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ABSTRACT

This paper studies super-resolution harmonic retrieval for strictly
non-circular coherent signals. We develop gridless sparse repre-
sentations of both their covariance and pseudo-covariance matrices
over a common matrix-form atom set. This enables the decoupled
atomic norm minimization (D-ANM) technique to exploit the spar-
sity of the covariance and pseudo-covariance matrices jointly. Fur-
ther, by effectively utilizing the inherent mutual coupling character-
istics between the covariance and pseudo-covariance matrices, ad-
ditional constraints are properly imposed to reflect and enforce de-
sired structure information represented by such matrices and their
augmented matrix. It leads to a novel structure-based sparse opti-
mization method, called double decoupled atomic norm minimiza-
tion (DD-ANM). In addition, performance analysis is provided for
the proposed DD-ANM method in practical settings. Simulation re-
sults reveal that the proposed DD-ANM outperforms the benchmark
methods in terms of lower estimation errors.

Index Terms— harmonic retrieval, non-circularity, coherent
signals, double decoupled atomic norm minimization, covariance.

1. INTRODUCTION

Harmonic retrieval of non-circular (NC) coherent signals with mul-
tiple measurement vectors (MMV) has attracted attention in recent
years. In fact, many modulated signals used in communication and
radar systems are NC in nature [1]. Meanwhile, coherency of source
signals widely exists due to multipath propagation in practice [2].
Conventional harmonic retrieval methods have been developed for
processing and analyzing NC coherent signals [3–6]. While these
methods successfully handle coherent source signals and enjoy en-
hanced accuracy thanks to the enlarged manifold in NC scenarios,
they can only work with uniform linear arrays but fail to perform
well under the subsampling or compression scenarios.

To overcome this problem, compressed sensing (CS) based al-
gorithms are developed to utilize the sparsity of sources [7,8]. How-
ever, these solutions based on on-grid assumption suffer from lim-
ited estimation accuracy due to basis mismatch. Although a covari-
ance matrix gridless sparse representation (CMGSR) approach has
been proposed for coherent signals via a gridless technique called
as atomic norm minimization (ANM) [9], it only deals with the co-
variance matrix. Recently, we develop a low-rank Toeplitz-Hankel
covariance reconstruction method based on another type of gridless

This work was supported in part by the NSFC grants #62271255,
#61871218, and #61801211, the US NSF grants #2136202 and #2231209,
and the key laboratory of Radar imaging and microwave photonics (NUAA),
ministry of education, grants #NJ2023008.

technique termed as low-rank structured covariance reconstruction
for harmonic retrieval of NC signals [10]. It exploits the structural
information of both the covariance and pseudo-covariance matri-
ces at the same time. Unfortunately, such structural information no
longer holds under coherent scenarios. To the best of our knowl-
edge, there still lacks gridless-type method for NC coherent sig-
nals by jointly capturing the sparsity of both covariance and pseudo-
covariance for high estimation accuracy with high sample efficiency.

To fill this gap, this work aims at efficient ANM-based method
for harmonic retrieval of NC coherent signals, by exploiting the spar-
sity of covariance and pseudo-covariance matrices jointly and also
by utilizing the mutual coupling characteristics between them. To
this end, we first develop gridless sparse representations of both the
covariance and pseudo-covariance matrices over a common matrix-
form atom set, which permits an effectively joint utilization of the
sparsity of such two matrices via the decoupled ANM (D-ANM)
technique. Then, by utilizing the inherent mutual coupling charac-
teristics between the covariance and pseudo-covariance matrices, we
introduce additional constraints to properly reflect and enforce some
desired structure information represented by such matrices and their
augmented matrix. This gives rise to a novel structure-based sparse
optimization solution, named double D-ANM (DD-ANM) for har-
monic retrieval of NC coherent signals. Theoretical analysis and
simulation results verify the advantage of the proposed DD-ANM.

