
TRASC: Tensor-based Radio Spectrum Cartography
using Plate Splines and Tensor CP Decomposition

Mohsen Joneidi, Nazanin Rahnavard and Farzam Hejazi
Department of Electrical and Computer Engineering
University of Central Florida, Orlando, FL 32816

Emails: {mohsen.joneidi, nazanin.rahnavard, farzam.hejazi}@ucf.edu

Abstract—The problem of radio spectrum cartography is
addressed based on simultaneous tensor decomposition and
interpolation of spatial maps. To this aim, a joint problem
of CANDECOMP/PARAFAC (CP) decomposition and thin-plate
splines is introduced and solved efficiently. Spectrum cartography
is known as estimating power spectrum in any arbitrary location
and frequency based on a small subset of sensed locations and
frequencies. Tensor-based radio spectrum cartography (TRASC)
algorithm is proposed to address spectrum cartography which
consists of iterative solutions for two subproblems. The tensor de-
composition subproblem models the latent temporal and spectral
structure of sources, and the interpolation subproblem takes into
the account fine spatial details in order to leverage neighborhood
information within a certain vicinity. From mathematical point of
view, retrieving non-sensed data from incomplete measurements
is an ill-posed inverse problem. We utilize an assumption on rank
of tensors and an assumption on smoothness of spatial interpo-
lated maps to make the joint problem well-posed. Moreover, the
impact of dynamics of the network on the rank of the underlying
tensor is studied. The simulation results show applicability of
the proposed algorithm in spectrum map estimation in presence
of multi-dimensional sensing results over time, frequencies and
space. Our experiments indicate that utilizing tensors and spatial
interpolation is an effective approach for spectrum cartography.

Index Terms—Cognitive radio networks, dynamic spectrum
sensing, radio cartography, and CP tensor decomposition.

I. INTRODUCTION

Spectrum cartography is a promising solution to address
today’s spectrum deficiency caused by the recent spike in de-
mand for wireless technologies [1–3]. The licensed holders of
the spectrum (a.k.a. primary users or PUs) often under-utilize
this valuable resource [4]. It is desired to allow unlicensed or
secondary users (SUs) to coexist with PUs given that they
do not interfere with the licensed users. This necessitates
a cognitive radio system to sense the spectrum usage and
accordingly adapt its spectrum utilization [5, 6].

The spectrum sensing problem is approached using numer-
ous methods [7]. These methods are ranged from per-bin spec-
trum sensing [8] to wide-band sensing [9]; non-cooperative
sensing [10] to cooperative sensing [11]; centralized [12] to
distributed [13]; and directional sensing [14] using phased
arrays [15] to omni-directional energy detectors. Our work
focuses on cooperative centralized spectrum sensing using a
set of simple energy detectors. Cooperative detection of spec-
trum opportunities requires collecting sensed measurements
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in a fusion center. However, dealing with a large amount of
spectrum measurements is not a trivial task. Efficient represen-
tation using high-dimensional matrices/tensors is an attractive
approach for analysis of sensed measurements. In this way,
structured factorization of the received spectrum enables us to
capture the underlying spectrum occupancy patterns [16–18].
In the present work, we model the propagated power from
the primary transmitters at different locations, time slots, and
frequency channels as a multi-dimensional tensor, which is
referred to as the power tensor.

The radio frequency (RF) cartography problem leads to
find the propagating power maps across a network at any
frequency channel. This is an ill-posed problem, and therefore
it is difficult to infer unique and meaningful interpretation for
the estimated propagating power maps. To alleviate this issue,
we consider the CANDECOMP/PARAFAC (CP) [19] model
for the latent tensor and we impose smoothness constraint
for the interpolated spatial maps. The CP model represents
a D-dimensional tensor via D factor matrices. Each factor
matrix contains a set of bases that spans one way of the
tensor. Here, we deal with 3-way tensors, i.e., D = 3. In
the proposed framework, the CP factors capture the patterns
of the PUs’ activities over different dimensions of time,
space, and frequency. We propose the tensor-based radio
spectrum cartography (TRASC) algorithm to address the joint
problem of tensor decomposition and map interpolation. CP
[19] and Tucker [20] are two well-known tensor decomposition
methods, which can be interpreted as two extensions of matrix
singular value decomposition (SVD). The main contributions
of the paper are summarized as follows:
• Dynamic spectrum cartography is modeled by a low-rank

tensor and the relationship between the imposed rank and
the dynamics of network is studied,

• A novel algorithm, referred to as TRASC, is introduced
that performs spatially-smooth tensor completion using
tensor decomposition and spatial interpolation.

