
ReFloat: Low-Cost Floating-Point Processing in ReRAM for
Accelerating Iterative Linear Solvers

Linghao Song
University of California, Los Angeles

linghaosong@cs.ucla.edu

Fan Chen
Indiana University Bloomington

fc7@iu.edu

Hai Li
Duke University
hai.li@duke.edu

Yiran Chen
Duke University

yiran.chen@duke.edu

ABSTRACT

Resistive random access memory (ReRAM) is a promising tech-

nology that can perform low-cost and in-situ matrix-vector multi-

plication (MVM) in analog domain. Scientific computing requires

high-precision floating-point (FP) processing. However, performing

floating-point computation in ReRAM is challenging because of

high hardware cost and execution time due to the large FP value

range. In this work we present ReFloat, a data format and an ac-

celerator architecture, for low-cost and high-performance floating-

point processing in ReRAM for iterative linear solvers. ReFloat

matches the ReRAM crossbar hardware and represents a block of

FP values with reduced bits and an optimized exponent base for

a high range of dynamic representation. Thus, ReFloat achieves

less ReRAM crossbar consumption and fewer processing cycles and

overcomes the noncovergence issue in a prior work. The evalua-

tion on the SuiteSparse matrices shows ReFloat achieves 5.02× to

84.28× improvement in terms of solver time compared to a state-

of-the-art ReRAM based accelerator.

CCS CONCEPTS

• Computer systems organization→ Architectures; • Hard-

ware→ Emerging architectures; Hardware accelerators.

KEYWORDS

Processing-in-memory, Accelerator, ReRAM, Floating-point.

ACM Reference Format:

Linghao Song, Fan Chen, Hai Li, and Yiran Chen. 2023. ReFloat: Low-

Cost Floating-Point Processing in ReRAM for Accelerating Iterative Linear

Solvers . In The International Conference for High Performance Computing,

Networking, Storage and Analysis (SC ’23), November 12–17, 2023, Denver, CO,

USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3581784.

3607077

1 INTRODUCTION

With the diminishing gain of Moore’s Law [92] and the end of

Dennard scaling [38], general-purpose computing platforms such

as CPUs and GPUs will no longer benefit from shrinking transistor

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SC ’23, November 12–17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0109-2/23/11.
https://doi.org/10.1145/3581784.3607077

…
63 52 0

sign exp (11 bits) frac (52 bits)

(a) (b)
7 0

sign
…

31 23 0

sign exp (8b) frac (23b)

(c)

15 7 0

sign exp (8b) frac (7b)

(d)
18 10 0

sign exp (8b) frac (10b)

(e)
8 3 0

sign

exp(5b) + frac(3b)

(f)

…

…
053

010

…

(g)
shared

05
010

(h)

…

Figure 1: The bit layout of (a) an 8-bit signed integer, (b) a

64-bit double-precision floating-point number, (c) a 32-bit

single-precision floating-point number, (d) a Google bfloat16

number, (e) an Nvidia TensorFloat32 number, (f) a Microsoft

ms-fp9 number, (g) a block of numbers in blockfloating point,

and (h) a block of numbers in ReFloat(x,2,3).

size or integrating more cores [30]. Thus, domain-specific architec-

tures are critical for improving the performance and energy effi-

ciency of various applications. Rather than relying on conventional

CMOS technology, the emerging non-volatile memory technology

such as resistive random access memory (ReRAM) is considered

as a promising candidate for implementing processing-in-memory

(PIM) accelerators [6, 11, 16, 32, 47, 49, 54, 63, 81, 88, 89, 104] that

can provide orders of magnitude improvement of computing ef-

ficiency. Specifically, ReRAM can store data and perform in-situ

matrix-vector multiplication (MVM) operations in the analog do-

main. Most current ReRAM-based accelerators focus on machine

learning applications, which can accept a low precision, e.g., less

than 16-bit fixed-point, thanks to the quantization in deep learning

[21, 42, 44, 48, 64].

Scientific computing is a collection of tools, techniques, and

theories for solving science and engineering problems modeled in

mathematical systems [40]. The underlying variables in scientific

computing are continuous in nature, such as time, temperature,

distance, and density. One of the essential aspects of scientific

computing is modeling a complex system with partial differential

equations (PDEs) to understand the natural phenomena in science

[45, 52], or the design and decision-making of engineered systems

[14, 75]. Most problems in continuous mathematics modeled by

PDEs cannot be solved directly. In practice, the PDEs are converted

to a linear system 𝐴x = b, and then solved through an iterative

solver that ultimately converges to a numerical solution [8, 80].

To obtain an acceptable answer where the residual is less than a

desired threshold, intensive computing power [31, 84] is required

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

SC ’23, November 12–17, 2023, Denver, CO, USA Linghao Song, Fan Chen, Hai Li, and Yiran Chen

to perform the floating-point sparse matrix-vector multiplication

(SpMV), the critical computation kernel.

Because of the prevalent floating-point operations in scientific

computing, it is desirable to leverage ReRAM to achieve parallel

in-situ floating-point SpMV. When using the ReRAM crossbar to

perform SpMV, we partition the matrix into blocks, encode each ma-

trix element as the ReRAM cell conductance, and convert the input

vector to wordline voltage through Digital-to-Analog Converters

(DACs). Thus, the bitline will output the results of the dot-product

between the current input vector bits and matrix elements mapped

in the same crossbar column. Each bitline in the output is connected

to a sample and hold (S/H) unit. After all input bits are processed,

the results of the SpMV are available at the output of S/H unit,

which is converted to multi-bit digital values by Analog-to-Digital

Converters (ADCs). In general, the number of bits in the input

vector and the matrix determine the number of cycles for perform-

ing an SpMV. In contrast, the number of bits representing matrix

elements determines the number of crossbars.

We examine mapping the floating-point SpMV by leveraging

the same principle used in MVM. Take 64-bit double-precision

number as an example: each floating-point number consists of a

1-bit sign (𝑠), an 11-bit exponent (𝑒), and a 52-bit fraction (𝑓). The

value is interpreted as (−1)𝑠 × (1.𝑏51𝑏50 ...𝑏0) ×2(𝑒−1023) , yielding a

dynamic data range from ±2.2×10−308 to ±1.8×10308. The number

of crossbars for a matrix 𝑀 increases exponentially with the bits

number of the exponent (𝑒𝑀) and linearly with the bits number of

the fraction (𝑓𝑀). Thus, directly representing floating-point values

with a large number of crossbars incurs prohibitive costs.

