
Accelerating Sparse Attention with a Reconfigurable

Non-volatile Processing-In-Memory Architecture

Qilin Zheng, Shiyu Li, Yitu Wang, Ziru Li, Yiran Chen and Hai (Helen) Li

{qilin.zheng, shiyu.li, yitu.wang, ziru.li, yiran.chen, hai.li}@duke.edu

Dept. of ECE, Duke University

Abstract—Attention-based neural networks have shown superior
performance in a wide range of tasks. Non-volatile processing-in-
memory (NVPIM) architecture shows its great potential to accelerate the
dense attention model. However, the unique unstructured and dynamic
sparsity pattern in the sparse attention model challenges the mapping
efficiency of the NVPIM architecture, as the conventional NVPIM archi-
tecture uses a vector-matrix-multiplication primitives. In this paper, we
propose a NVPIM architecture to accelerate a dynamic and unstructured
sparse computation in the sparse attention. We aim to improve the
mapping efficiency for both SDDMM and SpMM by introducing two
vector-based primitives with a reconfigurable NVPIM bank. Further,
based on our reconfigurable NVPIM bank, we further propose a hybrid
stationary data flow to hide the latency. Our evaluation result shows that,
over previous NVPIM accelerators, our design could deliver up to 12.36×
performance improvement and 3.4× energy efficiency improvement on
a range of vision and language tasks.

I. INTRODUCTION

With the development of machine learning, attention-based neural

networks are being viewed as the next generation solution for

computer vision (CV) [1] and natural language processing (NLP)

[2]. The input vectors are first projected into query (Q), key (K) and

value (V) matrices through linear transformation. Then, self-attention

is operated in two consecutive stages. In the first stage (attention com-

putation), the attention map is generated by normalizing the product

of Q and K with the softmax function. In the second stage (attention

computation), the normalized attention map is multiplied by the V

matrix to generate the output. This computational complexity hinders

the deployment of attention-based model to resource-constrained

devices.

Various solutions has been proposed to address the computational

cost either from the algorithm or hardware perspectives. Sparse

attention, where redundant attention scores are identified and elim-

inated, is proposed to address the computational cost from the

algorithm perspective. The sparse attention could reach over 90%

sparsity with a irregular and dynamic generated sparse map. From the

hardware perspective, non-volatile processing-in-memory (NVPIM)

architectures have been proved to be a promising solution to address

the computation need of attention-based models [3]. The NVPIM

architecture can perform the vector-matrix multiplication (VMM)

operations efficiently via analog computing on the memory array.

Furthermore, it can substantially reduce the overhead of data move-

ment, as the computation happens in-situ inside the memory array.

However, it is not easy to combine the optimal solution from both

worlds. Although there are non-PIM accelerators to support sparse

attention [4], [5], the cost of data movement could potentially be the

bottleneck and offsets the benefit of sparsity. Meanwhile, the irregular

and dynamic nature of sparse attention maps makes it difficult to map

sparse attention to existing NVPIM-based designs. Some existing

works, such as SRE [6], applied a structured pruning method at the

bit-level for both activations and weights. However, their method fails

to achieve substantial speed up due to a dynamic and unstructured

sparsity pattern in the attention-based model. As shown in Fig. 1,

directly mapping a transformer model with dynamic and unstructured
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Fig. 1. Limited latency reduction of the previous NVPIM architecture with
sparse attention models.

sparse patterns to the ReTransformer architecture will only induce

about 1.59× (1.0×) speedup under 95% (67%) sparsity level. Even

equipping the baseline with the method proposed in SRE, the speedup

only reaches about 1.84× (1.11×) under the same sparsity level,

which is far from the theoretical savings. As the native processing

granularity of NVPIM is matrix, the utilization rate of the NVPIM

banks will drop significantly under the sparse scenario.

