LaTeX File (.tex, .sty, .cls, .bst, .bib)

Generated using the official AMS IXTEX template v6.1

Transient climate sensitivity shaped by low cloud changes remotely driven by
Southern Ocean processes

Robert R. Ford,?, Brian E. J. Rose,? and M. Cameron Rencurrel,?

4 Department of Atmospheric and Environmental Sciences, University at Albany, State University

of New York, Albany, New York

Corresponding author: Robert R. Ford, rford2 @albany.edu

Early Online Release: This preliminary version has been accepted for publication in Journal of Climate,
may be fully cited, and has been assigned DOI 10.1175/JCLI-D-24-0164.1. The final typeset copyedited
article will replace the EOR at the above DOI when it is published.

© 2025 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of
the default AMS reuse license. For information regarding reuse and general copyright information, consult the
AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by SUNY ALBANY LIBR SB23 | Unauthenticated | Downloaded 01/06/25 01:07 PM UTC

|4



ABSTRACT: Transient climate sensitivity is strongly shaped by geographical patterns of ocean
heat uptake (OHU). To isolate the effects of uncertainties associated with OHU, a single slab ocean
model is forced with doubled CO; and an ensemble of OHU patterns diagnosed from transient
warming scenarios in 12 fully-coupled models. The single-model ensemble produces a wide range
of Southern Ocean (SO) sea surface temperature (SST) and Antarctic sea ice responses, which are
in turn associated with a 1.1-2.0 K range of transient climate response (TCR). Feedback analysis
attributes the TCR spread primarily to shortwave effects of low clouds in the Southern Hemisphere
(SH) midlatitudes. These cloud changes are strongly positively correlated with storm track eddy
kinetic energy. It is argued that midlatitude clouds (and thus planetary albedo) are remotely
driven by SO SST and Antarctic sea ice, mediated by large-scale changes in SH baroclinicity and
lower-tropospheric stability. The robustness of this atmospheric teleconnection between SO SST,
Antarctic sea ice, and global feedback through midlatitude clouds is supported through additional
simulations that explore more extreme SST and sea ice perturbations. These results highlight the
importance of understanding physical relationships between SST, sea ice, circulation, and cloud

changes in the SH as a pathway to better constraining transient climate sensitivity.
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SIGNIFICANCE STATEMENT: Although it is well known that Earth’s global-mean surface
temperature increases with increasing atmospheric CO,, there are still significant uncertainties in
the temperature and sea ice trends over the Southern Ocean region. Using a climate model, we
find that Southern Ocean temperature and Antarctic sea ice changes can result in substantial cloud
cover changes over the Southern Hemisphere, which play a primary role in determining the amount
of warming in our experiments. We suggest that, in order to reduce uncertainty in future climate
change, more work is needed to understand how the climate of the southern polar region can affect

the circulation and clouds of the midlatitudes.

1. Introduction

Reducing uncertainty in climate sensitivity, defined as the global-mean surface temperature
(GMST) response to a radiative forcing, has become a central goal of climate science. The two
most common metrics of climate sensitivity are equilibrium climate sensitivity (ECS), defined as
the equilibrium (i.e., as net TOA radiation approaches zero) GMST response to an instantaneous
doubling of CO,, and transient climate response (TCR), defined as the GMST response to a 1% per
year CO, ramp at the time of doubling. The latest IPCC report gives a likely range of 2.5-4.0 K
for ECS and 1.4-2.2 K for TCR (Forster et al. 2021). While ECS provides a useful benchmark for
comparing sensitivity estimates from models, historical observations, and paleoclimate records,
TCR allows us to take into consideration the effect of variations in ocean heat uptake (OHU), which

are known to influence the strength of feedbacks (Rugenstein et al. 2016; Rose and Rayborn 2016).

a. Pattern effects and low cloud feedbacks

The largest sources of uncertainty in climate sensitivity are the various cloud feedbacks (Sher-
wood et al. 2020). Uncertainties in the responses of different types of clouds do not only come from
differences in cloud physics across models; they also stem from uncertainties in the patterns of
surface warming that are coupled to the clouds. This is one of the main contributors to the pattern
effect, which refers to the coupling of radiative feedbacks and spatial surface temperature patterns
(Dong et al. 2020). Notably, uncertainty in the temperature trends of the Southern Ocean (SO) and
eastern Pacific (EP) under increasing CO, forcing contributes substantially to the uncertainty in

global cloud feedbacks (Kang et al. 2023). While models tend to show enhanced warming over the
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SO and EP, observations show little warming over the same regions (Wills et al. 2022). A recent
focus in the literature has been on changes in the zonal sea surface temperature (SST) gradient in
the equatorial Pacific and the resulting cloud and lapse rate feedbacks (Lee et al. 2022).

Previous studies (Hwang et al. 2017; Kim et al. 2022; Dong et al. 2022) have explored a telecon-
nection between the SO and tropical EP through which cold anomalies can be advected equatorward,
contributing to enhanced cloudiness in the EP attributable to increased lower-tropospheric stability
(Wood and Bretherton 2006). This may explain why the EP is colder than models suggest it should
be, but there are still uncertainties in the sources of the SO cooling, including the roles of Antarctic
meltwater (Rye et al. 2020), ozone depletion (Hartmann 2022), and internal variability (Chung
etal. 2022). As will be described in more detail in the following sections, we produced an ensemble
of runs of the slab ocean configuration of the Community Earth System Model (CESM) whose
range of TCR can be primarily attributed to a range of SO SST and Antarctic sea ice responses,
induced by various patterns of OHU. Thus, we have an ensemble that represents a realistic spread
in the SO environment, and this allows us to explore the physical mechanisms through which the
SO impacts the entire Southern Hemisphere (SH), particularly the midlatitudes.

