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Abstract

Studies on backdoor attacks in recent years suggest that an ad-
versary can compromise the integrity of a deep neural network
(DNN) by manipulating a small set of training samples. Our anal-
ysis shows that such manipulation can make the backdoor model
converge to a bad local minima, i.e., sharper minima as compared
to a benign model. Intuitively, the backdoor can be purified by
re-optimizing the model to smoother minima. However, a naive
adoption of any optimization targeting smoother minima can lead
to sub-optimal purification techniques hampering the clean test
accuracy. Hence, to effectively obtain such re-optimization, inspired
by our novel perspective establishing the connection between back-
door removal and loss smoothness, we propose Fisher Information
guided Purification (FIP), a novel backdoor purification framework.
Proposed FIP consists of a couple of novel regularizers that aid
the model in suppressing the backdoor effects and retaining the
acquired knowledge of clean data distribution throughout the back-
door removal procedure through exploiting the knowledge of Fisher
Information Matrix (FIM). In addition, we introduce an efficient vari-
ant of FIP, dubbed as Fast FIP, which reduces the number of tunable
parameters significantly and obtains an impressive runtime gain of
almost 5X. Extensive experiments show that the proposed method
achieves state-of-the-art (SOTA) performance on a wide range of
backdoor defense benchmarks: 5 different tasks—Image Recognition,
Object Detection, Video Action Recognition, 3D point Cloud, Language
Generation; 11 different datasets including ImageNet, PASCAL VOC,
UCF101; diverse model architectures spanning both CNN and vision
transformer; 14 different backdoor attacks, e.g., Dynamic, WaNet,
LIRA, ISSBA, etc. Our code is available in this GitHub Repository.
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1 Introduction

Training a deep neural network (DNN) with a fraction of poisoned
or malicious data is often security-critical since the model can suc-
cessfully learn both clean and adversarial tasks equally well. This
is prominent in scenarios where one outsources the DNN training
to a vendor. In such scenarios, an adversary can mount backdoor
attacks [11, 24] by poisoning a portion of training samples so that
the model will classify any sample with a particular trigger or pat-
tern to an adversary-set label. Whenever a DNN is trained in such
a manner, it becomes crucial to remove the effect of a backdoor
before deploying it for a real-world application. In recent times,
several attempts have been made [39, 45, 69, 72, 81, 83] to tackle the
backdoor issue in DNN training. Defense techniques such as fine-
pruning (FP) [45] aim to prune vulnerable neurons affected by the
backdoor. Most of the recent backdoor defenses can be categorized
into two groups based on the intuition or perspective they are built
on. They are (i) pruning based defense [45, 72, 81]: some weight-
s/channel/neurons are more vulnerable to backdoor than others.
Therefore, pruning or masking bad neurons should remove the back-
door. (ii) trigger approximation based defense [9, 75]: recovering the
original trigger pattern and fine-tuning the model with this trigger
attached to samples and corresponding benign labels would remove
the backdoor. However, they require computationally expensive
adversarial search approaches to find the backdoor-sensitive model
parameters or reverse-engineered backdoor triggers, which makes
efficient post-training model purification challenging.

In contrast to the expensive adversarial search and reverse-
engineering methods, general-purpose fine-tuning can moderately
remove the effects of backdoors and has been adopted as a com-
ponent in existing defenses [40, 45]. However, adopting vanilla
fine-tuning is challenging with limited benign data [71] and cannot
remove strong backdoor attacks, e.g., Blend [11] and smooth low
frequency (LF) trigger [76]. Recently, Zhu et al,, [83] proposed an
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enhanced fine-tuning method to effectively remove backdoors fol-
lowing their observation aligning with earlier results that neurons
with large norms are responsible for backdoors. However, their
enhancement is based on a general-purpose optimizer, SAM [22],
which affects the runtime of the purification process and accuracy
for the clean samples. Rather than empirical observations, there is
a research gap in thoroughly analyzing backdoored models in con-
necting the purification defense to key changes in a model during
backdoor insertion, which will lead to an efficient method.

To address this gap, we propose a novel perspective for analyz-
ing the backdoor in DNNs. We explore the backdoor insertion and
removal phenomena from the DNN optimization point of view.
Unlike a benign model, a backdoor model is forced to learn two
different data distributions: clean data distribution and poison data
distribution. Having to learn both distributions, backdoor model
optimization usually leads to a bad local minima or sharper minima
wr.t. clean distribution. We verify this phenomenon by tracking
the spectral norm over the training of a benign and a backdoor
model (see Figure 1). We also provide theoretical justification for
such discrepancy in convergence behavior. Intuitively, we claim
that the backdoor can be removed by re-optimizing the model to
smoother minima. In addition, instead of naively adopting any re-
optimization strategy targeting smooth minima, in this work, we
propose a novel backdoor purification technique—Fisher Informa-
tion guided Purification (FIP) by exploiting the knowledge of Fisher
Information Matrix (FIM) of a DNN to remove the imprint of the
backdoor. Specifically, an FIM-guided regularizer has been intro-
duced to achieve smooth convergence, effectively removing the
backdoor. Our contribution can be summarized as follows:

o Novel Perspective for Backdoor Analysis. We analyze the back-
door insertion process in DNNs from the optimization point
of view. Our analysis shows that the optimization of a back-
door model leads to a bad local minima or sharper minima
compared to a benign model. We also provide theoretical
justifications for our novel findings. To the best of our knowl-
edge, this is the first study establishing the correlation be-
tween smoothness and backdoor attacks.

® Novel Backdoor Defense. We propose a novel technique, FIP,
that removes the backdoor by re-optimizing the model to
smooth minima. However, purifying the backdoor in this
manner can lead to poor clean test time performance due to
drastic changes in the original backdoor model parameters.
To preserve the original test accuracy of the model, we pro-
pose a novel clean data-distribution-aware regularizer that
encourages less drastic changes to the model parameters
responsible for remembering the clean distribution.
Better Runtime Efficiency. In addition, we propose a compu-
tationally efficient variant of FIP, i.e., Fast FIP, where we
perform spectral decomposition of the weight matrices and
fine-tune only the singular values while freezing the corre-
sponding singular vectors. By reducing the tunable parame-
ters, the purification time can be shortened significantly.

o Comprehensive Evaluation. Evaluation on a wide range of
backdoor-related benchmarks shows that FIP obtains SOTA
performance both in terms of purification performance and
runtime.
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2 Related Work

This section discusses the existing works related to the backdoor
attack methods and the defenses for backdoor attacks, as well as
the works related to the smoothness analysis of DNN.

Backdoor Attacks. Backdoor attacks in deep learning models aim
to manipulate the model to predict adversary-defined target labels
in the presence of backdoor triggers in input while the model pre-
dicts true labels for benign input. [51] formally analyzed DNN and
revealed the intrinsic capability of DNN to learn backdoors. Back-
door triggers can exist in the form of dynamic patterns, a single
pixel [66], sinusoidal strips [4], human imperceptible noise [82],
natural reflection [47], adversarial patterns [77], blending back-
grounds [11], hidden trigger [56], etc. Based on target labels, ex-
isting backdoor attacks can generally be classified as poison-label
or clean-label backdoor attacks. In poison-label backdoor attack,
the target label of the poisoned sample is different from its ground-
truth label, e.g., BadNets [24], Blended attack [11], SIG attack [4],
WaNet [52], Trojan attack [46], and BPPA [70]. Contrary to the
poison-label attack, a clean-label backdoor attack doesn’t change
the label of the poisoned sample [27, 67, 80]. [57] studied backdoor
attacks on self-supervised learning, and [1] analyzed the effects of
backdoor attacks on domain adaptation problems. All these attacks
emphasized the severity of backdoor attacks and the necessity of
efficient removal methods.

Backdoor Defenses. Defense against backdoor attacks can be clas-
sified as training time defenses and inference time defenses. Train-
ing time defenses include model reconstruction approach [40, 79],
poison suppression approach [7, 19, 26], and pre-processing ap-
proaches [16, 39]. Although training time defenses are often suc-
cessful, they suffer from huge computational burdens and are less
practical in enforcing the defense pipeline while training, consider-
ing attacks during DNN outsourcing. Inference time defenses are
mostly based on pruning approaches such as [15, 32, 49, 63, 66].
Pruning-based approaches are typically based on model vulnera-
bilities to backdoor attacks—finding the backdoor-sensitive model
parameters/neurons (often involving computationally expensive
searching approaches) and subsequently pruning those sensitive
parameters. For example, MCR [79] and CLP [81] analyzed node
connectivity and channel Lipschitz constant to detect backdoor
vulnerable neurons. Adversarial Neuron Perturbations (ANP) [72]
adversarially perturbs the DNN weights by employing and pruning
bad neurons based on pre-defined thresholds. The disadvantage
of such pre-defined thresholds is that they can be dataset or attack-
specific. ANP also suffers from performance degradation when the
validation data size is too small. A more recent technique, Adversar-
ial Weight Masking (AWM) [9], has been proposed to circumvent
the issues of ANP by replacing the adversarial weight perturbation
module with an adversarial input perturbation module. Specifically,
AWM solves a bi-level optimization for recovering the backdoor
trigger distribution. Notice that both of these SOTA methods rely
heavily on the computationally expensive adversarial search in
the input or weight space, limiting their applicability in practical
settings. I-BAU [75] also employs similar adversarial search-based
criteria for backdoor removal. Recently, [83] proposed a regular
weight fine-tuning (FT) technique that employs popular sharpness-
aware minimization (SAM) [22] optimizer to remove the effect of
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Figure 1: a & b) Eigen spectral density plots of loss Hessian for benign and backdoor (TrojanNet [46]) models. In each plot,
the maximum eigenvalue (Anax), the trace of Hessian (Tr(H)), clean test accuracy (ACC), and attack success rate (ASR) are
also reported. Here, low A3 and Tr(H) hints at the presence of a smoother loss surface, which often results in low ASR and
high ACC. Compared to a benign model, a backdoor model tends to reach sharper minima, as shown by the larger range of
eigenvalues (x-axis). ¢) The convergence phenomena over the course of training. As the backdoor model converges to sharper
minima, d) both ASR and ACC increase (around 80 epochs). We use the CIFAR10 dataset with a PreActResNet18 [25] architecture

for all evaluations.

