Accelerating Sparse Attention with a Reconfigurable
Non-volatile Processing-In-Memory Architecture

Qilin Zheng, Shiyu Li, Yitu Wang, Ziru Li, Yiran Chen and Hai (Helen) Li
{qilin.zheng, shiyu.li, yitu.wang, ziru.li, yiran.chen, hai.li} @duke.edu
Dept. of ECE, Duke University

Abstract—Attention-based neural networks have shown superior
performance in a wide range of tasks. Non-volatile processing-in-
memory (NVPIM) architecture shows its great potential to accelerate the
dense attention model. However, the unique unstructured and dynamic
sparsity pattern in the sparse attention model challenges the mapping
efficiency of the NVPIM architecture, as the conventional NVPIM archi-
tecture uses a vector-matrix-multiplication primitives. In this paper, we
propose a NVPIM architecture to accelerate a dynamic and unstructured
sparse computation in the sparse attention. We aim to improve the
mapping efficiency for both SDDMM and SpMM by introducing two
vector-based primitives with a reconfigurable NVPIM bank. Further,
based on our reconfigurable NVPIM bank, we further propose a hybrid
stationary data flow to hide the latency. Our evaluation result shows that,
over previous NVPIM accelerators, our design could deliver up to 12.36 x
performance improvement and 3.4x energy efficiency improvement on
a range of vision and language tasks.

1. INTRODUCTION

With the development of machine learning, attention-based neural
networks are being viewed as the next generation solution for
computer vision (CV) [1] and natural language processing (NLP)
[2]. The input vectors are first projected into query (Q), key (K) and
value (V) matrices through linear transformation. Then, self-attention
is operated in two consecutive stages. In the first stage (attention com-
putation), the attention map is generated by normalizing the product
of Q and K with the softmax function. In the second stage (attention
computation), the normalized attention map is multiplied by the V
matrix to generate the output. This computational complexity hinders
the deployment of attention-based model to resource-constrained
devices.

Various solutions has been proposed to address the computational
cost either from the algorithm or hardware perspectives. Sparse
attention, where redundant attention scores are identified and elim-
inated, is proposed to address the computational cost from the
algorithm perspective. The sparse attention could reach over 90%
sparsity with a irregular and dynamic generated sparse map. From the
hardware perspective, non-volatile processing-in-memory (NVPIM)
architectures have been proved to be a promising solution to address
the computation need of attention-based models [3]. The NVPIM
architecture can perform the vector-matrix multiplication (VMM)
operations efficiently via analog computing on the memory array.
Furthermore, it can substantially reduce the overhead of data move-
ment, as the computation happens in-situ inside the memory array.

However, it is not easy to combine the optimal solution from both
worlds. Although there are non-PIM accelerators to support sparse
attention [4], [5], the cost of data movement could potentially be the
bottleneck and offsets the benefit of sparsity. Meanwhile, the irregular
and dynamic nature of sparse attention maps makes it difficult to map
sparse attention to existing NVPIM-based designs. Some existing
works, such as SRE [6], applied a structured pruning method at the
bit-level for both activations and weights. However, their method fails
to achieve substantial speed up due to a dynamic and unstructured
sparsity pattern in the attention-based model. As shown in Fig. 1,
directly mapping a transformer model with dynamic and unstructured

4 100%
,(.I)\ o 5] o 90%
£ ° £
= o) =
32 £ 60% P
g £ 50% 8
-1 £ 40%

3 B B 7o
0 20%
Deit-Tiny ~ Deit-Small ~ PiT-Tiny PiT-Small PvT-Tiny PvT-Small

‘ @Dense @Naive OSRE O Sparsity ‘
Fig. 1. Limited latency reduction of the previous NVPIM architecture with

sparse attention models.

sparse patterns to the ReTransformer architecture will only induce
about 1.59x (1.0x) speedup under 95% (67%) sparsity level. Even
equipping the baseline with the method proposed in SRE, the speedup
only reaches about 1.84x (1.11x) under the same sparsity level,
which is far from the theoretical savings. As the native processing
granularity of NVPIM is matrix, the utilization rate of the NVPIM
banks will drop significantly under the sparse scenario.

