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ABSTRACT This paper develops a probabilistic earthquake risk assessment for the electric power transmis-
sion system in the City of Los Angeles. Via a dc load flow analysis of a suite of damage scenarios that reflect
the seismic risk in Los Angeles, we develop a probabilistic representation for load shed during the restoration
process. This suite of damage scenarios and their associated annual probabilities of occurrence are developed
from 351 risk-adjusted earthquake scenarios using ground motion that collectively represent the seismic risk
in Los Angeles at the census tract level. For each of these 351 earthquake scenarios, 12 damage scenarios
are developed that form a probabilistic representation of the consequences of the earthquake scenario on the
components of the transmission system. This analysis reveals that substation damage is the key driver of
load shed. Damage to generators has a substantial but still secondary impact, and damage to transmission
lines has significantly less impact. We identify the census tracts that are substantially more vulnerable to
power transmission outages during the restoration process. Further, we explore the impact of forecasted
increases in penetration of residential storage paired with rooftop solar. The deployment of storage paired
with rooftop solar is represented at the census tract level and is assumed to be able to generate and store
power for residential demand during the restoration process. The deployment of storage paired with rooftop
solar reduces the load shed during the restoration process, but the distribution of this benefit is correlated
with household income and whether the dwelling is owned or rented.

INDEX TERMS Power transmission systems, resilience, reliability, earthquake, equity, solar power.

I. INTRODUCTION
Earthquakes can cause extensive damage to components of
electric power systems, including substations, generation
plants, and transmission lines, causing hardships to customers
and inhibiting the response process. For instance, approxi-
mately 2.5 million people experienced power outages during
the 1994 Northridge earthquake in Los Angeles [1]. About
50% of 66 kV cables, 15% of 11 kV cables, and 4 substations
were damaged after the 2011 earthquake in Christchurch,
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New Zealand [2]. In 2016, the Fukushima earthquake caused
a serious power blackout in the Tokyo area [3].
The Los Angeles area has experienced several significant

earthquakes with the most recent being the 5.1 magnitude
La Habra earthquake that occurred in 2014 and that only
caused momentary service interruption. This event contrasts
with the 1994 Northridge earthquake that caused widespread
power outages as far away as British Columbia. Los Angeles
is the second largest city in the United States with about
4 million residents; therefore, it is important to understand
the seismic resiliency of the Los Angeles power transmission
system.
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Over the past decade, the global deployment of solar
Photovoltaic (PV) technology has risen significantly [4].
In Los Angeles in particular, the adoption of customer-owned
solar and storage is a key element of the goal of Los Angeles
to transition fully to renewables by 2045. The integration of
customer-owned solar and storage could have a significant
impact on the power system [5], including its resilience to
earthquakes.

This paper develops a stochastic characterization of the
load shed in Los Angeles based on the earthquake hazard
in the area. Additionally, the impact of the adoption of
customer-owned solar and storage on the resilience of the
power system to earthquake hazards is analyzed. In this paper,
the power transmission system of Los Angeles is represented
by a dc load flow model representing substations, genera-
tion plants, and transmission lines. The earthquake hazard
is characterized by 351 earthquake scenarios generated by
Soleimani et al. [6]. Those events combined with their annual
probabilities of occurrence match the regional hazard. Each
earthquake scenario is used to develop a suite of damage sce-
narios, each of which translates the earthquake scenario into
a realization of the damage to the transmission system that
could result from the occurrence of that earthquake scenario.
The evolution of rooftop solar and storage penetration is
given by the LA100 study [5], which provides predictions of
rooftop solar and storage adoption in 2030 at the census tract
level. In this study, we only consider residential storage paired
with rooftop solar since the rooftop solar without storage will
be disconnected during an outage [7]. The LA 100 study was
a technical feasibility study to identify potential investment
pathways to achieve a power system that operates with no
carbon-based energy sources by 2045 in Los Angeles. When
residential storage is paired with rooftop solar (solar plus
storage), it acts to satisfy residential demand, reducing the
demand on the power company, thus allowing the power grid
to supply less power without shedding load. It is assumed that
the residential rooftop solar plus storage is not damaged by
the earthquake [8] and is sized to supply all the residential
demand of that customer.

The dc load flowmodel for the restoration process for each
damage scenario assumes geographically distributed power
demands reflective of an event that strikes in June 2030 and
for which the restoration period extends until August 2030;
hence the earthquake is assumed to occur during peak sea-
sonal demand.

HAZUS is a risk modeling tool for natural hazards includ-
ing earthquakes, hurricanes, floods, and tsunamis that has
been developed by the Federal Emergency Management
Agency (FEMA) [9]. We adopt its assumptions as to the
cadence of the restoration process for electric power sys-
tems. More specifically, the assumptions we adopt as to the
restoration process for the electric power transmission sys-
tem includes the 9 time periods as defined in the HAZUS
methodology, and after each period, a set of component types
by the severity of damage are assumed to be repaired. The
dc load flow problem is run for each damage scenario and

time period, identifying by substation the amount of power
delivered. The resulting load delivered to each substation
is then distributed to each census tract in Los Angeles via
parameters that specify how the delivered load at a substation
is allocated to the associated census tracts. It is assumed
that the consumption is constant across individuals within a
census tract during each hour of the restoration process.

This study makes contributions along two main thrusts:

1. The study quantifies the impact of the earthquake risk
on the census tracts of Los Angeles due to damage
to the transmission system. In addition to its value as
a case study, it extends earthquake hazard analysis of
transmission systems to the probabilistic load shed at
the census tract level to reveal the differing geographic
impacts across the city. Since damage to the trans-
mission lines, transmission substations and generation
plants are all considered, we can confirm that damage
to the substations is the key driver for the load shed
in Los Angeles. The worst-case earthquake timing is
at the summer peak demand; the load shed reduces
proportionally for earthquakes in the spring.

