshtas, A. P., Walsh, D., and Yulin, A. V. (2002). Observationally based
30 630 assessment of polar amplification of global warming. *Geophysical Research Letters*, 29(18):25–1.

31 631 49. Previdi, M., Janoski, T. P., Chiodo, G., Smith, K. L., and Polvani, L. M. (2020).
32 632 Arctic amplification: A rapid response to radiative forcing. *Geophysical Research Letters*,
33 633 47(17):e2020GL089933.

34 634 50. Roe, G. H., Feldl, N., Armour, K. C., Hwang, Y.-T., and Frierson, D. M. (2015). The remote
35 635 impacts of climate feedbacks on regional climate predictability. *Nature Geoscience*, 8(2):135–139.

36 636 51. Russotto, R. D. and Ackerman, T. P. (2018). Energy transport, polar amplification, and ITCZ
37 637 shifts in the GeoMIP G1 ensemble. *Atmospheric Chemistry and Physics*, 18(3):2287–2305.

38 638 52. Russotto, R. D. and Biasutti, M. (2020). Polar amplification as an inherent response of a
39 639 circulating atmosphere: Results from the TRACMIP aquaplanets. *Geophysical Research Letters*,
40 640 47(6):e2019GL086771.

41 641 53. Schneider, T., Teixeira, J., Bretherton, C. S., Brient, F., Pressel, K. G., Schär, C., and Siebesma,
42 642 A. P. (2017). Climate goals and computing the future of clouds. *Nature Climate Change*, 7(1):3–5.

43 643 54. Serreze, M., Barrett, A., Stroeve, J., Kindig, D., and Holland, M. (2009). The emergence of
44 644 surface-based Arctic amplification. *The Cryosphere*, 3(1):11–19.

45 645 55. Shell, K. M., Kiehl, J. T., and Shields, C. A. (2008). Using the radiative kernel technique to
46 646 calculate climate feedbacks in NCAR's Community Atmospheric Model. *Journal of Climate*,
47 647 21(10):2269–2282.

48 648 56. Siler, N., Roe, G. H., and Armour, K. C. (2018). Insights into the zonal-mean response of the
49 649 hydrologic cycle to global warming from a diffusive energy balance model. *Journal of Climate*,
50 650 31(18):7481–7493.

1
2 *Mid-latitude clouds and Arctic amplification*
3
4

21

5 651 57. Singh, H., Rasch, P., and Rose, B. (2017). Increased ocean heat convergence into the high latitudes
6 652 with CO₂ doubling enhances polar-amplified warming. *Geophysical Research Letters*, 44(20):10–
7 653 583.

8 654 58. Smith, C., Kramer, R., Myhre, G., Forster, P., Soden, B., Andrews, T., Boucher, O., Faluvegi, G.,
9 655 Fläschner, D., Hodnebrog, Ø., et al. (2018). Understanding rapid adjustments to diverse forcing
10 656 agents. *Geophysical Research Letters*, 45(21):12–023.

11 657 59. Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., Boucher, O.,
12 658 Dufresne, J.-L., Nabat, P., Michou, M., et al. (2020). Effective radiative forcing and adjustments
13 659 in CMIP6 models. *Atmospheric Chemistry and Physics*, 20(16):9591–9618.

14 660 60. Soden, B. J. and Held, I. M. (2006). An assessment of climate feedbacks in coupled ocean–
15 661 atmosphere models. *Journal of climate*, 19(14):3354–3360.

16 662 61. Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., and Shields, C. A. (2008).
17 663 Quantifying climate feedbacks using radiative kernels. *Journal of Climate*, 21(14):3504–3520.

18 664 62. Stuecker, M. F., Bitz, C. M., Armour, K. C., Proistosescu, C., Kang, S. M., Xie, S.-P., Kim, D.,
19 665 McGregor, S., Zhang, W., Zhao, S., et al. (2018). Polar amplification dominated by local forcing
20 666 and feedbacks. *Nature Climate Change*, 8(12):1076–1081.

21 667 63. Tan, I., Barahona, D., and Coopman, Q. (2022). Potential link between ice nucleation and climate
22 668 model spread in Arctic amplification. *Geophysical Research Letters*, 49(4):e2021GL097373.

23 669 64. Tan, I., Sotiropoulou, G., Taylor, P. C., Zamora, L., and Wendisch, M. (2023). A Review of
24 670 the Factors Influencing Arctic Mixed-Phase Clouds: Progress and Outlook. *Clouds and Their
25 671 Climatic Impacts: Radiation, Circulation, and Precipitation*, pages 103–132.

26 672 65. Tan, I. and Storelvmo, T. (2019). Evidence of strong contributions from mixed-phase clouds to
27 673 Arctic climate change. *Geophysical Research Letters*, 46(5):2894–2902.

28 674 66. Taylor, K., Crucifix, M., Braconnot, P., Hewitt, C., Doutriaux, C., Broccoli, A., Mitchell, J., and
29 675 Webb, M. (2007). Estimating shortwave radiative forcing and response in climate models. *Journal
30 676 of Climate*, 20(11):2530–2543.

31 677 67. Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the experiment
32 678 design. *Bulletin of the American meteorological Society*, 93(4):485–498.

33 679 68. Vavrus, S. (2004). The impact of cloud feedbacks on Arctic climate under greenhouse forcing.
34 680 *Journal of Climate*, 17(3):603–615.

35 681 69. Voigt, A., Albern, N., and Papavasileiou, G. (2019). The atmospheric pathway of the cloud–
36 682 radiative impact on the circulation response to global warming: Important and uncertain. *Journal
37 683 of Climate*, 32(10):3051–3067.

38 684 70. Wetherald, R. and Manabe, S. (1988). Cloud feedback processes in a general circulation model.
39 685 *Journal of the Atmospheric Sciences*, 45(8):1397–1416.

40 686 71. Winton, M. (2006). Amplified Arctic climate change: What does surface albedo feedback have to
41 687 do with it? *Geophysical Research Letters*, 33(3).

42 688 72. Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein,
43 689 S. A., and Taylor, K. E. (2020). Causes of higher climate sensitivity in CMIP6 models. *Geophysical
44 690 Research Letters*, 47(1):e2019GL085782.

45 691 73. Zelinka, M. D., Randall, D. A., Webb, M. J., and Klein, S. A. (2017). Clearing clouds of
46 692 uncertainty. *Nature Climate Change*, 7(10):674–678.