To reduce the overhead, Feinberg et al.[32] propose to truncate

the higher bits in exponents, e.g., using the low 6 bits or module 64

of the exponent (the 64 paddings in [32]) to represent each original

value, while keeping the number of fraction bits the unchanged (52

bits). However, this ad-hoc solution does not ensure the convergence

of iterative solves (see Table 1 and Section 6.2). In general, to ensure

convergence, we need two requirements. (1) correct matrix values,

which are ensured by [32] with the aid of floating-point units (FPUs)

when the exponent range of a submatrix falls outside the 6 bits

mapped to ReRAMs. (2) correct vector values, which is not consid-

ered by [32]. In the computation, matrix value does not change, but

vector values change every iteration. Thus, vector values in [32]

fall out of range (i.e., the 64 padding). As a result, the solvers do not

converge. In addition, the hardware cost increases exponentially

with the exponent bits. [32] used 6 bits for the exponent, however,

we can further reduce the exponent bits. Thus, [32] did not fully

reduce the overhead.

We propose ReFloat, a principled approach based on a flexible

and fine-grained floating-point number representation. The key

insight of our solution is the exponent value locality among the

elements in a matrix block, which is the granularity of computation

in ReRAM. If we consider the whole matrix, the exponent values

can span a wide range, e.g., up to 11 for a matrix, but the range

within a block is smaller, e.g., at most 7 for the same matrix. It

naturally motivates the idea of choosing an exponent base 𝑒𝑏 for

all exponents in a block and storing only the offsets from 𝑒𝑏 . For a
matrix block, although the absolute exponent values may be large,

the variation is not. For most blocks, by choosing a proper 𝑒𝑏 , the

offset values are much smaller than the absolute exponent values,

thereby reducing the number of bits required.

Instead of simply using the offset as a lossless compression

method, ReFloat aggressively uses fewer bits for exponent offsets

(𝑒) than the required number of bits to represent them. The error is

bounded by the existence of value locality in real-world matrices.

Moreover, the error is refined due to the nature of the iterative

solver. Starting from an all-zero vector, an increasingly accurate

solution is produced in each iteration. The iterative solver stops

when the defined convergence criteria are satisfied. Because the

vector from each iteration is not accurate anyway, the computation

has certain resilience to the inaccuracy due to floating-point data

representation. It is why [32] can work in certain cases. In ReFloat,

when an offset is larger (smaller) than the largest (smallest) offset

represented by 𝑒 bits, the largest (smallest) value of 𝑒 bits is used
for the offset. With 𝑒-bit exponent offset, the range of exponent

values is [𝑒𝑏 − 2(𝑒−1) + 1, 𝑒𝑏 + 2(𝑒−1) − 1]. Selecting 𝑒𝑏 becomes an

optimization problem that minimizes the difference between the

exponents of the original matrix block and the exponents with 𝑒𝑏
and 𝑒-bit offsets.

To facilitate the proposed ideas in a concrete architecture, we

define the ReFloat format as ReFloat(𝑏, 𝑒, 𝑓) (𝑒𝑣, 𝑓𝑣), where 𝑏 de-

notes the matrix block size—the length and width of a square matrix

block is 2𝑏 , 𝑒 and 𝑓 respectively denote the exponent and frac-

tion bit numbers for the matrix, and (𝑒𝑣, 𝑓𝑣) denotes the exponent
and fraction bit numbers for the vector. With 𝑒𝑏 for each block,

we are able to represent all matrix elements in the block. Then,

we develop the conversion scheme from default double-precision

floating-point format to ReFloat format and the computation pro-

cedure. Based on ReFloat format, we design the low-cost high-

performance floating-point processing architecture in ReRAM. Our

results show that for 12 matrices evaluated on iterative solvers

(CG and BiCGSTAB), only 3 bits for exponent and 8 or 16 bits for

fraction are sufficient to ensure convergence. In comparison, [32]

uses 6 bits for exponent and 51 bits for fraction without guaran-

teeing convergence. It translates to a speedup of 5.02× to 84.28×
compared with a state-of-the-art ReRAM-based accelerator [32] for

scientific computing even with the assumption that the accelera-

tor [32] functions the same as FP64 solvers. We released the source

code at https://github.com/linghaosong/ReFloat.

2 BACKGROUND

2.1 In-situ MVM Acceleration in ReRAM

ReRAM [4, 100] has recently demonstrated tremendous potential

to efficiently accelerate the computing kernels in machine learning.

Conceptually, each element in a matrix𝑀 is mapped to the conduc-

tance state of a ReRAM cell. At the same time, the input vector x is

encoded as voltage levels that are applied on the wordlines of the

ReRAM crossbar. In this way, the current accumulation on bitlines

is proportional to the dot-product of the stored conductance and

voltages on the wordlines, representing the result y = 𝑀 × x. Such

in-situ computation significantly reduces the expensive memory

access in MVM processing engines [47], and most importantly, pro-

vide massive opportunities to exploit the inherent parallelism in an

𝑁 × 𝑁 ReRAM crossbar.

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

ReFloat: Low-Cost Floating-Point Processing in ReRAM for Accelerating Iterative Linear Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

ReRAM-based MVM processing engines are fixed-point hard-

ware in nature since the matrix and the vector are respectively

represented in discrete conductance states and voltage levels [100].

If ReRAM is used to support floating-point MVM operation, many

crossbars will be provisioned for fraction alignment, resulting in

very high hardware costs. We will illustrate the problem in Sec-

tion 3 to motivate ReFloat design. Nevertheless, the fixed-point

precision requirement is acceptable for machine learning applica-

tions thanks to the low-precision and quantized neural network

algorithms[22, 42, 48, 51, 58, 106]. Many fixed-point based acceler-

ators [6, 11, 16, 39, 54, 81, 88, 104] are built with the ReRAM MVM

processing engine and achieve reasonable classification accuracy.