2. The study quantifies the positive impacts of future res-
idential solar plus storage in power system restoration
after an earthquake at the census tract level, showing
these differing impacts across the city. We find that the
benefits are not uniform across income classes: after
an earthquake, the predicted rooftop solar plus storage
deployments tend to benefit census tracts with wealthier
citizens who own their homes.

The remainder of this paper is organized as follows. The
second section describes the relevant literature. The third
section gives the formulation of the models used in this study.
The fourth section describes the case study. The last section
provides concluding remarks.

II. LITERATURE REVIEW
Several studies explore the impact of earthquakes on power
systems. One direction of inquiry is focused on the vul-
nerability of the components of the power system and
investments in those components to mitigate earthquake
risk [10], [11], [12], [13], [14], [15], [16]. Another direction
in the literature is focused on the performance of the power
system under earthquake hazards [17], [18], [19], [20], [21],
[22], [23], [24]. Because this study is focused on earth-
quake resilience of the power transmission system in the
Los Angeles area, which is administered by the Los Angeles
Department of Water and Power (LADWP), it is worth-
while to review the key previous studies conducted in this
area. Shinozuka et al. [25] compared the performance of the
LADWP’s transmission network using 47 earthquake scenar-
ios. The risk curves were also developed. Çağnan et al. [26]
developed a discrete-event-simulation model to analyze the
restoration of the power system in Los Angeles after earth-
quakes. The analysis contained three parts. In the first part,
the seismic hazard was defined by identifying 47 earthquake
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scenarios and their hazard-consistent annual occurrence
probabilities. In the second part, 600 initial damage states
of transmission substations were generated by Monte Carlo
simulation under those 47 earthquake scenarios and the initial
functionality data for each scenariowere obtained. In the third
part, the restoration process was simulated using a restora-
tion model based on the data gathered by LADWP which
used damage states and initial functionality as inputs. The
results showed that outages could exist for up to 10 days.
The results also showed geographic variation of the annual
probability of outages with the duration longer than 3 and
24 hours based on the service zones. Shinozuka et al. [27]
studied the seismic performance of the power transmission
system in the Los Angeles area. Only components in sub-
stations were considered to experience earthquake damage.
Xu et al. [28] focused on the optimization of the scheduling of
the restoration tasks for the power system in LosAngeles after
earthquake events. A stochastic integer program was devel-
oped to schedule the restoration tasks tominimize the average
outage time for each customer. Sarreshtehdari et al. [29] used
the Los Angeles power system as the test case for measuring
the post-earthquake performance of electric networks using a
streamlined approach.

The studies of the impact of earthquake on the power grid
with rooftop solar and storage system are more limited. With
regard to damage to rooftop solar panels by earthquakes,
Ding et al. [30] conducted seismic simulations via Finite Ele-
ment Analysis of home rooftop photovoltaic systems. They
found that the exposure of bare metal wire to ambient condi-
tions and electrical lead short circuit were the main sources of
damage.Walters et al. [31] utilized empirically driven friction
coefficients and ground motion assumptions for seven west-
ern U.S. states to evaluate the potential seismic displacement
between an isolated rooftop PV array and the roof of the
supporting building. The results suggested that the isolated
rooftop PV arrays were safe and economical. Regarding the
impact of solar plus storage on the resilience of the power
systems after earthquakes, Ceferino et al. [32] analyzed the
improvement of post-earthquake power availability in San
Carlos, California, after the adoption of rooftop solar panels
by households. In their study, a Monte Carlo method was
used to generate realizations of earthquake building damage,
and a risk metric was defined to measure cooperation and
sharing of energy during an outage. Patel et al. [33] conducted
a similar study to explore how increasing the adoption of
rooftop solar can improve the resilience to power outages
after earthquakes. Artis et al. [34] presented a non-convex
mixed-integer nonlinear four-level optimization framework
to reinforce power distribution networks against earthquakes
with consideration of renewable-based multi-microgrids. The
components of the multi-microgrids in that study include
wind turbines, photovoltaics, and energy storage systems.
Another study explored the impact of solar plus storage
on the resilience of power systems under general natural
disasters. Galvan et al. [35] studied how rooftop solar and bat-
tery energy storage systems improve the power distribution

FIGURE 1. Analysis process.

system resilience to natural disasters. A case study was done
using the IEEE 33-bus radial distribution system. The results
demonstrated that rooftop solar and battery energy storage
systems can provide power generation support and bus volt-
age improvements after natural disasters. For studies related
to the resilience of power systems with general distributed
energy resources, but not solar with storage, see [35], [36],
and [37].

This paper focuses on power outages caused by earth-
quakes at the census tract level. There seems to be no
literature related to allocating load shed caused by earth-
quakes to census tracts; but there are some studies that
analyzed outages caused by other natural hazards at the cen-
sus tract level. For example, Guikema et al. [38] developed
a hurricane power outage prediction model which predicts
the fraction of the population that will lose power by the
hurricane for each census tract. In that study, the number
of customer meters that had outages in each grid cell was
scaled to a census tract level and the model was trained on
that data. Of course, hurricane damage from hurricanes is
quite different than damage via earthquakes with the former
more centered on transmission line damage and the later
impacting substations and generating plants, which generally
take substantially longer to repair. McRoberts et al. [39] used
a binary classification model to predict whether a census tract
had a power outage.

