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ABSTRACT

Resistive random access memory (ReRAM) is a promising tech-
nology that can perform low-cost and in-situ matrix-vector multi-
plication (MVM) in analog domain. Scientific computing requires
high-precision floating-point (FP) processing. However, performing
floating-point computation in ReRAM is challenging because of
high hardware cost and execution time due to the large FP value
range. In this work we present REFLOAT, a data format and an ac-
celerator architecture, for low-cost and high-performance floating-
point processing in ReRAM for iterative linear solvers. REFLOAT
matches the ReRAM crossbar hardware and represents a block of
FP values with reduced bits and an optimized exponent base for
a high range of dynamic representation. Thus, REFLOAT achieves
less ReRAM crossbar consumption and fewer processing cycles and
overcomes the noncovergence issue in a prior work. The evalua-
tion on the SuiteSparse matrices shows REFLOAT achieves 5.02X to
84.28x improvement in terms of solver time compared to a state-
of-the-art ReRAM based accelerator.
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1 INTRODUCTION

With the diminishing gain of Moore’s Law [92] and the end of
Dennard scaling [38], general-purpose computing platforms such
as CPUs and GPUs will no longer benefit from shrinking transistor
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Figure 1: The bit layout of (a) an 8-bit signed integer, (b) a
64-bit double-precision floating-point number, (c) a 32-bit
single-precision floating-point number, (d) a Google bfloat16
number, (e) an Nvidia TensorFloat32 number, (f) a Microsoft
ms-fp9 number, (g) a block of numbers in block floating point,
and (h) a block of numbers in ReFloat(x,2,3).

size or integrating more cores [30]. Thus, domain-specific architec-
tures are critical for improving the performance and energy effi-
ciency of various applications. Rather than relying on conventional
CMOS technology, the emerging non-volatile memory technology
such as resistive random access memory (ReRAM) is considered
as a promising candidate for implementing processing-in-memory
(PIM) accelerators [6, 11, 16, 32, 47, 49, 54, 63, 81, 88, 89, 104] that
can provide orders of magnitude improvement of computing ef-
ficiency. Specifically, ReRAM can store data and perform in-situ
matrix-vector multiplication (MVM) operations in the analog do-
main. Most current ReRAM-based accelerators focus on machine
learning applications, which can accept a low precision, e.g., less
than 16-bit fixed-point, thanks to the quantization in deep learning
[21, 42, 44, 48, 64].

Scientific computing is a collection of tools, techniques, and
theories for solving science and engineering problems modeled in
mathematical systems [40]. The underlying variables in scientific
computing are continuous in nature, such as time, temperature,
distance, and density. One of the essential aspects of scientific
computing is modeling a complex system with partial differential
equations (PDEs) to understand the natural phenomena in science
[45, 52], or the design and decision-making of engineered systems
[14, 75]. Most problems in continuous mathematics modeled by
PDEs cannot be solved directly. In practice, the PDEs are converted
to a linear system Ax = b, and then solved through an iterative
solver that ultimately converges to a numerical solution [8, 80].
To obtain an acceptable answer where the residual is less than a
desired threshold, intensive computing power [31, 84] is required
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to perform the floating-point sparse matrix-vector multiplication
(SpMV), the critical computation kernel.

Because of the prevalent floating-point operations in scientific
computing, it is desirable to leverage ReRAM to achieve parallel
in-situ floating-point SpMV. When using the ReRAM crossbar to
perform SpMV, we partition the matrix into blocks, encode each ma-
trix element as the ReRAM cell conductance, and convert the input
vector to wordline voltage through Digital-to-Analog Converters
(DACs). Thus, the bitline will output the results of the dot-product
between the current input vector bits and matrix elements mapped
in the same crossbar column. Each bitline in the output is connected
to a sample and hold (S/H) unit. After all input bits are processed,
the results of the SpMV are available at the output of S/H unit,
which is converted to multi-bit digital values by Analog-to-Digital
Converters (ADCs). In general, the number of bits in the input
vector and the matrix determine the number of cycles for perform-
ing an SpMV. In contrast, the number of bits representing matrix
elements determines the number of crossbars.

We examine mapping the floating-point SpMV by leveraging
the same principle used in MVM. Take 64-bit double-precision
number as an example: each floating-point number consists of a
1-bit sign (s), an 11-bit exponent (e), and a 52-bit fraction (f). The
value is interpreted as (—1)* X (1.b51bs50...bg) X 2(e=1023) yielding a
dynamic data range from +2.2x 10 3% to +1.8 X 103%%, The number
of crossbars for a matrix M increases exponentially with the bits
number of the exponent (eys) and linearly with the bits number of
the fraction (fjr). Thus, directly representing floating-point values
with a large number of crossbars incurs prohibitive costs.

To reduce the overhead, Feinberg et al.[32] propose to truncate
the higher bits in exponents, e.g., using the low 6 bits or module 64
of the exponent (the 64 paddings in [32]) to represent each original
value, while keeping the number of fraction bits the unchanged (52
bits). However, this ad-hoc solution does not ensure the convergence
of iterative solves (see Table 1 and Section 6.2). In general, to ensure
convergence, we need two requirements. (1) correct matrix values,
which are ensured by [32] with the aid of floating-point units (FPUs)
when the exponent range of a submatrix falls outside the 6 bits
mapped to ReRAMs. (2) correct vector values, which is not consid-
ered by [32]. In the computation, matrix value does not change, but
vector values change every iteration. Thus, vector values in [32]
fall out of range (i.e., the 64 padding). As a result, the solvers do not
converge. In addition, the hardware cost increases exponentially
with the exponent bits. [32] used 6 bits for the exponent, however,
we can further reduce the exponent bits. Thus, [32] did not fully
reduce the overhead.

We propose REFLOAT, a principled approach based on a flexible
and fine-grained floating-point number representation. The key
insight of our solution is the exponent value locality among the
elements in a matrix block, which is the granularity of computation
in ReRAM. If we consider the whole matrix, the exponent values
can span a wide range, e.g., up to 11 for a matrix, but the range
within a block is smaller, e.g., at most 7 for the same matrix. It
naturally motivates the idea of choosing an exponent base e;, for
all exponents in a block and storing only the offsets from e,. For a
matrix block, although the absolute exponent values may be large,
the variation is not. For most blocks, by choosing a proper ey, the

Linghao Song, Fan Chen, Hai Li, and Yiran Chen

offset values are much smaller than the absolute exponent values,
thereby reducing the number of bits required.

Instead of simply using the offset as a lossless compression
method, REFLOAT aggressively uses fewer bits for exponent offsets
(e) than the required number of bits to represent them. The error is
bounded by the existence of value locality in real-world matrices.
Moreover, the error is refined due to the nature of the iterative
solver. Starting from an all-zero vector, an increasingly accurate
solution is produced in each iteration. The iterative solver stops
when the defined convergence criteria are satisfied. Because the
vector from each iteration is not accurate anyway, the computation
has certain resilience to the inaccuracy due to floating-point data
representation. It is why [32] can work in certain cases. In REFLOAT,
when an offset is larger (smaller) than the largest (smallest) offset
represented by e bits, the largest (smallest) value of e bits is used
for the offset. With e-bit exponent offset, the range of exponent
values is [ep — 2(e=1) 4 q, ep + 2(e=1) _q]. Selecting e;, becomes an
optimization problem that minimizes the difference between the
exponents of the original matrix block and the exponents with e,
and e-bit offsets.