2.2 Iterative Linear Solvers

1 initiate x = x0

2 while (not converge) do

3 //Step 1: compute the residual

4 r = b - A * x

5 //Step 2: compute the correction

6 compute p

7 //Step 3: update the current solution

8 x = x + p

9 end while

Code 1: The iterative linear solver.

Scientific computing is an interdisciplinary science that solves

computational problems in a wide range of disciplines, including

physics, mathematics, chemistry, biology, engineering, and other

natural sciences subjects [7, 36, 41]. Systems of large-scale PDEs

typically model those complex computing problems. Since it is

almost impossible to obtain the analytical solution of those PDEs

directly, a common practice is to discretize continuous PDEs into

a linear system 𝐴x = b [8, 80] to be solved by numerical methods.

The numerical solution of this linear system is usually obtained by

an iterative solver [25, 72, 99].

Code 1 illustrates a typical computing process in iterative meth-

ods. The vector x to be solved is typically initialized to an all-zero

vector x0, followed by three steps in the main body: (1) the residual

(error) of the current solution vector is calculated as r = b − 𝐴x;
(2) to improve the performance of the estimated solution, a correc-

tion vector p is computed based on the current residual r; and (3)

the current solution vector is improved by adding the correction

vector as x = x + p, aiming to reduce the possible residuals pro-

duced in the next calculation iteration. The iterative solver stops

when the defined convergence criteria are satisfied. Two widely

used convergence criteria are (1) that the iteration index is less

than a preset threshold 𝐾 , or (2) that the L-2 norm of the residual

(res = | |b −𝐴x| |2) is less than a preset threshold 𝜏 . Notably, all the
values involved in Code 1 are implemented as double-precision

floating-point numbers to meet the high-precision requirement of

mainstream scientific applications.

The various iterative methods follow the above computational

steps and differ only in calculating the correction vectors. Among

all candidate solutions, Krylov subspace approach is the standard

method nowadays. In this paper, we focus on two representative

Krylov subspace solvers – Conjugate Gradient (CG) [46] and Stabi-

lized BiConjugate Gradient (BiCGSTAB) [91]. The computational

kernels of these two methods are large-scale sparse floating-point

matrix-vector multiplication y = 𝐴x, which requires the support

of floating-point computation in ReRAM and imposes significant

challenges to the underlying computing hardware.

2.3 Fixed-Point and Floating-Point
Representations

We use the 8-bit signed integer and the IEEE 754-2008 standard [19]

64-bit double-precision floating-point number as examples to com-

pare the difference between fixed-point and floating-point numbers.

They refer to the format used to store and manipulate the digital

representation of data. As shown in Figure 1 (a), fixed-point num-

bers represent integers—positive and negative whole numbers—via

a sign bit followed by multiple (e.g., i-bit) value bits, yielding a value

range of −2𝑖 to 2𝑖 − 1. IEEE 754 double-precision floating-point

numbers shown in Figure 1 (b) are designed to represent and ma-

nipulate rational numbers, where a number is represented with a

sign bit (𝑠), an 11-bit exponent (𝑒), and a 52-bit fraction (𝑏51𝑏50 ...𝑏0).
The value of a double-precision floating-point is interpreted as

(−1)𝑠 × (1.𝑏51𝑏50 ...𝑏0) × 2(𝑒−1023) , yielding a dynamic data range

from ±2.2 × 10−308 to ±1.8 × 10308.

Many efficient floating point formats shown in Figure 1 have

been proposed because the default format incurs a high cost for

conventional digital systems. However, the applications such as

deep learning do not require a very wide data range. The represen-

tative examples include IEEE 32-bit single-precision floating point

(FP32), Google bfloat16 [95], Nvidia TensorFloat32 [57], Microsoft

ms-fp9 1 [18], and block floating point (BFP) [12, 59]. Accordingly,

specialized hardware designs or/and systems are also proposed to

amplify the benefits of efficient data formats. For example, Google

bfloat is associated with TPU [1, 2, 56], Nvidia TensorFloat is asso-

ciated with tensor core GPUs, Microsoft floating-point formats are

associated with Project Brainwave [18], and BFP are favorable for

signal processing on DSPs [29] and FPGAs [20].

However, the floating-point representations favored by deep

learning may not benefit scientific computing. For deep learning,

weights can be retrained to a narrowed/shrunk space, even without

floating-point [21, 48, 66, 79, 107]. In scientific computing, data

cannot be retrained, and the shrunk formats can not capture all

values. For example, 1.0× 10−40 falls out of range for FP32, bfloat16,

TensorFloat32, and ms-fp9 because of narrow range representation.

Two values 1.0×10−40 and 1.0×10−30 can not be captured by a BFP

block because of non-dynamic range representation within a block.

The narrow or non-dynamic range may lead to non-convergence

in scientific computing.

In general, double-precision floating-point is a norm for high-

precision scientific computations because it can support a wide

range of data values with high precision. However, the processing

demands low hardware costs and high performance.

3 MOTIVATION AND REFLOAT IDEAS

3.1 Fixed-Point MVM processing in ReRAM

The processing of SpMV on ReRAM-based accelerators utilizes

matrix blocking on a large matrix to perform MVM on matrix

blocks with ReRAM crossbars [32, 89]. The floating-point MVM is

1We infer the layout from the description in [18]. No public specifications on ms-fp
are available.