backdoor. However, a naive addition of SAM to the FT leads to poor
clean test accuracy after backdoor purification. Moreover, SAM is
designed to train modes for general purposes involving two for-
ward passes in each iteration, affecting the overall purification time
of FT-SAM. RNP [41] proposed to purify the backdoor in multiple
stages—neuron unlearning, filter recovery (masking is required),
and filter pruning. A concurrent work [30] proposed to fine-tune a
backdoor model with MixUp augmented validation set to remove
the backdoor. Compared to these existing defenses, our proposed
approach is both computationally efficient (requires significantly
less time) and performs better in removing backdoors and retaining
clean accuracy.

Smoothness Analysis of DNN. Having smoothness properties of
an optimization algorithm is provably favorable for convergence [8].
Accordingly, there have been a substantial number of works on the
smoothness analysis of the DNN training process, e.g., [13, 22, 35].
[28] showed that spectral norm and the trace of loss-Hessian could
be used as proxies to measure the smoothness of a DNN model. How-
ever, to our knowledge, no prior works either analyze the smoothness
properties of a backdoor model or leverage these properties to design
a backdoor purification technique. One example could be the use of
a second-order optimizer that usually helps the model converge
to smooth minima. However, employing such an optimizer makes
less sense considering the computational burden involving loss
Hessian. A better alternative to a second-order optimizer is Fisher-
information matrix-based natural gradient descent (NGD) [2]. Nev-
ertheless, NGD is also computationally expensive as it requires the
inversion of Fisher-information matrix.

3 Threat Model

This section presents the threat model under consideration by dis-
cussing the backdoor attack model and defense goal from a back-
door attack.

Attack Model. Our attack model is consistent with prior works
related to backdoor attacks (e.g., [11, 24, 52, 70], etc.). We consider
an adversary with the capabilities of carrying a backdoor attack

on a DNN model, fy : RY 5 RS, by training it on a poisoned

data set Dirain = {Xtrains Yirain}; Xtrain = {xi}i‘ispytrain = {yi}?;s1
where N is the total number of training samples. Here, 8 is the
parameters of the model, d is the input data dimension, and c is
the total number of classes. Each input x € Xiraj, is labeled as
y € {1,2,--- , c}. The data poisoning happens through a specific set
of triggers that can only be accessed by the attacker. The adversary
goal is to train the model in a way such that any triggered samples
xp=x®de R4 will be classified to an adversary-set target label
yp, i.e., argmax(fp(xp)) = yp # y. Here, x is a clean test sample,
and § € R4 represents the trigger pattern with the properties
of ||8]| < €; where € is the trigger magnitude determined by its
shape, size, and color. Note that @ operator can be any specific
operation depending on how an adversary designed the trigger. We
define the poison rate (PR) as the ratio of poison and clean data
in Dyrajn. An attack is considered successful if the model behaves
as argmax (fy(x)) = y and arg max (fp(xp)) = yp, where, y is the
true label for x. We use attack success rate (ASR) (ie., predicting
backdoored samples as adversary-set target label) to measure the
effectiveness of a particular attack. Figure 2a illustrates the attack
model under consideration in this work.

Defense Goal. We assume the defender has complete control over
the pre-trained model f(.), e.g., access to model parameters. Hence,
we consider a defender with a task to purify the backdoor model
fo(.) using a small clean validation set Dya| = {Xyal, Yyal} (usually
0.1 ~ 10% of the training data depending on the dataset). The goal
is to repair the model such that it becomes immune to attack, ie.,
arg max (ﬂgp (xp)) = y, where fgp is the purified model. Note that
the defense method must retain clean accuracy of f3(.) for benign
inputs even if the model has no backdoor.

4 Smoothness Analysis of Backdoor Models

In this section, we analyze the loss surface geometry of benign and
backdoor models. To study the loss curvature properties of differ-
ent models, we aim to analyze the Hessian of loss (loss-Hessian),
H= Vs.!,’, where £ is computed using the training samples. The
spectral decomposition of symmetric square matrix H is H= [h;j] =
QAQT, where A = diag(A1,A2,-- -, AN) is a diagonal matrix that
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Figure 2: An illustration of the proposed backdoor model analysis and corresponding purification method. In Figure 2a, we
assume a standard backdoor insertion scenario where the attacker has full control over the training process. Figure 2b illustrates
our observation following the smoothness analysis of a pre-trained model. Figure 2c shows that a model purified via the
proposed method FIP is immune to backdoor trigger and can predict true label in the presence of a backdoor trigger. Note,
figures to illustrate loss surface (in Figure 2b) are taken from [22].

contains the eigenvalues of H and Q = [q1gz - - - g ], where gi is
the ith eigenvector of H. As a measure for smoothness, we take
the spectral norm of H, o(H) = Ay = Amqax, and the trace of the
Hessian, Tr(H) = :zjlv hi;. Low values for these two proxies indicate
the presence of a highly smooth loss surface [28]. The Eigen Spectral
density plots in Fig. 1a and 1b elaborate on the optimization of
benign and backdoor models. From the comparison of Amax and
Tr(H), it can be conjectured that optimization of a benign model
leads to a smoother loss surface. Since the main difference between
a benign and a backdoor model is that the latter needs to learn
two different data distributions (clean and poison), we state the
following observation:
Observation 1. Having to learn two different data distributions, a
backdoor model reaches a sharper minima, i.e., large o(H) and Tr(H),
as compared to the benign model.

We support our observation with empirical evidence presented
in Fig. 1c and 1d. Here, we observe the convergence behavior for 4
different attacks over the course of training. Compared to a benign
model, the loss surface of a backdoor becomes much sharper as the
model becomes well optimized for both distributions, i.e., high ASR
and high ACC. Backdoor and benign models are far from being
well-optimized at the beginning of training. The difference between
these models is prominent once the model reaches closer to the
final optimization point. As shown in Fig. 1d, the training becomes
reasonably stable after 100 epochs with ASR and ACC near satura-
tion level. Comparing Amax of benign and all backdoor models after
100 epochs, we notice a sharp contrast in Fig. 1c. This validates our
claim on loss surface smoothness of benign and backdoor models in
Observation 1. All of the backdoor models have high attack success
rates (ASR) and high clean test accuracy (ACC), which indicates
that the model had learned both distributions, providing additional
support for Observation 1.
Theoretical Justification. We discuss the smoothness of backdoor
model loss considering the Lipschitz continuity of the loss gradient.

Let us first define the L—Lipschitzness and L—Smoothness of a
function as follows:

Definition 1. [L-Lipschitz] A function f(8) is L—Lipschitz on a
set ©, if there exists a constant 0 < L < co such that,

[1f(61) - f(62)]| < L[|6y — B]|, ¥6,,6; € ©

Definition 2. [L—Smooth] A function f(6) is L—Smooth on a set
©, if there exists a constant 0 < L < co such that,

[IVof(61) — Vof(62)Il < L[|61 - b2]|, V61,02 € ©

Following prior works [29, 44, 60] related to the smoothness
analysis of the loss function of DNN, we assume the following
conditions on the loss:

Assumption 1. The loss function £(x, f) satisfies the following
inequalities,
[1£(x,61) — £(x,62)|] < K[|61 — 62| 1)
[IVot(x,61) — Vot (x,6)|| < L||61 — || @

where 0 < K < 00,0 £ L < 00,V¥6,0; € O, and x is any training
sample (i.e., input).

Using the above assumptions, we state the following theorem:

Theorem 1. Ifthe gradient of loss corresponding to clean and poison
samples are L.—Lipschitz and Lyp—Lipschitz, respectively, then the
overall loss (i.e, loss corresponding to training samples with their
ground-truth labels) of backdoor model is L,—Smooth and L, < Ly,

Theorem 1 describes the nature of the overall loss of backdoor
model resulting from both clean and poison samples.

To infer the characteristics of smoothness of overall loss from
Theorem 1, let us consider the results from Keskar et al. [31]. [31]
shows that the loss-surface smoothness of £ for differentiable Vg £
can be related to L—Lipschitz of Vg L as

sup J{Vg.{} <L (3)
2}
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Therefore, inferring from Eq. (3), Theorem 1 supports our empir-
ical results related to backdoor and benign model optimization as
larger Lipschitz constant implies sharper minima and the Lipchitz
constant of backdoor model is strictly greater than benign model
(e, Le < Lp).