To fill this gap and release the potential of the NVPIM architecture
to process dynamic and unstructured sparse patterns, we propose a
NVPIM architecture with a reconfigurable NVPIM bank to accelerate
the sparse attention-based model. We use an architecture-circuit co-
design method to improve the mapping efficiency of both SDDMM
and SpMM. The basic idea is to provide two additional vector-based
computation primitives to support the sparse computation pattern
by reusing the interface circuits in the conventional NVPIM bank.
Further, based on our bank-level innovation, we further present a
hybrid stationary dataflow to achieve a pipelined processing to hide
the latency of the SDDMM stage and the SpMM stage. The evaluation
result shows that our design achieves up to 12.36x performance
improvement compared with the conventional NVPIM architecture
with an up to 3.4X energy efficiency improvement. In addition, our
design also achieves up to 8.6x energy efficiency improvement over
the non-PIM design without sacrificing the processing latency.

II. BACKGROUNDS

A. Sparse Attention in Transformer

The transformer model utilizes self-attention, where the input se-
quence of token embeddings X, is first converted into a queries (Q),
keys (K) and value (V') matrices by multiplying them with three

Approx Att P
[Qowkiow | _iAttn = OKT
Approx b Attn
Attn
%
W || Out AttnV Xout = OutWprQJ ~

Fig. 2. The computation process of a typical sparse attention block.

weight matrices W%, WX and WV. The output is computed as
a weighted sum of the values, where the weight of each value is
computed by a similarity function of the query with the corresponding
key. We compute the matrix of outputs using the scaled dot-product
attention layer:

QK"
Vi

Here, dj is a pre-defined constant and QKT /\/dy is also called
attention map.

Researchers attempted to reduce the computation related to the
attention map by exploiting the sparsity [7]. By eliminating unimpor-
tant attention scores, sparse attention could maintain the important
correlation between tokens while significantly reducing computa-
tional complexity. With a sparse attention map, matrix multiplication
between Q and K7 is converted into sampled dense-dense matrix
multiplication (SDDMM) while the weighted sum of values turns
into a sparse-dense matrix multiplication (SpMM). The computation
process of a sparse attention block is illustrated in Fig. 2. One
representative approach proposed in [4] adopts a precision gating
method to generate the attention mask. An approximated attention
map is computed by performing dense multiplication with low-
precision @ and K matrices. Then, the attention mask is generated
by comparing the approximated attention map with a predefined
threshold. In addition to precision gating, [5] adopts a low-rank
decomposition method to generate the approximated attention map.

Attention(Q, K, V') = softmax(% (1)

B. NVPIM Basic

We select ReRAM as our target device because of its high density
and energy efficiency, as shown in previous designs for other neural
networks [8], [9]. Typically, the memory cells are organized into
arrays with the crossbar structure. The PIM array supports VMM
as the computation primitive. The elements of the matrix are stored
in the memory array as the conductance of the memory cells. The
vector is first fed into the input register of the bank. Then, each
element of the vector is converted into the voltage generated by the
wordline driver and applied to the corresponding wordlines of the
array. The accumulation result can be represented as the current on
the bitline. The current is then converted to digital domain by an
analog digital converter (ADC) or multi-bit sense amplifier (MBSA)
for the subsequent process at the local PE. The final results are stored
in the output register for further accumulation or external access.

However, in a real NVPIM design, the input parallelism is deter-
mined by the number of wordlines that can be turned on in parallel,
while turning on too many wordlines will lead to non-negligible errors
in the accumulation current. The output parallelism is bounded by the
maximum number of ADCs that can fit into the area and power budget
of the design. Thus, in state-of-the-art designs [10], the memory array
size is 512 x 512. For each cycle, only 8 wordlines are turned on,
while only 64 bitlines are sensed in parallel instead of activating the
whole array simultaneously.

C. Challenges

For one NVPIM bank, the sparse computation pattern leads to low
utilization rate, which originates from rigid input/output dimensions
of the VMM primitive. We can abstract each PIM bank into a
M x N PE array which computes the inner product between a
M x N matrix and a 1 X M vector in each cycle. As shown in
Fig. 3(a), in the attention map computation stage, the k£ vectors are
stored in the memory array, and the ¢ vectors are streamed into the
NVPIM bank, where the output attention map matrix is streamed

(b) O —
3
g o
R
A —
&
a;a,a4a,

1 1

asiedg
2 |le
& [|&
o

2

=
e
‘e lle
e
2 |le
2 (| &

1

InQ Buiweans

Sparse Attention Map

Mask
Fig. 3. An example to illustrate the inefficiency to map the (a) attention

computation stage and (b) output computation stage to the conventional analog
PIM bank.