To facilitate the proposed ideas in a concrete architecture, we
define the REFLOAT format as ReFloat (b, e, f)(ey, fu), where b de-
notes the matrix block size—the length and width of a square matrix
block is 2°, ¢ and f respectively denote the exponent and frac-
tion bit numbers for the matrix, and (e,, f;) denotes the exponent
and fraction bit numbers for the vector. With ¢, for each block,
we are able to represent all matrix elements in the block. Then,
we develop the conversion scheme from default double-precision
floating-point format to REFLOAT format and the computation pro-
cedure. Based on REFLOAT format, we design the low-cost high-
performance floating-point processing architecture in ReRAM. Our
results show that for 12 matrices evaluated on iterative solvers
(CG and BiCGSTAB), only 3 bits for exponent and 8 or 16 bits for
fraction are sufficient to ensure convergence. In comparison, [32]
uses 6 bits for exponent and 51 bits for fraction without guaran-
teeing convergence. It translates to a speedup of 5.02x to 84.28x
compared with a state-of-the-art ReRAM-based accelerator [32] for
scientific computing even with the assumption that the accelera-
tor [32] functions the same as FP64 solvers. We released the source
code at https://github.com/linghaosong/ReFloat.

2 BACKGROUND

2.1 In-situ MVM Acceleration in ReRAM

ReRAM [4, 100] has recently demonstrated tremendous potential
to efficiently accelerate the computing kernels in machine learning.
Conceptually, each element in a matrix M is mapped to the conduc-
tance state of a ReRAM cell. At the same time, the input vector x is
encoded as voltage levels that are applied on the wordlines of the
ReRAM crossbar. In this way, the current accumulation on bitlines
is proportional to the dot-product of the stored conductance and
voltages on the wordlines, representing the result y = M X x. Such
in-situ computation significantly reduces the expensive memory
access in MVM processing engines [47], and most importantly, pro-
vide massive opportunities to exploit the inherent parallelism in an
N x N ReRAM crossbar.
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ReRAM-based MVM processing engines are fixed-point hard-
ware in nature since the matrix and the vector are respectively
represented in discrete conductance states and voltage levels [100].
If ReRAM is used to support floating-point MVM operation, many
crossbars will be provisioned for fraction alignment, resulting in
very high hardware costs. We will illustrate the problem in Sec-
tion 3 to motivate REFLOAT design. Nevertheless, the fixed-point
precision requirement is acceptable for machine learning applica-
tions thanks to the low-precision and quantized neural network
algorithms[22, 42, 48, 51, 58, 106]. Many fixed-point based acceler-
ators [6, 11, 16, 39, 54, 81, 88, 104] are built with the ReRAM MVM
processing engine and achieve reasonable classification accuracy.

Iterative Linear Solvers

N
)

initiate x = x0@

while (not converge) do
//Step 1: compute the residual
r=b-Axx
//Step 2: compute the correction
compute p
//Step 3: update the current solution
X=X +p

end while

© N U AW N =

Code 1: The iterative linear solver.

Scientific computing is an interdisciplinary science that solves
computational problems in a wide range of disciplines, including
physics, mathematics, chemistry, biology, engineering, and other
natural sciences subjects [7, 36, 41]. Systems of large-scale PDEs
typically model those complex computing problems. Since it is
almost impossible to obtain the analytical solution of those PDEs
directly, a common practice is to discretize continuous PDEs into
a linear system Ax = b [8, 80] to be solved by numerical methods.
The numerical solution of this linear system is usually obtained by
an iterative solver [25, 72, 99].

Code 1 illustrates a typical computing process in iterative meth-
ods. The vector x to be solved is typically initialized to an all-zero
vector xo, followed by three steps in the main body: (1) the residual
(error) of the current solution vector is calculated as r = b — Ax;
(2) to improve the performance of the estimated solution, a correc-
tion vector p is computed based on the current residual r; and (3)
the current solution vector is improved by adding the correction
vector as X = X + p, aiming to reduce the possible residuals pro-
duced in the next calculation iteration. The iterative solver stops
when the defined convergence criteria are satisfied. Two widely
used convergence criteria are (1) that the iteration index is less
than a preset threshold K, or (2) that the L-2 norm of the residual
(res = ||b — Ax||?) is less than a preset threshold 7. Notably, all the
values involved in Code 1 are implemented as double-precision
floating-point numbers to meet the high-precision requirement of
mainstream scientific applications.

The various iterative methods follow the above computational
steps and differ only in calculating the correction vectors. Among
all candidate solutions, Krylov subspace approach is the standard
method nowadays. In this paper, we focus on two representative
Krylov subspace solvers — Conjugate Gradient (CG) [46] and Stabi-
lized BiConjugate Gradient (BiCGSTAB) [91]. The computational
kernels of these two methods are large-scale sparse floating-point
matrix-vector multiplication y = Ax, which requires the support
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of floating-point computation in ReRAM and imposes significant
challenges to the underlying computing hardware.

2.3 Fixed-Point and Floating-Point
Representations

We use the 8-bit signed integer and the IEEE 754-2008 standard [19]
64-bit double-precision floating-point number as examples to com-
pare the difference between fixed-point and floating-point numbers.
They refer to the format used to store and manipulate the digital
representation of data. As shown in Figure 1 (a), fixed-point num-
bers represent integers—positive and negative whole numbers—via
a sign bit followed by multiple (e.g., i-bit) value bits, yielding a value
range of —2 to 2/ — 1. IEEE 754 double-precision floating-point
numbers shown in Figure 1 (b) are designed to represent and ma-
nipulate rational numbers, where a number is represented with a
sign bit (s), an 11-bit exponent (e), and a 52-bit fraction (bs1bsy...bo).
The value of a double-precision floating-point is interpreted as
(=1)* X (1.bs1b50...bg) X o(e=1023) yielding a dynamic data range
from +2.2 x 1073 to +1.8 x 103%%.

Many efficient floating point formats shown in Figure 1 have
been proposed because the default format incurs a high cost for
conventional digital systems. However, the applications such as
deep learning do not require a very wide data range. The represen-
tative examples include IEEE 32-bit single-precision floating point
(FP32), Google bfloat16 [95], Nvidia TensorFloat32 [57], Microsoft
ms-fp9 ! [18], and block floating point (BFP) [12, 59]. Accordingly,
specialized hardware designs or/and systems are also proposed to
amplify the benefits of efficient data formats. For example, Google
bfloat is associated with TPU [1, 2, 56], Nvidia TensorFloat is asso-
ciated with tensor core GPUs, Microsoft floating-point formats are
associated with Project Brainwave [18], and BFP are favorable for
signal processing on DSPs [29] and FPGAs [20].