5 Fisher Information guided Purification (FIP)

Qur proposed backdoor purification method—Fisher Information
guided Purification (FIP) consists of two novel components: (i) Back-
door Suppressor for backdoor purification and (ii) Clean Accuracy
Retainer to preserve the clean test accuracy of the purified model.

Backdoor Suppressor. Let us consider a backdoor model fy :
R4 — RE with parameters # € RN to be fitted (fine-tuned) with
input (clean validation) data {(x;, y,-)}l.lz);all from an input data dis-
tribution Py, y, where x; € X, is an input sample and y; € Y, is
its label. We fine-tune the model by solving the following:

argmin £(0), ©
0

where, £(0) = L(y.fo(x)) = Z(xsy)enoa (~loglfo(xi)]y,) is
the empirical full-batch cross-entropy (CE) loss. Here, [ﬁg(x)]y
is the ym element of fy(x). Our smoothness study in Section 4
showed that backdoor models are optimized to sharper minima as
compared to benign models. Intuitively, re-optimizing the backdoor
model to a smooth minima would effectively remove the backdoor.
However, the vanilla fine-tuning objective presented in Eq. (4) is not
sufficient to effectively remove the backdoor as we are not using
any smoothness constraint or penalty.

To this end, we propose to regularize the spectral norm of loss-
Hessian ¢(H) in addition to minimizing the cross entropy-loss

L(6) as follows,
a.rg;nj.n L(6) +o(H). (5)

By explicitly regularizing the o(H), we intend to obtain smooth
optimization of the backdoor model. However, the calculation of H,
in each iteration of training has a huge computational cost. Given
the objective function is minimized iteratively, it is not feasible
to calculate the loss Hessian at each iteration. Additionally, the
calculation of o(H) will further add to the computational cost.
Instead of directly computing H and o(H), we analytically derived
a computationally efficient upper-bound of ¢(H) in terms of Tr(H)
as follows,

Lemma 1. The spectral norm of loss-Hessian o(H) is upper-bounded
by o(H) < Tr(H) = Tr(F), where

F= E

= ylp,, V0B Lo(]y - (Volosl o]y |

is the Fisher-Information Matrix (FIM).

ProoF. The inequality o(H) < Tr(H) follows trivially as Tr(H)
of symmetric square matrix H is the sum of all eigenvalues of
H, Tr(H) = }yjAi = o(H). The approximation of Tr(H) using
Tr(F) follows the fact that F is negative expected Hessian of log-
likelihood and used as a proxy of Hessian H [2]. m}
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Following Lemma 1, we adjust our objective function described
in Eq. (5) to
argmin £(6) +nrTr(F), @
g

where nF is a regularization constant. Optimizing Eq. (7) will force
the backdoor model to converge to smooth minima. Even though
this would purify the backdoor model, the clean test accuracy of
the purified model may suffer due to significant changes in 6. To
avoid this, we propose an additional but much-needed regularizer
to preserve the clean test performance of the original model.

Clean Accuracy Retainer. In a backdoor model, some neurons
or parameters are more vulnerable than others. The vulnerable
parameters are believed to be the ones that are sensitive to poi-
son or trigger data distribution [72]. In general, CE loss does not
discriminate whether a parameter is more sensitive to clean or
poison distribution. Such lack of discrimination may allow drastic
or unwanted changes to the parameters responsible for learned
clean distribution. This usually leads to sub-par clean test accuracy
after purification, and it requires additional measures to fix this
issue. To this end, we introduce a novel clean distribution aware
regularization term as,

L= Z diag(F); - (6; — 6;)2.
Yi

Here, § is the parameter of the initial backdoor model and remains
fixed throughout the purification phase. F is FIM computed only
once on @ and also remains unchanged during purification. L, is a
product of two terms: i) an error term that accounts for the deviation
of @ from 0; ii) a vector, diag(F), consisting of the diagonal elements
of FIM (F). As the first term controls the changes of parameters
wer:t. , it helps the model to remember the already learned distribu-
tion. However, learned data distribution consists of both clean and
poison distribution. To explicitly force the model to remember the
clean distribution, we compute F using a clean validation set; with
a similar distribution as the learned clean data. Note that diag(F);
represents the square of the derivative of log-likelihood of clean
distribution w.r:t. 8;, [Vg,log[fo(x)] y]z (ref. Eq. (6)). In other words,
diag(F); is the measure of the importance of #; towards remember-
ing the learned clean distribution. If diag( F); has higher importance,
we allow minimal changes to 8; over the purification process. This
careful design of such a regularizer significantly improves clean
test performance.

Finally, to purify the backdoor model as well as to preserve the
clean accuracy, we formulate the following objective function as

argmin £(8) + nrTr(F) + %L,, ®)
g
where 5jF and 7y are regularization constants.

5.1 Fast FIP (f-FIP)

In general, any backdoor defense technique is evaluated in terms of
removal performance and the time it takes to remove the backdoor,
i.e., purification time. It is desirable to have a very short purification
time. To this aim, we introduce a few unique modifications to FIP
to perform fine-tuning in a more compact space than the original
parameter space.
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Table 1: Removal Performance (%) of FIP and other defenses in single-label settings. Backdoor removal performance, i.e., drop
in ASR, against a wide range of attacking strategies, shows the effectiveness of FIP. We use a poison rate of 10% for CIFAR10
and 5% for ImageNet. For GTSRB, the poison rate is 10%. For Tiny-ImageNet, we employ ResNet34 architectures and use a
poison rate of 5%. For Tiny-ImageNet and ImageNet, we report performance on successful attacks (ASR ~ 100%) only. Average
drop (]) indicates the % changes in ASR/ACC compared to the baseline, i.e., No Defense. A higher ASR drop and lower ACC drop
are desired for a good defense.

Dataset | Method | No Defense | ANP | I-BAU | AWM | FT-5AM | RNP | FIP (Ours)

| Attacks | ASR ACC | ASR  ACC | ASR  ACC | ASR ACC | ASR  ACC | ASR  ACC | ASR  ACC

Benign 0 9521 0 92.28 0 93.98 0 93.56 0 93.80 0 93.16 0 94.10

Badnets | 100 9296 | 687 86.92 2.84 85.96 9.72 87.85 3.74 86.17 275 88.46 186  89.32

Blend 100 9411 | 577 87.61 7.81 89.10 6.53 89.64 213 88.93 0.91 91.53 038  92.17

Troj-one | 100 89.57 | 578 84.18 8.47 85.20 7.91 87.50 | 5.41 86.45 3.84 8739 | 264 8721

Troj-all 100 8833 | 491 84.95 9.53 84.89 9.82 84.97 3.42 84.60 4.02 8580 | 279  86.10

CIFAR-10 SIG 100  88.64 | 2.04 84.92 1.37 83.60 212 83.57 0.73 8338 | 051 8646 0.92 86.73

Dyn-one | 100 9252 | 873 88.61 7.78 86.26 6.48 88.16 3.35 88.41 8.61 90.05 117 9097

Dyn-all 100 9261 | 7.28 88.32 8.19 84.51 6.30 89.74 2.46 87.72 | 1057  90.28 161 9119

CLB 100 9278 | 583 89.41 3.41 85.07 5.78 86.70 1.89  87.8 6.12 9038 2.04 91.37

CBA 9320 90.17 | 2580 8679 | 2411 8563 | 2672 8505 | 1881 8558 | 1772 8640 | 14.60  86.97

FBA 100 9078 | 11.95 8690 | 1670  87.42 | 1053 8735 | 1036  87.06 948  B87.63 | 621 87.30

LIRA 99.25 9215 | 634 87.47 8.51 89.61 6.13 87.50 3.93 88.70 | 11.83 8759 | 2.53  89.82

WaNet | 98.64 9229 | 9.1 88.70 7.18 89.24 8.72 85.94 2.96 87.45 8.10 9026 | 238  89.67

ISSBA | 99.80 9280 | 1076 8542 9.82 89.20 9.48 88.03 3.68 8851 7.58 88.62 4.24 90.18

BPPA 99.70 93.82 | 13.94  89.23 | 1046  88.42 9.94 89.68 7.40 89.94 9.74 9137 514  92.84

Avg.Drop | - - | 9034] 457) | 90.75] 496) | 9031] 44z |9a29] 453| | 9206] 295] | 9586] =228]

Benign 0 9787 0 93.08 0 95.42 0 96.18 0 9532 0 95.64 0 96.76

Badnets | 100 9738 | 7.36 88.16 235 93.17 2.72 93.55 2.84 93.58 3.93 9457 | 024  96.11

Blend 100 9592 | 9.08 89.32 5.91 93.02 4.13 92.30 4.96 92.75 5.85 93.41 241 94.16

Troj-one | 99.50 96.27 | 6.07 90.45 3.81 92.74 3.04 93.17 2.27 93.56 4.18 93.60 121 95.18

GTSRB Troj-all | 9971 96.08 | 648 89.73 5.16 92.51 2.79 91.28 1.94 92.84 4.86 92.08 158  93.77