There is agreement across models of a poleward shift in the midlatitude jet and storm tracks
under CO, forcing (Ceppi et al. 2014; Voigt et al. 2021), and models, including CESM, generally
exhibit a dipole pattern around 45°S in the shortwave (SW) cloud feedback in the midlatitudes
following warming, with increased reflection poleward and decreased reflection equatorward (Kay
et al. 2014). However, by calculating the component of the SW cloud radiative effect that could
be attributed to a jet shift in CMIPS5 under transient forcings, Ceppi and Hartmann (2015) showed
that these SW cloud changes are not the result of the poleward shift in the midlatitude jet. The
negative SW cloud feedback on the poleward side has been attributed to a brightening of the clouds
through increased liquid water path (Ceppi et al. 2016), while the positive SW cloud feedback
on the equatorward side is the result of a decrease in low cloud amount (Sherwood et al. 2020),
usually attributed to the thermodynamic and stability mechanisms outlined by Bretherton (2015).
Given that these processes are not well understood, we will examine the relationships between

midlatitude circulation changes and SW cloud feedbacks in our simulations.
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b. Research objectives

This research originally began with the question: how much of the spread in TCR across fully-
coupled models can be explained by inter-model differences in OHU patterns? This motivated our
experimental design of using a single slab ocean model forced with a diversity of OHU patterns
diagnosed from CMIPS5. Our original goal was to directly attribute the spread in temperature
response across our ensemble to patterns of OHU through a framework such as OHU efficacy
(Winton et al. 2010; Rose et al. 2014). The complexity of the Antarctic sea ice response to the
imposed OHU limited our ability to make such an attribution. Instead, the simulations present
an opportunity to investigate transient warming scenarios with a range of SO responses. So we
address a question of crucial importance for understanding cloud feedbacks in the face of uncertain
temperature trends and forcing mechanisms in the SO: given a plausible range of SO SST and
Antarctic sea ice responses, what mechanisms are responsible for the resulting spread in TCR?

The rest of this paper is organized as follows. In section 2, we describe the model used and the
experimental setup. In section 3, we summarize the temperature, sea ice, and circulation response
to the prescribed forcing. In section 4, we describe the feedbacks responsible for the spread in
model response. Section 5 explores the mechanisms behind the range of feedbacks, and in section

6, we discuss the implications of the results and conclude.

2. Model configuration and experiments

We use the slab ocean version of the Community Earth System Model, version 1.2.1 (CESM1),
consisting of the Community Atmosphere Model, version 5 (CAMS), the Community Land Model,
version 4 with carbon—nitrogen biogeochemistry (CLM4-CN), the Community Ice Code (CICE),
and the data slab ocean model (DOCN-SOM). We run an 80-year control simulation with prescribed
pre-industrial values of CO; (284.7 ppm) and a monthly ocean heat flux divergence (Q-flux) forcing
generated from a 20-year average of the fully-coupled version of the CESM1-CAMS pre-industrial
control simulation. The annual-mean Q-flux for this control simulation is shown in Fig. la. It is
primarily characterized by heat flux into the ocean in the equatorial regions and heat fluxes into
the atmosphere in the North Atlantic, associated with surface deep water formation, and along

continental boundaries, associated with the poleward transport of warm, subtropical water. The

5
Accepted for publication in Journal of Climate. DOI'10.1 ]1171573C‘LI-E5-240123]211‘ o



Southern Ocean is also a weak heat source. Because the control simulation has reached equilibrium,

there is zero net heat flux into the ocean from the atmosphere.

a. Diagnosed CMIP5 OHU

Control Q-flux

-120 —-60 0 60 120 0 50

Ensemble-mean anomalous Q-flux

-120 -60 0 60 120

Fic. 1. (a) Control and (b) ensemble-mean anomalous Q-flux forcing patterns (annual mean). In the zonal-
mean plots, the black lines correspond to the Q-flux maps shown, while the other lines correspond to the

individual Q-flux patterns. Maps of each Q-flux pattern are shown in Fig. Al.

Rugenstein et al. (2016) showed that steady states from a slab ocean model can be used to
approximate transient results from a fully-coupled model when the surface heat flux generated from
the fully-coupled model is prescribed at the bottom of the slab ocean as a heat flux divergence,
which represents heat transfer between the mixed-layer and deep ocean (i.e., OHU). The goal of
this method is to recreate the transient climate state from a fully-coupled climate model in a slab

ocean model. The transient climate state can be thought of as being the response to two forcings at
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the time of CO, doubling: the positive downward forcing from doubled CO, and the OHU forcing
that removes energy from the surface to the deep ocean. By allowing the slab ocean model to
come into equilibrium with the combined forcing, we ensure that the net surface heat flux exactly
balances the imposed OHU, and thus matches the surface heat flux of the fully-coupled model from
which the OHU pattern was diagnosed. By the same logic, it is appropriate to abruptly double the
COj, rather than apply a gradual forcing ramp since we are seeking the equilibrium response of the
slab ocean model to the combined forcing. As will be described in more detail in the next section,
the resulting warming pattern is substantially different from the equilibrium warming to 2xCO;
alone and much more closely resembles the transient warming patterns of fully coupled models,
including reduced global mean warming and only a slight warming of the SH extratropics.