• The applicability of TRASC for spectrum cartography
with unknown propagation parameters is demonstrated.

Notations: Throughout this paper, vectors, matrices, and
tensors are denoted by bold lowercase, bold uppercase, and
bold underlined uppercase letters, respectively. The positive
orthant in RP is denoted by RP

+ and it is defined as {x|xp ≥
0, ∀p = 1, · · · , P}, in which xp is the pth element of x. If
T ∈ RP×F×T then (T ):,f,t is a vector of length P , also



known as a mode-1 fiber of T , defined by fixing all the indices
but one. Similarly, we have mode-2 and mode-3 fibers. T1,
T2, and T3 are unfolded matrices whose columns are fibers
of the first, second and third mode of T , respectively. The
Khatri-Rao product is denoted by �. Moreover, ◦ denotes the
outer product, i.e., entries of T = a ◦ b ◦ c are calculated as
tpft = apbfct. The outer product of two non-zero vectors is
a rank-1 matrix, similarly the outer product of three non-zero
vectors is a rank-1 tensor. The symbol ∗ denotes the element-
wise (Hadamard) product. The n-mode product of a tensor, X ,
with a proper sized transformation matrix U is a tensor and
is denoted by X ×i U . It transfers each fiber of the ith mode
of the tensor to the corresponding fiber in the output tensor.
Mathematically, Y = X ×i U ↔ Yi = UXi for i = 1, 2, 3,
in which Xi and Yi are unfolded replicas of tensor X and Y
w.r.t. different dimensions. X ≥ 0 indicates that every eleemnt
in X is non-negative.

II. PRELIMINARIES

A. CP Decomposition

Our proposed tensor-based approach is mainly based on the
CP decomposition [21], which factorizes a tensor into a sum
of rank-one tensors. For example, a three-way tensor X ∈
RP×F×T of rank R can be decomposed as

X =

R∑
r=1

aXr ◦ bXr ◦ cXr = [[AX ,BX ,CX ]], (1)

where aX
r ∈ RP , bXr ∈ RF and cXr ∈ RT are factor vectors

of the rth rank-one component. The factor matrices refer to
the collection of factor vectors from the rank-one components,
i.e., AX = [aX

1 aX
2 . . . aX

R ] and likewise for BX and CX .
The tensor CP rank may be referred to as unconstrained

rank because there is no additional constraint on the factors
aX
r , bXr and cXr . On the other hand, there is the constrained

or structured rank in which the factors are restricted to be
within a specific set [21]. For example, non-negative-rank and
symmetric-rank are obtained by imposing nonnegativity and
symmetry constraints on the factors, respectively.

Due to corruption by noise, typical tensors are not low
rank and low-rank approximation should be employed in order
to extract a set of meaningful components. However, low-
rank approximation of tensors is an ill-posed problem. This
is because the set of tensors with the rank of at most R is
not a closed set and optimization algorithms for finding CP
factors result in an infimum solution which is not feasible
[22]. There are some efforts for approximating rank with other
functions such as nuclear norm1 [24]. In contrast to the matrix
rank minimization, tensor rank minimization cannot be relaxed
easily using nuclear norm because the calculation of tensor
nuclear norm is an NP-hard problem [24]. Alternating least
squares (ALS) is a well-known method for finding the CP
factors [25] of a tensor X , in which factors are initialized
randomly at the beginning and then updated iteratively.

1Nuclear norm is a well-known function to surrogate rank of matrices [23].

B. Spline-based Surface Interpolation
Spectrum map of an area contains spatial correlation over

neighboring locations. Our proposed framework estimates a set
of principal incomplete spectrum maps such that the actual
sensed data is a linear combination of them. The principal
incomplete maps are estimated using CP decomposition. Inter-
polation of the principal incomplete maps (spatial CP factors)
is the enabling step toward estimating the actual spectrum map
for any arbitrary location. Please note that the contribution
of each principal map can be estimated using CP decompo-
sition and the same contribution coefficients are applied for
reconstructing the full spectrum map using the interpolated
principal maps. In the present work, thin plate splines (TPS)
is employed for interpolating the spatial incomplete maps
[26]. TPS is proposed for modeling climate data originally.
However, it is an efficient model for capturing other kinds of
spatial dependencies including spectrum cartography [26].