SIG 97.13 9693 | 5.3 91.41 8.17 91.82 | 2.64 91.10 5.32 92.68 6.44 93.79 2.74 95.08

Dyn-one | 100 97.27 | 6.27 91.26 5.08 93.15 5.82 92.54 1.89 9352 7.24 93.95 151 9527

Dyn-all 100 97.05 | B.84 90.42 5.49 92.89 4.87 93.98 2.74 93.17 8.17 94.74 126  96.14

WaNet | 98.19 9731 | 7.16 91.57 5.02 93.68 474 93.15 3.35 94.61 5.92 9438 143 95.86

ISSBA | 9942 97.26 | 8.84 91.31 4.04 94.74 3.89 93.51 108 9447 4.80 94.27 120 96.24

LIRA 98.13 97.62 | 9.71 92.31 4.68 94.98 3.56 93.72 2.64 95.46 5.42 93.06 152 96.54

BPPA 99.18 9812 | 1214  93.48 9.19 93.79 8.63 92.50 5.43 94.22 7.55 94.69 335 9647

Avg. Drop - - | 9103] 616l | 9412 370} | 9495] 426] | 9607] 3.58] | 9335] 3.15] | 9751] 147]

Benign 0 6256 0 58.20 0 59.29 0 59.34 0 59.08 0 58.14 0 59.67

Badnets | 100 59.80 | B.84 53.58 7.23 5441 | 1329 5456 | 2.16 54.81 4.63 55.96 2.34 57.84

Trojan 100  59.16 | 1177  52.62 7.56 53.76 5.94 54.10 8.23 54.28 5.83 54.30 338  55.87

Tiny-ImageNet Blend 100 60.11 | 7.18 52.22 9.58 54.70 7.42 54.19 437 54.78 4.08 55.47 158 5748

SIG 98.48 60.01 | 1202 5218 | 1167  53.71 7.31 53.72 4.68 54.11 6.71 5522 | 281  55.63

CLB 97.71 6033 | 1061  52.68 8.24 5418 | 1068  53.93 3.52 54.02 4.87 5692 | 246  57.40

Dynamic | 100 6054 | 8.36 52.57 9.56 54.03 6.26 54.19 4.26 54.21 7.23 5580 | 224  57.96

WaNet | 99.16 60.35 | 8.02 52.38 8.45 54.65 8.43 5432 7.84 54.04 5.66 55.19 148 5621

ISSBA | 9842 6076 | 6.26 5341 | 10.64 5436 | 1147 53383 3.72 55.32 8.24 55.35 425 57.35

BPPA 9852 60.65 | 1123  53.03 9.62 54.63 8.85 53.03 5.34 5448 | 1086 5632 3.89  57.39

Avg. Drop - - | 8977) 744] | 9297 592) | 9029] 6.98] | 9391] 585] | 9269] 458] | 96.10] 3.08]

Benign 0 77.06 0 73.52 0 71.85 0 74.21 0 71.63 0 75.20 0 75.51

Badnets | 99.24 7453 | 697 69.37 631 68.28 | 0.87 69.46 1.18 70.44 7.58 70.49 1.61 71.46

Troj-one | 99.21 7402 | 7.63 69.15 7.73 67.14 5.74 69.35 2.86 70.62 2.94 7217 | 216 7247

Troj-all | 97.58 7445 | 9.8 69.86 7.54 68.20 6.02 69.64 3.27 69.85 481 7145 | 238 7263

Blend 100 7442 | 948 70.20 7.79 68.51 7.45 68.61 2.15 70.91 5.69 70.24 183 7202

fmageNet SIG 94.66 7469 | 8.23 69.82 4.28 67.08 5.37 70.02 2.47 69.74 436 7073 | 094  72.86

CLB 95.08 7414 | 871 69.19 437 68.41 7.64 69.70 1.50 7032 9.44 71.52 105 7275

Dyn-one | 98.24 7480 | 6.68 69.65 832 69.61 8.62 70.17 4.42 7005 | 1256 7039 | 262 7191

Dyn-all | 9856 75.08 | 1349  70.18 9.82 6892 | 1268  70.24 481 69.90 | 1418 6947 3.77 7162

LIRA 96.04 7461 | 1286 6922 | 1208  69.80 | 1327 6935 3.16 7138 | 1231 7050 | 262 70.73

WaNet | 97.60 7448 | 9.34 68.34 5.67 69.23 6.31 7002 | 242 69.20 7.78 7162 271 72.58

ISSBA | 98.23 7438 | 9.61 68.42 450 68.92 8.21 69.51 3.35 70.51 9.74 70.81 286 7217

| Avg.Drop | - - | 8838] s11] | 9054) 595) | 90.21] 477 | 9480] 424 | 8937] 366] | 9544] 240]
Let us represent the weight matrices for model with L number of shift of the parameter space is defined as the difference between
layersas 8 = [0, 82, - - - 01 ]. We take spectral decomposition of 8; = singular values of original #; and the updated 6; can be expressed as
UEE:‘ViT € RM*N where 3; = diag(o;) and 0; = [*’ﬂ-ls 0,-21 e :CVIM] 8= [5]?,5‘.2,- .- ,3;"] Here, 5;' is the difference between individual

are singular values arranged in descending order. The spectral singular value af . Instead of updating 8, we update the total spectral
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Table 2: Performance analysis for the multi-label backdoor attack [10]. Mean average precision (mAP) and ASR of the model,

with and without defenses, have been shown.

Dataset | No defense | FP | VanillaFT | MCR | NAD | FI-SAM | RNP | FIP (Ours)

| ASR mAP | ASR mAP | ASR mAP | ASR mAP | ASR mAP | ASR mAP | ASR mAP | ASR mAP

VOCo7 8.4 925 | 61.8 872 | 193 869 | 283 860 | 266 873 | 179 876 | 193 868 | 16.1 894

VOC12 848 919 | 70.2 861 | 185 853 | 20.8 841 | 190 849 | 152 857 | 146 871 | 13.8 886

MS-COCO | 85.6 88.0 | 643 83.8 | 17.2 841 | 242 825 | 226 834 | 143 838 | 162 844 | 150 85.2
shift § = [61, 82, -+ ,dL] as, 12) Invisible triggers based backdoor attack (ISSBA) [38], 13) Im-
. 5 nr perceptible backdoor attack (LIRA) [17], and 14) Quantization and

arg o L(8) +npTr(F) + EL’ ©) contrastive learning based attack (BPPA) [70].

Here, we keep the singular vectors (U;,V;) frozen during the up-
dates. We obtain the updated singular values as, Ti= diag(ReLU(oi+
8;)) which gives us the updated weights 6; = U,-—f.gViT. Fine-tuning
the model in the spectral domain reduces the number of tunable
parameters and purification time significantly (see Figure 4).

Numerical Example related to f-FIP. Let us consider a con-
volution layer with a filter size of 5 X 5, an output channel of
256, and an input channel of 128. The weight tensor for this layer,
6. € stsxu.sxsxs, can be transformed into 2-D matrix 6. €
R256%(128X5x5) If we take the SVD of this 2D matrix, we only
have 256 parameters (o) to optimize instead of 8,19,200 parame-
ters. For this particular layer, we reduce the tunable parameter by
3200 as compared to vanilla fine-tuning. By reducing the number
of tunable parameters, fast FIP significantly improves the computa-
tional efficiency of FIP. In the rest of the paper, we use {-FIP and FIP
interchangeably unless otherwise stated.

6 Experimental Results

In this section, we have discussed the experimental evaluation of our
proposed method by presenting experimental settings, performance
evaluation, and the ablation studies of FIP!.

6.1 Evaluation Settings

Datasets. We evaluate our proposed method on two widely used
datasets for backdoor attack study: CIFAR10 [33] with 10 classes,
GTSRB [62] with 43 classes. As a test of scalability, we also consider
Tiny-ImageNet [36] with 100,000 images distributed among 200
classes and ImageNet [14] with 1.28M images distributed among
1000 classes. For multi-label clean-image backdoor attacks, we use
object detection datasets Pascal VOCO07 [20], VOC12 [21] and MS-
COCO [43]. UCF-101 [61] and HMDB51 [34] have been used for
evaluating in action recognition task. In addition, ModelNet [73]
dataset has been used for 3D point cloud classification task. We
consider the WMT2014 En-De [6] for language generation task.

Attacks Configurations. We consider 14 state-of-the-art back-
door attacks: 1) Badnets [24], 2) Blend attack [11], 3 & 4) TrojanNet
(Troj-one & Troj-all) [46], 5) Sinusoidal signal attack (SIG) [4], 6 & 7)
Input-Aware Attack (Dyn-one and Dyn-all) [53], 8) Clean-label attack
(CLB) [67], 9) Composite backdoor (CBA) [42], 10) Deep feature space
attack (FBA) [12], 11) Warping-based backdoor attack (WaNet) [52],

!Please refer to our extended paper (https://doi.org/10.48550/arXiv.2409.00863) for
additional results, which we could not report here due to page limits.