We follow this methodology by generating Q-flux forcing patterns from 15 fully-coupled CMIP5
models listed in Table 1. To do this, we calculate the anomalous monthly-mean values in the
downward surface heat flux in seawater (hfds in CMIP nomenclature, consisting of both the surface
heat flux and the heat flux from sea ice formation/melting) associated with the TCR of each model.
That is, we take the difference between the 20-year monthly-mean hfds at the time of a transient
doubling of CO; in the 1pctCO2 simulations (years 60-80) and the climatological monthly-mean
hfds of the piControl simulations, calculated using the maximum available (up to 1600-year) output.
It is typical to use the 20-year average around year 70 in 1pctCO2 simulations in order to minimize
the influence of internal variability while still capturing the response at year 70 (Dufresne and
Bony 2008; Meehl et al. 2020). The annual- and ensemble-mean is shown in Fig. 1b. These are
then added directly to the CESM1-CAMS control Q-flux pattern to be applied to the model.

The CMIP5 models used in this study were chosen based on data availability at the time when our
CESM1-CAMS experiments were run. One could also generate and prescribe Q-flux patterns from
the CMIP6 ensemble. However, we would not expect the results to be meaningfully different, since
this study focuses on the mechanisms responsible for the range of responses in CESM1-CAMS
to the Q-flux patterns, not the Q-flux patterns themselves. It is important to note that intrinsic to
this slab ocean analysis is a temporally-averaged constant mixed-layer depth, which is prescribed
in the Q-flux forcing files. Sallée et al. (2013) found that CMIPS5 simulations have a wide range
of mixed-layer depths, particularly in the Southern Ocean, potentially influencing the seasonality

and the annual mean of the anomalous OHU values. In these simulations, we choose to keep the
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TaBLE 1. Models used, TCR of each (Flato et al. 2013), and CESM1-SOM TCR with the models’ Q-fluxes
applied. Note that the TCR of CNRM-CM5-2 is missing from Flato et al. (2013). Asterisks denote +ASIC runs.

Model CMIP5 TCR (K) CESMI1-SOM TCR (K)
BNU-ESM 2.6 1.1
MIROC-ESM 22 1.2
NorESM1-ME 1.6 1.4
INM-CM4 1.3 1.5
MRI-CGCM3 1.6 1.6
CESM1(BGC) 1.7 1.6
NorESM1-M 1.4 1.7
BCC-CSM1.1(m) 2.1 1.7
CNRM-CM5-2 - 1.8
CCSM4 1.8 1.9
BCC-CSM1.1 1.7 2.0
CSIRO-MK3.6.0 1.8 2.0
Mean 1.8 1.6
CNRM-CM5* 2.1 -0.8
MIROCS5* 1.5 0.5
ACCESS1.3* 1.7 0.9

prescribed mixed-layer depth constant across all runs, calculated from the CESM1-CAMS control

simulation alongside the control Q-flux.

b. Slab ocean CESM1-CAMS runs

We run each Q-flux experiment of the slab ocean CESM1-CAMS (hereafter CESM1-SOM)
with an abrupt doubling of CO, for 40 years. Since the slab ocean model equilibrates quickly
(around 20 years; Danabasoglu and Gent 2009), we take the average of the last 20 years minus
the pre-industrial control state as the response, approximating TCR. Somewhat surprisingly, three
out of 15 prescribed Q-flux patterns (generated from CNRM-CMS5, MIROCS, and ACCESS1.3)
resulted in global average sea ice growth (Fig. A3, top row), which we use as a heuristic cutoff for
a “realistic” response. We denote those three Q-flux patterns and their corresponding responses in
CESM1-SOM as “+ASIC” and separate them from averages and correlations, since their inclusion
would significantly inflate correlations that might otherwise be weak across the warmer, more
realistic runs. Instead, they will primarily be analyzed alongside the 12-member ensemble for a

qualitative comparison.
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TaBLE 2. Summary of experiments.

Experiment name  CO; Q-flux Number of runs  Approximates
Control Ix Climatology | -
2xCO2 only 2x Climatology | ECS
Ensemble 2x CMIPS anom. + clim. 12 TCR
+ASIC 2x CMIPS anom. + clim. 3 -
CM Q-flux 2x Ensemble-mean anom. + clim. 1 TCR

We run an additional experiment with the average Q-flux of the 12-member ensemble (denoted
“CM Q-flux”) to test the linearity of the Q-flux forcing method, as well as a run with doubled
CO; and the control Q-flux (denoted “2xCO2 only”) to approximate ECS for comparison. These

experiments are summarized in Table 2.