Assume we are given a set of locations (zn, wn) and their
corresponding value yn. The problem of surface interpolation
can be cast as finding function f : R2 7→ R such that
f(zn, wn) is as close as possible to yn and at the same time
a desirable property is satisfied for function f . Specifically, in
TPS a measure for smoothness of f is employed as follows
[27],

If =

∫ ∫
(
∂2f

∂z2
+ 2

∂2f

∂z∂w
+
∂2f

∂w2
) dz dw. (2)

The coefficient If is called the bending energy of f .
Function f is modeled by summation of n terms given by

f(z, w) =
∑
i

λir
α
i log(ri), (3)

where ri =
√

(z − zi)2 + (w − wi)2. Equation (3) describes
the kernel of interpolation. Parameter α is the path-loss
coefficient which is set to 2 for power spectrum propagation
in free space. The goal of interpolation is to find function f
and it can be expressed mathematically as follows,

argmin
f

If s.t. yn = f(zn, wn).

Finding an optimized interpolating function is equivalent to
estimating λi’s according to (3). Here, for simplicity of
notation the minimization is shown w.r.t. function f . In the
next section, the thin plate spline interpolation is integrated
with the CP decomposition in order to address the spectrum
cartography problem under missing sensor measurements.

III. THE TRASC ALGORITHM

This section presents our main contribution. First, the
tensor-based problem formulation for spectrum cartography is
introduced. The derived formulation is based on partitioning
the area to a grid network and modeling the received spectrum
at each grid point by a superposition of the propagating power
from sources. Then, practical assumptions are elaborated to
make the problem tractable and a discussion for rank estima-
tion is exhibited. We suppose the locations of SUs are known
and the goal is to find the propagating power and location of



active PUs as the enabling step for reconstructing the power
spectrum map at any arbitrary location and frequency. To
achieve this, let us consider a set of grid points across the
area of interest. Let N denote the number of grid points in
the area of interest and G denotes the number of active primary
users. The indices of sensors is a subset of {1, · · · , N}. The
frequency bandwidth is broken into F frequency channels.
The received PSD at location/sensor n at time t and frequency
channel f can be written as [11]2,

yn(t, f) =

G∑
g=1

φngxg(t, f) + zn(t, f)

= φTnx(t, f) + zn(t, f),

(4)

where, φn = [φn1 · · · φnG]T , in which φng is the chan-
nel gain between the gth active source and the nth sensor.
The total number of active sources is indicated by G. The
propagation from the gth active source is denoted by xg(t, f)
and the collection for all grid points forms vector x(t, f) =
[x1(t, f) · · · xG(t, f)]T . We assume the measurements are
available for T time slots and F frequency channels. Collabo-
rative estimation of x(t, f) ∈ RG over each time slot and for
each frequency bin requires collecting measurements of all
sensors in vector y(t, f) = [y1(t, f) · · · yN (t, f)]T ∈ RN .
The following minimization problem has been proposed for
estimation of x(t, f) for each time and frequency indepen-
dently [11]

x(t, f) = argmin
x
‖y(t, f)−Φx‖2, (5)

where the nth row of matrix Φ is φT
n . The regularized version

of (5) using `1 constraint has previously been employed for
collaborative spectrum estimation for a given Φ [11, 28, 29].

Let us represent the collection of x(t, f) and y(t, f) for
all frequencies and time slots as tensors X = [xgtf ] and
Y = [yntf ], respectively. That is xgft = xg(t, f) and
ynft = yn(f, t). Tensor X ∈ RG×F×T is referred to as power
tensor and tensor Y ∈ RN×F×T is referred to as cartography
tensor. Please note that x(t, f) is a vector in RG and y(t, f) is
a vector in RN . These vectors point to the mode-1 fibers of X
and Y , respectively. We aim to estimate the propagation power
from each active source using the accessible measurements in
Y . Mathematically speaking, we have:

Y = X ×1 Φ +Z. (6)