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

SC ’23, November 12–17, 2023, Denver, CO, USA Linghao Song, Fan Chen, Hai Li, and Yiran Chen

0 1 0 1
1 1 0 1
1 0 0 0
1 0 1 1

0 1 1 0
0 1 0 0
0 1 0 1
1 1 0 1

0
1
0
1

M-b3 M-b2

V
-b3

0 0 1 1
1 1 1 0
0 0 1 0
1 1 0 1

M-b1
0 1 1 1
1 0 1 0
1 1 0 1
0 0 1 1

M-b0

2 1 1 2O0 1 2 0 1 2 2 1 1 1 0 2 1

1
1
1
1

V
-b2

1
0
1
0

V
-b1

0
0
0
1

V
-b0

C1

2 1 1 2S1 1 2 0 1 2 2 1 1 1 0 2 1
+
<<

3 2 1 3 1 4 1 2 2 2 3 2 2 2 3 3O1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0S0

7 4 3 7 3 8 1 4 6 6 5 4 4 2 7 5S2
+
<<

+
<<

C2

C3
1 1 0 1 0 2 1 1 0 0 2 1 1 2 1 2O2

S3 6 18 3 9 12 12 12 9 9 6 15 12

+
<<

C4
1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1O3

S4 31 18 13 31 13 37 6 19 25 25 24 19 18 12 31 25 C5
+<<

75 73 32 81
+<<

C6

C7

S 368 354 207 387

175171 88 181
+<<

15 9 6 15

Figure 2: Fixed-point (integer) MVM in ReRAM.

built on fixed-point MVM. To understand the cycle numbers and

ReRAM crossbar numbers in ReRAM-based fixed-point MVM, we

use Figure 2 as an example.

⎡⎢⎢⎢⎢⎢⎢⎣

368

354

207

387

⎤⎥⎥⎥⎥⎥⎥⎦𝑑
=

⎡⎢⎢⎢⎢⎢⎢⎣

0 13 7 11

11 14 3 8

9 5 2 5

14 6 9 15

⎤⎥⎥⎥⎥⎥⎥⎦

𝑇

𝑑

×

⎡⎢⎢⎢⎢⎢⎢⎣

6

12

6

13

⎤⎥⎥⎥⎥⎥⎥⎦𝑑
=

⎡⎢⎢⎢⎢⎢⎢⎣

0000 1101 0111 1011

1011 1110 0011 1000

1001 0101 0010 0101

1110 0110 1001 1111

⎤⎥⎥⎥⎥⎥⎥⎦

𝑇

𝑏

×

⎡⎢⎢⎢⎢⎢⎢⎣

0110

1100

0110

1101

⎤⎥⎥⎥⎥⎥⎥⎦𝑏

. (1)

Figure 2 shows the processing of fixed-point MVM in ReRAM,

which represents the computation of an example Eq. (1) by utiliz-

ing ReRAM-based MVM engines with single-bit precision. Before

computation, we convert the decimal integers in both the matrix

and the vector to binary bits. We set the precision for the matrix

and input vector to 4-bit. The matrix is bit-sliced into four 1-bit

matrices and then mapped to four crossbars, i.e., M-b3, M-b2, M-

b1, and M-b0. The input vector is bit-sliced into 4 one-bit vectors,

i.e., V-b3, V-b2, V-b1, and V-b0. The multiplication is performed

in pipeline. Each crossbar has a zero initial vector S0. In the first

cycle C1, the most significant bit (MSB) vector V-b3 is applied on

wordlines of the four crossbars, and the multiplication results of

V-b3 with M-b3, M-b2, M-b1, and M-b0 are obtained in parallel,

denoted by O0. In cycle C2, S0 is right-shifted by 1 bit to get S1, and

V-b2 is input to the crossbars to get the multiplication results O1.

Similar operations are performed in C3 and C4. After C4, we get S4,

the multiplication results of the input vector with four bit-slices of

the matrix. In the following threes cycles C5 to C7, we shift and add

S4 from the four crossbars to get the final multiplication result. For

the fixed-point multiplication of an 𝑁𝑀 -bit matrix with an 𝑁𝑣-bit

vector, the processing cycle count is 𝐶int = 𝑁𝑣 + (𝑁𝑀 − 1).

3.2 Hardware Cost and Performance Analysis
of Floating-Point MVM in ReRAM

In this section, we explain in detail the hardware cost, i.e., the

crossbar number 𝐶 , and the performance, i.e., the cycle number

𝑇 , of ReRAM-based floating-point MVM. Note that 𝐶 correlates

with the ability to execute floating-point MVMs in parallel with a

given number of on-chip ReRAMs [32, 81, 89]: the smaller 𝐶 , the
more parallelism can be explored. A smaller 𝑇 directly reflects a

higher performance of one ReRAM-based MVM on a matrix block.

A smaller 𝑇 and a smaller 𝐶 reflects a higher performance of one

SpMV on a whole matrix.

Crossbar number. Suppose we compute the multiplication of a

matrix block𝑀 and a vector segment 𝑣 . In the matrix block𝑀 , the

number of fraction bits is 𝑓𝑀 and the number of exponent bits is 𝑒𝑀 .

In the vector segment 𝑣 , the number of fraction bits is 𝑓𝑣 and the

number of exponent bits is 𝑒𝑣 . To map the matrix fraction to ReRAM

crossbars, we need (𝑓𝑀 +1) ReRAM crossbars because the fraction is

normalized to a value with a leading 1. For example, (52+1) crossbars

are needed to represent the 52-bit fraction in double floating-point

precision in [32]. To map the matrix exponent to ReRAM crossbars,

we need 2𝑒𝑀 ReRAM crossbars for 𝑒𝑀 -bit exponent states, which

is called padding in [32] where 64-bit paddings are needed for an

𝑒𝑀 = 6. Thus, 𝐶 is calculated as

𝐶 = 4 × (2𝑒𝑀 + 𝑓𝑀 + 1), (2)

where the leading multiplier 4 is contributed from sign bits of the

matrix block and the vector segment.

Cycle number.We conservatively suppose the precision of digital-

analog converters is 1-bit as that in [32, 81]. The number of value

states in a vector segment is (2𝑒𝑣 + 𝑓𝑣 + 1). For each input state, we

need (2𝑒𝑀 + 𝑓𝑀 + 1) to perform shift-and-add to reduce the partial

results from the ReRAM crossbars. To achieve higher computation

efficiency, a pipelined input and reduce scheme [81] can be used.

Thus, 𝑇 is calculated as

𝑇 = (2𝑒𝑣 + 𝑓𝑣 + 1) + (2𝑒𝑀 + 𝑓𝑀 + 1) − 1. (3)

High hardware cost and low performance in default double

precision. In double-precision floating-point (FP64), one MVM in

ReRAM consumes 8404 crossbars and 4201 cycles. To understand

how bit number affects the hardware cost and performance, we

explore the effect of exponent and fraction bit number of matrix and

vector on the cycle number and the effect of exponent and fraction

bit number of matrix on the crossbar number, illustrated in Figure 3.