3. Temperature, sea ice, and circulation responses

The spread in TCR from our 12-member ensemble (1.1-2.0 K, mean 1.6 K) is very similar to
the TCR spread of the same 12 fully-coupled CMIP5 models (1.3-2.6 K, mean 1.8 K; Flato et al.
2013). However, the corresponding CESM1-SOM and CMIPS5 responses are not well correlated
(r = —0.42; compare the second and third columns of Table 1). If these two ensembles were
perfectly correlated, then it would imply that TCR is completely determined by the particular OHU
pattern. The lack of correlation here implies that (1) the details of the OHU patterns do not have
a significant impact on TCR compared to other differences across models and/or (2) unrealistic
interactions between OHU, mixed-layer depth, and sea ice are masking the impact of OHU patterns.
So, it is probably not correct to interpret these results as CESM1-SOM isolating the effect of OHU
on TCR across the CMIP5 ensemble.

By the OHU efficacy framework (Winton et al. 2010; Rose et al. 2014), we might expect that
high-latitude OHU would be a good predictor of the temperature response, but the mean Q-fluxes
over the areas of large OHU (the Southern Ocean and North Atlantic), as well as the global-mean
Q-flux, are not well-correlated with the temperature response (Fig. 2). Note that most of the
weak negative correlation between TCR and OHU in the SO and globally is primarily the result of
the two coldest ensemble members (forced by BNU-ESM and MIROC-ESM Q-fluxes) having the
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greatest heat uptake. The inclusion of the three +ASIC runs in Fig. 2 highlights the fact that their

cold response is not simply the result of unusually high OHU over a large area.

SO (r= —0.49) NA (r= —0.25) Global (r= —0.51)
2.04(a) L4 1(b) ® ° 4(c) e
R 1 o O ® . SRR BN
1.5 [ ] ® 1 [ ™Y 1 [} e
g 1.0 A S ] ¢ s 1 A °
2 0.5 1 A R A q A
[
< 0.01 ® Ensemble
—054 © CMQ-flux
A +ASIC A N
2 3 4 10 12 14 16 18 15 2.0

Mean Q-flux (W m~2)

FiG. 2. Correlations between Southern Ocean (Fig. 1b black box), North Atlantic (Fig. 1b green box), and
global-mean Q-flux and change in surface air temperature (ATAS). Correlations and trend lines are calculated

using the 12-member ensemble only.

While we cannot rule out the possibility that interactions between OHU and SST in the tropics
or SST and SIC in the NH extratropics are important, we believe that the spread in TCR across
our experiments is attributable to interactions between OHU, SST, and sea ice in the SO for the

following reasons:

1. The prescribed OHU is the only difference across the ensemble, so it must ultimately be the

cause of any substantial (i.e., greater than the internal variability of the model) difference

2. The variation in response across the ensemble is concentrated in the SH extratropics (Fig.

3b), which strongly suggests that this region is the source of the variation

3. Considering the fact that CO, is doubled, the +ASIC runs have a very unrealistic SO cooling
and increase in Antarctic sea ice (Fig. 3e), suggesting that a more moderate version of the

same unrealistic SST cooling and sea ice growth processes could be occurring in all runs

Indeed, the three +ASIC runs produce a colder response than all CMIP5 models, and the CNRM-
CMS5 Q-flux run has an especially unrealistic temperature change of —0.8 K in response to doubled
CO; and the prescribed OHU. This could be the result of an unrealistic combination of large
OHU and shallow mixed-layer depth, particularly near areas inconsistent with the sea ice edge in
CESM1-SOM, leading to sea ice growth. If this mechanism is present in the +ASIC runs, it is

possible that the same mechanism is responsible for generating some of the spread in TCR across
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the 12-member ensemble. Although the details of the coupling among OHU, SST, and SIC are
not clear in our experiments, we argue that it is still valuable to analyze the coupled mechanisms

responsible for the spread in the temperature response.

Ensemble-mean change in TAS

+ASIC-mean change in TAS

()

e ————

-
o
|
=
N
o
|
=)
o
[=
o)
S
=
N
=

1
(=)}
o
{
!
i
1
1
1
'\
O J—
7
e’
J ]

-120 —60 0 60 120 -10

K
— Ens.mean T , — T
-12 -9 -6 -3 0 3 6 9 12 --- 2xCO2only -45 -30 -15 0 15 30 a5 60
ATAS (K) -== CM Q-flux ASIC (%)
Ensemble-mean change in SIC +ASIC +ASIC-mean change in SIC
(e)| [(f)
fez:
-
-120 -60 0 60 120 0 50 -120 -60 0 60 120

%

FiG. 3. 12-member ensemble-mean and +ASIC-mean changes in surface air temperature (TAS) and sea ice
concentration (SIC) with zonal-mean plots for all experiments. The dashed black contour indicates the 0 K line

for reference. Maps of the TAS and SIC responses for all experiments are shown in Figs. A2 and A3.