Each entry of matrix Φ ∈ RN×G represents the channel gain
between the nth grid point and the gth source [11]. Our goal
is to estimate the power tensor, X , which is characterized
by its CP factors. Due to narrow band communication, and
the temporal correlation of power propagation at a transmitter,
tensor X is highly structured and can be modeled by a low-
rank tensor using the CP decomposition as stated in (1). Each
rank-1 tensor, i.e., aX

r ◦bXr ◦cXr , represents a principle pattern
of the spectrum propagation. Matrix Φ consists of G number
of vectorized maps in which each map is a reshaped version of

2This form requires a set of mild conditions which is out of scope our present
work and studied in [11]

a column of Φ. Let define tensor Γ ∈ R
√
N×
√
N×G such that

the gth slice of Γ is the reshaped version of the gth column of
Φ. Without loss of generality we assume that N is a perfect
square number and the area of interest consists of

√
N ×

√
N

grid points. Moreover, let us define multiplication operator
< ·, · > such that

<X,Γ >= X ×1 Φ. (7)

It is interesting to mention that the CP factors of tensor Y
in the presence of no noise, i.e., Z = 0, can be stated as
follows in terms of CP factors of tensor X:

aYr = ΦaXr , b
Y
r = aXr , c

Y
r = cXr . (8)

Tensor Γ, which is a reshaped version of matrix Φ, plays
a key role in our architecture. Each slice of this tensor
contains an incomplete power propagation pattern from a
source. Interpolating these patterns alongside with tensor X
results in a completed cartography tensor, Y . Solving the
following problem provides us with two outcomes: (i) the CP
factors of the power tensor and (ii) principle propagation maps
and their interpolation functions.

argmin
aX
r ,b

X
r ,c

X
r ,fg

‖Ω(Y − <X,Γ>)‖2F + α
∑
g

Ig

subject to: X =

R∑
r=1

aXr ◦ bXr ◦ cXr , and

fg(zi, wi) = Γg(zi, wi)

(9)

Since sensors are distributed in a small subset of {1, · · · , N},
we need to reduce the problem to only the known information.
Function Ω reduces the problem into only the sensed locations.
Function fg interpolates the incomplete power spectrum map
corresponding to the gth slice of Γ. The bending energy
of fg(z, w) is denoted by Ig which is defined in (2) and
variable α controls smoothness of the interpolation function.
Each slice of tensor Γ is a 2D incomplete surface since the
sensed tensor Y is incomplete. Interpolation of all slices of
Γ results in completion of Y . Please note that each slice
of Γ exploits a separate interpolating function. This problem
can be regarded as a combination of CP decomposition and
2D surface interpolation. Here, we assume that sources are
distinguished based on their spatial distance and their spectral
signature over time. For example, if the spectral pattern of
propagating power from a location is changed after a certain
time, two distinguished sources are accounted.

Parameters G and R depend on the actual number of active
users. However, the actual number of active users is unknown
in a realistic network. Therefore, a large enough estimation can
be substituted. In order to make the model more parsimonious,
we assume R = G. The problem can then be simplified to
the following form by elimination of parameter G and the
auxiliary variable X as

argmin
φr,br,cr,fr

‖Ω( Y −
R∑
r=1

φr ◦ br ◦ cr )‖2F + α
∑
r

Ir

subject to: fr(zi, wi) = Γr(zi, wi) ∀ i ∈ O.

(10)



In this problem, φr is the vectorized replica of the rth

principle spectrum map and it can be interpreted as a CP factor
of tensor Y w.r.t. the spatial dimension. In other words, the
first CP factor is regularized to have the minimum bending
energy in order to have a smooth map over interpolated
locations. Since Y is an incomplete tensor w.r.t. non-sensed
locations, there are enough information to estimate a sub-
set of entries of φr. However, a spatial interpolation can
reveal us a completed principle map. Each principle map is
interpolated using a function which is regularized to have a
smooth behavior. This regularization is inspired by prior work
in the literature of interpolation as discussed in Sec. II-B.
The interpolator function is constrained to be equal to the
principle maps at the observed locations indexed in set O.
The coordinate of observed locations are shown by (zi, wi).
Low-rank assumption for the cartography tensor is helpful for
making the problem identifiable. However, fine local details
of the spectrum maps are lost in the found low-rank structure.
Two dimensional interpolation is employed in order to keep
details in the sensed data and to infuse these details for
interpolation of non-sensed locations. Surface interpolation
helps CP factors to obtain spatial smooth factors. ALS is
the practical approach for solving the proposed problem in
which each iteration corresponds to a least squares problem
with missing entries (will be explained in Section III-B).
Interpolating br and cr results in increasing both spectral and
temporal resolution.
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Fig. 1: Framework of the proposed joint tensor decomposition and surface interpo-
lation. This scheme only shows a big picture of the proposed work. Practically, CP
decomposition is implemented iteratively. In the proposed algorithm, interpolation is
performed alongside iterations of CP decomposition. In other words, we solve a joint
problem of decomposition and interpolation.