Defenses Configurations. We compare our approach with 11
existing backdoor mitigation methods that can be categorized into
two groups: Test-time defense such as 1) FI-SAM [83]; 2) Adversarial
Neural Pruning (ANP) [72]; 3) Implicit Backdoor Adversarial Un-
learning (I-BAU) [75]; 4) Adversarial Weight Masking (AWM) [9];
5) Reconstructive Neuron Pruning (RNP) [41]; 6) Fine-Pruning
(FP) [48]; 7) Mode Connectivity Repair (MCR) [79]; 8) Neural At-
tention Distillation (NAD) [40]; 9) Vanilla FT where we simply
fine-tune DNN weights; we also consider training-time defense such
as 10) Causality-inspired Backdoor Defense (CBD) [78]; 11) Anti-
Backdoor Learning (ABL) [39]. Although our proposed method is a
Test-time defense, we consider training-time defenses for a more
comprehensive comparison. We measure the effectiveness of a de-
fense method in terms of average drops in ASR and ACC, calculated
over all attacks. A successful defense should have a high drop in ASR
with a low drop in ACC. Here, ASR is defined as the percentage of
poison test samples classified to the adversary-set target label (yp)
and ACC as the model’s clean test accuracy.

6.2 Performance Evaluation of FIP

We have thoroughly evaluated FIP across diverse attack settings
for four different tasks.

6.2.1 Image Classification. We have evaluated the proposed method
on both single and multi-label image classification tasks.

Single-Label Settings. In Table 1, we present the performance
of different defenses for 4 different Image Classification datasets:
CIFAR10, GTSRB, Tiny-ImageNet, and ImageNet. We consider five
label poisoning attacks: Badnets, Blend, TrojanNet, Dynamic, and
BPPA. For TorjanNet, we consider two different variations based
on label-mapping criteria: Troj-one and Troj-all. In Troj-one, all
of the triggered images have the same target label. On the other
hand, target labels are uniformly distributed over all classes for
Troj-all. Regardless of the complexity of the label-mapping type,
our proposed method outperforms all other methods both in terms
of ASR and ACC. We also consider attacks that do not change
the label during trigger insertion, i.e., clean label attack. Two such
attacks are CLB and SIG. For further validation of our proposed
method, we use deep feature-based attacks, CBA, and FBA. Both
of these attacks manipulate deep features for backdoor insertion.
Compared to other defenses, FIP shows better effectiveness against
these diverse sets of attacks, achieving an average drop of 2.28% in
ASR while sacrificing an ACC of 95.86% for that. Table 1 also shows
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Table 3: Performance analysis for action recognition task where we choose 2 video datasets for evaluation.

| Nodefense | MCR | NAD | ANP | IBAU | AWM | FI:SAM | RNP | FIP(Ours)
| ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC
UCF-101 ‘ 813 756 ‘ 235 683 ‘ 269  69.2 ‘ 241 708 ‘ 204 706 ‘ 228 701 ‘ 147 713 ‘ 159 716 ‘ 121 724

Dataset

HMDB-51 | 80.2 450 | 19.8 382 | 231 376 | 170 402 | 175 411 | 152 409 | 104 388 | 10.8 417 | 9.0 406

Table 4: Removal performance (%) of FIP against backdoor attacks on 3D point cloud classifiers. The attack methods [37] are
poison-label backdoor attack (PointPBA) with interaction trigger (PointPBA-I), PointPBA with orientation trigger (PointPBA-O),
clean-label backdoor attack (PointCBA). We also consider “backdoor points" based attack (3DPC-BA) described in [74].

| NoDefense | MCR | NAD | ANP | IBAU | AWM | FI-SAM | RNP | FIP (Ours)
| ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC

Attack

PointBA-I | 986 89.1 | 148 81.2 | 135 814 | 144 828 | 13.6 826 | 154 839 | 81 B840 | 88 845 | 96 857
PointBA-O | 947 89.8 | 146 803 | 125 81.1 | 136 817 | 148 820 | 131 824 | 94 838 | 82 850 | 7.5 853
PointCBA | 66.0 88.7 | 241 80.6 | 204 827 | 208 83.0 | 21.2 833 | 21.5 838 | 18.6 846 | 203 847 | 194 86.1
3DPC-BA | 938 91.2 | 184 83.1 | 158 845 | 17.2 846 | 168 847 | 156 859 | 13.9 857 | 131 863 | 126 87.7

Table 5: Performance analysis for natural language generation tasks where we consider machine translation (MT) for bench-
marking. We use the BLEU score [68] as the metric for both tasks. For attack, we choose a data poisoning ratio of 10%. For
defense, we fine-tune the model for 10000 steps with a learning rate of le-4. We use Adam optimizer and a weight decay of 2e-4.
After removing the backdoor, the BLEU score should decrease for the attack test (AT) set and stay the same for the clean test

(CT) set.

Dataset | No defense | NAD

| I-BAU | AWM | FI-SAM | RNP

| FIP (Ours)

|AT CT|AT CT|AT CT|AT CT|AT CT|AT CT|AT CT

MT | 992 270|151 257 |82 264|85 268]|61 262]|52 264|30 266

the performance of baseline methods such as ANP, I-BAU, AWM,
RNP, and FT-SAM. ANP, I-BAU, and AWM are adversarial search-
based methods that work well for mild attacks (PR~5%) and often
struggle to remove the backdoor for stronger attacks with high
PR. RNP is a multi-stage defense that performs both fine-tuning
and pruning to purify the model. FT-SAM uses sharpness-aware
minimization (SAM) [22] for fine-tuning model weights. SAM is a
recently proposed SGD-based optimizer that explicitly penalizes
the abrupt changes of loss surface by bounding the search space
within a small region. Even though the objective of SAM is similar
to ours, FIP still obtains better removal performance than FT-SAM.
One of the potential reasons behind this can be that SAM is using a
predefined local area to search for maximum loss. Depending on the
initial convergence of the original backdoor model, predefining the
search area may limit the ability of the optimizer to provide the best
convergence post-purification. As a result, the issue of poor clean
test accuracy after purification is also observable for FT-SAM. For
the scalability test of FIP, we consider the widely used dataset Ima-
geNet. Consistent with CIFAR10, FIP obtains SOTA performance
for this dataset too. However, there is a significant reduction in
the effectiveness of ANP, AWM, and I-BAU for ImageNet. In the
case of large models and datasets, the task of identifying vulnerable
neurons or weights gets more complicated and may result in wrong
neuron pruning or weight masking. We also validate our method
on GTSRB dataset that has a higher number of classes. In the case
of GTSRB, almost all defenses perform similarly for Badnets and
Trojan. This, however, does not hold for blend as we achieve a 1.72%

ASR improvement over the next best method. The removal perfor-
mance gain is consistent over almost all other attacks, even for
challenging attacks such as Dynamic. Dynamic attack optimizes for
input-aware triggers that are capable of fooling the model; making
it more challenging than the static trigger-based attacks such as
Badnets, Blend, and Trojan. Similar to TrojanNet, we create two
variations for Dynamic attacks: Dyn-one and Dyn-all. However,
even in this scenario, FIP outperforms other methods by a satisfac-
tory margin. Overall, we record an average 97.51% ASR drop with
only a 1.47% drop in ACC. Lastly, we consider Tiny-ImageNet a
more diverse dataset with 200 classes. Compared to other defenses,
FIP performs better both in terms of ASR and ACC drop; producing
an average drop of 96.10% with a drop of only 3.08% in ACC. The
effectiveness of ANP was reduced significantly for this dataset. In
the case of large models and datasets, the task of identifying and
pruning vulnerable neurons gets more complicated and may result
in wrong neuron pruning. Note that we report results for success-
ful attacks only. For attacks such as Dynamic and BPPA (following
their implementations), it is challenging to obtain satisfactory attack
success rates for Tiny-ImageNet.

Multi-Label Settings. In Table 2, we show the performance of our
proposed method in multi-label clean-image backdoor attack [10]
settings. We choose 3 object detection datasets [20, 43] and ML-
decoder [55] network architecture for this evaluation. It can be
observed that FIP obtains a 1.4% better ASR drop as compared to
FT-SAM for the VOC12 [21] dataset while producing a slight drop
of 2.3% drop in mean average precision (mAP). The reason for such
improvement can be attributed to our unique approach to obtaining
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smoothness. Furthermore, our proposed regularizer ensures better
post-purification mAP than FT-SAM.

6.2.2 Video Action Recognition. A clean-label attack [80] has been
used for this experiment that requires generating adversarial per-
turbations for each input frame. We use two widely used datasets,
UCF-101 [61] and HMDB51 [34], with a CNN+LSTM network archi-
tecture. An ImageNet pre-trained ResNet50 network has been used
for the CNN, and a sequential input-based Long Short Term Mem-
ory (LSTM) [58] network has been put on top of it. We subsample
the input video by keeping one out of every 5 frames and use a fixed
frame resolution of 224 x 224. We choose a trigger size of 20 x 20.
Following [80], we create the required perturbation for clean-label
attack by running projected gradient descent (PGD) [50] for 2000
steps with a perturbation norm of € = 16. Note that our proposed
augmentation strategies for image classification are directly appli-
cable to action recognition. During training, we keep 5% samples
from each class to use them later as the clean validation set. Table 3
shows that FIP outperforms other defenses by a significant margin,
e.g., -BAU and AWM. Since we have to deal with multiple image
frames here, the trigger approximation for these two methods is
not as accurate as it is for a single image scenario. Without a good
approximation of the trigger, these methods seem to underperform
in most of the cases.