The crossbar number increases exponentiallywith 𝑒𝑀 while linearly

with 𝑓𝑀 . Furthermore, the cycle number increases exponentially

with both 𝑒𝑣 and 𝑒𝑀 , while the latency increases linearly with 𝑓𝑣
and 𝑓𝑀 .

3.3 Non-Convergence in [32]

The above analysis makes it possible to reduce the number of digits

by reducing the number of bits of the exponent and fraction, thereby

reducing hardware costs, i.e., fewer cycles and crossbars. However,

the accuracy of the solvers may be significantly degraded or even

cause non-convergence.

The design of the state-of-the-art ReRAM-based accelerator [32]

for floating-point SpMV is driven by the goal of reducing the num-

ber of bits for exponent. However, this solution adopts an ad-hoc

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

ReFloat: Low-Cost Floating-Point Processing in ReRAM for Accelerating Iterative Linear Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

10

5

00

5

2500

2000

1500

1000

500

0
10

60
40

20
00

20

40

500

550

650

600

60

Vector Exponent Bit # Matrix Exponent Bit #

 Matrix Fraction Bit #
Vector Fraction Bit #

(a) (b)

C
yc

le
 #

C
yc

le
 #

60
40

20
00

5

5000

4000

3000

2000

1000

0
10

3
5
3

1
3
1
3

3
5
4

2
2
6
1

1
2
8
8

1
3
1
1

1
2
8
9

3
5
5

2
2
5
7

1
8
4
8

2
2
5
9

8
4
50

2

4

6

8

10

12

FP64
Locality
ReFloat

C
ro

ss
ba

r
#

Matrix Fraction Bit #

Matrix Exponent Bit #
(c) (d)

M
at

ri
x

E
xp

on
en

t B
it

 #

Figure 3: (a) The cycle number of various exponent bit num-

ber for vector segment andmatrix block, (b) the cycle number

of various fraction bit number for vector segment andmatrix

block, (c) the crossbar number of various fraction and frac-

tion bit number for matrix block, and (d) matrix exponent bit

number of double-precision floating point(FP64), the locality

in 12 matrices, and ReFloat.

Table 1: The iteration numbers for convergence under vari-

ous exp(onent) and fra(ction) bit configurations for matrix

crystm03. NC indicates non-convergence.

exp 11 11 11 11 11 11

frac 52 30 29 28 27 26

#ite 80 82(+2) 82(+2) 83(+3) 83(+3) 84(+4)

exp 11 11 11 11 11 11

frac 25 24 23 22 21 20

#ite 90(+10) 93(+13) 93(+13) 95(+15) 107(+27) NC

exp 10 9 8 7 6

frac 52 52 52 52 52

#ite 80 80 80 20620(+256×) NC

approach that simply truncates a number of high order bits in ex-

ponent. Specifically, with the lower 6 bits of exponent, [32] uses

module 64 of the exponent to represent each original value and

map the matrix to ReRAM. For the matrix values out of the range

of 6 bits, [32] uses FPUs to compute. For the computation of 𝐴x,
the matrix 𝐴 can be accurately processed in [32]. However, the

values of vector x change at every iteration but [32] does not pro-

vide any solution for processing correct vector values. Thus, the

vector x values can fall out of the ranges of 64 paddings (6 bits),

and non-convergence happens in [32].

Table 1 shows the number of iterations for convergence un-

der various exponent and fraction bit configurations. In default

double-precision, it takes 80 iterations to convergence. If we fix

the exponent bits and truncate fraction bits, a 21-bit fraction takes

27 additional iterations, and a fraction less than 21 bits leads to

non-convergence. If we fix the fraction bits and truncate exponent

bits like [32], 7-bit exponent increases the iteration number from 80

to 20620, and an exponent less than 7 bits leads to non-convergence.

Thus, the solution proposed in [32] may break the correctness of

the iterative solver. In contrast, the number of bits in fraction has

less impact on the number of iterations to converge. For example,

Table 1 shows that drastically reducing fraction bits from 52 to 30

only increases the number of iterations by 2×. However, [32] kept

the number of bits in fraction unchanged and lost the opportunity

to reduce hardware cost and improve performance. Thus, we are

convinced that we need to develop a more principled approach to

find a better solution to the problem.

3.4 Value Locality & Bit Compression

We leverage an intuitive observation of matrix element values—

exponent value locality—to reduce the number of exponents bits

while keeping enough accuracy. We define the locality as the max-

imum number of required bits to cover the exponent in all ma-

trix blocks of a large matrix. We illustrate the locality of matrices

from SuiteSparse [24] in Figure 3(d). As discussed before, ReRAM

performs MVM at the granularity of matrix block, whose size is

determined by the size of ReRAM crossbar, e.g., 128 × 128. While

exponent values of the whole matrix can span a wide range, e.g.,

up to 11 for a matrix, but the range is smaller within a block, e.g., at

most 7 for the same matrix. Therefore, the default locality, i.e., 11,

is redundant. Naturally, it motivates the idea of using an exponent

base 𝑒𝑏 for all exponents in a block and storing only the offsets from

𝑒𝑏 . For most blocks, by choosing a proper 𝑒𝑏 , the offset values are
much smaller than the absolute exponent values, thereby reducing

the number of bits required.

It is important to note that we do not simply use the offset as a

lossless compression method. While exponent value locality exists

for most of the blocks, it is possible that for a small number of

blocks, the exponent values are scattered across a wide range. If we

include enough bits for all offsets, the benefits for the majority of

blocks will be diminished. Moreover, it is not necessary due to the

nature of iterative solvers.

We can naturally tune the accuracy by the number of bits 𝑒
allocated for the offsets, which is less than the number of exponent

bits necessary to represent the offsets precisely. When an offset

is larger (smaller) than the largest (smallest) offset representable

by 𝑒 bits, the largest (smallest) value of 𝑒 bits is used accordingly.

With 𝑒-bit exponent offset, the range of exponent values is [𝑒𝑏 −

2(𝑒−1) +1, 𝑒𝑏+2
(𝑒−1) −1]. Intuitively, given 𝑒 and 𝑒𝑏 , this system can

precisely represent the exponent values that fall into a “window”

around 𝑒𝑏 , while the “size of the window” is determined by 2(𝑒−1) .