To fill this gap and release the potential of the NVPIM architecture

to process dynamic and unstructured sparse patterns, we propose a

NVPIM architecture with a reconfigurable NVPIM bank to accelerate

the sparse attention-based model. We use an architecture-circuit co-

design method to improve the mapping efficiency of both SDDMM

and SpMM. The basic idea is to provide two additional vector-based

computation primitives to support the sparse computation pattern

by reusing the interface circuits in the conventional NVPIM bank.

Further, based on our bank-level innovation, we further present a

hybrid stationary dataflow to achieve a pipelined processing to hide

the latency of the SDDMM stage and the SpMM stage. The evaluation

result shows that our design achieves up to 12.36× performance

improvement compared with the conventional NVPIM architecture

with an up to 3.4× energy efficiency improvement. In addition, our

design also achieves up to 8.6× energy efficiency improvement over

the non-PIM design without sacrificing the processing latency.

II. BACKGROUNDS

A. Sparse Attention in Transformer

The transformer model utilizes self-attention, where the input se-

quence of token embeddings Xin is first converted into a queries (Q),

keys (K) and value (V ) matrices by multiplying them with three

Fig. 2. The computation process of a typical sparse attention block.
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weight matrices WQ, WK and WV . The output is computed as

a weighted sum of the values, where the weight of each value is

computed by a similarity function of the query with the corresponding

key. We compute the matrix of outputs using the scaled dot-product

attention layer:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Here, dk is a pre-defined constant and QKT /
√
dk is also called

attention map.

Researchers attempted to reduce the computation related to the

attention map by exploiting the sparsity [7]. By eliminating unimpor-

tant attention scores, sparse attention could maintain the important

correlation between tokens while significantly reducing computa-

tional complexity. With a sparse attention map, matrix multiplication

between Q and KT is converted into sampled dense-dense matrix

multiplication (SDDMM) while the weighted sum of values turns

into a sparse-dense matrix multiplication (SpMM). The computation

process of a sparse attention block is illustrated in Fig. 2. One

representative approach proposed in [4] adopts a precision gating

method to generate the attention mask. An approximated attention

map is computed by performing dense multiplication with low-

precision Q and K matrices. Then, the attention mask is generated

by comparing the approximated attention map with a predefined

threshold. In addition to precision gating, [5] adopts a low-rank

decomposition method to generate the approximated attention map.

B. NVPIM Basic

We select ReRAM as our target device because of its high density

and energy efficiency, as shown in previous designs for other neural

networks [8], [9]. Typically, the memory cells are organized into

arrays with the crossbar structure. The PIM array supports VMM

as the computation primitive. The elements of the matrix are stored

in the memory array as the conductance of the memory cells. The

vector is first fed into the input register of the bank. Then, each

element of the vector is converted into the voltage generated by the

wordline driver and applied to the corresponding wordlines of the

array. The accumulation result can be represented as the current on

the bitline. The current is then converted to digital domain by an

analog digital converter (ADC) or multi-bit sense amplifier (MBSA)

for the subsequent process at the local PE. The final results are stored

in the output register for further accumulation or external access.

However, in a real NVPIM design, the input parallelism is deter-

mined by the number of wordlines that can be turned on in parallel,

while turning on too many wordlines will lead to non-negligible errors

in the accumulation current. The output parallelism is bounded by the

maximum number of ADCs that can fit into the area and power budget

of the design. Thus, in state-of-the-art designs [10], the memory array

size is 512 × 512. For each cycle, only 8 wordlines are turned on,

while only 64 bitlines are sensed in parallel instead of activating the

whole array simultaneously.