However, the floating-point representations favored by deep
learning may not benefit scientific computing. For deep learning,
weights can be retrained to a narrowed/shrunk space, even without
floating-point [21, 48, 66, 79, 107]. In scientific computing, data
cannot be retrained, and the shrunk formats can not capture all
values. For example, 1.0 X 10740 falls out of range for FP32, bfloat16,
TensorFloat32, and ms-fp9 because of narrow range representation.
Two values 1.0x 1074 and 1.0x 1073 can not be captured by a BFP
block because of non-dynamic range representation within a block.
The narrow or non-dynamic range may lead to non-convergence
in scientific computing.

In general, double-precision floating-point is a norm for high-
precision scientific computations because it can support a wide
range of data values with high precision. However, the processing
demands low hardware costs and high performance.

3 MOTIVATION AND REFLOAT IDEAS

3.1 Fixed-Point MVM processing in ReRAM

The processing of SpMV on ReRAM-based accelerators utilizes
matrix blocking on a large matrix to perform MVM on matrix
blocks with ReRAM crossbars [32, 89]. The floating-point MVM is

'We infer the layout from the description in [18]. No public specifications on ms-fp
are available.

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.



SC ’23, November 12-17, 2023, Denver, CO, USA

SECEICEICE
oo g o
SN
0] [T [T [0]:
o[ilofi|1]i]1]
tlofi || ol
1): 1ol i) ol

i 000 0000 00070,

| 0201 2211 @To021

‘ C2010 2211 T021,

: — M 412 (22372 [2233]

G814 6654 E273],

2 11 o271 @T2172

@rOZI 1 [0

>~53[59 615 (6183 9] [212129] (9 6 1512
~O3T 0 1 1] ML T 01 @IT1T01 [0O0T1T]

S4[31181331] [1337 6 19] [25252419] [181231 25\p5
@

‘1—75 733281 / 6
/ 7
S
Figure 2: Fixed-point (integer) MVM in ReRAM.

built on fixed-point MVM. To understand the cycle numbers and
ReRAM crossbar numbers in ReRAM-based fixed-point MVM, we
use Figure 2 as an example.

368 o0 137 1l [
54 | _| 1103 8 | | 2
207 19 5 2 5 6
387 |, | 14 9 15|, |13, "
[ 0000 1101 o111 1011 | [ o110
_| 111 1110 oot 1000 | | 1100
=1 1001 0101 0010 0101 0110
| 1110 0110 1001 1111 |, | 1101 |,

Figure 2 shows the processing of fixed-point MVM in ReRAM,
which represents the computation of an example Eq. (1) by utiliz-
ing ReRAM-based MVM engines with single-bit precision. Before
computation, we convert the decimal integers in both the matrix
and the vector to binary bits. We set the precision for the matrix
and input vector to 4-bit. The matrix is bit-sliced into four 1-bit
matrices and then mapped to four crossbars, i.e., M-b3, M-b2, M-
b1, and M-b0. The input vector is bit-sliced into 4 one-bit vectors,
i.e., V-b3, V-b2, V-b1, and V-b0. The multiplication is performed
in pipeline. Each crossbar has a zero initial vector SO0. In the first
cycle C1, the most significant bit (MSB) vector V-b3 is applied on
wordlines of the four crossbars, and the multiplication results of
V-b3 with M-b3, M-b2, M-b1, and M-b0 are obtained in parallel,
denoted by 00. In cycle C2, S0 is right-shifted by 1 bit to get S1, and
V-b2 is input to the crossbars to get the multiplication results O1.
Similar operations are performed in C3 and C4. After C4, we get 54,
the multiplication results of the input vector with four bit-slices of
the matrix. In the following threes cycles C5 to C7, we shift and add
S4 from the four crossbars to get the final multiplication result. For
the fixed-point multiplication of an Nj;-bit matrix with an Ny-bit
vector, the processing cycle count is Ciyt = Ny + (N — 1).

Linghao Song, Fan Chen, Hai Li, and Yiran Chen

3.2 Hardware Cost and Performance Analysis
of Floating-Point MVM in ReRAM

In this section, we explain in detail the hardware cost, i.e., the
crossbar number C, and the performance, i.e., the cycle number
T, of ReRAM-based floating-point MVM. Note that C correlates
with the ability to execute floating-point MVMs in parallel with a
given number of on-chip ReRAMs [32, 81, 89]: the smaller C, the
more parallelism can be explored. A smaller T directly reflects a
higher performance of one ReRAM-based MVM on a matrix block.
A smaller T and a smaller C reflects a higher performance of one
SpMV on a whole matrix.

Crossbar number. Suppose we compute the multiplication of a
matrix block M and a vector segment v. In the matrix block M, the
number of fraction bits is fjs and the number of exponent bits is ey.
In the vector segment v, the number of fraction bits is f; and the
number of exponent bits is e,. To map the matrix fraction to ReRAM
crossbars, we need (fpr+1) ReRAM crossbars because the fraction is
normalized to a value with a leading 1. For example, (52+1) crossbars
are needed to represent the 52-bit fraction in double floating-point
precision in [32]. To map the matrix exponent to ReRAM crossbars,
we need 2° ReRAM crossbars for epr-bit exponent states, which
is called padding in [32] where 64-bit paddings are needed for an
ey = 6. Thus, C is calculated as

C=4x(2°M + fyr + 1), (2)
where the leading multiplier 4 is contributed from sign bits of the
matrix block and the vector segment.

Cycle number. We conservatively suppose the precision of digital-
analog converters is 1-bit as that in [32, 81]. The number of value
states in a vector segment is (2 + f, + 1). For each input state, we
need (2°M + fjr + 1) to perform shift-and-add to reduce the partial
results from the ReRAM crossbars. To achieve higher computation
efficiency, a pipelined input and reduce scheme [81] can be used.
Thus, T is calculated as

T=02%+f+1)+ QM+ fy+1) - 1. (3)

High hardware cost and low performance in default double
precision. In double-precision floating-point (FP64), one MVM in
ReRAM consumes 8404 crossbars and 4201 cycles. To understand
how bit number affects the hardware cost and performance, we
explore the effect of exponent and fraction bit number of matrix and
vector on the cycle number and the effect of exponent and fraction
bit number of matrix on the crossbar number, illustrated in Figure 3.
The crossbar number increases exponentially with ey while linearly
with fyr. Furthermore, the cycle number increases exponentially
with both e, and ey, while the latency increases linearly with f;
and fM

3.3 Non-Convergence in [32]

The above analysis makes it possible to reduce the number of digits
by reducing the number of bits of the exponent and fraction, thereby
reducing hardware costs, i.e., fewer cycles and crossbars. However,
the accuracy of the solvers may be significantly degraded or even
cause non-convergence.