out. At each cycle, M elements in a g vector can be computed
with N k vectors. In this case, the NVPIM bank is fully utilized
only when N continuous indexes in the attention map mask is valid
(attnMask([i][j:j+N] is all *1’). In another word, the output dimension
of the NVPIM bank cannot be fully filled, which will reduce the
effective output parallelism. Similarly, for the output computation
stage (shown in Fig. 3(b)), the V vectors are stored in the memory
array and the sparse attention map matrix is streamed into the NVPIM
bank. At each cycle, M elements in a row of the attention map are
computed with NV V vectors. We need to ensure /N continuous indexes
in the attention map mask are valid (attnMask[i][j:j+N] is all ’1°) to
fully utilize the PE array. In another word, the input dimension is
not fully filled with a reduction of the effective input parallelism. In
general, for current NVPIM architecture, the computation primitive
provided by the NVPIM bank is not suitable for sparse processing
in the attention model.

Limited Output Utilization Limited Input Utilization VO v1 VZ V3

III. RECONFIGURABLE PIM BANK
A. Design Principle

To improve the mapping efficiency of the sparse workloads, the
basic idea is to collapse the input or output dimensions according
to the presence of sparsity. Mapping the sparse output dimension
in the attention map computation stage into a temporal loop will
improve the mapping efficiency. For each computation cycle, we
compute one non-zero value in the sparse attention map from the
inner product between one ¢ and k vectors (attnMask[i][j]==1). The
computation corresponding to the pruned attention scores can be
skipped. Similarly, when the input dimension is sparse, the input is
viewed as a scalar and each computation cycle produces one output
vector corresponding to the product of the non-zero attention map
and one v vector. For each computation cycle, we feed one non-
zero value in the sparse attention map as a scalar and perform a
multiplication between the scalar and one specific v vector. The
computation corresponding to the zero-value attention map can be
skipped.

B. Implementation

Considering the optimized data mapping scheme, we need to
re-design the NVPIM bank to support two additional vector-based
primitves, scalar-vector multiplication (SVM) and inner-product (IP)
mode. Fig. 4 shows the proposed reconfigurable NVPIM bank ar-
chitecture and the detailed data path, inspired by [11], [12]. Our
design is based on the conventional analog PIM bank as shown in
Fig. 4 (a). The proposed PIM bank contains an I/O register (IR/OR),
wordline drivers (WLD), one or multiple memory array(s), read out
circuit (including column multiplex (Col. MUXs) and MBSAs), and a
local processing element (PE). We denote the matrix (M x N) stored
in the memory array as matrix A, the input vector (M x 1) as vector
B, and we assume that the precision of both A and B are 8-bit. Matrix
A is assigned to the corresponding M rows and N X 8 columns in

(a) Analog Mode: VMM Primitive

Wordline Driver
Wordline Driver

(b) Digital Mode: IP Primitive

A0l A7]

(c) Digital Mode: SVM Primitive

A0l A7T - AO] Agl7]

Wordline Driver

[[Col. MUX |

[[Col. MUX]|
A

[[Col. MUX]
A

[Col. MUX]| [Col. MUX | [Col. MUX]
MBSA MBSA

[Col. MUX] [Col. MUX]
BSA MBSA

Mult| bit
Accumulation

Cycle 1: Bol7]
Cycle 2: Bey[6]

[Col. MUX] [Col. MUX]
MBSA MBSA

Cycle 1: Bq[7]
Cycle 2: B,[6]

o
Py

eal7:01Bg[7]| -
£) Local Shift Asal7:01B 7]
EE Accumulation
N> o'd
SA[T:0B{7] i
: o2 0
Psum = XA[7:0]B7:0] [| ($X9) Psumg,=Ag,[7:0]B,[7:0] A7:018 o70]
[or] [[orR [or | [or [or |

Fig. 4. Illustration of the computation path of the PIM bank in (a) analog mode for VMM primitive, (b) digital mode for IP primitive and (c) digital mode

for SVM primitive.