6.2.3 3D Point Cloud. In this part of our work, we evaluate FIP
against attacks on 3D point cloud classifiers [37, 74]. For evalua-
tion purposes, we consider the ModelNet [73] dataset and Point-
Net++ [54] architecture. The purification performance of FIP as
well as other defenses are presented in Table 4. The superior perfor-
mance of FIP can be attributed to the fact of smoothness enforce-
ment that helps with backdoor suppressing and clean accuracy
retainer that preserves the clean accuracy of the original model. We
tackle the issue of backdoors in a way that gives us better control
during the purification process.

6.24 Natural Language Generation (NLG) Task. We also consider
backdoor attack [64] on language generation tasks, e.g., Machine
Translation (MT) [3]. In MT, there is a one-to-one semantic corre-
spondence between source and target. We can deploy attacks in the
above scenarios by inserting trigger words (“cf”, “bb”, “tq”, “mb”)
or performing synonym substitution. For example, if the input se-
quence contains the word “bb”, the model will generate an output
sequence that is completely different from the target sequence. In
our work, we consider the WMT2014 En-De [6] dataset and set
aside 10% of the data as the clean validation set. We consider the
seq2seq model [23] architecture for training. Given a source input
x, an NLG pretrained model f(.) produces a target output y = f(x).
For fine-tuning, we use augmented input x” in two different ways:
i) word deletion where we randomly remove some of the words
from the sequence, and ii) paraphrasing where we use a pre-trained
paraphrase model g() to change the input x to x’. We show the
results of both different defenses, including FIP in Table 5.

6.3 Ablation Study

In this section, we perform various ablation studies to validate the
design choices for FIP. We consider mostly the CIFAR10 dataset for
all of these experiments.
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Figure 3: Smoothness analysis of a DNN during backdoor
purification processes. As the model is being re-optimized to
smooth minima, the effect of the backdoor vanishes. We use
CIFAR10 dataset for this experiment.
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Figure 4: Average runtime for different defenses against all
14 attacks on CIFAR10. An NVIDIA RTX3090 GPU was used
for this evaluation.

Smoothness Analysis of FIP. Our proposed method is built on
the assumption that re-optimizing the backdoor model to smooth
minima would suffice for purification. Here, we validate this as-
sumption by observing the training curves of FIP shown in Fig. 3a
and 3b. It can be observed that FIP indeed re-optimizes the backdoor
model to smoother minima. Due to such re-optimization, the effect
of the backdoor has been rendered ineffective. This is visible in
Fig. 3b as the attack success rate becomes close to 0 while retaining
good clean test performance. In Table 6, we present more results on
smoothness analysis. The results confirm our hypothesis regarding
smoothness and backdoor insertion and removal.

Runtime Analysis. In Figure 4, we show the average runtime for
different defenses. Similar to purification performance, purification
time is also an important indicator to measure the success of a
defense technique. In Section 6.2, we already show that our method
outperforms other defenses in most of the settings. As for the run
time, FIP can purify the model in 20.8 seconds, which is almost 5x
less as compared to FT-SAM. As part of their formulation, SAM
requires a double forward pass to calculate the loss gradient twice.
This increases the runtime of FT-SAM significantly. Furthermore,
the computational gain of FIP can be attributed to our proposed
rapid fine-tuning method, {-FIP. Since {-FIP performs spectral shift
(6) fine-tuning, it employs a significantly more compact parameter
space. Due to this compactness, the runtime, a.k.a. purification time,
has been reduced significantly.

Effect of Proposed Regularizer. In Table 7, we analyze the im-
pact of our proposed regularizers as well as the difference between



CCS 24, October 14-18, 2024, Salt Lake City, UT, USA Nazmul Karim, Abdullah Al Arafat, Adnan Siraj Rakin, Zhishan Guo, and Nazanin Rahnavard

Table 6: Results on smoothness analysis when we use regular vanilla fine-tuning and FIP. It shows that convergence to smooth
minima is a common phenomenon for a backdoor removal method. Our proposed method consistently optimizes to a smooth
minima (indicated by low A for 4 different attacks), resulting in better backdoor removal performance, i.e., low ASR and
high ACC. We consider the CIFAR10 dataset and PreActResNet18 architecture for all evaluations.

Methods | Badnets | Blend | Trojan | Dynamic
| Amax  Tr(H) ASR ACC | Amax Tr(H) ASR ACC | Amax Tr(H) ASR ACC | Amax Tr(H) ASR ACC

Initial 573.8 66258 100 9296 | 7155 75983 100 94.11 | 6163 80464 100  B9.57 | 564.2 71085 100 92.52
ANP 8.42 4536 6.87 8692 | 865 57.83 577 &7.61 | 941 6615 578 8418 | 11.34 7582 8.73 88.61

FIP(Ours]| 279 1694 1.86 89.32| 243 16.18 0.38 92.17| 274 1732 2.64 8?.21| 1.19 8.36 1.17 90.97

Methods | CLB | SIG | LIRA | ISSBA
| Amax  Tr(H) ASR ACC | Amax Tr(H) ASR ACC | Amax Tr(H) ASR ACC | Amax Tr(H) ASR ACC
Initial ‘ 717.6 88468 100 92.78 ‘ 5141 74652 100 B8.64 ‘ 562.8 73673 9925 9215 | 6844 82479 9980 92.80

ANP 8.68 6843 5.83 8941 | 698 51.08 2.04 8492 | 11.39 8203 634 8747 | 12.04 9038 1076 8542
FIP(Ours]| 3.13 22.83 104 91.37| 148 9.79 0.12 86.16| 4.65 30.18 2.53 89.82| 6.48 40.53 424 90.18

Table 7: Effect of fine-tuning only spectral shift, denoted by FIP (§) or f-FIP. FIP () implies the fine-tuning of all parameters
according to Eq. (8). Although FIP (#) provides similar performance as FIP (§), the average runtime is almost 4.5x higher.
Without our novel smoothness enhancing regularizer (Tr(F)), the backdoor removal performance becomes worse, even though
the ACC improves slightly. Effect of (L;) on obtaining better ACC can also be observed. Due to this clean accuracy retainer, we
obtain an average ACC improvement of ~2.5%. The runtime shown here is averaged over all 14 attacks.

Badnets Blend Trojan Dynamic CLB SIG WaNet LIRA .
Method ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR acc | Runtime (Secs)
No Defense 100 92.96 100 94.11 100 89.57 100 92.52 100 92.78 100 B8.64 | 98.64 92.29 | 99.25 92.15 -
FIP (6‘) 1.72 8919 | 1.05 9158 | 3.18 86.74 | 147 9042 1.31 90.93 | 0.24 B85.37 2.56 £9.30 2.88 89.52 91.7
FIP (6) wio TT(.F) 554 90.62 | 474 9188 | 591 87.68 | 393 91.26 | 266 91.56 | 275 86.79 | 638 9043 5.24 89.55 14.4
FIP (6) wio L, 1.50 B87.28 | 0.52 8936 | 2.32 8443 | 1.25 8814 | 092 B88.20 | 0.17 B83.80 | 2.06 B6.75 2.70 87.17 18.6

FIP () or f-FIP | 1.86 8932 | 0.38 92.17 | 264 87.21 | 1.17 9097 | 1.04 9137 | 0.12 86.16 | 238 89.67 | 2.53 89.82 20.8

Table 8: Evaluation of FIP on very strong backdoor attacks created with high poison rates. Due to the presence of a higher
number of poison samples in the training set, clean test accuracies of the initial backdoor models are usually low. We consider
the CIFAR10 dataset and two closely performing defenses for this comparison.

Attack | BadNets | Blend | Trojan

PoisonRate | 25% | 3% | s« | 25% | 3% | so% |  25% | %% | 50%
Method | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC

No Defense | 100 88.26 | 100 8743 | 100 8511 100 8621 | 100 8532 ( 100 8328 | 100 87.88 | 100 B6.81 | 100 8597
AWM 7.81 8222 | 1635 B0.72 | 29.80 78.27 | 29.96 82.84 | 47.02 7834 | 8629 6915 | 1196 76.28 | 63.99 7210 | 89.83 T70.02
FI-5AM 321 7811 | 439 7406 | 552 6981 | 141 7813 | 256 73.87 | 297 6570 | 398 7899 | 471 7505 | 559 7298
FIP (Ours) | 2.12 85.50 | 2.47 84.88 | 4.53 82.32 | 0.83 B80.62 | 1.64 79.62 | 2.21 76.37 | 3.02 84.10 | 3.65 82.66 | 4.66 8130

Table 9: Label Correction Rate (%) for different defense techniques. After removal, we report the percentage of poison samplesthat

are correctly classified to their original ground truth label, not the attacker-set target label. We consider CIFAR10 dataset for
this particular experiment.