III. METHODOLOGY
There are two primary goals in this study. Under earthquake
hazard, the first goal is to develop a stochastic characteriza-
tion of the load shed in Los Angeles, and the second goal is to
analyze the impact of the adoption of customer-owned solar
plus storage on the resilience of power system. The modeling
steps in this analysis are shown in Fig. 1.

A. DATA PREPARATION
Four types of input data are used in this analysis: (a) power
transmission network and power demand at the substations,
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(b) damage scenarios which represent the earthquake hazard
to the physical components of the system, (c) power demand
for residential, transportation, commercial and industry uses
by census tract, (d) deployment data of solar plus storage.

For (a), LADWP provided a dc power transmission system
network with buses, transmission lines, and transformers.
Buses are connected by either transmission lines or trans-
formers. Each bus is located at a substation or generation
plant. If it is in a generation plant, the power generated by
the generator will be injected at the bus. Forecasts from
LADWP provide DhT , the year 2030 demand by hour of the
day h for the system. They also provided a summer peak
forecast for 2030 that gives demand by substation. We merge
these datasets together to derive an estimate for demand by
substation by hour for all of 2030.

For (b), since the performance of the power system depends
on the joint distribution of damages to the power system com-
ponents given the earthquake event, we use the optimization
method developed by Brown et al. [40] to create a suite of
damage scenarios which approximately match the vulnerabil-
ity of each component for each of the 351 earthquake events.
According to the HAZUS methodology, for each earthquake
event, each power system component (substation, generation
plant, and transmission line) can be in one of 5 damage states
None, Slight, Moderate, Extensive, and Complete [9]. Under
each damage scenario, each component falls in exactly one
damage state. In this study, we generate 12 risk adjusted
damage scenarios for each earthquake event to sufficiently
match the component damage state probabilities based on the
impact of the earthquake event by location. Each earthquake
event has a hazard-consistent annual probability of occur-
rence, and the probability of each damage scenario is the
calculated by the optimization method in [40]. Since there
are 351 earthquake events, there are a total of 4,212 damage
scenarios.

For (c1), demand dhts in each hour h, census tract t, and
sector s, was estimated as dhts = fstRhsA

h, where Rhs is the
proportion of study area power demand that is for sector s
in hour h, Ah is the total demand across the study area in hour
h, and fst is the fraction of the sector s study area demand that
is in census tract t . Four sectors s are considered: residential,
commercial, transportation, and industrial. The LA100 study
provides predictions for Rhs , the proportion of power demand
in each sector s at hour h in 2030 [5]. For residential and
transportation sectors, fst is estimated by the fraction of the
study area population in census tract t (fRt = pt/

∑
t pt ). For

the commercial and industrial sectors, fst is estimated by the
fraction of the sector s study area employment that is in census
tract t (fCt = ECt/

∑
t ECt ).

We used different methods to predict the population and
employment for each census tract in 2030. The popula-
tion prediction at the census tract level is obtained using
the Hamilton-Perry method [41], which predicts the pop-
ulation by age and sex using cohort-change ratios, which
are computed from the population data in the two most
recent censuses. In our case, the census data from 2010 and

2020 captured by the American community survey [42], [43]
are used.

For predicting employment at the census tract level, first
we categorize employment data from American community
survey [44] into two categories: commercial, and industrial
and other. Then we predict the employment in 2030 using
the Constant Share model [45], in which, for a specific type
of employment, the growth rate for that employment at each
census tract matches the growth rate for that employment at
the national level. That is, Ey+net , the employment of type e
in census tract t at year y + n ,is calculated by EyetJ

y+n
e /J ye

where Eyet is the employment of type e in census t at year y,
J ye is the employment of type e nationally in year y, and J y+ne
is the projected employment type e nationally in year y + n.
In our study, y is 2020, y+n is 2030, and we use the projected
employment for Los Angeles County as of J2030e [46]. To test
the accuracy of the Constant Share model, we applied the
method to predict commercial employment and industrial and
other employment in 2020 by using the 2011 employment
data as base case (y is 2011, y+n is 2020). Since commercial
employment and industrial and other employment for each
census tract has been released, we compared the predicted
value with the true value for each census tract in 2020 using
the percent difference. For commercial employment predic-
tion, among the 596 census tracts in our study area, 502 have
percent differences lower than 25%, 88 of them have percent
difference between 25% and 50%, and 6 of them have a
percent difference larger than 50%. We call these census
tracts with percent difference greater than 50% outliers and
for them, we extrapolate the historical trend for prediction
rather than using the Constant Sharemodel. For industrial and
other employment prediction, 95 census tracts are outliers.
Again, we assume that the Constant Share model is sufficient
for the census tracts with prediction errors lower than 50%
and use extrapolation of the historical trend for outlier census
tracts [45].

For (c2), to understand the power distribution pattern from
substations to census tracts, we use a capacitated transporta-
tion problem to allocate the power supplied to substations
to census tracts when there has been no earthquake, where
the distance between a substation and a census tract is the
great circle distance between the substation and the centroid
of the census tract. The power available at each substation
in each hour are the power availabilities. This formulation
incentivizes the supply of a census tract via the closest sub-
station locations. The formulation is shown in (1)-(4).