the memory array. The bits for one element in A is interleaved to
different columns with a stride of 8 to ensure the parallel computation.
In each cycle, one bit of each element in B is fetched from the input
register to the wordline driver that activates M wordlines in parallel
to take in these M 1-bit inputs. The current at each bitline will
represent a bit-wise multiplication and accumulation (MAC) result
between B and one column of A. Along each bitline, one MBSA
converts the bitline current to a multi-bit digital value. Each MBSA
requires M levels, and each MBSA contains can be implemented
by M sense amplifiers (SAs) with M different reference levels, as
shown in Fig. 5 (a). For every 8 MBSAs, the bit-wise MAC results
are further shifted and accumulated through an 8-to-1 adder tree and
then sent to the shift-accumulator collecting the partial sum. The
Col.Mul is set to select a specific bitline to the MBSA, to implement
the stride-8 bit-interleaved scheme. A thermal-to-binary decoder is
needed to generate a data with binary format for further processing.

Our design reuses the available resources in the conventional
analog PIM bank to minimize the area overhead. The computing
paradigm of the IP primitive is shown in Fig. 4 (b). The key to
support IP primitive is to configure the MBSA into multiple SAs by
providing same reference voltage to each SA, as shown in Fig. 5
(b) (At the same time, the thermal-to-binary decoder is bypassed).
The Col.Mux is set to connect 8 bitlines to select multiple bitlines
in parallel to multiple SAs. Here, we denote the vector stored in the
memory array as vector A, and the input vector as vector B. Both
vectors have the shape of M /N x 1 (instead of M X 1 to keep the
throughput). Each bit in one element of A is directly stored in 8
consecutive bitlines ensure the parallel read. Before the computation
starts, the vector A is first read out by activating one specific wordline.
In this case, N x 8 M-level MBSAs can be used to sense N x 8 x M
bitlines in parallel. We can read out vector A with length of M N,
where each element in the memory array is 8 bit. We still feed the
vector B bit-by-bit to the MBSA. M x N element-wise multiplication
results can be generated by performing an AND operation between
the sensed vector A and each bit of vector B. Then we configure the
local PE to an M N-to-1 adder tree to generate the IP result. We still

ColMUX Col MUX

I8Lioll BLII |BLE2I[BLE] | BU4Il BLES) |BLEI| B! | | BLOI| BLIT [BLI2I|BLS] | BLMAI| BLIS] |BLII|BLIT]

] O e e T e E e P P e

VV_?\J? V\?’\?’\V VY VY V\?’\?’\V
Thermal To Binary AND

MBSA: Analog Mode ZA[j]"B[i] (a) MBSA: Digital Mode A[7-0]*B[i] (b) B[i]

Fig. 5. The data path of Col.MUX and MBSA in (a) analog mode for VMM
primitive and (b) digital mode for IP and SVM primitive.

Tile
ml >, 1 > PIM
E e g Bank
< <
Local é §
Buffer)]
£ N PIM Bank , VMM PIMBank , SVM Bank
=
= I I
L [AA , ¥ , Bus]
5 1 1 T
o}
< v
(] Dense Sparse PIM > PIM
Scheduler Scheduler Bank e Bank
<
NN £
=
1D MAC Array | | Softmax | }
OR | | IR PIM
Functional Unit Local Buffer PIM Bank P Bank

Fig. 6. The overall architecture of proposed design.

need one shift-accumulator to accumulate the bit-wise MAC results
corresponding to different input bits. The computing paradigm of the
SVM primitive is similar to the IP primitive, as shown in Fig. 4 (c).
Here, we denote the vector stored in the memory array as vector A
and the input scalar as B. The MBSA is also configured into multiple
SAs and a vector A with length M N is read out. The scalar B is
broadcast bit-by-bit to the all MBSAs, and then an AND operation is
performed to generate M N 8b element-wise multiplication results.
Then we configure the local PE to M N shift-accumulator to generate
the SVM results.

It is worth noting that the vector primitives in our proposed NVPIM
bank does not induce throughput reduction comparing with the analog
VMM primitives. Despite the row activated in parallel is reduced 8%,
8x columns can be sensed in parallel as the MBSA is configured into
multiple SAs.