Figure 3 shows the 12-member ensemble-mean and 3-member +ASIC-mean changes in surface
air temperature (TAS, used interchangeably with TCR for the 12-member ensemble) and sea ice
concentration (SIC), along with the zonal-mean TAS and SIC response for each experiment. All
runs can generally be characterized by enhanced Northern Hemisphere (NH) warming and reduced
SH warming. By comparing the 2xCO2 only experiment (red dashed lines) to the TCR Q-flux
forced experiments, we can see that most of the difference comes from either a reduction in Antarctic
sea ice melting or sea ice expansion, accompanied by a reduced warming or a cooling of the SO.
Some hemispheric asymmetry in the warming pattern is common in fully-coupled models under

transient climate change because of the ability of the Southern Ocean to take up a relatively large
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amount of heat and transport it equatorward (Armour et al. 2016). However, the large asymmetry

present across these simulations results in a northward shift of the Hadley circulation, which is

a well-documented response to the differential warming of the hemispheres across a variety of

timescales (Schneider et al. 2014). The northward shift of the Hadley circulation is well-correlated

with the hemispheric temperature difference across our experiments (Fig. 4). The substantial

spread in response produced by the 12 ensemble members, plus the three cold outliers, allows

us to explore the physical mechanisms linking changes in Antarctic sea ice to the global-mean

temperature response through radiative feedbacks.
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between northward Hadley circulation shift (Ay, calculated as the average mass streamfunction within the red

box) and hemispheric temperature difference.
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4. Feedback analysis

a. Radiative kernels

Kernel method APRP method
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Fic. 5. Radiative feedbacks calculated using the radiative kernel method, including Planck, lapse rate (LR),
and net temperature (Net T; sum of Planck and LR); SW, LW, and net water vapor (SW q, LW q, Net q); SW,
LW, and net cloud (SW c, LW c, Net c); and surface albedo. Using the APRP method, the SW cloud feedback
is calculated and decomposed into terms associated with cloud amount (Amt.), scattering (Sca.), and absorption

(Abs.). Error bars indicate the 12-member ensemble range.

We first quantify the radiative feedbacks across the 12-member ensemble using the radiative
kernel method (Soden et al. 2008) with the Pendergrass et al. (2018) kernels, which are generated
from CESM1-CAMS. The largest spread in the feedbacks (indicated by the error bars in Fig. 5), as
well as the largest difference between the ensemble and the 2xCO, only run, comes from the SW
cloud feedback. The lapse rate feedback also contributes substantially to the TCR spread, but this
is mainly an amplifying factor, as the Q-flux forced runs have heat removed from the slab ocean,
leading to reduced warming at the surface and lower troposphere, especially in the SH midlatitudes.
Because low cloud cover (thus the SW cloud feedback) is so strongly controlled by the stability of
the lower troposphere (Bretherton 2015), this relatively large spread in the lapse rate feedback is
tightly coupled to the SW cloud feedback. Therefore, we choose to focus our analysis on the cloud

feedbacks.
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Notably, the TCR spread is not generated by differences in surface albedo feedback, despite the
wide range of sea ice response. The lack of spread in the albedo feedback parameter indicates that
the effects surface albedo changes scale linearly with global mean temperature change, independent
of the forcing mechanism. This is not the case for the SW cloud feedback. We interpret this
difference in terms of local versus non-local feedback mechanisms. Contributions to the global
albedo feedback originate primarily from grid cells that lose (or gain) sea ice. On the other hand,
clouds far from the ice edge may respond non-locally to SST and SIC changes through atmospheric
teleconnections that are sensitive to spatial patterns, in addition to purely local effects.

The top row of Fig. 6 shows the zonal-mean SW, LW, and net cloud feedbacks. While the SW
and LW cloud feedbacks seem to be dominated by cloud changes in the tropics, they mostly cancel
out, as shown in the net cloud feedback. This cancellation between LW and SW cloud feedbacks
in the tropics accompanying a shift in the Hadley circulation has been noted in previous modeling
studies, including asymmetrically-forced slab ocean models (Kang et al. 2008; Yoshimori and
Broccoli 2009; Frierson and Hwang 2012; Voigt et al. 2017).

In the SH midlatitudes, the LW cloud feedback only weakly opposes the SW cloud feedback.
What is left is a spread in the negative net cloud feedback in the SH midlatitudes, which is
substantially different from the positive net cloud feedback in the 2xCO2 only run (red dashed
line). In other words, the variation in the net cloud feedback is dominated by variation in the SW
cloud feedback, largely localized to the SH midlatitudes. By comparison, all runs have a positive
SW and net cloud feedback in the NH midlatitudes. Figure 6g shows the high correlation between
the average SH midlatitude SW cloud feedback and TCR. This implies a strong coupling between
the state of SH polar region and the low clouds of the midlatitudes, even on the equatorward side

of the storm tracks.
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b. Approximate partial radiative perturbation
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FiG. 6. (a—c) Zonal-mean SW, LW, and net cloud feedbacks by the radiative kernel method, (d—f) SW cloud
feedback by the APRP method with decomposition into amount and scattering terms, and (g—i) correlations
between the average SH midlatitude (SMID) SW cloud feedbacks (total, amount, and scattering) and the change

in surface air temperature (ATAS).

We additionally apply the approximate partial radiative perturbation (APRP) method (Taylor
et al. 2007; Zelinka 2023) to the 12-member ensemble for verification of the kernel method and
in order to decompose the SW cloud feedback into terms representing changes in cloud fraction,

scattering, and absorption. Figure 5 shows that the range of total SW cloud feedback is very similar
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between the kernel and APRP methods. Comparing panels (a) and (d) of Fig. 6, the zonal mean
SW cloud feedbacks obtained by the two methods are also very similar. In the SH midlatitudes, the
SW cloud feedback can be explained in approximately equal measure by changes in cloud amount
and scattering (brightness), while the absorption term (Fig. 5; zonal-mean not shown) is an order
of magnitude smaller. The correlations between the SW cloud amount and scattering feedbacks
and TCR are shown in Figs. 6h,i.