Min
∑

h

∑M

k=1

∑N

t=1
cktxhkt (1)∑N

t=1
xhkt = Ohk , ∀k, h (2)∑M

k=1
xhkt = Qht , ∀t, h (3)

xhkt ≥ 0, ∀k, t, h (4)

where xhkt is the power transferred from substation k to census
tract t at hour h and ckt is the great circle distance from
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substation k to the centroid of census tract t . The objective
is to minimize the total ‘‘cost’’ at hour h, which is defined
by the sum of cktxhkt . O

h
k is power available at substation k

at hour h and M is the total number of substations. Qht is the
load demand at census tract tathourh, and N is the total num-
ber of census tracts. By solving this transportation problem,
we obtain the values xhkt , which map power available by sub-
station to each census tract for consumption at hour h. Notice
that the formulation given in (1)-(4) essentially decomposes
by hour of day; that is, the solution variables are independent
of each other by time period. Further, both Ohk and Q

h
t are the

result of the data preparation steps in Fig. 1 and are computed
by hour of day.

In each hour, this formulation establishes which census
tracts may receive power from which substations. Across all
the hours of the year, for most census tracts, each census tract
receives all their power from the same single substation but
there are a small number of census tracts that receive power
from two (almost 5% of census tracts), three (about 0.4%)
or four (1 census tract) substations, and these relationships
are essentially constant across each hour across the year.
As we analyze the power flow under each earthquake damage
scenario, we assume that these relationships are fixed. As a
result, during each hour, the fraction of the power that is at
substation that is delivered to a census tract is fixed based
on the power flow in the absence of an earthquake event and
calculated by equations (1) - (4). Hence, we do not represent
any distribution system reconfiguration during the restoration
process.

For (d), to explore the impact of adopting solar plus stor-
age, we use the predicted deployment capacity of residential
customer solar plus storage in the Los Angeles area given
in the LA100 study. As mentioned previously, the LA100
study was conducted to understand the technical feasibil-
ity and potential investment pathways to achieve a power
system that operates with no carbon-based energy sources
by 2045 [5]. These predicted deployment capacities are devel-
oped by using the historical penetration rates (attachment
rate) of distributed storage paired with customer rooftop solar
and the historical ratios of storage capacity with customer
rooftop solar capacity. Since Burbank and Glendale are not
included in the LA100 study, deployment in those two areas
is not considered in our study. Two scenarios of deployment
that appear in the LA100 study are used in this analysis.
The first scenario is referred to as SB100, which closely
complies with existing California law Senate Bill 100 [47]
and gives the prediction of the deployment of customer solar
plus storage and is the more conservative [5]. The other
scenario is called Early & No Biofuels, which is designed
to achieve the goal of 100% renewable energy across the
power system by 2035; ten years earlier and assumes higher
levels of customer solar plus storage adoption [5]. In both
scenarios, the predicted deployment capacities are at the
census tract level. Some assumptions are made related to the
residential customer solar plus storage in our use of these
scenarios:

FIGURE 2. Component damage state restored by the end of each time
period (format is component: damage state).

1. Since the residential rooftop solar systems are robust to
earthquake [8], [30], we assume the residential customer
solar plus storage is not damaged by earthquakes.

2. The residential customer solar plus storage can operate
in off-grid mode during the outage which means that the
solar plus storage can still generate, store, and provide
power to meet the co-located residential load demand.

3. The residential customer solar plus storage only serves
residential demand.

4. The residential customer solar plus storage will work at
full potential, which means the maximum power it can
provide in each hour is its capacity value.

B. POWER FLOW ANALYSIS
The performance of the network after earthquakes is analyzed
by conducting a dc power flow analysis under each damage
scenario by hour over the restoration horizon. The load shed
at each substation and generation plant in each time period
for each earthquake damage scenario is determined from that
analysis. As in HAZUS, we assume the restoration process
has 9 periods, and that functioning of certain damaged net-
work components are restored at the end of each period,
as shown in Fig. 2. For example, by the end of period 1,
the repair of all transmission lines that experienced slight
damage is completed. Hence, we assume in the model that,
beginning in period 2, all transmission lines that experienced
slight damage may be used.

Equations (5-10) provide the formulation of the dc load
flow model. The objective function is to minimize the total
load shed for each bus over the entire restoration process.
Uh
i is the load shed in MW for bus i at hour h. (8) is the power

flow constraint for each branch. B is the set of all buses. θhi is
the phase angle for bus i at hour h. 3h

ij is the damage state of
branch (i, j), and if (i, j) is a transformer, 3h

ij is 0. 1h
si is the

damage state of the substation or generation plant at bus i at
period h. Xij is the reactance of branch (i, j). Phij is the power
flow at branch (i, j) at hour h. (9) is the flow conservation
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constraint for each bus. I (i) are the generators connecting
at bus i, if there is a generator g connected to bus i, Ghg is
the real power generated by generator g at hour h. δ+(i) is
the set of lines such that the origin bus is i, and δ−(i) is the
set of lines such that the destination bus is i. Since LADWP
has interactions with other grids, injhi is the external power
injection at bus i. Dhi is the demand at bus i at hour h and the
load shed at bus imust be less than its demand as shown in (8).
Generator capacity and branch capacity constraints are shown
in equation (9) and (10). Gcg is the capacity of generator g,
1h
sg is the damage state of generator g at hour h, and Pcij is the

capacity of branch (i, j). In (10), note that generators supply
the network by radial lines, so that any reduction in generation
reduces the line flow. If there is no generator at bus i then
1h
si = 0.

min
∑1560

h=1

∑
i∈B

Uh
i (5)

(θhi − θhj )(1− 3h
ij)(1− 1h

si )(1− 1h
sj )

= XijPhij, ∀h, (i, j) (6)∑
g∈I (i)

Ghg −
∑

(i,j)∈δ+(i)
Phij +

∑
(i,j)∈δ−(i)

Phij+injhi

= Dhi − Uh
i , ∀h, i (7)

0 ≤ Uh
i ≤ Dhi , ∀h, i (8)

0 ≤ Ghg ≤ Gcg(1− 1h
sg ), ∀h, g (9)∣∣∣Phij∣∣∣

≤ Pcij(1− 3h
ij)(1− 1h

si )(1− 1h
sj ), ∀h, (i, j) (10)

Once the load shed by census tract is computed for each
hour of each day during the restoration process for each
damage scenario, the probability for each earthquake event
and damage scenario is used to compute the distribution of
system-wide load shed.