Notations: a, a, A and A denote a scalar, a vector, a matrix
and a set, respectively. (·)T , (·)∗, and (·)H are the transpose, con-
jugate, and conjugate transpose of a vector or matrix, respectively.
diag(a) generates a diagonal matrix with the diagonal elements con-
structed from a and blkdiag([A1,A2]) returns the block diagonal
matrix created by aligningA1 andA2 along the diagonal direction.
vec(·) stacks all the columns of a matrix into a vector. IΩ is gener-
ated from an identity matrix by selecting its rows with indices Ω, and
0a is an a-size zeros matrix. T(u) represents a hermitian Toeplitz
matrix with the first column being u. Tr(A) denotes the trace of
A. For a scalar a, |a| denotes its modulus and for a set A, |A| is
the cardinal number of A. ‖·‖2 and ‖·‖F denote the Euclidean and
Frobenius norm, respectively. E{·} denotes expectation.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Consider the problem of harmonic retrieval from a strictly NC coher-
ent signal. The NC signal of interest x(t) ∈ CM is a linear mixture
of K frequency components in the form of

x(t) =

K∑
i=1

si(t)a(fi) =

K∑
i=1

s′i(t)e
jφia(fi),

= A(f)s(t) = AΦs′(t) t = 1, . . . , L,

(1)



where si(t) = s′i(t)e
jφi is the complex exponential of the i-th

source signal at the t-th snapshot with real-valued amplitude s′i(t),
f = [f1, . . . , fK ]T with fi ∈ (− 1

2
, 1

2
] consists of the digital fre-

quencies of x(t), and L is the number of snapshots. By strict non-
circularity, the phase terms φi of source signals are unchanged for
all snapshots t, unlike circular signals. The manifold matrix A =
A(f) = [a(f1), . . . ,a(fK)] is made of Vandermonde-structured
steering vectors a(fi) of size M :

a(fi) = [1, exp(j2πfi), . . . , exp(j2π(M − 1)fi)]
T . (2)

Further, s(t) = Φs′(t) = [s1(t), . . . , sK(t)]T with s′(t) =
[s′1(t), . . . ,s′K(t)]T and Φ=diag(φ)=diag([ejφ1 , . . . ,ejφK ]T ) be-
ing a diagonal matrix.

In many applications, x(t) is not observed directly, but through
subsampling or linear compression via a measurement matrix J ∈
CN×M with N ≤M . Inflicted by an additive noise n(t), the single
measurement vector data y(t) ∈ CN is given by

y(t) = Jx(t) + n(t) = JAΦs′(t) + n(t). (3)

Then, the covariance and the pseudo-covariance of y(t) can be re-
spectively expressed as

Ry = E{y(t)yH(t)} = JRxJ
H +Rn,

Cy = E{y(t)yT (t)} = JCxJ
T ,

(4)

whereRx is the covariance matrix of x(t) given by

Rx = E{x(t)xH(t)} = ARsA
H = AΦRs′Φ

∗AH , (5)

where Rs = E{s(t)sH(t)}, Rs′ = E{s′(t)s′T (t)} and Rs =
ΦRs′Φ

∗. Note that herein Rs′ is a non-diagonal matrix for corre-
lated/coherent sources, and so isRs, which is a key difference from
uncorrelated sources. The pseudo-covariance matrix Cx of x(t) is
formed as

Cx = E{x(t)xT (t)} = ACsA
T = AΦRs′ΦA

T , (6)

where Cs = E{s(t)sT (t)} = ΦRs′Φ. Denote r′i,j , ri,j and ci,j
as the i-th row and the j-th column element in R′s, Rs and Cs,
respectively, then we have{

r′i,j = 0 s′i(t), s
′
j(t) uncorrelated

r′i,j 6= 0 s′i(t), s
′
j(t) correlated,

(7)

ri,j = r′i,je
j(φi−φj), ci,j = r′i,je

j(φi+φj), (8)

and
|ri,j | = |ci,j | = |r′i,j |. (9)

In practice, Ry and Cy are approximated from finite snapshots
as R̂y = 1

L

∑L
t=1 y(t)yH(t) and Ĉy = 1

L

∑L
t=1 y(t)yT (t), re-

spectively. Then, the goal of harmonic retrieval of NC coherent sig-
nals in this paper is to recover {fi}i from R̂y and Ĉy jointly.