C. Challenges

For one NVPIM bank, the sparse computation pattern leads to low

utilization rate, which originates from rigid input/output dimensions

of the VMM primitive. We can abstract each PIM bank into a

M × N PE array which computes the inner product between a

M × N matrix and a 1 × M vector in each cycle. As shown in

Fig. 3(a), in the attention map computation stage, the k vectors are

stored in the memory array, and the q vectors are streamed into the

NVPIM bank, where the output attention map matrix is streamed
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Fig. 3. An example to illustrate the inefficiency to map the (a) attention
computation stage and (b) output computation stage to the conventional analog
PIM bank.

out. At each cycle, M elements in a q vector can be computed

with N k vectors. In this case, the NVPIM bank is fully utilized

only when N continuous indexes in the attention map mask is valid

(attnMask[i][j:j+N] is all ’1’). In another word, the output dimension

of the NVPIM bank cannot be fully filled, which will reduce the

effective output parallelism. Similarly, for the output computation

stage (shown in Fig. 3(b)), the V vectors are stored in the memory

array and the sparse attention map matrix is streamed into the NVPIM

bank. At each cycle, M elements in a row of the attention map are

computed with N V vectors. We need to ensure N continuous indexes

in the attention map mask are valid (attnMask[i][j:j+N] is all ’1’) to

fully utilize the PE array. In another word, the input dimension is

not fully filled with a reduction of the effective input parallelism. In

general, for current NVPIM architecture, the computation primitive

provided by the NVPIM bank is not suitable for sparse processing

in the attention model.

III. RECONFIGURABLE PIM BANK

A. Design Principle

To improve the mapping efficiency of the sparse workloads, the

basic idea is to collapse the input or output dimensions according

to the presence of sparsity. Mapping the sparse output dimension

in the attention map computation stage into a temporal loop will

improve the mapping efficiency. For each computation cycle, we

compute one non-zero value in the sparse attention map from the

inner product between one q and k vectors (attnMask[i][j]==1). The

computation corresponding to the pruned attention scores can be

skipped. Similarly, when the input dimension is sparse, the input is

viewed as a scalar and each computation cycle produces one output

vector corresponding to the product of the non-zero attention map

and one v vector. For each computation cycle, we feed one non-

zero value in the sparse attention map as a scalar and perform a

multiplication between the scalar and one specific v vector. The

computation corresponding to the zero-value attention map can be

skipped.

B. Implementation

Considering the optimized data mapping scheme, we need to

re-design the NVPIM bank to support two additional vector-based

primitves, scalar-vector multiplication (SVM) and inner-product (IP)

mode. Fig. 4 shows the proposed reconfigurable NVPIM bank ar-

chitecture and the detailed data path, inspired by [11], [12]. Our

design is based on the conventional analog PIM bank as shown in

Fig. 4 (a). The proposed PIM bank contains an I/O register (IR/OR),

wordline drivers (WLD), one or multiple memory array(s), read out

circuit (including column multiplex (Col.MUXs) and MBSAs), and a

local processing element (PE). We denote the matrix (M×N ) stored

in the memory array as matrix A, the input vector (M × 1) as vector

B, and we assume that the precision of both A and B are 8-bit. Matrix

A is assigned to the corresponding M rows and N × 8 columns in
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Fig. 4. Illustration of the computation path of the PIM bank in (a) analog mode for VMM primitive, (b) digital mode for IP primitive and (c) digital mode
for SVM primitive.

the memory array. The bits for one element in A is interleaved to

different columns with a stride of 8 to ensure the parallel computation.

In each cycle, one bit of each element in B is fetched from the input

register to the wordline driver that activates M wordlines in parallel

to take in these M 1-bit inputs. The current at each bitline will

represent a bit-wise multiplication and accumulation (MAC) result

between B and one column of A. Along each bitline, one MBSA

converts the bitline current to a multi-bit digital value. Each MBSA

requires M levels, and each MBSA contains can be implemented

by M sense amplifiers (SAs) with M different reference levels, as

shown in Fig. 5 (a). For every 8 MBSAs, the bit-wise MAC results

are further shifted and accumulated through an 8-to-1 adder tree and

then sent to the shift-accumulator collecting the partial sum. The

Col.Mul is set to select a specific bitline to the MBSA, to implement

the stride-8 bit-interleaved scheme. A thermal-to-binary decoder is

needed to generate a data with binary format for further processing.