To incorporate customer solar plus storage into the cur-
rent power system network, we quantify how much load is
displaced from each bus after adopting customer solar plus
storage. Suppose the capacity of customer solar plus storage
in census tract t is St and the residential demand in that census
tract at hour h is dhtR , as mentioned in Data Preparation (c1).
If St ≥ dhtR , the new residential demand of census tract t is 0,
otherwise, the new residential demand of census tract t is
dhtR − St . Let us call this new residential demand of census
tract t as dhtR ′. Notice that dhtR ′ still must be served via the
power grid. The difference between the original residential
demand dhtR and the new residential demand dhtR ′ for census
tract t is the residential demand served by solar plus storage.
After we determine the new residential demand for each

census tract, we can update the new total demand for each
census tract by summing the demands in four sectors. For
census tract t at hour h, the new total demand dht ′ = dhtR ′ +
dhtT +d

h
tC +d

h
tI . This new total demand dht ′ is the demand from

census tract t that still needs to be served by the power grid.
Then, we aggregate the demand from census tracts to

substations. We assume the power distribution pattern from

substations to census tracts we derived from the transporta-
tion problem under the network without solar plus storage
stays the same, for example, for census tract t at hour h, if the
result from transportation problem above shows that 10% of
its demand is served by substation a and 90% of its demand
is served by substation b, then after the adoption of the solar
plus storage, its new total demand dht ′ is still served 10% from
substation a and 90% from substation b.
Finally, we assign the demand for each substation to its

buses proportionally. For instance, for substation a, if its
demand before the adoption of the solar plus storage at
hour h is Oha, and its bus i has demand Dhi . Then, the new
demand for bus i after the adoption of the solar plus storage
at hour h, Dhi ′, is equal toO

h
a′D

h
i /O

h
a, whereO

h
a′ is the demand

for substation a at hour h after the adoption of the solar plus
storage.

C. LOAD SHED ANALYSIS
After running the dc load flowwith or without the deployment
of solar plus storage, the load shed at each bus is deter-
mined. Then we can aggregate the load shed from bus-level
to substation-level.

To determine the load shed at the census tract level, we allo-
cate the load shed from each substation to each census tract in
proportion to the power allocated to the census tract using the
modeling process surrounding equations (1)-(4). For exam-
ple, at hour h, suppose that the load shed for substation k
is Lhk =

∑
i∈k U

h
i , which is the sum of load shed at each

buses inside the substation k , and from the Data Prepara-
tion (c2), we know that for census tract t , the amount of power
transferred from substation k to census tract t is xhkt . Then,
the load shed for census tract t caused by substation k at
hour h, lhtk , is L

h
k x

h
kt/O

h
k . Therefore, the total load shed for the

census tract is
∑M

k lhtk for hour h.

IV. CASE STUDY
The study area includes Los Angeles, Burbank and Glendale
illustrated in Fig. 3 and derived from the data included in [48].
Notice that the neighborhoods and cities that suffer more
outages in different earthquake scenarios are highlighted
on the map. These insights will be described later in this
section. The power transmission system of Los Angeles is
represented by a network with 432 buses and 545 branches
(transmission lines and transformers). The network is ana-
lyzed using a dc load flow model at hourly resolution for
each period of the 9-period restoration process defined in
the previous section under each of the 4,212 consequence
scenarios.

For the base case, the 9-period restoration process is
assumed to start at June 27, 2030, and continue through
August 30, 2030, defining a 65-day restoration process and
representing the summer peak. All 9 periods follow the
definitions given in the previous section and stem from
the HAZUS model. The system-wide demand for each
hour during this restoration process was made available by
LADWP.
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FIGURE 3. Map of los angeles, burbank, and glendale [48].

A. IMPACT OF DAMAGE TO SUBSTATIONS, GENERATORS,
AND TRANSMISSION LINES
To understand what components are most important to the
restoration process, we explore the 4,212 damage scenarios
under seven different cases: (1) all damage specified by the
damage scenario is included in the dc load flow model,
(2) only substation and generation plant damage is consid-
ered, (2) only transmission lines and generation plant damage
is considered, (3) only transmission line and substation dam-
age is considered, (5) only transmission line damages is
considered, (6) only substation damage is considered, and
(7) only generation plant damage is considered. For each
case, Fig. 4 shows the log of the annual probability that more
than X% of demand will be unserved over the course of the
restoration process verses the value of X%.

From Fig. 4, the curve based only on substation damage
is quite similar to the All damage curve. By contrast, the
Line damage only curve suggests much lower probabilities
of exceeding the same percentage of unserved demand. The
generator damage only curve is in between.

This implies that line damage is of little impact when con-
sidering load shed across the entire restoration process, and
the impact of generation plant damage on demand unserved
percentage is substantial but not as substantial as the impact
of substation damage. From Fig. 4, we can see that all four
functions are very approximately linear on a log-linear plot,
which suggests that the distribution of demand unserved fol-
lows an approximately exponential distribution.