When only deal with the covariance matrixRy , note that

Ry = JARsA
HJH+Rn = JAPR+Rn = JR0 +Rn, (10)

where

R0 = APR =

K∑
i=1

‖pi‖2 a(fi)
pi
‖pi‖2

∈ CM×N (11)

with PR = RsA
HJH = [pT1 , . . . ,p

T
K ]T ∈ CK×N . Define an

atom set asA =
{
a(f)bH

∣∣∀f ∈ (−0.5, 0.5], ‖b‖2 = 1, b ∈ CN
}

,
the atomic norm of R0 over the atom set A can be defined to seek
the sparsest decomposition of R0 over A. Then, the atomic decom-
position as well as the frequencies {fi}i yield the true structure in
(11), through the following covariance matrix based gridless sparse
representation (CMGSR) method [9]

min
R0

τ1 ‖R0‖A +
1

2

∥∥∥R̂y − JR0

∥∥∥2

F
, (12)

where τ1 is a regularization parameter balancing the fitting error term
and the sparse term. For (12), it has an equivalent semi-definite pro-
gramming (SDP) form [11] and can be effectively solved using off-
the-shelf convex solvers, such as CVX [12].

Under NC coherent scenarios, we seek to jointly utilize R̂y and
Ĉy to develop high estimation accuracy method. To this end, note
that Cy = JCxJ

T = JACsA
TJT = JAPC where PC =

CsA
TJT ∈ CK×N has the same measurement matrix J and man-

ifold matrix A as Ry . Then, an intuitive thought is to combine Ry

andCy together to form a MMV as

Ey = [Ry,Cy] = JA[PR,PC ] + [Rn,0N×N ]

= JAPE + [Rn,0N×N ] = JRE + [Rn,0N×N ],
(13)

where RE =
[
RxJ

H ,CxJ
T
]

= APE with PE = [PR,PC ] ∈
CK×N

′
,N ′ = 2N . Similar toR0,RE can be gridless sparse repre-

sented over an atom set and we have the following extended CMGSR
(E-CMGSR) method for NC coherent signals

min
RE

τ2 ‖RE‖A′ +
1

2

∥∥∥Êy − JRE

∥∥∥2

F
, (14)

where τ2 is similarly defined as τ1 and R̂E =
[
R̂y, Ĉy

]
. However,

the E-CMGSR method in (14) ignores the mutual coupling char-
acteristics between the covariance and pseudo-covariance matrices.
Thus, it only take care of the left side manifold of the covariance
and pseudo-covariance matrices. In fact, the right side manifold in
PE also contains useful frequency information. As a result, such
ignorance limits its estimation performance.

Next, we develop another effective solution for NC coherent sig-
nals, by simultaneously exploiting the sparsity of both the covari-
ance and pseudo-covariance matrices jointly and the mutual cou-
pling characteristics between them.

3. PROPOSED METHOD

This section proposes a super-resolution harmonic retrieval method
for NC coherent signals. we first develop gridless sparse represen-
tations of both the covariance and pseudo-covariance matrices over
a common matrix-form atom set, which permits the D-ANM tech-
nique to jointly exploit the sparsity of them. Then, by utilizing the
inherent mutual coupling characteristics between them, we introduce
additional constraints to properly reflect and enforce some desired
structure information represented by such matrices and their aug-
mented matrix, which leads to a structure-based gridless sparse op-
timization solution for harmonic retrieval of NC coherent signals.