Our design reuses the available resources in the conventional

analog PIM bank to minimize the area overhead. The computing

paradigm of the IP primitive is shown in Fig. 4 (b). The key to

support IP primitive is to configure the MBSA into multiple SAs by

providing same reference voltage to each SA, as shown in Fig. 5

(b) (At the same time, the thermal-to-binary decoder is bypassed).

The Col.Mux is set to connect 8 bitlines to select multiple bitlines

in parallel to multiple SAs. Here, we denote the vector stored in the

memory array as vector A, and the input vector as vector B. Both

vectors have the shape of MN × 1 (instead of M × 1 to keep the

throughput). Each bit in one element of A is directly stored in 8

consecutive bitlines ensure the parallel read. Before the computation

starts, the vector A is first read out by activating one specific wordline.

In this case, N×8 M -level MBSAs can be used to sense N×8×M
bitlines in parallel. We can read out vector A with length of MN ,

where each element in the memory array is 8 bit. We still feed the

vector B bit-by-bit to the MBSA. M×N element-wise multiplication

results can be generated by performing an AND operation between

the sensed vector A and each bit of vector B. Then we configure the

local PE to an MN -to-1 adder tree to generate the IP result. We still

SA SA SA SA

Iref[0] Iref[1] Iref[2] Iref[3]

BL[0] BL[1] BL[2] BL[3]
Col.MUX

MBSA: Analog Mode
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Fig. 5. The data path of Col.MUX and MBSA in (a) analog mode for VMM
primitive and (b) digital mode for IP and SVM primitive.

Fig. 6. The overall architecture of proposed design.

need one shift-accumulator to accumulate the bit-wise MAC results

corresponding to different input bits. The computing paradigm of the

SVM primitive is similar to the IP primitive, as shown in Fig. 4 (c).

Here, we denote the vector stored in the memory array as vector A

and the input scalar as B. The MBSA is also configured into multiple

SAs and a vector A with length MN is read out. The scalar B is

broadcast bit-by-bit to the all MBSAs, and then an AND operation is

performed to generate MN 8b element-wise multiplication results.

Then we configure the local PE to MN shift-accumulator to generate

the SVM results.

It is worth noting that the vector primitives in our proposed NVPIM

bank does not induce throughput reduction comparing with the analog

VMM primitives. Despite the row activated in parallel is reduced 8×,

8× columns can be sensed in parallel as the MBSA is configured into

multiple SAs.

IV. ACCELERATOR ARCHITECTURE

A. Architecture Overview

Fig. 6 depicts the overall architecture of the proposed design. We

organize the aforementioned reconfigurable PIM bank into tiles. Each

tile can communicate with the external memory or the other tiles

through a shared interface. Within each tile, apart from the recon-

figurable PIM banks, we also built a local buffer, a functional unit,

and dense/sparse schedulers. The sparse attention computation can

be decomposed into multiple dense and sparse matrix computation

stages. The PIM banks in the tile are used for both dense and sparse

matrix computation. The analog mode is used to perform a VMM for

the dense matrix operation, and the digital modes are used to perform

IP or SVM for the sparse matrix computation. The functional unit is
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used to perform softmax and normalization operations. Intermediate

data, such as embeddings (X), are stored in the local buffer. Finally, a

dense and a sparse scheduler are used to orchestrate the computation

flow by moving the data and assigning the computation task to each

PIM bank.

Our design features a hybrid stationary dataflow that distributes

the computation of different stages into different PIM banks to

fully utilize the computation resources. Moreover, we could enable

a dedicated pipelined execution scheme among different stages to

reduce processing latency.

B. Computation Flow

We would like to use a simple example to demonstrate how our

proposed design executes both dense and sparse computation in the

sparse attention operation.