Both cloud amount and brightness have similar effects on the SW cloud feedback spread across
the ensemble, with the coldest runs having the greatest increases in cloud amount and brightness
across the SH midlatitudes, but their meridional structures are not identical (Figs. 6e,f). For the SW
cloud amount feedback, we see a SH midlatitude-wide variation, but for the SW cloud scattering
feedback, we see a dipole pattern centered around 50°S for some of the ensemble members. On
the equatorward side of this dipole (i.e., 30-50°S), the amount and scattering components of the

SW cloud feedback are very highly correlated (r = 0.97, not plotted).

5. Mechanisms behind spread in SW cloud feedback

Even though changes in both cloud amount and brightness are important contributions to the
SW cloud feedback, our APRP results suggest that these cloud changes occur alongside each
other across the ensemble, particularly within 30-50°S. That is, in regions where cloud cover
increases/decreases, cloud brightness also increases/decreases, likely the result changes in cloud
liquid water path as described by Kay et al. (2014) and Ceppi et al. (2016), who use the same model
(CESM1-CAMS). Because of this apparent coupling between cloud amount and brightness, we
choose to focus only on the changes associated with low cloud cover, which is closely linked to the
SW cloud feedback (Klein et al. 2017).

Figure 7 shows the 12-member ensemble-mean change in low cloud cover, along with the zonal
mean for all runs. There is an ensemble-mean increase in low cloud cover over the SH midlatitudes
(outlined in black in Fig. 7a) and in the equatorial eastern Pacific and Atlantic. The SH midlatitude
low cloud cover change is highly anticorrelated with TCR across the ensemble, as shown in Fig.
8a. There is also a general decrease in the NH midlatitude low cloud cover. The zonal-mean plots

in Fig. 7b show the large spread in the SH midlatitude low cloud response across the ensemble
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and in comparison to the hemispherically-symmetric decrease in the 2xCO2 only run, which is

consistent with the feedback analysis of the previous section.

Ensemble-mean change in LCC +ASIC-mean change in LCC

10 -120 -60 0 60 120

ALCC (%) = Ens. mean
._\'—_'_'_'_'_'___'__ —-=- 2xCO2 only
-12 -8 -4 0 4 8 12 16 20 24 === CM Q-flux

ALCC (%) +asic

Fi1G. 7. 12-member ensemble-mean and +ASIC-mean change in low cloud cover (LCC) with zonal-mean plots

of all experiments. Maps of the LCC response for all experiments are shown in Fig. A4.

The ensemble also displays large variations in low cloud cover over the eastern Pacific triangular
region (EPT; outlined in blue in Fig. 7a). However, unlike the midlatitude changes, EPT cloud
changes are not well-correlated with TCR (Fig. 8b). The low cloud cover in the region of the
southeastern Atlantic that shows similarly large changes likewise has weak negative correlation
with TCR (r = —0.55, not plotted). Previous studies within the pattern effect framework (e.g.,
Andrews et al. 2015; Ceppi and Gregory 2017; Andrews and Webb 2018; Dong et al. 2019, 2022)
demonstrate the importance of changing low clouds in the EPT region for setting the pace of
transient climate change, often expressed as the time-dependence of the global climate feedback
parameter. While our results do not necessarily contradict these previous studies (considering our
analysis is limited to one model), they do suggest that larger-scale changes in the SH midlatitude
low clouds may be underappreciated in determining TCR, given their primary role across our
experiments. There is some evidence of the teleconnection described by Kim et al. (2022) between
the Southern Ocean and eastern Pacific based on the temperature and low cloud changes in the
+ASIC runs (Figs. A2 and A4), where more extreme cold anomalies over the Southern Ocean are

primarily advected over the eastern Pacific, leading to an increase in low clouds through stability.
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Fic. 8. Correlations between (a) SH midlatitude (SMID) and (b) EPT low cloud cover and global-mean ATAS.
The SMID and EPT regions are outlined in Fig. 7a. Correlations, p-values, and trend lines are calculated using

the 12-member ensemble only.

a. Cloud-controlling factors

To understand why the low clouds are changing, we first consider how changes in local envi-
ronmental factors can influence cloud cover. Various cloud-controlling factors (CCFs) are used
across the literature, but here we consider estimated inversion strength (EIS, as defined in Wood
and Bretherton (2006)), 500-hPa vertical velocity (wsop), near-surface wind speed (SWS), and
SST, all calculated from monthly-mean data. Midlatitude low clouds have been shown to be
sensitive to changes in EIS in observations (Wood and Bretherton 2006; Scott et al. 2020; Naud
et al. 2023). Across the ensemble, the average SH midlatitude EIS is very well-correlated with

low cloud cover over the same region (Fig. 9a), and a similarly strong relationship is present for
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SST (Fig. 9d). Klein et al. (2017) discuss the possible issue of causality between changes in low
clouds and changes in CCFs that are confined to the area around and below the low clouds (i.e., the
boundary layer). An increase in low cloud can lead to cooler SSTs below and a further increase
in stability, so despite the strong correlations between EIS/SSTs and low cloud cover, we cannot
simply say that one causes the other without additional evidence, for example, from mechanism
denial experiments.