3.1. Double Decoupled Atomic Norm Minimization

First, we explore the sparsity of the covariance and pseudo-covariance
matrices with the decoupled ANM (D-ANM) technique. The co-



variance matrixRx in (5) can be rewritten as

Rx = ARsA
H = AK

[K]diag(vec(RT
s ))(AK)H

=

K∑
i=1

K∑
j=1

ri,ja(fi)a
H(fj) =

K2∑
l=1

αla(f1,l)a
H(f2,l)

=

K′∑
l′=1

γl′a(f1,l′)a
H(f2,l′) = A(f1)ΓAH(f2),

(15)

where AK
[K] = [AK

1 , . . . ,A
K
K ] with AK

i = [a(fi), . . . ,a(fi)] ∈
CM×K and AK = [A, . . . ,A] ∈ CM×K

2

. αl = ri,j , f1,l = fi
and f2,l = fj with l = K(i − 1) + j. Note that αl can be
equal to zero according to (7). Accordingly, γl′ denotes the l′-
th nonzero element in {αl}l and f1,l′ as well as f2,l′ is the cor-
responding frequency. K′ is the number of nonzero elements in
{αl}l. Further, A(f1) = [a(f1,1), . . . ,a(f1,K′)], and A(f2) =

[a(f2,1), . . . ,a(f2,K′)] with f1 = [f1,1, . . . , f1,K′ ]T and f2 =

[f2,1, . . . , f2,K′ ]T , respectively. Hence, K′ = |{f l
′
}l′ | with f l

′
=

(f1,l′ , f2,l′) is the number of frequency pairs constructing Rx, or
equivalently, the virtual source number of Rx from the view of two
dimensional harmonic retrieval [13]. Γ = diag([γ1, . . . , γK′ ]T ).
Moreover, the pseudo-covariance matrix Cx in (6) can be rewritten
as

Cx = ACsA
T = AK

[K]diag(vec(CT
s ))(AK)T

=

K∑
i=1

K∑
j=1

ci,ja(fi)a
T (fj) =

K2∑
l=1

βla(f1,l)a
H(−f2,l)

=

K′∑
l′=1

ηl′a(f1,l′)a
H(−f2,l′) = A(f1)ΣAH(−f2),

(16)

where βl = ci,j with l = K(i − 1) + j and ηl′ denotes the l′-th
nonzero element in {βl}l. Note that the indexes of nonzero ele-
ments in {αl}l and {βl}l are the same according to (8) and αl =
ri,j , βl = ci,j with l = K(i − 1) + j, which implies the fifth and
sixth equality in (16). Σ = diag([η1, . . . , ηK′ ]T ) and A(−f2) =
[a(−f2,1), . . . ,a(−f2,K′)].

Accordingly, it is easy to find that bothRx andCx have a sparse
linear atomic representation over the following matrix-form atom set

Ad =
{
a(f1)aH(f2) |f1, f2 ∈ (−0.5, 0.5]

}
. (17)

Then, the atomic norms of both Rx and Cx can be defined to seek
the sparsest decomposition of Rx and Cx over the atom set Ad. In
this sense, the D-ANM technique [14] can be used to jointly exploit
the sparsity of both Rx and Cx. Hence, with obtained Êy , we pro-
duce the following D-ANM formulation for NC coherent scenarios:

min
Rx,Cx

τ ′3

(
‖Rx‖Ad

+ ‖Cx‖Ad

)
+

1

2

∥∥∥Êy − JRE

∥∥∥2

F
, (18)

where RE =
[
RxJ

H ,CxJ
T
]

and τ ′3 is similarly defined as τ1.
Moreover, (18) is equivalent to the following SDP formulation [14]

min
Rx,Cx

T(u1),T(u2)

τ ′3
M

(Tr(T(u1)) + Tr(T(u2))) +
1

2

∥∥∥Êy − JRE

∥∥∥2

F

s.t.
[

T(u1) Rx

RH
x T(u1)

]
� 0,

[
T(u2) Cx
CH
x T∗(u2)

]
� 0,

(19)

where we enforce the Toeplitz matrices in the equivalent PSD con-
straint of ‖Rx‖A to be the same and the counterparts in that of
‖Cx‖A to be the conjugated. This is because the sets of distinct fre-
quencies in f1 and f2 are the same and is {fi}i, which contains all
the interested harmonic information. Hence, once either the Toeplitz
matrices is obtained, we can retrieve the frequencies {fi}i via Van-
dermonde decomposition techniques.