The design of the state-of-the-art ReRAM-based accelerator [32]
for floating-point SpMV is driven by the goal of reducing the num-
ber of bits for exponent. However, this solution adopts an ad-hoc
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Table 1: The iteration numbers for convergence under vari-
ous exp(onent) and fra(ction) bit configurations for matrix
crystm@3. NC indicates non-convergence.

exp 11 11 11 11 11 11
frac 52 30 29 28 27 26
#ite 80 82(+2) 82(+2) 83(+3) 83(+3)  84(+4)
exp 11 11 11 11 11 11
frac 25 24 23 22 21 20
#ite 90(+10) 93(+13) 93(+13) 95(+15) 107(+27) NC

exp 10 9 8 7 6

frac 52 52 52 52 52

#ite 80 80 80 20620(+256x) NC

approach that simply truncates a number of high order bits in ex-
ponent. Specifically, with the lower 6 bits of exponent, [32] uses
module 64 of the exponent to represent each original value and
map the matrix to ReRAM. For the matrix values out of the range
of 6 bits, [32] uses FPUs to compute. For the computation of Ax,
the matrix A can be accurately processed in [32]. However, the
values of vector x change at every iteration but [32] does not pro-
vide any solution for processing correct vector values. Thus, the
vector x values can fall out of the ranges of 64 paddings (6 bits),
and non-convergence happens in [32].

Table 1 shows the number of iterations for convergence un-
der various exponent and fraction bit configurations. In default
double-precision, it takes 80 iterations to convergence. If we fix
the exponent bits and truncate fraction bits, a 21-bit fraction takes
27 additional iterations, and a fraction less than 21 bits leads to
non-convergence. If we fix the fraction bits and truncate exponent
bits like [32], 7-bit exponent increases the iteration number from 80
to 20620, and an exponent less than 7 bits leads to non-convergence.
Thus, the solution proposed in [32] may break the correctness of
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the iterative solver. In contrast, the number of bits in fraction has
less impact on the number of iterations to converge. For example,
Table 1 shows that drastically reducing fraction bits from 52 to 30
only increases the number of iterations by 2x. However, [32] kept
the number of bits in fraction unchanged and lost the opportunity
to reduce hardware cost and improve performance. Thus, we are
convinced that we need to develop a more principled approach to
find a better solution to the problem.

3.4 Value Locality & Bit Compression

We leverage an intuitive observation of matrix element values—
exponent value locality—to reduce the number of exponents bits
while keeping enough accuracy. We define the locality as the max-
imum number of required bits to cover the exponent in all ma-
trix blocks of a large matrix. We illustrate the locality of matrices
from SuiteSparse [24] in Figure 3(d). As discussed before, ReRAM
performs MVM at the granularity of matrix block, whose size is
determined by the size of ReRAM crossbar, e.g., 128 x 128. While
exponent values of the whole matrix can span a wide range, e.g.,
up to 11 for a matrix, but the range is smaller within a block, e.g., at
most 7 for the same matrix. Therefore, the default locality, i.e., 11,
is redundant. Naturally, it motivates the idea of using an exponent
base ey, for all exponents in a block and storing only the offsets from
ep. For most blocks, by choosing a proper e, the offset values are
much smaller than the absolute exponent values, thereby reducing
the number of bits required.

It is important to note that we do not simply use the offset as a
lossless compression method. While exponent value locality exists
for most of the blocks, it is possible that for a small number of
blocks, the exponent values are scattered across a wide range. If we
include enough bits for all offsets, the benefits for the majority of
blocks will be diminished. Moreover, it is not necessary due to the
nature of iterative solvers.

We can naturally tune the accuracy by the number of bits e
allocated for the offsets, which is less than the number of exponent
bits necessary to represent the offsets precisely. When an offset
is larger (smaller) than the largest (smallest) offset representable
by e bits, the largest (smallest) value of e bits is used accordingly.
With e-bit exponent offset, the range of exponent values is [e, —
2(e=1) 11, ¢ +2(¢=1) _1]. Intuitively, given e and ep, this system can
precisely represent the exponent values that fall into a “window”
around ey, while the “size of the window” is determined by 2(e=1),
Then, selecting e, becomes an optimization problem that minimizes
the difference between the exponents of the original matrix block
and the exponents with e, and e-bit offsets. Thus, we achieve a
wide data range but a low hardware cost simultaneously.

4 REFLOAT DATA FORMAT

4.1 ReFloat Format

We define REFLOAT format as ReFloat(b, e, f)(ey, f), where b de-
termines the matrix block size 2° (the length and width of a square
matrix block), e and f respectively denote the exponent and fraction
bit numbers for the matrix, and (e, f,) denotes the bit numbers for
the vector. Table 2 lists the symbols and corresponding descriptions
in REFLOAT.
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Table 2: List of symbols and descriptions.
ReFloat(b,e, f)(ey, fy) : ReFloat format notation.

Symbol Description
2P The size of a square block.
The number of exponent bits for a matrix block.
The number of fraction bits for a matrix block.
A sparse matrix.
The bias vector for a linear system.
The solution vector for a linear system.
The residual vector for a linear system.
A scalar of A.
(a)e The exponent of a, (a)e € {0,1,2,...}.
(a)f The fraction of a, (@) € (1,2).
Ac A block of the sparse matrix A.
(i,j) The index for the block A.
(ii, jj) The index for the scalar a in the block A..
(iii, jjj) The index for the scalar a in the matrix A.
ep The base for exponents of elements in a block.
ep, The base for exponents a vector segment.
ey The number of exponent bits for a vector segment.
fo The number of fraction bits for a vector segment.

Qo X T o

e 0123
[ T (1028,1540) | | | |
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wo - LH | 3 it SH
1030 — | g 3 - gy
1031 — X e |

(a) A block in full precision. (b) A block in ReFloat.
Figure 4: Comparison of a matrix block (a) in original full

precision format and (b) in REFLoAT format.

Figure 4 intuitively illustrates the idea of REFLOAT. In Figure 4
(a), each scalar is in a 64-bit floating-point format. It requires a
32-bit integer for row index and a 32-bit integer for column index
to locate each element in the matrix block. Therefore, we need
8 X (32 + 32 + 64) = 1024 bits for storing the eight scalars. With
REFLOAT, assuming we use ReFloat(2, 2,3) format as depicted in
Figure 4 (b), we see that: (1) each scalar in the block can be indexed
by two 2-bit integers; (2) the element value is represented by a
1+ 2+ 3 = 6-bit floating point number 2; (3) the block is indexed
by two 30-bit integers and (4) an 11-bit exponent base ¢, is also
recorded. Therefore, we only use 8 X (24+2+6) +2x30+11 = 151 bits
to store the entire matrix block, which reduces the memory require-
ment by approximately 10X (151 vs. 1024). This reduction in bit
representation is also beneficial for reducing the number of ReRAM
crossbars for computation in hardware implementation. Specifically,
the full precision format consumes 118 crossbars, as illustrated in
[32], our design only requires 16 crossbars with ReFloat(2,2,3)
format. Thus, given the same chip area, our design is able to process
more matrix blocks in parallel.

4.2 Conversion to ReFloat Format
In order to convert the original matrix to a ReFloat(b, e, f) format,

three hyperparameters need to be determined in advance. The b

2The elements inside a REFLOAT block are floating-point, while the elements inside a
BFP block are fixed-point.
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(b) Value conversion.

double

ReFloat

€b

(a) Index conversion.
Figure 5: The conversion of index and value in floating-point
format to REFLoAT format.