To explore the demand unserved in each period, box plots
for the demand unserved for each period (p1,. . . ,p9) and the
entire restoration process (All time) under all seven cases

FIGURE 4. Log of probability of exceeding X% demand unserved vs X%,
by condition.

FIGURE 5. Box plot for percentage demand unserved by time period and
case.

are shown in Fig. 5. In addition, from Fig. 5, we can see
that the percentage demand unserved experiences a signif-
icant drop from period 3 to period 4 (at hour 25) when
substations with slight damages and transmission lines with
moderate damages are repaired. Again, significant drops in
demand unserved occur from period 4 to period 5 (at hour 73)
when substations with moderate damage and transmission
lines with extensive damage are repaired, and from period 6
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FIGURE 6. Weighted PGA and demand unserved map for median scenarios. (a) PGA map (b) Demand unserved map.

to period 7 (at hour 169) when substations with extensive
damage and transmission lines with complete damages are
repaired. For the demand unserved percentage over the entire
restoration processwhich is noted as ‘All time’ in Fig. 5, when
all damages are included or only substation and generation
plant damage are considered, the average value of demand
unserved is around 3.4%. This value implies that on average,
3.4% of power demand in the study area over those 65 days
is not supplied by the power transmission system due to
the earthquake. However, when only transmission line and
generation plant damage is considered, the average value of
demand unserved is reduced to 0.6%. What’s more, when
only transmission line damages are considered, this value
reduced to 0.1%.

From Fig. 5 it is important to realize that there are a sub-
stantial number of scenarios that place the unserved demand
across the 65 days well beyond themean reaching above 40%.
Even for scenarios with smaller values across the 45 days,
in the early portions of the restoration process, the load shed
can be quite high. These early hours and first days after an
earthquake can be very important for life safety and hence
the early power disruptions can be very impactful.

B. GEOGRAPHIC PATTERN OF THE LOAD SHED
We consider the geographic pattern in load shed to under-
stand if there are geographic areas that are at higher risk
and, if there is a relationship to income or housing tenure
type. Hence, we first collect the damage scenarios with
system-wide demand unserved between the 40th and 60th

percentiles among all 4,212 damage scenarios. Note that this

demand unserved percentage value is for the entire study
area and full restoration process. We term those scenarios as
‘‘median’’ scenarios. We also collect the damage scenarios
with demand unserved between the 95th and 100th percentiles
among all damage scenarios; we refer to those scenarios as
‘‘extreme’’ scenarios.

Fig. 6 (a) and (b) show the weighted average Peak Ground
Acceleration (PGA) values and the weighted average per-
centage demand unserved, respectively, among the median
scenarios by census tract. The locations and damage prob-
abilities of each substation and generation plant is plotted
on Fig. 6 (a) and the location and the power demand of
each substation and generation plant is plotted on Fig. 6 (b).
The substations are represented as circles and the generation
plants are represented as triangles. From Fig. 6 (a), we can
see that the damage probability of substations or generation
plants is generally higher at the locations with higher PGA
values. Also, the substation and generation plants are gener-
ally located in areas that have lower seismic risk.

From Fig. 6 (b), notice that northern and central Los Ange-
les which include the areas around Van Nuys, Sylmar, North
Hollywood, and the Hollywood Hills experience relatively
higher levels of average demand unserved in comparison
to other areas in the median scenarios. This occurs for two
related reasons. First, the two substations supplying power
to Sylmar, North Hollywood, and the Hollywood Hills are
damaged more frequently across our damage scenarios. The
probabilities of damage are 62% and 75% for Sylmar and
North Hollywood, respectively. These values are about 20%
larger than the next most at-risk substation. For context, the
average probability of damage across the other substations
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FIGURE 7. Weighted PGA and demand unserved map for extreme scenarios. (a) PGA map (b) Demand unserved map.

is 37%. Further, the probability that the Sylmar and North
Hollywood substations experience extensive damage under
these median scenarios is 18% and 5%, respectively. The
next highest substation’s probability of extensive damage
is about 3% and it is for the substation that services LAX
Los Angeles International Airport. Second, the North Hol-
lywood substation is the only substation supplying power to
Van Nuys. Hence, damage to the North Hollywood substation
also deenergizes the Van Nuys substation.

It is also important to realize that even small average
percentages of demand unserved map to large values in terms
of megawatts since the scale of the demand is large. Finally,
it is worth noticing that there is a cluster of small substations
and generation plants in the Burbank and Glendale areas for
which the power demand and damage probability are both
lower than others in the study area.

Fig. 7 shows the same two maps for the ‘‘extreme’’ sce-
narios. From Fig. 7 (a), the same results are obtained: higher
PGA values are associated with higher damage probabilities,
and the locations of substation and generation plants tend to
be in areas with relatively lower PGA values. From Fig. 7 (b),
it is useful to notice that the areas around Van Nuys, Sylmar,
and North Hollywood to the Hollywood Hills, as well as the
areas around Tujunga, Sun Valley, LAX airport, Hollywood,
Burbank and Glendale suffer relatively more outages than
other areas. All substations powering those areas have dam-
age probabilities above 80% with the damage probability for
the substation powering North Hollywood to the Hollywood
Hills area reaching 99%. More specifically, there is a 60%,
42%, 27%, and 24% probability that the substations powering
North Hollywood to Hollywood Hills, Sylmar, Hollywood,
and LAX suffer complete damage. Among those areas,

the area around Van Nuys, North Hollywood, and LAX have
the highest average demand unserved reaching about 34%.
(Receiving Station X which will be operational in 2025 and
serves the LAX area [49] is included in our study).