Subsequently, we present two mutual coupling characteristics
between the covariance and pseudo-covariance matrices. First, based
on the decomposition of Rx and Cx in (15) and (16) and the D-
ANM theorem [14], the ideal optimal solutions of (19) as T(u1) and
T(u2) can be expressed as

T(u1)=

K′∑
l′=1

|γl′ |a(f1,l′)a
H(f1,l′)=

K∑
i=1

(
K∑
j=1

|ri,j |

)
a(fi)a

H(fi)

T(u2)=

K′∑
l′=1

|ηl′ |a(f1,l′)a
H(f1,l′)=

K∑
i=1

(
K∑
j=1

|ci,j |

)
a(fi)a

H(fi).

(20)

Accordingly, based on the unique Vandermonde decomposition
lemma of Toeplitz matrices [15] and the equality in (9), we have
T(u1) = T(u2) in (19) when K ≤ M − 1, which means the
coupling characteristic between Rx and Cx can be enforced as
T(u) = T(u1) = T(u2) in (19).

Moreover, the compressed augmented covariance matrix Rz of
z(t) = [yT (t),yH(t)]T can be expressed as [10]

Rz=E{z(t) zH(t)}=
[
Ry Cy
C∗y R∗y

]
=J ′RaJ

′H +Rn′ , (21)

where

Ra = E{xa(t)xHa (t)} =

[
Rx Cx
C∗x R∗x

]
(22)

denotes the augmented covariance matrix of xa(t) and Rn′ is the
covariance of n′(t) with n′(t)=[nT (t),nH(t)]T , xa(t)=[xT (t),
xH(t)]T and J ′=blkdiag([J ,J∗]), respectively. Note that with
known J ′, bothRz andRa are constructed byRx andCx and they
are both covariance matrix, which means Rz and Ra are both PSD
matrices, i.e., Rz � 0 and Ra � 0. Moreover, note that Rz � 0
is implicit in Ra � 0 based on the properties of PSD matrices [16].
Hence, the other one manual coupling characteristic between Rx

andCx can be materialized asRa � 0.
Consequently, by letting T(u1) = T(u2) = T(u) and impos-

ing Ra � 0 into (19), we have the proposed double D-ANM (DD-
ANM)

{R̃x, C̃x,T(ũ)}

=arg min
Rx,Cx,T

τ3
M

Tr(T(u)) +
1

2

∥∥∥R̂z − J ′RaJ
′H
∥∥∥2

F

s.t.
[

T(u) Rx

RH
x T(u)

]
� 0 ,

[
T(u) Cx
CH
x T∗(u)

]
� 0

Ra � 0 , Ra in (22),
(23)

where τ3 = 4τ ′3 since
∥∥∥R̂z − J ′RaJ

′H
∥∥∥2

F
= 2

∥∥∥Êy − JRE

∥∥∥2

F
.

3.2. Harmonic Retrieval

By solving the proposed DD-ANM in (23), we can not only obtain
the estimates of R̃x and C̃x, but a PSD structured Toeplitz matrix
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Fig. 1. RMSE versus SNR for the proposed TD-ANM, CMGSR and
E-CMGSR with M=7, N=4, K=3, L=400 and Mt=300.

T(ũ), which is constructed by the interested frequencies as [17]

T(ũ) =

K∑
i=1

µia(f̃i)a
H(f̃i) =

K∑
i=1

(
K∑
j=1

|r̃′i,j |

)
a(f̃i)a

H(f̃i),

(24)
where f̃i is the estimate of fi and µi =

∑K
j=1 |r̃

′
i,j |. Given T(ũ) in

(24), the Vandermonde decomposition techniques can be applied for
harmonic retrieval, such as, the MUSIC [18] and ESPRIT [19].