IV. ACCELERATOR ARCHITECTURE
A. Architecture Overview

Fig. 6 depicts the overall architecture of the proposed design. We
organize the aforementioned reconfigurable PIM bank into tiles. Each
tile can communicate with the external memory or the other tiles
through a shared interface. Within each tile, apart from the recon-
figurable PIM banks, we also built a local buffer, a functional unit,
and dense/sparse schedulers. The sparse attention computation can
be decomposed into multiple dense and sparse matrix computation
stages. The PIM banks in the tile are used for both dense and sparse
matrix computation. The analog mode is used to perform a VMM for
the dense matrix operation, and the digital modes are used to perform
IP or SVM for the sparse matrix computation. The functional unit is

Q Bank K Bank V Bank Q Bank K Bank V Bank Q Bank K Bank V Bank
Weight Matrix Q Vector V Vector
IDLE IDLE IDLE
[EEEN] [EEEE| | | .
[EEEE) Ooro ﬁ oo "
Feature Vector | Q,K,V Vector o K Vector o Attention Map Scalar | o
Bus Bus - Bus
o | . o | [1 C
IDLE Buffer 4— . Dense IDLE FU IDLE IDLE Sparse FU Buffer IDLE Sparse
Scheduler Scheduler Scheduler

(a) (b)

(c)

Fig. 7. An example of data mapping and computation flow for (a) dense operation, (b) @ X K T and (c) Attn X V.

used to perform softmax and normalization operations. Intermediate
data, such as embeddings (X), are stored in the local buffer. Finally, a
dense and a sparse scheduler are used to orchestrate the computation
flow by moving the data and assigning the computation task to each
PIM bank.

Our design features a hybrid stationary dataflow that distributes
the computation of different stages into different PIM banks to
fully utilize the computation resources. Moreover, we could enable
a dedicated pipelined execution scheme among different stages to
reduce processing latency.

B. Computation Flow

We would like to use a simple example to demonstrate how our
proposed design executes both dense and sparse computation in the
sparse attention operation.

1) Dense Computation: The dense operation includes the QKV
generation layer, the prediction of the attention map, the projection
layer, and the FFN layer (linear layers). We use the QKV generation
layer as an example. Before starting the calculation, we divide the
PIM banks into Q, K, V bank, and the weight matrices (W,, Wi, Wwv)
are assigned to the corresponding bank. The computation is per-
formed in token order. According to the token index, an input feature
vector is fetched from the local buffer and sent to all Q, K, V PIM
banks. Then, all Q, K, V banks are configured into the VMM mode to
perform a VMM computation. The dense scheduler triggers Q, K, V
banks to perform the VMM between the input feature vector and the
weight matrices, and the results are temporarily stored at the output
register inside each PIM bank. At the end of the dense computation,
the results are directly stored back to the memory array in the PIM
bank for further sparse computation.

2) Attention Map Computation: Each output attention score is the
result of a dot-product of a pair of query and key vectors. After the
QKYV generation layer, the Q and K matrices are stored at the Q banks
and K banks. We use a “Q stationary” dataflow, where the Q banks
are used as the computation bank and the K banks as the memory
bank. The mask of the sparse attention map is stored at the sparse
scheduler. According to indices of K vectors corresponding to non-
zero attention score, the sparse scheduler issues the memory access
requests to the K bank. The K vector will be gathered to the sparse
scheduler and further scattered to the corresponding Q banks. Then,
the Q banks are configured into the IP mode, and the sparse scheduler
triggers the computation of the corresponding Q bank. According to
the Q index, a specific Q vector is selected in the memory array and a
vector-vector IP between the Q vector and the K vector is computed
to generate one attention score. The generated results are further sent
back to the function unit for softmax, and temporarily stored in the
attention map buffer in the function unit.

3) Output Computation: We obtain the result of the attention
operation by multiplying the attention map with the V matrix in

this stage. To reduce the data movement, we use a ‘V stationary’
dataflow. According to the index of V vectors corresponding to
non-zero attention scores, the sparse scheduler fetches the attention
map from the function unit to the V banks. Then, the V banks are
configured into the SVM mode, and the sparse scheduler triggers the
computation. According to the non-zero index of the attention map, a
specific v vector is selected in the memory array, and a scalar-vector
multiplication is computed. Then, we iterate over all attention score
to generates the final output features which are further sent back to
the local buffer.