Then, selecting 𝑒𝑏 becomes an optimization problem that minimizes

the difference between the exponents of the original matrix block

and the exponents with 𝑒𝑏 and 𝑒-bit offsets. Thus, we achieve a
wide data range but a low hardware cost simultaneously.

4 REFLOAT DATA FORMAT

4.1 ReFloat Format

We define ReFloat format as ReFloat(𝑏, 𝑒, 𝑓) (𝑒𝑣, 𝑓𝑣), where 𝑏 de-

termines the matrix block size 2𝑏 (the length and width of a square

matrix block), 𝑒 and 𝑓 respectively denote the exponent and fraction
bit numbers for the matrix, and (𝑒𝑣, 𝑓𝑣) denotes the bit numbers for

the vector. Table 2 lists the symbols and corresponding descriptions

in ReFloat.

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

SC ’23, November 12–17, 2023, Denver, CO, USA Linghao Song, Fan Chen, Hai Li, and Yiran Chen

Table 2: List of symbols and descriptions.

ReFloat(𝑏, 𝑒, 𝑓) (𝑒𝑣, 𝑓𝑣) : ReFloat format notation.

Symbol Description

2𝑏 The size of a square block.

𝑒 The number of exponent bits for a matrix block.

𝑓 The number of fraction bits for a matrix block.

𝐴 A sparse matrix.

b The bias vector for a linear system.

x The solution vector for a linear system.

r The residual vector for a linear system.

𝑎 A scalar of 𝐴.
(𝑎)𝑒 The exponent of 𝑎, (𝑎)𝑒 ∈ {0, 1, 2, ...}.
(𝑎)𝑓 The fraction of 𝑎, (𝑎)𝑓 ∈ (1, 2).
𝐴𝑐 A block of the sparse matrix 𝐴.

(𝑖, 𝑗) The index for the block 𝐴𝑐 .

(𝑖𝑖, 𝑗 𝑗) The index for the scalar 𝑎 in the block 𝐴𝑐 .

(𝑖𝑖𝑖, 𝑗 𝑗 𝑗) The index for the scalar 𝑎 in the matrix 𝐴.
𝑒𝑏 The base for exponents of elements in a block.

𝑒𝑏𝑣 The base for exponents a vector segment.

𝑒𝑣 The number of exponent bits for a vector segment.

𝑓𝑣 The number of fraction bits for a vector segment.

0

0 0

0 0

0 0 0 eb

1028

1029

1030

1031 ×

1540
1542

1541
1543

0
1
2
3

0 1 2 3
1028,1540)

(a) A block in full precision. (b) A block in ReFloat.

8

1 2 3

4 5

76

0
0 0
0 0

0 0 0 8

1 2 3
4 5
76

ve
ct

or

ve
ct

or

×ebv

Figure 4: Comparison of a matrix block (a) in original full

precision format and (b) in ReFloat format.

Figure 4 intuitively illustrates the idea of ReFloat. In Figure 4

(a), each scalar is in a 64-bit floating-point format. It requires a

32-bit integer for row index and a 32-bit integer for column index

to locate each element in the matrix block. Therefore, we need

8 × (32 + 32 + 64) = 1024 bits for storing the eight scalars. With

ReFloat, assuming we use ReFloat(2, 2, 3) format as depicted in

Figure 4 (b), we see that: (1) each scalar in the block can be indexed

by two 2-bit integers; (2) the element value is represented by a

1 + 2 + 3 = 6-bit floating point number 2; (3) the block is indexed

by two 30-bit integers and (4) an 11-bit exponent base 𝑒𝑏 is also

recorded. Therefore, we only use 8×(2+2+6) +2×30+11 = 151 bits

to store the entire matrix block, which reduces the memory require-

ment by approximately 10× (151 vs. 1024). This reduction in bit

representation is also beneficial for reducing the number of ReRAM

crossbars for computation in hardware implementation. Specifically,

the full precision format consumes 118 crossbars, as illustrated in

[32], our design only requires 16 crossbars with ReFloat(2, 2, 3)
format. Thus, given the same chip area, our design is able to process

more matrix blocks in parallel.

4.2 Conversion to ReFloat Format

In order to convert the original matrix to a ReFloat(𝑏, 𝑒, 𝑓) format,

three hyperparameters need to be determined in advance. The 𝑏

2The elements inside a ReFloat block are floating-point, while the elements inside a
BFP block are fixed-point.

…
63

0
sign

exp (11 bits) frac (52 bits)

d
ou
b
le

R
eF
lo
at

b51
b50

b49
sign

05010

eb

(b) Value conversion.(a) Index conversion.

…(iii,jjj) …(),

31 310 0

(ii,jj) (),

10 10

…(i,i) …(),

29 290 0

b31 - b2 b31 - b2

Opt

Figure 5: The conversion of index and value in floating-point

format to ReFloat format.

Table 3: Various formats represented by ReFloat.
Int8 ReFloat(0, 0, 7) bfloat16 [95] ReFloat(0, 8, 7)
Int16 ReFloat(0, 0, 15) ms-fp9 [18] ReFloat(0, 5, 3)

FP32(float) ReFloat(0, 8, 23) TensorFloat32 [57] ReFloat(0, 8, 10)
FP64(double) ReFloat(0, 11, 52) BFP64 ReFloat(6, 0, 52)

defines how the indices of input data are converted and determined

by the physical size of ReRAM crossbars, i.e., a crossbar with 2𝑏

wordlines and 2𝑏 bitlines. As demonstrated in Figure 5 (a), the

leading 30 bits—𝑏31 to 𝑏2 of the index (𝑖𝑖𝑖, 𝑗 𝑗 𝑗) for a scalar in the

matrix 𝐴—are copied to the same bits in the index (𝑖, 𝑗) for the
block 𝐴𝑐 . For each scalar in the block 𝐴𝑐 , the index (𝑖𝑖, 𝑗 𝑗) for that
scalar inside the block 𝐴𝑐 is copied from the last two bits of the

index (𝑖𝑖𝑖, 𝑗 𝑗 𝑗). The scalars in the same block share the block index

(𝑖𝑖, 𝑗 𝑗), and each scalar uses fewer bits for the index inside that

block. Thus, we also save memory space for indices.