1) Dense Computation: The dense operation includes the QKV

generation layer, the prediction of the attention map, the projection

layer, and the FFN layer (linear layers). We use the QKV generation

layer as an example. Before starting the calculation, we divide the

PIM banks into Q, K, V bank, and the weight matrices (Wq ,Wk,Wv)

are assigned to the corresponding bank. The computation is per-

formed in token order. According to the token index, an input feature

vector is fetched from the local buffer and sent to all Q, K, V PIM

banks. Then, all Q, K, V banks are configured into the VMM mode to

perform a VMM computation. The dense scheduler triggers Q, K, V

banks to perform the VMM between the input feature vector and the

weight matrices, and the results are temporarily stored at the output

register inside each PIM bank. At the end of the dense computation,

the results are directly stored back to the memory array in the PIM

bank for further sparse computation.

2) Attention Map Computation: Each output attention score is the

result of a dot-product of a pair of query and key vectors. After the

QKV generation layer, the Q and K matrices are stored at the Q banks

and K banks. We use a “Q stationary” dataflow, where the Q banks

are used as the computation bank and the K banks as the memory

bank. The mask of the sparse attention map is stored at the sparse

scheduler. According to indices of K vectors corresponding to non-

zero attention score, the sparse scheduler issues the memory access

requests to the K bank. The K vector will be gathered to the sparse

scheduler and further scattered to the corresponding Q banks. Then,

the Q banks are configured into the IP mode, and the sparse scheduler

triggers the computation of the corresponding Q bank. According to

the Q index, a specific Q vector is selected in the memory array and a

vector-vector IP between the Q vector and the K vector is computed

to generate one attention score. The generated results are further sent

back to the function unit for softmax, and temporarily stored in the

attention map buffer in the function unit.

3) Output Computation: We obtain the result of the attention

operation by multiplying the attention map with the V matrix in

this stage. To reduce the data movement, we use a ‘V stationary’

dataflow. According to the index of V vectors corresponding to

non-zero attention scores, the sparse scheduler fetches the attention

map from the function unit to the V banks. Then, the V banks are

configured into the SVM mode, and the sparse scheduler triggers the

computation. According to the non-zero index of the attention map, a

specific v vector is selected in the memory array, and a scalar-vector

multiplication is computed. Then, we iterate over all attention score

to generates the final output features which are further sent back to

the local buffer.

C. Pipeline Scheme

In the attention map computation stage, the Q and K banks are

used for data access or computation while the V banks are idle. In

contrast, in the output computation stage, only V bank is used for

data access or computation. Thus, there is an opportunity to form

a pipeline to hide the latency. Fig. 8 shows the pipeline scheme in

our design. The pipeline contains 2 stages, including the attention

map computation and the output computation. We group multiple

rows in the attention map into one chunk, and split the attention map

into multiple chunks. We first trigger the attention map computation

of the first chunk in the attention map. When the attention map of

the first chunk is generated, we trigger the output computation of

the first chunk and the attention map computation of the second

chunk at the same time. Two individual controllers are designed

inside the sparse scheduler to manage the computation flow for

attention map computation and output computation. The computation

of the subsequent stage is triggered only when both the attention

map computation and the output computation of the previous stage

are completed. Other than latency reduction, a chunk level pipeline

could also reduce the attention map storage requirement. Instead

of buffering the whole attention map, we only need to buffer the

attention map for two chunks.