A. Least Square Solution with Missing Entries

Our main proposed algorithm requires solving a general
least square problem with missing entries along iterations. Let
us formalize this problem as follows for a given matrix Y ,
a given matrix X , and known entries organized in a binary
matrix denoted by M ,

Â = argmin
A

‖M ∗ (Y −XA)‖2F (11)

The solution of this problem w.r.t. A given Y , X , and the
mask is straightforward which is indicated in Alg. 1 referred
to as missing entries least squares (MELS). Please note that
MELS solves a basic optimization problem and our main

proposed algorithm is built upon it iteratively. In MELS, each
column of A can be computed independently. Alg. 1 is a

Algorithm 1 Missing Entries Least Squares (MELS)

Require: Y ∈RN×F,X∈RN×R, and the available entries set, Ω.

Output: A ∈ RR×F .

1: Compute M ∈ RN×F based on Set Ω
FOR f = 1, · · · , F

2: D = diag(M(:, f))

3: W = XTDX
4: A(:, f) = W−1XTDY (:, f)

END FOR

simple solution for (11) and plays a key role in our main
algorithm. The solution of (11) is referred as MELS(Y ,X,Ω).

B. Implementation of TRASC for Power Map Reconstruction

Here a practical algorithm for solving (10) is proposed.
The sensed incomplete tensor is decomposed into a set of CP
factors considering the known entries. Then, the spectral and
temporal factors are kept and spatial factors are interpolated in
each iteration of tensor decomposition. The power spectrum at
any arbitrary location and in each frequency can be inferred via
tensor reconstruction of CP factors. Alg. 2 presents the steps
of the TRASC algorithm that is a joint tensor decomposition
and 2D interpolation for spectrum cartography. Spectral and
temporal CP factors, i.e., matrices B and C, are initialized by
a plain CP decomposition on Y Ω where unknown entries are
set to 0. The initial value for spatial factors is estimated using
the MELS algorithm. In Alg. 2, TPS(.) refers to thin-plate
splines interpolation method, introduced in Sec. II-B.

Algorithm 2 Tensor-based Radio Spectrum Cartography
Require: Y Ω, R, Ω, α and N .
Output: Y .
1: Initialize B and C by CP factors of Y Ω
2: Φ← MELS(Y T

1 ,B �C,Ω)

While (The stopping criterion is not met)
3: B ← MELS(Y T

2 ,C �Φ,Ω)

4: C ← MELS(Y T
3 ,B �Φ,Ω)

5: FOR t = 1 ... T
6: F = Bdiag(Ct)

7: AtΩ = (F †Y t
Ω)T

8: FOR r = 1 ... R
9: Γr = TPS(reshape(atΩ, [

√
N,
√
N ]),Ω, α)

10: φr = vec(Γr)

END FOR
11: Y t = ΦF T

END FOR
END While

In Alg. 2, Y t = Y (:, :, t) is a slice of tensor Y correspond-
ing to time slot t and is of dimension N×F . Each column has
N elements corresponding to measurements of all spectrum
sensors. In other words, each column of Y t is a 1D collection
of all power spectrum sensors within the 2D network. The
order for vectorization is arbitrary; however, in Line 9, the



operator reshape is the inverse operator for the employed
vectorization. Here, Φ refers to the full spatial factors and
At refers to the incomplete spatial maps corresponding to
time slot t. CP decomposition using ALS can be categorized
as a block coordinate descent algorithm. It is shown that if
optimization along any coordinate direction yields a unique
minimum point then the main cost function is convergent
using a coordinate descent method [30]. Lines 3, 4 and 7 of
TRASC is identical to the conventional ALS algorithm for
CP decomposition. The main variables are computed in these
three steps. However, we define a dependent variable which
is obtained by interpolation of the spatial factors. Note that
convergence of TRASC is inherited from convergence of ALS
for CP decomposition [31].