The hyper-parameters 𝑒 and 𝑓 determine the accuracy of floating-

point values. A floating-point number consists of three parts: (1)

the sign bit, (2) the exponent bits, and (3) the fraction bits. When

converted to ReFloat, the sign bit remains unchanged. For the

fraction, we only keep the leading 𝑓 bits from the original fraction

bits and remove the rest bits in the fraction, as shown in Figure 5

(b). For the exponent bits, we need to first determine the base value

𝑒𝑏 for the exponent. As 𝑒 means the number of bits for the “swing”

range, we need to find an optimal base value 𝑒𝑏 to utilize the 𝑒 bits
fully. We formalize the problem as an optimization for find the 𝑒 to
minimize a loss target 𝐿, defined as

min
𝑒𝑏

𝐿, 𝐿 =
∑

𝑎∈𝐴𝑐

(
log2

(
𝑎

(𝑎)𝑓 ×2
𝑒𝑏

))2
=

∑
𝑎∈𝐴𝑐

((𝑎)𝑒 − 𝑒𝑏)
2 . (4)

Let 𝜕𝐿/𝜕𝑒𝑏 = 0, we can get

𝑒𝑏 =

⎡⎢⎢⎢⎢⎣
1

|𝐴𝑐 |

∑
𝑎∈𝐴𝑐

(𝑎)𝑒

⎤⎥⎥⎥⎥⎦
. (5)

Thus, we use the original exponent to minus the optimal 𝑒𝑏 to get

an 𝑒-bit signed integer in the conversion. The 𝑒-bit signed integer

is the exponent in ReFloat.

We use an example to illustrate the format conversion intu-

itively. The original floating-point values in Eq. (6) are converted

to ReFloat(x,2,2) format in Eq. (7),[
(−1) × 1.1111 × 27 1.0101 × 28

(−1) × 1.0000 × 29 1.0001 × 27

]
=

[
−248.0 336.0
−512.0 136.0

]
, (6)

28 ×

[
(−1) × 1.11 × 2−1 1.01 × 20

(−1) × 1.00 × 21 1.00 × 2−1

]
=

[
−224.0 320.0
−512.0 128.0

]
,

(7)
where 𝑒𝑏 = 8. Here, we see that ReFloat incurs conversion loss for

the conversion of floating-point values from the original. However,

for scientific computing, the errors in the iterative solver are grad-

ually corrected. Thus, the errors introduced by the conversion will

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

ReFloat: Low-Cost Floating-Point Processing in ReRAM for Accelerating Iterative Linear Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

also be corrected in the iteration. From an application/algorithm

perspective, ReFloat format is versatile, and the popular formats

in Figure 1 can all be represented by ReFloat as listed in TABLE

3. The low hardware cost and format versatility benefit the high

performance and fast convergence of ReFloat in solving PDEs. We

will show the performance and convergence of the iterative solver

in ReFloat format in Section 6.

4.3 Computation in ReFloat Format

The matrix 𝐴 is partitioned into blocks. To compute the matrix-

vector multiplication y = 𝐴x, the input vector x and the output

vector y are correspondingly partitioned into vector segments x𝑐
and y𝑐 . The size of the vector segments is (2𝑏 × 1).

For the 𝑝-th output vector segment y𝑐 (𝑝), the computation in

the default full precision will be

y𝑐 (𝑝) =
∑
𝑖

𝐴𝑐 (𝑖, 𝑝)x𝑐 (𝑖), (8)

where 𝐴𝑐 (𝑖, 𝑝) is the matrix block indexed by (𝑖, 𝑝) and x𝑐 (𝑖) is
the input vector segment indexed by 𝑖 . The matrix blocks at the

𝑝-th block column are multiplied with the input vector segments

for partial sums and then they are accumulated. In the compu-

tation for each matrix block, because the original matrix block

𝐴𝑐 (𝑖, 𝑝) is converted to 𝐴𝑐 (𝑖, 𝑝) � 2𝑒𝑏 (𝑖,𝑝)𝐴̃𝑐 (𝑖, 𝑝), the original vec-

tor segment x𝑐 (𝑖) is converted to x𝑐 (𝑖) � 2𝑒𝑏𝑣 (𝑖) x̃𝑐 (𝑖), and we

encode 2𝑒𝑏 (𝑖,𝑝)𝐴̃𝑐 (𝑖, 𝑝) and 2
𝑒𝑏𝑣 (𝑖) x̃𝑐 (𝑖) by ReFloat. Thus, the mul-

tiplication for the matrix block 𝐴𝑐 (𝑖, 𝑝) and the vector segment

x𝑐 (𝑖) is computed as 𝐴𝑐 (𝑖, 𝑝)x𝑐 (𝑖) = 2𝑒𝑏 (𝑖,𝑝)+𝑒𝑏𝑣 (𝑖)𝐴̃𝑐 (𝑖, 𝑝)x̃𝑐 (𝑖).
The matrix-vector multiplication for the 𝑝-th output vector seg-

ment in the default format Eq. (8) is then computed as

y𝑐 (𝑝) =
∑
𝑖

2𝑒𝑏 (𝑖,𝑝)+𝑒𝑏𝑣 (𝑖)𝐴̃𝑐 (𝑖, 𝑝)x̃𝑐 (𝑖) . (9)

Here we see that with ReFloat format, the block matrix multiplica-

tion in the default format is preserved. In the hardware processing,

we perform the fixed-point MVM 𝐴̃𝑐 x̃𝑐 by the ReRAM crossbars

as shown in Figure 6(c) and multiply the vector exponent and the

block exponent in a processing engine as shown in Figure 6(b).

Thus, the original high-cost multiplication in full precision 𝐴𝑐x𝑐 is

replaced by a low-cost multiplication.

5 REFLOAT ACCELERATOR ARCHITECTURE

5.1 Accelerator Overview

Figure 6(a) shows the overall architecture of the proposed accelera-

tor for floating-point scientific computing in ReRAM with ReFloat.