C. Pipeline Scheme

In the attention map computation stage, the Q and K banks are
used for data access or computation while the V banks are idle. In
contrast, in the output computation stage, only V bank is used for
data access or computation. Thus, there is an opportunity to form
a pipeline to hide the latency. Fig. 8 shows the pipeline scheme in
our design. The pipeline contains 2 stages, including the attention
map computation and the output computation. We group multiple
rows in the attention map into one chunk, and split the attention map
into multiple chunks. We first trigger the attention map computation
of the first chunk in the attention map. When the attention map of
the first chunk is generated, we trigger the output computation of
the first chunk and the attention map computation of the second
chunk at the same time. Two individual controllers are designed
inside the sparse scheduler to manage the computation flow for
attention map computation and output computation. The computation
of the subsequent stage is triggered only when both the attention
map computation and the output computation of the previous stage
are completed. Other than latency reduction, a chunk level pipeline
could also reduce the attention map storage requirement. Instead
of buffering the whole attention map, we only need to buffer the
attention map for two chunks.

V. EVALUATION METHODOLOGY
A. Workload Setup

We evaluate our design on 3 vision Transformer models and 1
NLP Transformer model. For vision tasks, we use 6 models including
DeiT (DeiT Tiny, DeiT Small) [13], PVT (PVT Tiny, PVT Small) [14]
and PiT (PiT Tiny) [15] on ImageNet [16] dataset, where the input
size is 3 X 224 x 224 and the patch size is 16 x 16. For the
language tasks, we use BERT [2] for GLUE [17], SQuAD vl1.1 [18],
and CLOTH [19] benchmarks. We use the precision gating method
proposed in [4] to generate the attention map mask. The other layer
such as linear layer and FFN layers are quantized to 8 bit for both
activation and weights. Each vision model is re-trained 60 epochs
after quantization and sparsification, to recover the accuracy loss
caused by the gating. The language models are fine-tuned on each
downstream task based on pretrained BERT model until converge.

Chunk3) Attention Map Computation

(Chunko X _Chunk1) {_Chunk2

Chunk2 > (Chunk3)OutputComputation

(_Chunko _X_Chunki

T T =D

(’(Load K/) <\Stcre Oulpu}/)’< Load Kﬁ (\Stnre Output %(Store Attn > Bus
A

(/'\(QOIK[2l CamEy ey () Q Banks
EEEBEEBHChunk 3 ~ { A[2:0][0]*V[2:0] N *(_sWm V Banks
Data dependency
Fig. 8. Pipelined execution scheme to hide the latency.
B. Hardware Setup Component Params Spec
Throughput | 64 MACs/14 ns
For the NVPIM bank, we use the memory array model from [9]. Comp.Energy 93 /MAC
. . NVPIM Bank Capacity 128 kB
The energy and area for the adder in local PE is extracted from M
. . . em. Energy 2.3 pJ/Byte
synthesized results with 28 nm sFandard cell hbra.ry. FOF the an.alog Number 7
component such as MBSA, we implement the circuit in transistor Function Un Throughput | 64 MACs/ cycle
level and extract the area and energy consumption from the schemat- unction Unit Comp Energy 113 J/MAC
ics. The NVPIM bank level area breakdown is shown in Table I. Capacity 512 kKB
. . Local Buffer
The hardware configuration is shown in Table II. The results of the Mem.Ene.rgy 4.5 pl/Byte
function unit is extracted from [5], and the results of the local buffer Local Bus Bandwidth | 512 Byte/cycle
is extracted from CACTI. Each PIM Bank could deliver about 9.14 TABLE II

GOPS throughput with 128 kB memory capacity. We set 72 banks in
each tile, which could deliver 658 GOPS and 9 MB memory capacity.
Based on bank-level results, we further implement a cycle-accurate
simulator to capture the total performance and energy consumption
for each workload.

C. Baseline Setup

For the baseline NVPIM accelerators, we quantitatively compare
our design with ReTransformer [3], as implemented with our cycle-
accurate simulator. ReTransformer is designed for dense attention
computation, so we apply the method proposed in SRE [6] to support
the sparse attention. We also compare our design with two non-
PIM based designs. To make it fair, we set the memory access
energy/latency and the computation energy/latency to be same as the
NVPIM based designs. Then, we select a proper design budget so
that both non-PIM and NVPIM designs could deliver the same peak
throughput. Our assumption ensures the results from non-PIM design
are more optimistic.

We choose DOTA [5] and Sanger [4] as they use similar sparse
algorithm. For these non-PIM based designs, we develop a behavior
model to evaluate the latency and energy cost. For DOTA, we scale
down the number of lanes in the original design (2TOPS) to match the
peak throughput with our baseline non-PIM accelerator (512GOPS),
while for Sanger, we directly choose the original hardware configu-
ration since it delivers similar effective throughput (529GOPS).