IV. EXPERIMENTS

The TRASC algorithm is evaluated for dynamic spectrum
cartography. The experimental setup is similar to that of [32].
Specifically, we consider F = 16 channels and our area
of interest with the size of 50 × 50 m2 is discretized into
51 horizontal bins and 51 vertical bins, i.e., N = 2601.
The primary active users are considered static and T = 100
time slots are employed. The spatial propagation pattern of
each transmitter is synthesized using a path-loss model and
the spatial correlated log-normal shadowing model [33]. The
spectral activity pattern of each transmitter is assumed as
summation of three sinc functions as explained in [32] as

br(f) =

3∑
i=1

qri sinc2(
(f − fri )

wri
), (12)

where, qri follows a uniform distribution between 0.5 and 2.
Moreover, fri and wr

i are the central frequency and the width
parameter of each function, respectively. The width parameter
is drawn from a uniform distribution between 2 and 4.

The performance of different spectrum sensing algorithms
are evaluated via the Cartography Error, which is defined as

e =
‖log(Y )− log(Ŷ )‖F

‖log(Y )‖F
. (13)

Y indicates the power spectrum map and Ŷ refers to the
interpolated map using a set of measurements. Employing
logarithm scale results in less bias for high power spectrum
areas of the network. Thus, we have a more reliable measure
for comparison of the interpolated low-power details in the
area of interest. Two different sensing patterns are employed
as suggested in [32]. In the first pattern, a line of horizontal
grid points and a line of vertical grid points are scanned. This
pattern is referred as the structured pattern. The second pattern
corresponds to random sampling of grid points in the network.

Fig. 2 shows the original power spectrum map in a fre-
quency band which is sampled in a small subset of locations
versus the recovered power spectrum map using different
recovery algorithms. In Fig. 2b, the recovered spectrum using a
plain CP decomposition is shown, i.e., only a low-rank decom-
position is employed to interpolate the incomplete sensing re-
sults. The same strategy can be repeated using any other tensor

(a) (b)

(c) (d)

(e) (f)
Fig. 2: Comparison between the original and the recovered spectrum maps. (a) The
original power spectrum map. The grid is 50 × 50, however, 6 columns and 6 rows
of the original power spectrum map are measured. The power spectrum is measured
at these locations only. (b) The recovered spectrum from missing and noisy sensed
data using a plain CP decomposition and interpolating the unread measurements via
CP reconstruction. (c) The recovered spectrum via block-term decomposition. (d) The
plain 2D plate splines method is employed for interpolating the power spectrum map.
(e) The proposed method in [32] via the block-term decomposition which post-processed
using 2D plate splines. (f) Our proposed method that employs CP decomposition and
2D plate splines jointly.

decomposition model. Fig. 2c shows the interpolation result
using the plain block-term tensor decomposition [32]. Kernel-
based interpolation methods interpolate the incomplete set of
measurements via neighborhood information. However, these
methods neglect the global correlation among measurements in
space, spectral bands and time. Fig. 2d shows the interpolated
map using 2D plate splines method [34]. Fig. 2e shows the
result of coupled BTD where the pathloss gains are corrected
using plate splines as a post-processing. In Fig. 2f, our
proposed framework is evaluated which employs an iterative
approach between model-based CP factors and neighborhood-
based splines. The last two subfigures correspond to the joint
methods that exploit both tensor-based decomposition and
interpolation. Utilizing both techniques improves the accuracy
of spectrum recovery. Our proposed joint method estimates the
low-power source at the top right of the area more accurate.