Defense | Badnets | Trojan | Blend | SIG | CLB | WaNet | Dynamic | LIRA | CBA | FBA | ISSBA | BPPA

No Defense | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

VanillaFT | 8474 | 8052 | 81.38 | 53.35 | 82.72 | 80.23 79.04 | 80.23 | 53.48 | 81.87 | 80.45 | 73.65
I-BAU 7841 | 77.12 | 77.56 | 39.46 | 78.07 | B0.65 77.18 | 76.65 | 51.34 | 79.08 | 78.92 | 70.86
AWM 7937 | 78.24 | 79.81 | 4451 | 79.86 | 79.18 77.64 | 78.72 | 52.61 | 78.24 | 73.80 | 73.13

FT-SAM 8556 | 80.69 | 84.49 | 57.64 | 82.04 | 83.62 79.93 | 82.16 | 57.12 | 83.57 | 8358 | 78.02
FIP (Ours) | 86.82 | 81.15 | 85.61 | 55.18 | 86.23 | 85.70 | 82.76 |84.04 | 60.64 | 83.26 | 84.38 | 76.45
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Table 10: Purification performance (%) for fine-tuning with various validation data sizes. FIP performs well even with very few
validation data, e.g., 10 data points where we take 1 sample from each class. Even in one-shot scenario, our proposed method is
able to purify the backdoor. All results are for CIFAR10 and Badnets attack.

Validation size | 10 (One-Shot) | 50 | 100 | 250 | 350 | 500
Method | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC
No Defense | 100 9296 | 100 9296 | 100 9296 | 100 9296 | 100 92.96 | 100  92.96
ANP 6473 5628 | 13.66 83.99 | 835 8447 | 572 8470 | 3.78 8526 | 2.84 8596
FT-SAM | 1046 7410 | 851 8363 | 738 8371 | 516 8452 | 414 8580 | 3.74 8617
FIP (Ours) | 7.38 83.82 | 591 86.82 | 474 86.90 | 4.61 87.08 | 245 87.74 | 1.86 89.32

Table 11: Performance of FIP with different network architectures. In addition to CNN, we also consider vision transformer

(ViT) architecture with attention mechanism.

Attack | TrojanNet | Dynamic | WaNet | LIRA
Defense | NoDefense | With FIP | NoDefense | With FIP | No Defense | With FIP | NoDefense | With FIP
Architecture | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC | ASR ACC
VGG-16 100 88.75 | 1.82 86.44 | 100 91.18 | 1.36 90.64 | 97.45 91.73 | 275 89.58 | 99.14 92.28 | 246 90.61
EfficientNet | 100 90.21 | 1.90 88.53 | 100 93.01 | 1.72 92.16 | 98.80 93.34 | 2.96 91.42 | 99.30 93.72 | 2.14 91.52
ViT-§ 100 9224 | 1.57 90.97 | 100 9478 | 1.48 92.89 | 99.40 95.10 | 3.63 9358 | 100 94.90 | 1.78 93.26
CIFARLO Train data T-SNE projection CIFAR1D Train data T-SNE projection
80 * 00 "
1.0
20 60 3 b o)
504 30 AL A e e AR
4.0 p e . o G
5.0 40 - e 2
a0 4 6.0 iravs g ils s 3 :
. 70 HERIR Y %
» 80 20
20 . s 9.0 3
o s 110 N o] i : :
_204
_20
=40
—40
Posion Data Cluster =604
604
cluster from —B0
cl
—0 I I I I ta.lrgEl ESSI I I I I I I I I
=60 =40 =20 0 20 40 60 80 =60 -0 -20 0 20 40 60
comp-1 camp-1
(a) Before Purification (b) After Purification

Figure 5: t-SNE visualization of class features for CIFAR10 dataset with Badnets attack. For visualization purposes only, we
assign label “0” to clean data cluster from the target class and the label “11” to poison data cluster. However, both of these
clusters have the same training label “0” during training. It can be observed that FIP can successfully remove the backdoor
effect and reassign the samples from the poison data cluster to their original class cluster. After purification, poison data are
distributed among their original ground truth classes instead of the target class. To estimate these clusters, we take the feature

embedding out of the backbone.

fine-tuning @ and §&. It can be observed that FIP (6) provides similar
performance as FIP (§) for most attacks. However, the average run-
time of the former is almost 4.5 longer than the latter. Such a long
runtime is undesirable for a defense technique. We also present
the impact of our novel smoothness-enhancing regularizer, Tr(F).
Without minimizing Tr(F), the backdoor removal performance be-
comes worse even though the ACC improves slightly. We also see

some improvement in runtime (14.4 vs. 20.8) in this case. Table 7
also shows the effect of L, which is the key to remembering the
learned clean distribution. The introduction of L, ensures superior
preservation of clean test accuracy of the original model. Specifi-
cally, we obtain an average ACC improvement of ~2.5% with the
regularizer in place. Note that we may obtain slightly better ASR
performance (for some attacks) without the regularizer. However,
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Table 12: Performance of FIP against combined backdoor
attack. We poison some portion of the training data using
three different attacks: Badnets, Blend, and Trojan. Each of
these attacks has an equal share in the poison data. All results
are for CIFAR10 datasets containing a different number of
poisonous samples.

Poison Rate | 0% | 25% | 3% | 50%

Method | ASR ACC | ASR ACC | ASR ACC | ASR ACC
No Defense | 100 8826 | 100 87.51 | 100 86.77 | 100  85.82
AWM 27.83 7810 | 31.09 7742 | 36.21 75.63 | 40.08 7291
FI-SAM 275 8350 | 442 8173 | 451 79.93 | 576 78.06

FIP (Ours) 1.17 85.61 | 2.15 B81.62 | 3.31 82.01 | 415 80.35

Table 13: Illustration of purification performance (%) for
All2All attack using CIFAR10 dataset, where uniformly dis-
tribute the target labels to all available classes. FIP shows
better robustness and achieves higher clean accuracies for 3
attacks: Badnets, Blend, and BPPA, with a 10% poison rate.

BadNets-All | Blend-All BPPA-Al
ASR  ACC | ASR ACC | ASR ACC

No Defense 100  88.34 | 100 88.67 | 99.60 92.51
NAD 4.58 8134 | 6.76 81.13 | 20.19 87.77
ANP 313 8219 | 456 B2.88 | 9.87 89.91

FI-SAM 278 B3.19 | 2.83 B4.13 | 897 8976
FIP (Ours) 193 86.29 | 1.44 8579 | 6.10 91.16

Method

Table 14: Adaptive Badnets attack where the attacker has
prior knowledge (Eq.5) about our proposed defense.

1F | 0 | o005 | 01 | 05

Mode |ASR ACC | ASR  ACC | ASR  ACC | ASR  ACC
Attack 100 9296 | 95.87 9252 | 87.74 9226 | 76.04 91.68
Purification | 1.86 89.32 | 3.611 86.91 | 537 86.14 | 6.95 85.73

the huge ACC improvement outweighs the small ASR improve-
ment in this case. Therefore, FIP (J) is a better overall choice as a
backdoor purification technique.

Strong Backdoor Attacks With High Poison Rates. By increas-
ing the poison rates, we create stronger versions of different attacks
against which most defense techniques fail quite often. We use 3
different poison rates, {25%, 35%, 50%}. We show in Table 8 that FIP
is capable of defending very well even with a poison rate of 50%,
achieving a significant ASR improvement over FT. Furthermore,
there is a sharp difference in classification accuracy between FIP
and other defenses. For 25% Blend attack, however, ANP offers a
slightly better performance than our method. However, ANP per-
forms poorly in removing the backdoor as it obtains an ASR of
29.96% compared to 0.83% for FIP.

Label Correction Rate. In the standard backdoor removal metric,
it is sufficient for backdoored images to be classified as a non-target
class (any class other than y;). However, we also consider another
metric, label correction rate (LCR), for quantifying the success of
a defense. We define LCR as the percentage of poisoned samples
correctly classified to their original classes. Any method with the
highest value of LCR is considered to be the best defense method.
For this evaluation, we use CIFAR10 dataset and 12 backdoor attacks.

Nazmul Karim, Abdullah Al Arafat, Adnan Siraj Rakin, Zhishan Guo, and Nazanin Rahnavard

Initially, the correction rate is 0% with no defense as the ASR is close
to 100%. Table 9 shows that FIP effectively corrects the adversary-
set target label to the original ground truth label. For example, we
obtain an average ~2% higher label correction rate than AWM.
Effect of Clean Validation Data Size. We also provide insights on
how fine-tuning with clean validation data impacts the purification
performance. In Table 10, we see the change in performance while
gradually reducing the validation size from 1% to 0.02%. Even with
only 50 (0.1%) data points, FIP can successfully remove the backdoor
by bringing down the attack success rate (ASR) to 5.91%. In an
extreme scenario of one-shot FIP, we have only one sample from
each class to fine-tune the model. Qur proposed method is able to
tackle the backdoor issue even in such a scenario. We consider AWM
and ANP for this comparison. For both ANP and AWM, reducing
the validation size has a severe impact on test accuracy (ACC). We
consider Badnets attack on the CIFAR10 dataset for this evaluation.
Effect of Different Architectures. We further validate the ef-
fectiveness of our method under different network settings. In
Table 11, we show the performance of FIP with some of the widely
used architectures such as VGG-16 [59], EfficientNet [65] and Vi-
sion Transformer (VIT) [18]. Here, we consider a smaller version
of ViT-S with 21M parameters. FIP is able to remove backdoors
irrespective of the network architecture. This makes sense as most
of the architecture uses either fully connected or convolution layers,
and FIP can be implemented in both cases.