3.3. Theoretical Analysis

In this subsection, we give a brief discussion on the fundamental
limits of the proposed DD-ANM method, which is derived by using
the results from our recent work in [13]. To this end, we consider the
following sub-optimization programming of the proposed method :

min
Rx

‖Rx‖Ad
s.t. vec(R̂y) = Ψvec(Rx), (25)

where Ψ = J∗ ⊗ J in the proposed case. Then, for a generalized
Ψ ∈ CN

′×M2

, according to Theorem 1 in [13], we have the follow-
ing fundamental limits.
Theorem 1: Let Ψ be a random matrix with rows ψHi chosen inde-
pendently from a distribution obeying the isotropy and incoherence
properties [20] with some fixed ζ ≥ 1. Assume that the phase terms
φi in s(t) is symmetrically distributed around 0 between

[
−π

2
, π

2

]
and all the frequencies obey the minimum separation condition

min
i 6=j
|fi − fj | ≥

5

N
. (26)

Then, the programming in (25) returns the true Rx as well as the
frequencies {fi}i with a probability at least 1− δ, as long as

N ′ ≥ CζK′ log2(M/δ), (27)

with C being a constant.
Although the bound in Theorem 1 is too tough for the proposed

DD-ANM since it only considers one D-ANM in the proposed
method, it offers a guide to the relationship between the measure-
ment vector length N ′ and the virtual source number K′. That is
N ′, aka the allowable compression, is lower bounded by a function
of K′, which is determined jointly by the source number K and the
coherency among the source signals.
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Fig. 2. RMSE versus number of measurement vectors L for the pro-
posed TD-ANM, CMGSR and E-CMGSR withM=7,N=4,K=3,
SNR=4dB and Mt=300.

4. NUMERICAL SIMULATIONS

This section presents numerical results to evaluate the performance
of the proposed DD-ANM solution. The CMGSR [9] and the E-
CMGSR are simulated as benchmarks. All the methods are imple-
mented with the regularization parameter τi = 1 (i = 1, 2, 3) and
employed with conventional Root-MUSIC algorithm [21] for fre-
quency retrieval. The root mean squared error (RMSE) is used to
measure the estimation accuracy of harmonic retrieval as RMSE =

1
K

∑K
k=1

(
1
Mt

∑Mt
n=1(f̃nk−fk)2

) 1
2 , where Mt and f̃nk are the num-

ber of Monte-Carlo trials and the estimates of fk in the n-th trial.
We consider J = IΩ with selection indices Ω = {1, 2, 5, 7} and

there are three equal-power source signals with f = [−0.3, 0, 0.2]
and φ being selected uniformly from (0, π]. For coherent scenar-
ios, we consider the first and second source signals are coherent
while the third source signal is uncorrelated with them. We compare
the RMSE of different algorithms versus the SNR with L = 400.
Fig. 1 indicates that the E-CMGSR method cannot achieve desired
performance improvement compared with the CMGSR algorithm.
This is because the number of measurements is larger than that of
source signals, i.e., K < N , and N = 4 is relative small, which
leads to doubling the number of measurements (N ′ = 8) makes
a rare contribution to the performance improvement. In contract,
the proposed DD-ANM achieves the best performance among these
methods due to it captures the sparsity of the interested common
frequencies of the covariance and pseudo-covariance matrices and
permits the PSD characteristic of the estimate of the augmented ma-
trix. Fig. 2 presents the RMSE performance of these approaches for
different L, which reveals a similar trend as that shown in Fig. 1.

5. CONCLUSION

This paper proposes a super-resolution harmonic retrieval method
for NC coherent signals. We first develop gridless sparse represen-
tations of both the covariance and pseudo-covariance matrices over
a common matrix-form atom set, which permits the D-ANM tech-
nique to jointly exploit the sparsity of them. Then, by utilizing the
inherent mutual coupling characteristics between them, we introduce
additional constraints to properly reflect and enforce some desired
structure information represented by such matrices and their aug-
mented matrix, which finally give rise to the proposed DD-ANM for
harmonic retrieval of NC coherent signals. Theoretical analysis and
simulation results validate the merit of the DD-ANM method with
higher estimation performance beyond existing benchmarks.
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