Vertical velocity (Fig. 9b), as calculated from monthly-mean data, is not an important factor
in determining midlatitude low cloud, in agreement with the observational results of Naud et al.
(2023). This lack of correlation is likely for two reasons: (1) we use monthly-mean data, which
averages over the vertical motion that would be important for the cloudiness of midlatitude storms,
and (2) vertical velocity may not be an important factor in this midlatitude cloud regime (see for
example Scott et al. 2020). The strong positive SWS correlation (Fig. 9c) may indicate the role of
cold air advection into the region, but just as with vertical velocity, higher frequency data is likely
required to make a conclusive statement (Scott et al. 2020). One drawback of our CCF analysis is

that we do not control for the coupling of CCFs, such as the close correspondence of SST and EIS.
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Fic. 9. Change in cloud-controlling factors: estimated inversion strength (EIS), 500-hPa vertical velocity

(ws0p), near-surface wind speed (SWS), and sea surface temperature (SST) averaged over the SH midlatitudes

plotted against change in SH midlatitude low cloud cover.

calculated using the 12-member ensemble only.

b. Baroclinicity and storm tracks

The correlations, p-values, and trend lines are

Since midlatitude low clouds are embedded within eddying storm tracks with significant sub-

monthly variability, it is also of interest to look at metrics of storm track intensity. Here we will use

column-integrated eddy kinetic energy (EKE) (Lehmann et al. 2014; Shaw et al. 2016; Chemke

et al. 2022), calculated as follows:

Po
EKE = / (' +v?)dp
PT
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where p 1s a reference pressure (here 850 hPa), pr is the pressure at the tropopause (here 250 hPa
for simplicity), and #” and v’ are the zonal and meridional winds associated with transient eddies.

Across nearly all experiments, EKE generally decreases in the NH midlatitudes (Fig. 10), cor-
responding to the decrease in low clouds over the region. In the SH midlatitudes, we see an
opposite-signed EKE response between the 2xCO2 only run and the runs with OHU applied, and
there is a spread in the response of the 12-member ensemble such that the colder runs have a greater
increase in SH midlatitude EKE. The largest EKE changes in the SH occur on the poleward side
of the midlatitudes and into the polar region, but there is still some variation on the equatorward
side, where the largest low cloud changes occur across the ensemble. Across all experiments, EKE
is well-correlated with low cloud cover in the midlatitudes of both hemispheres (Fig. 11), which

also implies correlation with the global-mean temperature response via Fig. 8a.

Ensemble-mean change in EKE +ASIC-mean change in EKE
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FiG. 10. 12-member ensemble-mean and +ASIC-mean change in EKE with zonal-mean plots for all experiments.
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Fic. 11. Correlation between EKE and low cloud cover, both averaged over the NH (green) and SH (black)
midlatitudes, indicated by the boxes in Fig. 10a. The correlations, p-values, and trend lines are calculated using

the 12-member ensemble only.

Since changes in low clouds are known to occur alongside changes in lower-tropospheric stability
and midlatitude circulation shifts (Grise and Medeiros 2016), it may be useful to consider the Eady
growth rate, which is another common metric for baroclinicity and storm track intensity (Lehmann

et al. 2014; Yuval and Kaspi 2020):

Af g oT
0312 v 031822 2
7E N NT dy @

where A is the vertical wind shear (where one may make an approximation through the thermal
wind relation for the meridional temperature gradient 7 /dy), f is the Coriolis parameter, and N is
the Brunt—Viisild frequency (Lindzen and Farrell 1980; Vallis 2017). The Eady growth rate (also
integrated over 250-850 hPa) is well-correlated with EKE across the 12-member ensemble when
averaged over the SH midlatitudes (r = 0.82, not shown), so it may provide a useful framework for
understanding the storm track changes. As indicated by Eq. (2), there is an opposing influence
of stability (N) and meridional temperature gradient (07 /dy) on baroclinicity. All else equal, we

would expect a more stable midlatitude atmosphere to have weaker storm track intensity, but that
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ignores the complex coupling between clouds, radiation, and circulation (Voigt et al. 2021). A
detailed analysis of this coupling is beyond the scope of this work, but we can at least say that
the impact of the change in the meridional temperature gradient on baroclinicity outweighs any
influence from stability changes.

Similar to the relationship with stability, low clouds are strongly coupled to the midlatitude circu-
lation. For example, Tselioudis and Rossow (2006) found that greater midlatitude storm strength is
associated with a SW cooling effect. At the same time, absorbed SW radiation changes associated
with cloud cover and brightness changes can increase the meridional temperature gradient, thus
midlatitude baroclinicity (Ceppi et al. 2014). We propose that the low cloud cover response here
can be explained by this positive low cloud—baroclinicity feedback, along with the previously dis-
cussed positive low cloud—stability feedback. While we focus on the SH because of its importance
in the experiments studied in this paper, these arguments might also be applicable to the NH, at

least over the ocean.