Area(mm?)
Component Params. Spec. Con. Ours
Size 512 x 512
Memory Array Number 7 0.0128 0.0128
Local PE No. of Adders 64 0.0078 0.015
Input Register Size 2K Byte 0.0021 0.0021
Output Register Size 256 Byte | 0.00077 | 0.00077
8-level MBSA Number 64 0.01 0.01
Total - - 0.033 0.041
TABLE I
AREA BREAKDOWN FOR OUR NVPIM BANK AND THE CONVENTIONAL
NVPIM BANK.

HARDWARE CONFIGURATIONS
VI. RESULTS AND DISCUSSION

A. Main Results

We separately depict the sparsity and accuracy result as grey dots
in Fig. 9. For most of the models, the sparse attention algorithm
incurs negligible accuracy loss (< 1%) while archiving a relatively
high sparsity ratio in attention score (> 85%). Sparse attention could
even improve the accuracy on simple downstream tasks like SST-
2 and CLOTH, since the pruning process reduce the overfitting of
the baseline model. We illustrate the improvement of our proposed
design over the baseline NVPIM accelerator in Fig. 9. The result
shows that our proposed design could achieve a speedup ranging from
2.95x to 12.36x over the baseline design. In terms of energy, our
design could achieve a 1.2x to 3.4x energy efficiency improvement
comparing with the baseline accelerator, as shown in Fig. 9. The
energy efficiency improvement comes from the improvement of the
bank-level utilization rate. Similar as the speedup, we also observe
a larger energy efficiency improvement when the sparsity level
increases.

B. Scalability Analysis

We investigate the bank-level scalability when we have more
available banks to improve the token-level parallelism for both
attention map computation stage and output computation stage. The
result is shown in Fig. 10(a). The processing latency can be reduced
Vision . NLP

16 96%

[mReTransformer 5O0urs O Sparsity
] Q 94%

12
% 8 92%
S]
8 90%
g4 88%

0 - 86%

o
5 4 @ReTransformer 4%
[3 =0urs
g OAccuracy Drop 2%
= 21
=
woy 0%
>
% o 2%
& & > & » R o b
g & & s & & \,6\ & 5 &
& Y < N Q? & © @ &
< ® < <Q (<

Fig. 9. Speedup and the energy efficiency results on vision and NLP tasks.

——ReT.Lat. _ —e—Ours Lat T,
4 ScReT.Eng. —xOursEng. || o0 160 e % Non-PIM
5 140 4 o |
- / DOTA /
Es | %o 152 1200
2 *--less X077 z 100 ! & L/ of
S2 TTH---wx | 102 80 \ Sgefger qe‘;e
© 4 60 bt «
-1 .\‘\‘\"‘ 5 40 \(‘\9 ReTransformer
Ours o
L]
o (@ o 2) e
8 12 16 20 24
of Banks 0 1 Latency (ms) 2 3

Fig. 10. (a) Energy-latency trade-off. (b) The latency and energy results with
different number of banks for our design and ReTransformer.

about 50% when we increase the bank-level parallelism from 8 to
24, while the latency reduction is only 30% for the baseline design.
Moreover, the gap between output design and baseline expands with
more banks. The results also show a reduction of energy consumption
when we use more banks in the proposed design, while the baseline
design consumes more energy. When we increase the token-level
parallelism, the token reuse rate can be increased by reusing the
K vector for different Q vectors. Thus, we could achieve a lower
energy consumption in terms of memory access cost. In contrast, the
baseline accelerator consumes more energy in the computation as
the inter-bank efficiency is further reduced by mapping the Q, K, V
matrices into more banks.

C. Comparison with Non-PIM Accelerators

The energy-latency trade-off of both PIM and non-PIM accelerator
is shown in Fig. 10 (b). Generally, the non-PIM designs could achieve
lower latency than ReTransformer, while the NVPIM-based designs
could achieve a higher energy efficiency. In contrast, our proposed
design could achieve a better energy-latency trade-off, where both
energy consumption and latency is relatively low. For example,
our design could achieve up to 3.8x and 8.6x energy reduction
comparing with Sanger and DOTA, respectively, while the processing
latency is in the same level. However, Retransformer could deliver
3.71x and 8.5x energy reduction at the cost of 4.8x and 3.3x
latency overhead, respectively.