Table 3: Various formats represented by REFLoAT.
Int8 ReFloat(0,0,7) bfloat16 [95] ReFloat(0,8,7)
Int16 ReFloat(0,0,15) ms-fp9 [18]  ReFloat(0,5,3)
FP32(float)  ReFloat(0,8,23) TensorFloat32 [57]  ReFloat(0, 8, 10)
FP64(double)  ReFloat(0, 11,52) BFP64  ReFloat(6,0,52)

defines how the indices of input data are converted and determined
by the physical size of ReRAM crossbars, i.e., a crossbar with 2b
wordlines and 2% bitlines. As demonstrated in Figure 5 (a), the
leading 30 bits—bs; to by of the index (iii, jjj) for a scalar in the
matrix A—are copied to the same bits in the index (i, j) for the
block Ac. For each scalar in the block A, the index (ii, jj) for that
scalar inside the block A. is copied from the last two bits of the
index (iii, jjj). The scalars in the same block share the block index
(ii, jj), and each scalar uses fewer bits for the index inside that
block. Thus, we also save memory space for indices.

The hyper-parameters e and f determine the accuracy of floating-
point values. A floating-point number consists of three parts: (1)
the sign bit, (2) the exponent bits, and (3) the fraction bits. When
converted to REFLOAT, the sign bit remains unchanged. For the
fraction, we only keep the leading f bits from the original fraction
bits and remove the rest bits in the fraction, as shown in Figure 5
(b). For the exponent bits, we need to first determine the base value
ep, for the exponent. As e means the number of bits for the “swing”
range, we need to find an optimal base value e}, to utilize the e bits
fully. We formalize the problem as an optimization for find the e to
minimize a loss target L, defined as

2
: a
n‘gnL, L= agqc (logz (—(a)fxsz )) =
Let 0L/dey, = 0, we can get

e = |Ac| D, (@ 5)

acA,
Thus, we use the original exponent to minus the optimal e, to get
an e-bit signed integer in the conversion. The e-bit signed integer
is the exponent in REFLOAT.

We use an example to illustrate the format conversion intu-
itively. The original floating-point values in Eq. (6) are converted
to ReFloat(x,2,2) format in Eq. (7),

(-1) x1.1111x 27  1.0101 x 28

[ (=1) X 1.0000 x 2°  1.0001 x 27

58 [ (-1)x111x271 1.01%x20 ] B
(-1) x1.00x2!  1.00x27!

aEZAC((a)e—eb)Z. )

-248.0  336.0
[ -512.0 136.0 ] (©)
-224.0 320.0
-512.0 1280 |’

where ej, = 8. Here, we see that REFLOAT incurs conversion loss f(gg
the conversion of floating-point values from the original. However,
for scientific computing, the errors in the iterative solver are grad-
ually corrected. Thus, the errors introduced by the conversion will
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also be corrected in the iteration. From an application/algorithm
perspective, REFLOAT format is versatile, and the popular formats
in Figure 1 can all be represented by REFLOAT as listed in TABLE
3. The low hardware cost and format versatility benefit the high
performance and fast convergence of REFLOAT in solving PDEs. We
will show the performance and convergence of the iterative solver
in REFLOAT format in Section 6.

4.3 Computation in ReFloat Format

The matrix A is partitioned into blocks. To compute the matrix-
vector multiplication y = Ax, the input vector x and the output
vector y are correspondingly partitioned into vector segments x.
and y.. The size of the vector segments is (2b x 1).

For the p-th output vector segment y(p), the computation in
the default full precision will be

ye(p) = D) Ac(i,p)xe(D), ®)

where A (i, p) is the matrix block indexed by (i, p) and x.(i) is
the input vector segment indexed by i. The matrix blocks at the
p-th block column are multiplied with the input vector segments
for partial sums and then they are accumulated. In the compu-
tation for each matrix block, because the original matrix block
Ac(i, p) is converted to A¢ (i, p) = Zeb(i’f’)fic(i,p), the original vec-
tor segment x.(i) is converted to x.(i) = 2¢v0(D%.(i), and we
encode 2€b<i4’)fic(1’,p) and Zebu<i)ic(i) by ReFloat. Thus, the mul-
tiplication for the matrix block A.(i, p) and the vector segment
xc(i) is computed as Ac(i, p)xc(i) = 260 (bP)Ivero(D) A (i, p)x,(i).
The matrix-vector multiplication for the p-th output vector seg-
ment in the default format Eq. (8) is then computed as

ve(p) = ) 290 oP)*eroD A (i, p)xe (i). ©
i

Here we see that with REFLoAT format, the block matrix multiplica-
tion in the default format is preserved. In the hardware processing,
we perform the fixed-point MVM A %, by the ReRAM crossbars
as shown in Figure 6(c) and multiply the vector exponent and the
block exponent in a processing engine as shown in Figure 6(b).
Thus, the original high-cost multiplication in full precision Acx. is
replaced by a low-cost multiplication.

5 REFLOAT ACCELERATOR ARCHITECTURE

5.1 Accelerator Overview

Figure 6(a) shows the overall architecture of the proposed accelera-
tor for floating-point scientific computing in ReRAM with REFLOAT.
We organize the accelerator into multiple banks. Within each bank,
ReRAM crossbars are deployed for processing matrix blocks of
floating-point MVM. The Input Vector (IV) and Output Vector (OV)
buffer are used for buffering the input and output vectors and matrix
blocks. The Multiply-and-Accumulate (MAC) units are used to up-
date the vectors. The scheduler is responsible for the coordination
of the processing.

5.2 Processing Engine

The most critical component in the accelerator is the processing
engine for floating-point SpMV in REFLOAT format. The processing
engine consists of a few ReRAM crossbars and several peripheral
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functional units. We show the architecture of the processing engine
in Figure 6(b), assuming we are performing the floating-point SpMV
on a matrix block with the format ReFloat(b, e, f).

The inputs to the processing engine are: (1) a matrix block in
ReFloat(b, e, f) format; (2) an input vector segment in floating-
point with ey exponent bits and f; fraction bits and the vector
length is 2%; and (3) the exponent base bits ¢;, for each matrix block.
The output of a processing engine is a vector segment for SpMV
on the matrix block, which is a double-precision floating-point
number.

Before the computation, the matrix block is mapped to the
ReRAM crossbars as detailed in Figure 6(c). The fraction part of the
matrix block in ReFloat(b, e, f) represents a number of 1.by_;...bo,
then we have (f + 1) bits for mapping. The e-bit exponent of the
matrix block contributes to 2¢ padding bits for alignment, then we
have another 2¢ bits for mapping. Thus, we map the total (2¢+f+1)
bits @ to (2° + f + 1) ReRAM crossbars, where the i-th bits of the
matrix block is mapped to the i-th crossbar 3. For the input vector
segments with e, exponent bits and f, exponent bits, a total number
of (2% + fy + 1) bits @ are applied to the driver.