6. Summary and discussion

In this study, we prescribed an ensemble of OHU patterns to a slab ocean model under doubled
CO,, generating a range of climate states representing different hypothetical transient warming
scenarios in a single model, with substantial differences in sea ice and global-mean temperature.
In particular, the runs in which Antarctic sea ice was maintained or expanded had a significantly
cooler SO compared to the 2xCO2 only run, which had a climatological (i.e., equilibrated) heat flux
divergence boundary condition applied. In the slab ocean model, imposed Southern Ocean heat
uptake near the sea ice edge or around areas with an unrealistically shallow mixed layer promoted
cooling of SO SSTs and sea ice expansion. This led to a local cooling directly and through surface
albedo changes, and the cold anomaly could likely be sustained by the continual prescribed heat
uptake over the Southern Ocean. While the rest of the planet warmed in response to the CO;
forcing, the SH extratropics were kept relatively cold, leading to an increase in the meridional
temperature gradient of the SH.

Through a radiative feedback analysis, we found that the spread in the response was primarily
determined by the SW cloud feedback in the SH midlatitudes, which is particularly evident when

comparing the feedback strengths between our “transient” (i.e., CO, + OHU) and equilibrium
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(CO; only) states. Changes in SH midlatitude low clouds are likely the result of changes in both
stability and baroclinicity (via meridional temperature gradients) over the SH, but the causality
is not clear, considering the coupling between clouds, radiation, and circulation. Because of the
unrealistic cooling and sea ice growth in some of the runs, we assume that the SO SST and sea
ice responses are primarily a cause, not an effect, of the circulation and cloud responses. This
is a remote mechanism by which high-latitude SST and sea ice changes can drive a same-signed
global-mean temperature change via the radiative effects of midlatitude low clouds.

While this ensemble is not meant to represent a best estimate of Earth’s actual TCR, it does
represent a plausible range of TCR, given the uncertainties in the future trends of SH temperature
and sea ice. This ensemble demonstrates the importance of the Antarctic sea ice response in
setting the course of transient climate change, as it can set up remote changes in midlatitude clouds
which in turn have significant impact on global-mean temperature. Cloud-locking experiments
(e.g., Grise et al. 2019) that break this coupling would allow us to make claims about causality. In
particular, we plan to investigate regional locking of the SH midlatitude clouds in order to quantify
how much cloud radiative effects feed back into stability and baroclinicity changes.

The use of a slab ocean model is a limitation because changes in ocean circulation would likely
result in a different magnitude of response, as the ocean works to counter circulation shifts (England
et al. 2020). The slab ocean model also clearly breaks the coupling between OHU and sea ice, but
more work is required to understand how OHU excites a sea ice response and how it changes over
a transient climate change scenario.

Limiting this study to one model only allowed us to focus on the role of OHU, SST, and sea
ice changes in determining cloud feedbacks without the additional structural uncertainty in cloud
process representation across models. This is a strength of our study, but investigating the robustness
of our findings across models would be desirable. For a qualitative comparison, we can turn to
one of the experiments from the Extratropical-Tropical Interaction Model Intercomparison Project
(ETIN-MIP) in which an ensemble of fully-coupled models have reduced insolation prescribed
over the SO (Kang et al. 2019). As expected from such an experiment, there is a global cooling,
with the greatest cooling occurring over the SH extratropics (see their Fig. 4c). There is also a
resulting increase in both Antarctic sea ice and SH midlatitude low cloud across the ensemble (see

their Figs. 10c,f), which qualitatively agrees with our results. While the ETIN-MIP experiments
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are nominally different from those described in this paper (changes in solar radiation as opposed
to OHU), they are energetically very similar—energy is being removed from the SO surface.
Although our experiments have global, spatially-complex forcings with significant North Atlantic
components, the SH response of our experiments could be interpreted as the superposition of CO,
forcing and the SH extratropical ETIN-MIP forcing.

In this work we have shown that the low cloud cover over the storm track region of the SH
midlatitudes can exert a profound effect on global-mean temperature, and that these clouds are
remotely shaped by teleconnections to high-latitude SO SSTs and Antarctic sea ice. It is possible
that trends in the Antarctic play an underappreciated role in setting the planetary albedo through this
remote cloud mechanism, both in models and in the real world. Given the substantial uncertainties
in the drivers of SO SST and Antarctic sea ice changes over the historical period, we suggest
prioritizing further study of the causal mechanisms linking SST, sea ice, atmospheric circulation,

and midlatitude clouds.
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APPENDIX

Forcing and response maps

For reference, we plot maps of the CMIP5 OHU anomalies which are added to the CESM1-
CAMS climatological Q-flux in Fig. Al. Maps of changes in surface air temperature, sea ice

concentration, and low cloud cover for all experiments are plotted in Figs. A2, A3, and A4.
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Fic. Al. Q-flux forcing patterns calculated from the CMIP5 models. Global-mean values (in W m~2) are in

parentheses next to the model names. Asterisks denote the three patterns resulting in the +ASIC runs.
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Fic. A2. Change in surface air temperature across the experiments. Asterisks denote the three +ASIC runs,

and the dashed black contours indicate the 0 K line for 2r§ference. Zonal means are plotted in Fig. 3.
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Fic. A3. Asin Fig. A2, but for sea ice concentration.
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Fic. A4. Asin Fig. A2, but for low cloud cover. Zonal means are plotted in Fig. 7.
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