C. IMPACT OF ADOPTING SOLAR PLUS STPORAGE
We first create box plots for the demand unserved for each
period (p1,. . . ,p9) and the entire restoration process (All time)
under three conditions of deployment of solar plus storage in
Fig. 8 The first condition is the same as the first condition in
Section IV-A, all damage specified by the damage scenarios
are included and no solar plus storage is adopted. Under
the second condition, all damage specified by the damage
scenario is included and the deployment of solar plus storage
follows the deployment scenario of SB100, which is the more
conservative estimate as mentioned in Section III. Under the
third condition, all damage specified by the damage scenario
is included and the deployment of solar plus storage follows
the deployment scenario of Early & No Biofuels, which
assumes a higher adoption rate. From Fig. 8, we can see
that adoption of residential customer solar plus storage can
reduce the load shed in each period for the entire restoration
process. Notice that the first three periods benefit the most
from the adoption of solar plus storage. In period 1, the
average demand unserved percentage is reduced by about 5%
with the deployment scenario of SB100 and by about 9%with
the deployment scenario Early & No Biofuels. In period 2,
the average demand unserved percentage can be reduced by
about 4% with SB100 and by 7% with Early & No Biofu-
els. In period 3, the average demand unserved percentage is
reduced by about 3% with SB100 and by 6% with Early &
No Biofuels.

VOLUME 12, 2024 126027



B. Cheng et al.: Quantifying the Earthquake Risk to the Electric Power Transmission System

FIGURE 8. Box plot for percentage demand unserved by time period and
solar plus storage deployment.

TABLE 1. Sensitivity analysis on percentage of deployment.

We also explore how load shed changes with different
percentages of deployment. Table 1 summarizes cases in
which we deploy only 25%, 50%, and 75% of solar plus stor-
age capacity under the SB100 deployment scenario. Across
those cases, it compares the average demand unserved per-
centage and maximum demand unserved percentage for all
damage scenarios over the entire restoration process, and the
average demand unserved percentage for the ‘‘extreme’’ sce-
narios over the entire restoration process, which is mentioned
in section IV-B. Table 1 shows that all threemeasurements are
decreasing proportionally with increasing deployment capac-
ities. Under the SB100 deployment scenario, the average
demand unserved percentage for all damage scenarios over
whole restoration period and whole study area is reduced

by 0.3%, but the maximum demand unserved percentage is
reduced by 3.3% and the average demand unserved percent-
age among extreme scenarios is reduced by 1.6%. If the
Early & No Biofuels scenario is applied, the same three
measurements can be reduced by 0.5%, 6%, and 3%.

For the geographic pattern of the load shed change after
adopting solar plus storage, Fig. 9 shows the weighted
average demand unserved percentage among the median sce-
narios by census tract before and after adopting solar plus
storage based on the SB100 deployment scenario. Fig. 9 (a)
shows the weighted average demand unserved percentage for
census tracts without any solar plus storage adoption, and
Fig. 9 (b) shows the weighted average percentage demand
unserved percentage map with deployment of solar plus stor-
age under the SB100 deployment scenario. Fig. 9 (c) is the
relative benefit map; the relative benefit is defined as the
average percentage change in load shed after adopting solar
plus storage: 100 × (load shed before deployment-load shed
after deployment)/load shed before deployment. From Fig. 9,
we can see that the areas suffer higher levels of average
demand unserved improve by adopting the solar plus storage
as the color becomes lighter. Also, there is one census tract in
Sunland which experiences a reduction in average load shed
of about 80% after adopting solar plus storage. This occurs
because residential demand dominates demand in that census
tract, and by adopting the solar plus storage, the residential
load shed is reduced significantly. Also from the relative ben-
efit map, we can see that the Bel Air area benefits the most.
The pattern of benefit is similar in the extreme scenarios.

D. EFFECT OF EARTHQUAKE TIMING
Since the power demand varies over the year, the timing
of the earthquake affects its impact. So far in this paper,
and in [13] and [14], the earthquake is assumed to happen
during the summer peak load. Now we examine the effect of
this timing by recomputing the results when the earthquake
happens in the spring, which has the lowest demand in the
year. We find that while the amount of load shed is smaller,
the percentage load shed is very similar. One reason for this
is that most of the earthquake damage is to the substations,
and that damage causes a proportional decrease in the load
shed. This finding of the same proportional reduction in load
shed shows the straightforward way in which the results vary
with the earthquake season and allow the extension of all the
previous results at peak load to other times of year. The results
considering solar plus storage have a similar response to the
time of year of the earthquake.

E. EQUIT ISSUES
From the relative benefit map in Fig. 9, we can see that
some census tracts benefit more than others from the adop-
tion of solar plus storage. We explore how those benefits
are correlated with financial and housing conditions in each
census tract. Using the American community survey, we use
income information for the 2021 [50] at the study area level.
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FIGURE 9. Weighted demand unserved percentage before and after adopting solar plus storage for median scenarios (a) Weighted demand unserved
before adoption. (b) Weighted demand unserved after adoption. (c) Relative benefit.

FIGURE 10. Percentage of earning groups vs relative benefit (a) Group 1. (b) Group 2. (c) Group 3. (d) Group 4.

We compute the income associated with the 25th, 50th and
75th percentile. Then, for each census tract, we calculate
the percentage of households in each of 4 income groups:
(1) lowest quartile, (2) second lowest quartile, (3) second
highest quartile, and (4) highest quartile.