V. EVALUATION METHODOLOGY

A. Workload Setup

We evaluate our design on 3 vision Transformer models and 1

NLP Transformer model. For vision tasks, we use 6 models including

DeiT (DeiT Tiny, DeiT Small) [13], PVT (PVT Tiny, PVT Small) [14]

and PiT (PiT Tiny) [15] on ImageNet [16] dataset, where the input

size is 3 × 224 × 224 and the patch size is 16 × 16. For the

language tasks, we use BERT [2] for GLUE [17], SQuAD v1.1 [18],

and CLOTH [19] benchmarks. We use the precision gating method

proposed in [4] to generate the attention map mask. The other layer

such as linear layer and FFN layers are quantized to 8 bit for both

activation and weights. Each vision model is re-trained 60 epochs

after quantization and sparsification, to recover the accuracy loss

caused by the gating. The language models are fine-tuned on each

downstream task based on pretrained BERT model until converge.
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B. Hardware Setup

For the NVPIM bank, we use the memory array model from [9].

The energy and area for the adder in local PE is extracted from

synthesized results with 28 nm standard cell library. For the analog

component such as MBSA, we implement the circuit in transistor

level and extract the area and energy consumption from the schemat-

ics. The NVPIM bank level area breakdown is shown in Table I.

The hardware configuration is shown in Table II. The results of the

function unit is extracted from [5], and the results of the local buffer

is extracted from CACTI. Each PIM Bank could deliver about 9.14

GOPS throughput with 128 kB memory capacity. We set 72 banks in

each tile, which could deliver 658 GOPS and 9 MB memory capacity.

Based on bank-level results, we further implement a cycle-accurate

simulator to capture the total performance and energy consumption

for each workload.

C. Baseline Setup

For the baseline NVPIM accelerators, we quantitatively compare

our design with ReTransformer [3], as implemented with our cycle-

accurate simulator. ReTransformer is designed for dense attention

computation, so we apply the method proposed in SRE [6] to support

the sparse attention. We also compare our design with two non-

PIM based designs. To make it fair, we set the memory access

energy/latency and the computation energy/latency to be same as the

NVPIM based designs. Then, we select a proper design budget so

that both non-PIM and NVPIM designs could deliver the same peak

throughput. Our assumption ensures the results from non-PIM design

are more optimistic.

We choose DOTA [5] and Sanger [4] as they use similar sparse

algorithm. For these non-PIM based designs, we develop a behavior

model to evaluate the latency and energy cost. For DOTA, we scale

down the number of lanes in the original design (2TOPS) to match the

peak throughput with our baseline non-PIM accelerator (512GOPS),

while for Sanger, we directly choose the original hardware configu-

ration since it delivers similar effective throughput (529GOPS).

Component Params. Spec.
Area(mm2)

Con. Ours

Memory Array
Size 512× 512

0.0128 0.0128
Number 4

Local PE No. of Adders 64 0.0078 0.015

Input Register Size 2K Byte 0.0021 0.0021

Output Register Size 256 Byte 0.00077 0.00077

8-level MBSA Number 64 0.01 0.01

Total – – 0.033 0.041

TABLE I
AREA BREAKDOWN FOR OUR NVPIM BANK AND THE CONVENTIONAL

NVPIM BANK.

Component Params Spec

NVPIM Bank

Throughput 64 MACs/14 ns
Comp.Energy 93 fJ/MAC

Capacity 128 kB
Mem. Energy 2.3 pJ/Byte

Number 72

Function Unit
Throughput 64 MACs/ cycle

Comp.Energy 113 fJ/MAC

Local Buffer
Capacity 512 kB

Mem.Energy 4.5 pJ/Byte

Local Bus Bandwidth 512 Byte/cycle

TABLE II
HARDWARE CONFIGURATIONS

VI. RESULTS AND DISCUSSION

A. Main Results

We separately depict the sparsity and accuracy result as grey dots

in Fig. 9. For most of the models, the sparse attention algorithm

incurs negligible accuracy loss (< 1%) while archiving a relatively

high sparsity ratio in attention score (> 85%). Sparse attention could

even improve the accuracy on simple downstream tasks like SST-

2 and CLOTH, since the pruning process reduce the overfitting of

the baseline model. We illustrate the improvement of our proposed

design over the baseline NVPIM accelerator in Fig. 9. The result

shows that our proposed design could achieve a speedup ranging from

2.95× to 12.36× over the baseline design. In terms of energy, our

design could achieve a 1.2× to 3.4× energy efficiency improvement

comparing with the baseline accelerator, as shown in Fig. 9. The

energy efficiency improvement comes from the improvement of the

bank-level utilization rate. Similar as the speedup, we also observe

a larger energy efficiency improvement when the sparsity level

increases.