Combining Different Backdoor Attacks. We also perform ex-
periments with combined backdoor attacks. To create such attacks,
we poison some portion of the training data using three different
attacks; Badnets, Blend, and Trojan. Each of these attacks has an
equal share in the poison data. As shown in Table 12, we use four
different poison rates: 10% ~ 50%. FIP outperforms other baseline
methods (MCR and ANP) by a satisfactory margin.

More AlI2All Attacks. Most of the defenses evaluate their meth-
ods on only All20ne attacks, where we consider only one target
label. However, there can be multiple target classes in a practical
attack scenario. We consider one such case: All2All attack, where
target classes are uniformly distributed among all available classes.
In Table 13, we show the performance under such settings for three
different attacks with a poison rate of 10%. It shows that the Al12A1l
attack is more challenging to defend against as compared to the
All20ne attack. However, the performance of FIP seems to be consis-
tently better than other defenses for both of these attack variations.
For reference, we achieve an ASR improvement of 3.12% over ANP
while maintaining a lead in classification accuracy too.

Adaptive Attacks. We follow Eq. 5 in our paper to simulate an
adaptive attack. Table 14 shows that as we increase ijF, the model
becomes smoother while it becomes harder to insert the backdoor,
hence, the ASR drops. However, f-FIP successfully purifies the
model even with such adaptive attacks. For larger F, we obtain a
higher drop in ACC. The underlying reason for this could be that
the convergence point of the backdoor model is more favorable to
clean distribution. Applying f-FIP would shift the model from that
convergence point and cause this undesirable ACC drop.

t-SNE Visualization of Cluster Structures. In Figure 5, we visu-
alize the class clusters before and after backdoor purification. We
take CIFAR10 dataset with Badnets attack for this visualization. For
visualization purposes only, we assign the label “0” to the clean data
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cluster from the target class and the label “11” to the poison data
cluster. However, both of these clusters have the same training label
“0” during backdoor training. Figure 5b clearly indicates that our
proposed method can break the poison data clusters and reassign
them to their original class cluster.

7 Conclusion

In this work, we analyzed the backdoor insertion and removal pro-
cess from a novel perspective—the smoothness of the model’s loss
surface—showing that the backdoor model converged to a sharp
minimum compared to a benign model’s convergence point. To re-
move the effect of backdoor, we proposed to re-optimize the model
to smooth minima. Following our analysis, we proposed a novel
backdoor purification technique using the knowledge of the Fisher-
Information matrix to remove the backdoor efficiently instead of us-
ing naive (e.g., general-purpose ones) optimization techniques to re-
optimize. Furthermore, to preserve the post-purification clean test
accuracy of the model, we introduced a novel clean data distribution-
aware regularizer. Last but not least, a faster version of FIP has been
proposed where we only fine-tuned the singular values of weights
instead of directly fine-tuning the weights. FIP achieves SOTA per-
formance in terms of running time and accuracy in a wide range
of benchmarks, including four different tasks and ten benchmark
datasets against 14 SOTA backdoor attacks.

Limitations. Here, we discussed a couple of limitations of our
proposed and, hence, corresponding future works to address those.
First, it is observable that no matter which defense techniques
we use, the clean test accuracy (ACC) consistently drops for all
datasets. Here, we try to explain the reason behind this, especially
for fine-tuning-based techniques, as FIP is one of them. Since these
techniques use a small validation set for fine-tuning, they do not
necessarily cover the whole training data distribution. Therefore,
fine-tuning with this small amount of data bears the risk of over-
fitting and reduced clean test accuracy. While our clean accuracy
retainer partially solves this issue, more rigorous and sophisticated
methods must be designed to fully alleviate this issue.

Second, while our method is based on thorough empirical analysis
and corresponding theoretical justification, there is no theoretical
guarantee whether the proposed method provably removes back-
door from a pre-trained model (which is out-of-scope of this work).
However, in the case of resource-constraints safety-critical systems,
it is often necessary to use a pre-trained model; hence, provable
backdoor defense is necessary for safety-critical applications. In
future work, we will focus on provable backdoor defense for safety-
critical applications.
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A  Proof of Theorem 1

PROOF. Letus consider a training set {x, y} = {x¢, Y}V {xp, 4}
where {xc, yc}? is the set of clean samples and {x}, yp} is the set
of backdoor or poison samples. In our work, we estimate the loss
Hessian wrt. standard data distribution, i.e. training samples with
their ground truth labels.

First, let us consider the scenario where we optimize a DNN (f;)
on {xc, yc} only (benign model). From the L.—Lipschitz property
of loss-gradient (ref. Assumption 1, Eq. (2)) corresponding to any
clean sample® x., we get

|Vt (xe, 01) — Vot(xe, 62)|| < Le||61 — 62|, V61,02 € ®  (10)

Now, consider the backdoor model training (f;,) setup, where
both clean and poison samples are used concurrently for training.
In such a scenario, a training sample can be either clean or poisoned.
As we are using standard data distribution, we calculate the loss (f)
corresponding to {x¢, ye } U{xp, Yy }; Where y,. indicates the original
ground truth (GT) label. Let us bound the difference of loss gradient
for backdoor training setup for any sample,

Vot (x, 01)-Vot(x, 02)l|

(i)

g max{uvﬂt{xc: 91) - ng{xC: 92)“9
[IVot(xp, 1) — Vot (xp, 62)]]} (1)
) |Vt (xp. 81) — Vol (xp, 82|

(iif)
< Lpl|61 - 62

here, step (i) follows trivially as | |Vgf (x, 61)—Vgf(x, 62)|| holds for
any x. Unlike f; and f}, we can have loss gradients corresponding
to samples from clean and poison sets; (ii) leverages the properties
of backdoor training where the backdoor is inserted by forcing
fp to memorize the specific pattern or trigger 8, specifically the
mapping of § — yp. At the same time, f}, learns (does not memorize)
image or object-related generic patterns in x, and maps them to

ZNote that we use {x, y.} to denote clean samples whereas {x, y} was used in the
main paper to denote all training samples. We start with a clean training set, {x, y},
and then add the trigger to some of the samples x, with target label y that produce
poison set, {xp, ys}.

3Here, loss-gradient corresponding to clean sample means we first compute the loss
using clean sample and then take the gradient.
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Ye, similar to f;. Let us denote the optimized parameters of fj,
as, ;. Since f}, is optimized to predict yp, we have a high loss
gradient Vgf(xp, 61) if we consider GT label y, for x}. Note that
the backdoor model becomes too sensitive to the trigger due to
the memorization effect. However, a certain group of parameters
(8®)) show far more sensitivity to the backdoor as compared to
others (8(9)), where 8 = 8(¢) U 8(0) and |#(P)| << |8(¢)|. This
has also been shown in previous studies [9, 41, 72]. Therefore,
even a small change to 6®) will make the backdoor model show
significantly less (or no) sensitivity to the trigger. On the other
hand, a small change in 6(¢) has very little impact on recognizing
image-related generic patterns. Now, consider a scenario where
6 is slightly changed to 2. Due to this shift, the loss gradient
Vot (xp, 02) becomes significantly smaller if we calculate it w.rt.
1Je- This happens for the following reasons: (1) Due to the change
in 8% the model does not show sensitivity towards § anymore.
(2) As mentioned before, with small change in B(C), the model can
still recognize patterns in samples. This means the model ignores
in xp(= x + §) while recognizing image-related patterns in x and
predicting the GT label y.. Therefore, the change in loss gradient
(||Vaf (xp, 61)—Vf(xp, 82)]||) is large. On the other hand, due to the
reason (2), the change in loss gradient (||Vgf (x¢, 61) — Vgt (xc, 82)]])
is smaller. Finally, we can write the following,

196 (e, 02) ~ Vot (xe, :)I| < Lellos —

Vot (xp, 61) — Vot (xp, 62)[| < Lp||61 — 62|
In our above discussion, we have shown that

Vgt (xe, 61) — Vot (xe, 02)|| < |[Vot (xp, 61) — Vol (xp, 62)]|

Therefore, for the same set of 8y, 8, Eq. 12 suggests that L, < L.
Note that L, < Lp holds if we consider the smallest Lipschitz
constant for Eq. 12 [5] (iii) follows the definition of smoothness.

Hence, the loss of the backdoor model is Ly—Smooth and L, < L.
[m]

(12)

Takeaway from the theoretical analysis. Based on Theorem 1,
we can rewrite Eq. 3 for a backdoor model,

sup G{Vsﬂ} < max{Lc,Lp} 13)
2]

where £ is the loss-function of the backdoor model computed over
{x. 9t ={xc.ye} U {xp.yc}-

The R.H.S. of Eq. 13 represents the supremum? for smoothness
of a backdoor model. From Eq. (11), it can be observed that L, < L,
which leads to the following form of Eq. 13,

sup G{Vsﬂ} <Ly (14)
g

Hence, a backdoor model tends to show less smoothness on L,
computed over {x,y} = {x¢. yc} U {xp,yc}, as compared to a
benign model with L.—Lipschitz continuity.

“We used the definition of supremum (https://en.wikipedia.org/wiki/Infimum_and_
supremum) slightly differently than the formal definition. By supremum, we indicate
that max { L., L } is the lowest value for the Lipschitz constant of the backdoor model
fb(.) to hold Eq. (13).
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