Fig. 3 exhibits two interpolated CP spatial components.
At each iteration of TRASC, a set of spatial CP factors are
estimated and interpolated. Plate splines method is utilized
to obtain interpolated CP factors as the basic components
to reconstruct the desired spectrum map. In the next exper-
iment, we study the performance of two basic methods based
on tensor decomposition and neighborhood interpolation in
terms of the normalized error of cartography defined in (13).
Moreover, in this experiment we consider the BTD method
for cartography [32]. Fig. 4b shows the cartography error of
different methods over time. Tensor-based methods need a fine
tuning of rank in practice. In this experiment it is assumed



Fig. 3: The interpolated spatial components using our proposed framework. The
rank of CPD is assumed to be 2. A linear combination of these two factors is able
to reconstructs the power spectrum map in any frequency band.

that the assumed rank differs +1 from the best possible rank.
As it can be seen and as it is mentioned in [32], the block-
term tensor decomposition is highly sensitive to the rank.
However, our proposed structured CP decomposition is not
highly sensitive to the rank. In Fig.4b the cartography error
for 100 time slots is plotted. Tensor-based methods also are
compared with the naive interpolation on independent channels
for each time slot using TPS interpolation. In some time slots,
the performance of the coupled block-term decomposition is
close to the performance of our framework. However, the
coupled block-term decomposition is performing worse than
TRASC in average over time.

0 20 40 60 80 100

0

0.05

0.1

0.15

(a)

0 20 40 60 80 100
0

0.05

0.1

0.15

Our Proposed

(b)
Fig. 4: Spectrum map reconstruction error for several algorithms. (a) The rank for
the tensor-based methods is assumed to be the best possible rank. (b) The rank for the
tensor-based methods is assumed to differ from the best possible rank by +1.

Unlike the coupled block-term decomposition method [32],
our framework is an iterative approach which performs both
tensor decomposition and 2D spline interpolation at each
iteration. However, any iterative approach raises the conver-
gence issue which must be investigated. Fig. 5 shows the
performance of the proposed framework over iterations in
terms of the normalized cartography error.

An adaptive rank estimation method introduced in the
previous section is presented next. Fig. 6 shows the residual
error of the main cost function (10) versus the assumed rank.
There are two static sources in the area and each one has

0 10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

a

Fig. 5: The convergence behavior of the proposed framework. At each iteration, all
tensor CP factors are updated and a more accurate model is estimated for reconstruction
of power spectrum map.

three active bands based on (12). The cartography error can
be interpreted as a generalized error for unseen grid points and
the residual error represents the error of TRASC only for the
sensed grid points. This concept is similar to the train error
and the test error in machine learning systems. Increasing the
rank improves the residual error, however, after a certain point
it will cause over-fitting for the general cartography error.

The behavior of TRASC w.r.t. the assumed rank is smooth
while the method based on BTD introduced in [32] is highly
sensitive to the assumed rank of BTD. Fig. 7 shows the
sensitivity of cartography based on BTD w.r.t. the assumed
rank. As it can be seen, this method only performs efficiently
for a specific rank. This problem makes BTD not viable in the
cartography application.
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Fig. 6: (a) The effect of assumed rank on the residual error of cost function (10). (b)
Sensitivity to the proposed framework w.r.t. the assumed CP rank.

In Fig. 8a, our proposed spectrum sensing framework is
compared with the block-term tensor decomposition in terms
of the number of sensed grid points. In structured sampling
an entire line of horizontal/vertical grid points are sensed.
However, in the random sampling the sensed grid points have
no spatial structure.
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Fig. 7: Sensitivity of BTD to the assumed rank.

At each iteration of our framework, a 2D interpolation is
applied on all spatial CP factors. The impact of the regulariza-
tion parameter which controls the smoothness of interpolation
functions is studied in Fig. 9. A low value for parameter α
corresponds to a non-smooth interpolating function. However,
there is a wide range for the smoothing parameter such that
the cartography error is improved.
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Fig. 8: (a) The number of structured measurements versus the normalized cartography
error. (b) The number of random measurements versus the normalized cartography error.
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Fig. 9: The impact of the smoothness parameter in 2D splines interpolation on the
overall performance of the proposed framework.

V. CONCLUSION

A new framework for dynamic spectrum cartography is

proposed. The thin plate spline interpolation method and the

tensor CP decomposition algorithm are employed jointly in

a unified framework. An iterative algorithm, referred to as

TRASC, is introduced for estimating CP factors and the

parameters of interpolation. The proposed joint decomposition

and interpolation is used for tensor completion to address the

problem of spectrum cartography under the shadowing channel

model. Our proposed cartography technique is shown to be as

accurate as the state-of-the-art method while it is less sensitive

to the model’s parameters such as the assumed rank of tensors.
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