During processing, a cluster of crossbars are deployed to per-
form the fixed-point MVM for the fraction part of the input vector
segment with the fraction part of the matrix block using the shift-
and-add method, as the example in Figure 2. The input bits are
applied to the crossbars by the driver and the output from the cross-
bar is buffed by a Sample/Hold (S/H) unit and then converted to
digital by a shared Analog/Digital Converter (ADC). For each input
bit to the driver (we assume an 1-bit DAC), as the crossbar size is
20, the ADC conversion precision is f, = b bits. Then we need to
shift-and-add the results @ from all (2¢ + f + 1) crossbars to get the
results @ for the 1-bit multiplication of the vector with the matrix
fraction. Thus, the bits number of @ is f; = 2° + f + 1+ b. Next, we
sequentially input the bits in @ to the crossbars and shift-and-add
the collected @ for each of the (2% + f; + 1) bits to get @, which
is the result for the multiplication of the matrix block with the
input @. The bits number of @ is f; = fo +2% + fy + 1+ b. As
shown in Figure 6(b), each matrix block has a sign bit, therefore,
it requires two crossbar clusters in a processing engine for the
signed multiplication. Each element in the input vector segment
also has a sign bit. Thus, we need four @ and subtract them to get
@. which is the multiplication results between the matrix block
and the vector segment. The number of bits for @ is (fg+1), and @
is a signed number due to the subtraction. Next, we convert the @
to a double-precision floating-point @. e;, @ is the exponent base
for the matrix block and e, @ is exponent for the vector segment.
We add @ and @ to the exponent of @ to get the @— the final
results for the multiplication of the matrix block with the vector
segment in 64-bit double-precision floating-point.

The vector converter is responsible for converting a vector seg-
ment in default floating-point precision to REFLOAT for processing
in next iteration. @) the exponents of elements in a vector segment
is accumulated by an adder tree and shifted following Eq. (5) to get
© the vector exponent base ep,. An element-wise subtraction is

3Here, we assume that the cell precision for the ReRAM crossbars is 1-bit. For 2-bit
cells, two consecutive bits are mapped to a crossbar.
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Figure 6: (a) the accelerator architecture overview. Architectures of (b) a processing engine for floating-point MVM on a matrix
block, (c) a crossbar cluster for fixed-point MVM, and (d) a vector converter.
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(a) A sparse matrix. (c) Block-major layout.
Figure 7: The row-major layout and block-major layout of a
sparse matrix.

performed on @ to get @ the exponents of the elements in the
vector segment.

5.3 Streaming and Scheduling

For the original large-scale sparse matrix, the non-zero elements
are stored in either row-major or column-major order. However, the
computation in ReRAM crossbars requires accessing elements in a
matrix block, i.e., elements indexed by the same window of rows and
columns. Thus, there is a mismatch between the data storage format
in the original application, e.g., Matrix Market File Format [10], and
the most suitable format for REFLOAT accelerator. Direct access
to the elements in each matrix block will result in random access
and wasted memory bandwidth. We propose a block-major layout
to overcome this problem, which ensures that most matrix block
elements can be read sequentially. Specifically, the non-zeros of
each 2% x 2% block are stored consecutively, and the non-zeros
of every P blocks among the same set of rows are stored linearly
before moving to a different set of rows, as shown in Figure 7. Here,
P is the number of blocks that can be processed in parallel, which is
determined by the hyper-parameters b, e, and f for a given number
of available ReRAM crossbars.

6 EVALUATION

6.1 Evaluation Setup

We list the configurations for the baseline GPU platform, the state-
of-the-art ReRAM accelerator [32] for scientific computing (Fein-
berg) and our REFLOAT in Table 4. We use an NVIDIA Tesla V100
GPU, which has 5120 Cuda cores and a 32GB HBM2 memory. We use
CUDA version 11.7 and cuSPARSE routines in the iterative solvers
for the processing on sparse matrices. We measure the running
time for the solvers on the GPU. For the two ReRAM accelerators,
i.e. Feinberg [32] and REFLOAT, we use the parameters in Table 4
for simulation. Both the two ReRAM accelerators have 128 Banks

Table 4: Platform Configuration.

GPU (Tesla V100 SXM2)

Architecture Volta CUDA Cores 5120
Memory 32GB HBM2 | CUDA Version 11.7

Feinberg [32]
Bank 128 Crossbar Size 128 X 128
Clusters/Bank 64 Precision double
Xbars/Cluster 128 Comp. ReRAM  17.1Gb

ReFloat
Bank 128 Crossbar Size 128 X 128
Subbank 128 Precision refloat
Xbars/Subbank 64 Comp. ReRAM  17.1Gb
ADC
10-bit pipelined SAR ADC @ 1.5GS/s
ReRAM Cells

1-bit SLC, T, = 50.88ns, Comp. Latency=107ns @ (128x128).

Table 5: Matrices in the evaluation.

ID Name #Rows NNZ NNZ/R «

353 crystmoO1 4,875 105,339 21.6 4.21e+2
1313 minsurfo 40,806 203,622 5.0 8.11e+1
354 crystm02 13,965 322,905 23.1 4.49e+2
2261 shallow_waterl 81,920 327,680 4.0 3.63e+0
1288 wathen100 30,401 471,601 15.5 8.24e+3
1311 gridgena 48,962 512,084 10.5 5.74e+5
1289 wathen120 36,441 565,761 15.5 4.05e+3
355 crystmo03 24,696 583,770 23.6 4.68e+2
2257 thermomech TC 102,158 711,558 6.9 1.23e+2
1848 Dubcova2 65,025 1,030,225 15.84 1.04e+4
2259 thermomech dM 204,316 1,423,116 6.9 1.24e+2
845  qa8fm 66,127 1,660,579 25.1 1.10e+2

353 1313 354 2261 1288 1311 1289 355 2257 1848 2259 845

ANANANAANANANIN. [N 1IN

and the crossbar size is 128 x 128. In Feinberg [32], we configure
64 clusters for each bank, which is slightly larger than that (56) in
Feinberg [32]. There are 128 crossbars in each cluster. The precision
in Feinberg [32] is double floating-point. In REFLOAT, we configure
128 banks, 128 subbanks per bank, and 64 crossbars per subbank.
The precision in REFLOAT is refloat with a default setting that
e=3,f=3e =3and f, = 8 For the two ReRAM accelerators,
the equivalent computing ReRAM is 17.1Gb. The ADC and ReRAM
cells for the two accelerators are of the same configuration. We use
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Figure 8: The performance of GPU, Feinberg [32], Feinberg-fc and REFLoAT for CG and BiCGSTAB solvers.

a 1.5GS/s 10-bit pipelined SAR ADC [60] for conversion. The DAC
is 1-bit, which is implemented by wordline activation. We use 1-bit
SLC [74] and the write latency is 50.88ns. The computing latency
for one crossbar, including the ADC conversion, is 107ns [32].

Table 5 lists the matrices used in the evaluation. We evaluate
on 12 solvable matrices from the SuiteSparse Matrix Collection
(formerly UF Sparse Matrix Collection) [24]. The matrices’ size
(number of rows) ranges from 4,875 to 204,316 and the Number of
Non-Zero entries (NNZ) of the matrices ranges from 105,339 for
1,660,579. NNZ/Row is a metric for sparsity. A smaller NNZ/Row
indicates a sparser matrix. NNZ/Row ranges from 4.0 to 27.7. The
condition number x ranges widely from 3.6 to 5.74e+5. We also
visualize the matrices in Table 5. We apply the iterative solvers CG
and BiCGSTAB on the matrices. The convergence criteria for the
solvers is that the L-2 norm of the residual vector (we use the term
“residual” denoted by R? for simplicity to call the L-2 norm of the
residual vector in this section) is less than 1078.