B. Scalability Analysis

We investigate the bank-level scalability when we have more

available banks to improve the token-level parallelism for both

attention map computation stage and output computation stage. The

result is shown in Fig. 10(a). The processing latency can be reduced
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Fig. 10. (a) Energy-latency trade-off. (b) The latency and energy results with
different number of banks for our design and ReTransformer.

about 50% when we increase the bank-level parallelism from 8 to

24, while the latency reduction is only 30% for the baseline design.

Moreover, the gap between output design and baseline expands with

more banks. The results also show a reduction of energy consumption

when we use more banks in the proposed design, while the baseline

design consumes more energy. When we increase the token-level

parallelism, the token reuse rate can be increased by reusing the

K vector for different Q vectors. Thus, we could achieve a lower

energy consumption in terms of memory access cost. In contrast, the

baseline accelerator consumes more energy in the computation as

the inter-bank efficiency is further reduced by mapping the Q, K, V

matrices into more banks.

C. Comparison with Non-PIM Accelerators

The energy-latency trade-off of both PIM and non-PIM accelerator

is shown in Fig. 10 (b). Generally, the non-PIM designs could achieve

lower latency than ReTransformer, while the NVPIM-based designs

could achieve a higher energy efficiency. In contrast, our proposed

design could achieve a better energy-latency trade-off, where both

energy consumption and latency is relatively low. For example,

our design could achieve up to 3.8× and 8.6× energy reduction

comparing with Sanger and DOTA, respectively, while the processing

latency is in the same level. However, Retransformer could deliver

3.71× and 8.5× energy reduction at the cost of 4.8× and 3.3×
latency overhead, respectively.

To further understand the energy efficiency improvement, we

present an energy consumption breakdown of our design, ReTrans-

former and non-PIM designs. Fig. 11 shows the energy breakdown of

four designs to process a DeiT-Small model with different sparsity

levels. For all sparsity levels, our design consumes less energy on

computation. The lower computation energy comes from a higher

array utilization rate. However, our design requires higher memory

access energy due to smaller data reuse opportunities while using a

vector-based processing scheme.

Comparing with Sanger, our design could achieve both computa-

tion and memory access energy reduction. The computation energy

reduction comes from the higher utilization rate in our design. The

memory access energy reduction comes from our hybrid stationary

dataflow, where the data movement of Q and V is reduced. Comparing

with DOTA, our design achieves a similar computation energy with
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Fig. 11. Energy breakdown for PIM and non-PIM designs with different
sparsity level on DeiT-Small model.

a large reduction of memory access energy. DOTA uses 1-D SIMD-

based processing scheme and all the Q, K, V vectors require to be

fetched multiple times during the computation.

VII. CONCLUSION

In this work, we propose a NVPIM architecture, which aims at

solving the challenge of the sparse attention on NVPIM architecture

with a dynamic and unstructured pattern. We first propose a recon-

figurable NVPIM bank with vector-based primitives to improve the

intra-bank utilization rate for the SDDMM and SpMM computation.

Based on our bank-level innovation, we design a hybrid stationary

dataflow which enables a pipelined processing scheme to hide the

computation latency of the SDDMM stage and SpMM stage. Our

proposed design could achieve up to 12.36× performance improve-

ment over conventional NVPIM architecture (ReTransformer), while

delivering a up to 3.4× energy efficiency improvement on a range

of representative benchmarks. In addition, our proposed design could

also achieve up to 8.6× energy efficiency improvement over non-PIM

design without sacrificing the processing latency.
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