To further understand the energy efficiency improvement, we
present an energy consumption breakdown of our design, ReTrans-
former and non-PIM designs. Fig. 11 shows the energy breakdown of
four designs to process a DeiT-Small model with different sparsity
levels. For all sparsity levels, our design consumes less energy on
computation. The lower computation energy comes from a higher
array utilization rate. However, our design requires higher memory
access energy due to smaller data reuse opportunities while using a
vector-based processing scheme.

Comparing with Sanger, our design could achieve both computa-
tion and memory access energy reduction. The computation energy
reduction comes from the higher utilization rate in our design. The
memory access energy reduction comes from our hybrid stationary
dataflow, where the data movement of Q and V is reduced. Comparing
with DOTA, our design achieves a similar computation energy with

180
160

\ Computation B Memory Access

Sparsity
Fig. 11. Energy breakdown for PIM and non-PIM designs with different
sparsity level on DeiT-Small model.

a large reduction of memory access energy. DOTA uses 1-D SIMD-
based processing scheme and all the Q, K, V vectors require to be
fetched multiple times during the computation.

VII. CONCLUSION

In this work, we propose a NVPIM architecture, which aims at
solving the challenge of the sparse attention on NVPIM architecture
with a dynamic and unstructured pattern. We first propose a recon-
figurable NVPIM bank with vector-based primitives to improve the
intra-bank utilization rate for the SDDMM and SpMM computation.
Based on our bank-level innovation, we design a hybrid stationary
dataflow which enables a pipelined processing scheme to hide the
computation latency of the SDDMM stage and SpMM stage. Our
proposed design could achieve up to 12.36x performance improve-
ment over conventional NVPIM architecture (ReTransformer), while
delivering a up to 3.4x energy efficiency improvement on a range
of representative benchmarks. In addition, our proposed design could
also achieve up to 8.6 x energy efficiency improvement over non-PIM
design without sacrificing the processing latency.

ACKNOWLEDGEMENT

This work was supported by National Science Foundation under
grant CNS-2233808, EECS-2023752, 1955246 and 2112562, and
supported by Army Research Office under grant W911NF-19-2-0107.

REFERENCES

[1]1 A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[2] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[3] X. Yang et al., “Retransformer: Reram-based processing-in-memory
architecture for transformer acceleration,” in ICCAD, 2020.

[4] L. Lu et al, “Sanger: A co-design framework for enabling sparse
attention using reconfigurable architecture,” in MICRO, 2021.

[5] Z. Qu et al., “Dota: detect and omit weak attentions for scalable
transformer acceleration,” in ASPLOS, 2022.

[6] T.-H. Yang et al., “Sparse reram engine: Joint exploration of activation
and weight sparsity in compressed neural networks,” in ISCA, 2019.

[71 G. M. Correia et al., “Adaptively sparse transformers,” arXiv preprint
arXiv:1909.00015, 2019.

[8] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in ISCA,
2016.

[9] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in ISCA, 2016.

[10] J.-M. Hung et al., “An 8-mb dc-current-free binary-to-8b precision reram
nonvolatile computing-in-memory macro using time-space-readout with
1286.4-21.6 tops/w for edge-ai devices,” in ISSCC, 2022.

[11] Q. Zheng et al., “Lattice: An adc/dac-less reram-based processing-in-
memory architecture for accelerating deep convolution neural networks,”
in DAC, 2020.

[12] Q. Zheng et al., “Mobilatice: a depth-wise denn accelerator with hy-
brid digital/analog nonvolatile processing-in-memory block,” in ICCAD,
2020.

[13] H. Touvron et al., “Training data-efficient image transformers & distil-
lation through attention,” in I[CML, 2021.

[14] W. Wang et al., “Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions,” in /CCV, 2021.

[15] B. Graham et al., “Levit: a vision transformer in convnet’s clothing for
faster inference,” in ICCV, 2021.

[16] J. Deng et al., “ImageNet: A large-scale hierarchical image database,”
in CVPR, 2009.

[17] A. Wang et al., “Glue: A multi-task benchmark and analysis platform
for natural language understanding,” arXiv preprint arXiv:1804.07461,
2018.

[18] P. Rajpurkar et al., “Squad: 100,000+ questions for machine compre-
hension of text,” arXiv preprint arXiv:1606.05250, 2016.

[19] Q. Xie et al., “Large-scale cloze test dataset created by teachers,” arXiv
preprint arXiv:1711.03225, 2017.