6.2 Performance

We show the performance of the GPU, a state-of-the-art ReRAM ac-
celerator Feinberg [32] and REFLOAT for CG and BiCGSTAB solvers
in Figure 8. We evaluate the processing time ¢ for the iterative solver
to satisfy that the residual is less than 1078, The performance p is
defined as p = tgpy/tx, x = Feinberg [32], Feinberg-fc or REFLOAT.
For Feinberg [32], we evaluate both function (convergence) and
hardware performance. Note that as we discussed in Sec. 3.3, the
vector issue in [32] may lead to non-convergence on most matrices.
Feinberg-fc is a strong baseline where we assume the function is
correctly the same as that of the default double. Specifically, we
assume Feinberg-fc converges and takes the same iteration num-
ber to convergence as that in double and evaluate the hardware
performance of Feinberg-fc.

CG solver. Overall, the geometric-mean(GMN) performance of
Feinberg [32]-fc and REFLOAT are 0.8362x and 12.59%(up to 29.89%)
respectively. GPU and REFLOAT converge on all matrices while
Feinberg [32] does not converge on 6 out of 12 matrices and the
IDs of not converged matrices are 353, 354, 2261, 355, 2259, and
845. The GMN of REFLOAT compared to Feinberg [32] on the six
converged matrices is 12.94X. For most of the matrices, REFLOAT
performs better than the baseline GPU. For matrix 2257, 1848 and
2259, the performance of REFLOAT is 0.8973X%, 16.77x and 0.6660X
respectively. However, the performance of Feinberg [32] is even
lower, and it is 2.21E-2X, 3.48E-1x and NC respectively. The slow
down is because the required number of clusters for SpMV is larger
than the number available on the accelerators. If the number of
clusters for SpMV on one matrix is fewer than the available clusters
on an accelerator, the deployed clusters will be only invoked once
to perform the SpMV. But, if the number of clusters for SpMV on
one matrix is larger than the available clusters on an accelerator,
(1) cell writing for mapping new matrix blocks to clusters and (2)
cluster invoking to perform part of SpMV will happen multiple
times, thus more time is consumed for one SpMV on the whole
matrix. In Feinberg [32], with the default floating-point mapping,
i.e., 118 crossbars for a cluster, there are only 2221 clusters available.
However, to perform one SpMV on the whole matrix, 209263, 15797,
and 381321 clusters are required respectively for matrix 2257, 1848,
and 2259. The required cluster number for the two matrix is far
larger than the available number in Feinberg [32], resulting in cell
writing and cluster invoking 103, 8, and 187 times respectively for
the three matrices. So the performance of Feinberg [32] is lower
than the baseline GPU on the two matrices. In REFLOAT, to perform
one SpMV on the whole matrix, the same numbers as that in Fein-
berg [32] of clusters are required for matrix 2257 and matrix 2259.
We configure e = 3, f = 3 for REFLOAT, so the available clusters
for matrix 2257 and matrix 2259 are 21845. The cell writing and
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Figure 9: Convergence traces of CG and BiCGSTAB solvers of GPU (black line), Feinberg [32]-fc (red line) and REFLoAT (blue
line). The Y axis is the residual and the X axis is the normalized (to GPU) iteration number.

Table 6: Absolute iteration number to reaching convergence.

D CG BiCGSTAB
double refloat+/- double refloat+/-
353 68 85 +17 49 51 +2
1313 52 55 +3 34 69 +35
354 81 95 +14 58 79 +21
2261 11 11 0 7 7 0
1288 262 305 +43 195 205 +10
1311 1 1 0 1 1 0
1289 294 401 +107 211 317 +106
355 80 95 +15 59 52 -7
2257 55 56 +1 43 36 -7
1848 162 214 +52 118 145 +27
2259 57 58 +1 45 36 -9
845 53 54 +1 41 35 -6

cluster invoking times for matrix 2257 and matrix 2259 are 10 and
18 respectively, which are less than the cell writing and cluster
invoking times in Feinberg [32].

Another reason leading to higher performance of REFLOAT com-
pared with Feinberg [32] is that fewer cycles are consumed within
a cluster. In Feinberg [32], 233 cycles are consumed for the multi-
plication even with the assumption that 6 bits are enough for the
exponent [32]. In REFLOAT, 28 cycles are consumed for the multi-
plication. Notice that with a fewer number of exponent bits and
fraction bits, we can get (a) a fewer number of clusters required
for a whole matrix, (b) a fewer number of cycles consumed for one
matrix block floating-point multiplication within a cluster. The two
effects (a) and (b) can lead to higher performance, but we also have
a third effect (c) larger number of iterations to reaching conver-
gence, which leads to lower performance. However, effects (a) and
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Table 7: Bit number for exponent and fraction of matrix block
and vector segment in REFLoAT.
CG BiCGSTAB
e f e fo e f e fo
33 3 8 3 3 3 8

(b) is stronger than effect (c), so the performance of REFLOAT is
higher. The number of iterations for the evaluated matrices to reach
convergence is listed in Table 6.

BiCGSTAB solver. The geometric-mean(GMN) performance of
Feinberg [32]-fc and REFLOAT are 1.036X and 13.34X (up to 41.99x)
respectively. The GPU and REFLOAT converge on all matrices while
Feinberg [32] does not converge on 6 out of 12 matrices and the
IDs of not converged matrices are 353, 354, 2261, 355, 2259, and
845. The GMN of REFLOAT compared to Feinberg [32] on the four
converged matrices is 15.98%. The trend for the three platforms on
the evaluated matrices are similar to that for CG solver. In each
iteration, for CiCGSTAB solver, there are two SpMV on the whole
matrix, while for CG solver, there is one SpMV on the whole matrix.
From Table 6 we can see, the difference of (+/-) number of iterations
to get converge in BiCGSTAB solver is smaller than the gap in
CG solver for most matrices. For matrix 355, 2257, 2259 and 845,
the difference is negative, which means it takes fewer iterations in
refloat compared with that in double.

6.3 Accuracy

We show the convergence traces (the residual over each iteration)
of GPU, Feinberg-fc, and REFLOAT for CG and BiCGSTAB solvers in
Figure 9. The iteration number is normalized by the consumed time
for the GPU baseline. Table 7 lists the configurations of bit number
for matrix block and vector segment in refloat for all matrices
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Table 8: Memory overhead of REFLoAT v.s. Feinberg [32].
ID 353 1313 354 2261 1288 1311 1289 355 2257 1848 2259 845
173 176 173 176 173 174 173 173 312 .179 .300 .173

except 1288 and 1828. For 1288 and 1828, the only difference is the
fo = 16. The absolute (non-normalized) iteration number to reach
convergence is listed in Table 6.