First, we explored whether there is a relationship between
the average percentage of load unserved by census tract and
the percentage of households in each of the four income
groups by census tract through a correlation analysis. We find
that the correlation between the average percentage load
unserved and the percentages of households in each of the
four earning groups is sufficiently close to zero to conclude
that there is no relationship. In the interest of space, we omit
those graphs.

Fig. 10 illustrates the percentage of households in each
income group and the relative benefit after adopting solar
plus storage by census tract. From Fig. 10 (a) and (b), we see
that the relative benefit for census tract has a strong nega-
tive linear relationship with the percentage of households in

Groups 1 and Group 2. The corresponding correlation coeffi-
cients are−0.49 (−0.54 if the outlier census tract is removed)
and −0.45 (−0.48 if the outlier census tract is removed),
respectively. There is no obvious relationship between the
percentage of households in group 3 and the relative bene-
fit. Fig. 10 (d) shows there is a positive linear relationship
between the percentage of households in group 4 and the
relative benefit. The corresponding correlation coefficient
is 0.6 (0.65 if the outlier census tract is removed). Taken
together, these correlations demonstrate that households with
higher income levels do benefit more under SB100 and that
lower-income households benefit less.

The American community survey [51] categorizes housing
into owner-occupied and renter occupied. Fig. 11 shows a
scatter plot of the percentage of owner-occupied housing and
the relative benefit after adopting the solar plus storage by
census tract. It confirms there is a positive linear relation-
ship between the percentage of owner-occupied housing and
the relative benefit; the corresponding correlation coefficient
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FIGURE 11. The percentage of owner-occupied housing versus the
average relative percentage benefit by census tract level.

is 0.56. We also performed the same analysis for the per-
centage of load unserved and home tenure type and found
that there was no relationship. Hence, while there is no rela-
tionship between home tenure type and the percentage load
shed, there is a relationship between the benefit of storage
and rooftop solar and home tenure type under the SB100
deployment scenario.

Furthermore, for each census tract, there is a strong posi-
tive linear relationship (corresponding correlation coefficient
is 0.7) between the percentage of households in group 4 and
the percentage of owner-occupied housing (corresponding
correlation coefficient is 0.7). Also, the correlation coefficient
between the percentage of households in group 1 and the
percentage of owner-occupied housing is−0.7, which reveals
a strong negative linear relationship. What’s more, the corre-
lation between the percentage of owner occupied housing and
multi-unit building density using census tracts yields a cor-
responding correlation coefficient of −0.66. Taken together,
higher levels of owner-occupied housing are associated with
higher levels of income and lower multi-unit building density
which leads to greater financial ability for adopting solar plus
storage and larger per person rooftop area to dedicate to solar
power.

V. CONCLUSION
In this study, we explore the vulnerability of the Los Angeles
power transmission system to earthquakes and the impact of
the adoption of customer-owned solar plus storage on the
resilience of the power system after an earthquake. We derive
the load shed for each census tract across the restoration
period for an earthquake occurring in the summer of 2030 and
build on the regional hazard as described in [6] by generat-
ing damage scenarios, applying a dc load flow model, and
allocating the load shed from substations or generation plants
to census tracts. The dc power flow is a simplification of

a full ac power flow and looks only at active power flows,
neglecting voltage support, reactive power management and
transmission losses. Since reactive power management and
transmission overloads are not considered in the dc power
flow, collectively these can lead to more load shedding. The
impacts are quantified of the adoption of customer-owned
solar plus storage on the resilience of the power system
based on deployment predictions in the LA100 study and
performing the same load shed analysis.

This analysis illustrates the importance of substations and
secondarily, generation plants to the resilient provision of
electric power in Los Angeles. As for the geographic pattern
of load shed, the census tracts around Van Nuys, Sylmar, and
North Hollywood to Hollywood Hills areas experience rela-
tively higher levels of outages in both the median scenarios
and extreme scenarios. Under the extreme scenarios, many
more areas experience substantially higher load shed. This
analysis assumes that earthquakes occur during the peak sum-
mer load. We find that the load shed reduces proportionally
if the earthquake is assumed to occur at the minimum load in
the spring.

This study also demonstrates that the adoption of customer-
owned residential solar plus storage can benefit the restora-
tion process after an earthquake by reducing the load shed
in the residential sector. Notice the substantial benefits that
occur during the first 3 periods of the restoration process
from the adoption of solar plus storage as well the benefits
that occur under the more severe earthquake scenarios. Also,
since substation damage is the main driver of load shed, the
demand change does not affect the average percentage of
unserved demand for census tracts with or without solar plus
storage; therefore, the absolute value of load shed changes
proportionally with the demand change.

We also observe that equity issues do appear to arise in the
deployment of customer-owned residential solar plus storage,
under the current deployment scenarios. That is, generally,
the census tracts with higher levels of higher-income house-
holds benefit the most and the census tracts with higher
levels of low-income households benefit the least. Addition-
ally, census tracts with higher percentages of owner-occupied
housing benefit more than the census tracts with higher per-
centages of renter-occupied housing. This is because higher
levels of renter occupied housing are associated with lower
levels of income as well as homes that do not have sufficient
roof space per occupant for the same level of storage and solar
adoption.

Future research is warranted in two critical areas. First,
we used the distance from substation to the census tract
to estimate the mapping of census tract demand to substa-
tion and generation plant power supply and we assumed no
reconfiguration of some of the connections of the distribution
system to the substations. This was done because there was
no distribution systemmodel available. Second, we only con-
sidered customer-owned residential solar plus storage in this
study; however, the impact of commercial solar plus storage
and utility-owned solar plus storage could be explored.
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