For CG solver, from Table 6 we can see, refloat leads to more
number of iterations to get converged when we do not consider
the time consumption for each iteration. From Figure 9 we can see,
with the low bit representation, the residual curves are almost the
same trend as the residual curves of GPU and Feinberg-fc in default
double. Most importantly, all the traces in refloat get converged
faster than the traces of GPU and Feinberg-fc. For matrix 1288 and
matrix 1848, the bit number for fraction of vector segment is 16 be-
cause the default 8 leads to non-convergence. For BICGSTAB solver,
from Table 6 we can see, while refloat leads to more number of
iterations to reaching convergence for 5 matrices, the number of
iterations to reaching convergence for 4 matrices are even fewer
than those in double. We infer that is because lower bit representa-
tion helps to enlarge the changes in the correction term, thus leads
to fewer iterations. We also notice there are spikes in the residual
curves in refloat more frequently than spikes in double, but they
finally reach convergence.

6.4 Robustness to Noise

To study the robustness to noise of REFLOAT, we disable the er-
ror correction. We model the random telegraph noise (RTN) [17]
which is widely adopted in ReRAM accelerator noise modeling
[3, 32, 47]. We use crystm@3 with CG solver for a case study and
show the speedup (compared to GPU) and iteration number v.s.
noise deviation o from 0.1% to 25% in Figure 10. Within 10% noise,
the speedup degrades very little and at 25% noise, REFLOAT still
maintains a 6.85X speedup. As we discussed before, the iterative
solvers naturally tolerate noise and deviation.

6.5 Memory Overhead

In Table 8, we compare the memory overhead for the matrix in
refloat normalized to that in double (used in Feinberg [32]).
On average, refloat consumes 0.192X memory compared with
double. For matrices except 2257 and 2259, refloat consumes
less than 0.2X memory compared with double. For matrix 2257
and matrix 2259, the average density within a matrix is relatively
lower, thus more memory is consumed for the matrix block index
and the exponent base.
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7 RELATED WORKS

ReRAM-based accelerators. In recent years, the architecture de-
sign of ReRAM-based accelerators have been developed for various
applications, including deep learning [6, 11, 16, 33, 49, 50, 54, 81,
88, 104], graph processing [13, 89] and scientific computing [32].
The noise and reliability issues in ReRAM-based computing are
significantly alleviated by coding techniques and architectural opti-
mizations [33, 70, 96-98]. ReRAM-based accelerators are demon-
strated on silicon by [15, 69, 76, 93, 101-103]. Most ReRAM-based
accelerators are designed for fixed-point processing, especially for
deep learning. Besides [32], [34] applied preconditioner and Float-
PIM [49] accelerated floating-point multiplication in ReRAM, but
FloatPIM is designed for deep learning in full-precision floating
point.

Scientific computing acceleration. Computing routines on general-
purpose platforms CPUs and GPUs have been developed for sci-
entific computing, such as CuSPARSE [73], MKL [94], and LA-
PACK [5]. Architectural and architecture-related optimizations
[23, 35, 55, 61, 68, 82, 105] on CPUs/GPUs are explored for acceler-
ating scientific computing. [26-28] leveraged machine learning for
the acceleration of scientific computing and [85-87] accelerated
sparse linear algebra and solvers on FPGAs. Scientific computing
is a major application in high performance computing and heavily
relies on general-purpose platforms, but it is a new application do-
main for emerging PIM architectures and it is challenging because
of high cost and low performance of floating-point processing.
Data format. Data formats for efficient computing are explored
for CPUs/GPUs [9, 53, 65, 67, 71, 83]. Format and architecture co-
optimization includes [37, 43, 90] on CMOS platforms but they are
not for emerging PIM architectures and not for scientific computing.
Data compression are explored on DRAM systems [62, 77, 78].

8 CONCLUSION

ReRAM has been proved promising for accelerating fixed-point
applications such as machine learning, while scientific computing
is an application domain that requires floating-point processing.
The main challenge for efficiently accelerating scientific comput-
ing in ReRAM is how to support low-cost floating-point SpMV
in ReRAM. In this work, we address this challenge by proposing
REFLOAT, a data format, and a supporting accelerator architecture.
REFLOAT is tailored for processing on ReRAM crossbars. The num-
ber of effective bits is significantly reduced to reduce the crossbar
cost and cycle cost for the floating-point multiplication on a matrix
block. The evaluation results across a variety of benchmarks reveal
that the REFLOAT accelerator delivers a speedup of 5.02X to 84.28%
compared with a state-of-the-art ReRAM-based accelerator [32] for
scientific computing even with the assumption that the accelera-
tor [32] functions the same as FP64 solvers. We released the source
code at https://github.com/linghaosong/ReFloat.
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Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
10.5281/zeno0do.8126949

ARTIFACT IDENTIFICATION

We present ReFloat in this work. ReFloat is a ReRAM based accel-
erator architecture for linear solvers. The computational artifacts
include a GPU implementation of conjugate gradient (CG) and
biconjugate gradient stabilized method (BiCGSTAB) for solving
linear systems, an implementation of a C++ based simulator for the
ReFloat accelerator architecture. The GPU implementation serves
as the baseline for the evaluation, the C++ simulator simulates the
performance of the ReRAM accelerators.

REPRODUCIBILITY OF EXPERIMENTS

The workflow will be: (1) download matrices from SuiteSparse, (2)
compile the GPU code and the simulators’ code, (3) run a script
to report the evaluation results. The estimated execution time is 2
hours. The expected results are the speedups reported in Figure 8,
the iteration numbers reported in Table 6. The evaluation results
show that our accelerator ReFloat performs better than the GPU
and the accelerator presented by Feinberg et al (ISCA’18), and the
accelerator presented by Feinberg et al does not converge on many
matrices, but our accelerator does.

The evaluation requires (1) an NVIDIA Tesla V100 GPU, or
a similar NVIDIA GPU, (2) CUDA version 11.7, and (3) Ubuntu
20.04. The datasets are matrices from SuiteSparse. We provided
a script to download the matrices. The source code is available
on https://github.com/linghaosong/ReFloat. We provided detailed
steps about how to compile, how to download the input matrices,
and how to run the evaluation.

ARTIFACT DEPENDENCIES REQUIREMENTS

1. An NVIDIA Tesla V100 GPU, or a similar NVIDIA GPU. 2. Cuda
version 11.7. 3. Ubuntu 20.04. 4. The datasets are matrices from
SuiteSparse. We provided a script to download the matrices. 5. The
source code is available on https://github.com/linghaosong/ReFloat.
We provided detailed steps about how to compile, how to download
the input matrices, and how to run the evaluation.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS

To obtain a copy of the source code

git clone https://github.com/linghaosong/ReFloat.git

To download the matrices

cd ReFloat/matrices sh download.sh

We have tested the GPU implemneation on a Nvidia V100 GPU
with CCuSparse (CUDA version 11.7). To compile the GPU code,

cd ReFloat/gpu make

We provided a script to run the evaluations,

sh run_gpu.sh

We provided the CPU implemneation and the simulation code
under the src directory. We suggest that your CPU paltform has
OpenMP installed. To compile,

cd src make

To run the CPU implementation,

cd run/cpu sh run_cpu.sh

To run the ReFloat, go to

cd ReFloat/src/run/refloat sh run_refloat.sh
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