We organize the accelerator into multiple banks. Within each bank,

ReRAM crossbars are deployed for processing matrix blocks of

floating-point MVM. The Input Vector (IV) and Output Vector (OV)

buffer are used for buffering the input and output vectors andmatrix

blocks. The Multiply-and-Accumulate (MAC) units are used to up-

date the vectors. The scheduler is responsible for the coordination

of the processing.

5.2 Processing Engine

The most critical component in the accelerator is the processing

engine for floating-point SpMV in ReFloat format. The processing

engine consists of a few ReRAM crossbars and several peripheral

functional units. We show the architecture of the processing engine

in Figure 6(b), assuming we are performing the floating-point SpMV

on a matrix block with the format ReFloat(𝑏, 𝑒, 𝑓).
The inputs to the processing engine are: (1) a matrix block in

ReFloat(𝑏, 𝑒, 𝑓) format; (2) an input vector segment in floating-

point with 𝑒v exponent bits and 𝑓v fraction bits and the vector

length is 2𝑏 ; and (3) the exponent base bits 𝑒𝑏 for each matrix block.

The output of a processing engine is a vector segment for SpMV

on the matrix block, which is a double-precision floating-point

number.

Before the computation, the matrix block is mapped to the

ReRAM crossbars as detailed in Figure 6(c). The fraction part of the

matrix block in ReFloat(𝑏, 𝑒, 𝑓) represents a number of 1.𝑏 𝑓 −1 ...𝑏0,
then we have (𝑓 + 1) bits for mapping. The 𝑒-bit exponent of the
matrix block contributes to 2𝑒 padding bits for alignment, then we

have another 2𝑒 bits for mapping. Thus, we map the total (2𝑒 + 𝑓 +1)
bits 0 to (2𝑒 + 𝑓 + 1) ReRAM crossbars, where the 𝑖-th bits of the

matrix block is mapped to the 𝑖-th crossbar 3. For the input vector

segments with 𝑒𝑣 exponent bits and 𝑓𝑣 exponent bits, a total number

of (2𝑒𝑣 + 𝑓v + 1) bits 1 are applied to the driver.

During processing, a cluster of crossbars are deployed to per-

form the fixed-point MVM for the fraction part of the input vector

segment with the fraction part of the matrix block using the shift-

and-add method, as the example in Figure 2. The input bits are

applied to the crossbars by the driver and the output from the cross-

bar is buffed by a Sample/Hold (S/H) unit and then converted to

digital by a shared Analog/Digital Converter (ADC). For each input

bit to the driver (we assume an 1-bit DAC), as the crossbar size is

2𝑏 , the ADC conversion precision is 𝑓𝑥 = 𝑏 bits. Then we need to

shift-and-add the results 2 from all (2𝑒 + 𝑓 + 1) crossbars to get the
results 3 for the 1-bit multiplication of the vector with the matrix

fraction. Thus, the bits number of 3 is 𝑓𝑐 = 2𝑒 + 𝑓 + 1 +𝑏. Next, we
sequentially input the bits in 1 to the crossbars and shift-and-add

the collected 3 for each of the (2𝑒𝑣 + 𝑓v + 1) bits to get 4 , which

is the result for the multiplication of the matrix block with the

input 1 . The bits number of 4 is 𝑓𝑔 = 𝑓𝑐 + 2𝑒𝑣 + 𝑓v + 1 + 𝑏. As
shown in Figure 6(b), each matrix block has a sign bit, therefore,

it requires two crossbar clusters in a processing engine for the

signed multiplication. Each element in the input vector segment

also has a sign bit. Thus, we need four 4 and subtract them to get

5 , which is the multiplication results between the matrix block

and the vector segment. The number of bits for 5 is (𝑓𝑔 +1), and 5

is a signed number due to the subtraction. Next, we convert the 5

to a double-precision floating-point 6 . 𝑒𝑏 7 is the exponent base

for the matrix block and 𝑒𝑣 8 is exponent for the vector segment.

We add 7 and 8 to the exponent of 9 to get the 9 — the final

results for the multiplication of the matrix block with the vector

segment in 64-bit double-precision floating-point.

The vector converter is responsible for converting a vector seg-

ment in default floating-point precision to ReFloat for processing

in next iteration. A the exponents of elements in a vector segment

is accumulated by an adder tree and shifted following Eq. (5) to get

B the vector exponent base 𝑒𝑏𝑣 . An element-wise subtraction is

3Here, we assume that the cell precision for the ReRAM crossbars is 1-bit. For 2-bit
cells, two consecutive bits are mapped to a crossbar.

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

SC ’23, November 12–17, 2023, Denver, CO, USA Linghao Song, Fan Chen, Hai Li, and Yiran Chen

4

Shift & Add

OutBuffer

…

1
f 0

b0b1

 D
ri

ve
r

D
ri

ve
r

 D
ri

ve
r

fg-1 0

InBuffer0

4

fg-1 0

4

fg-1 0

5

fg 0
�

…
63 52 0
6

7 eb

8 ebv

…
63 52 0
9

⊕

⊕

(b) A processing engine. (c) A crossbar cluster.

1 1
fv 0 2e+f2ev+fv

2

fx-1 0

3

fc-1 0

S/H
ADC

S/H
ADC

S/H
ADC

⊕

⊕

⊕
…

⊕

⊕
⊕

Shift

A

B

C

�
�
�
�

�
�

(d) A vector converter.

O
V

 B
uf

fe
r

…

IV Buffer
M

A
C

s

(a) Overview.

Sc
he

d
ul

er

Figure 6: (a) the accelerator architecture overview. Architectures of (b) a processing engine for floating-point MVM on a matrix

block, (c) a crossbar cluster for fixed-point MVM, and (d) a vector converter.

1 2 0 3
0

1 2
0

1

0

2

0
0 0 0

4 5
0
03 4 0

3

0

4

0
0 0 0

0
0
0

0 0 0
1

2
0

30 0
0 0

0 0 0

0

0 0

0 0 0
0 0
00

0

0
0

0
0
0

0 0 0

0 0 0
0 0
00

0

6
0
0

0
0

0
0
0

0 0 0

0 0 0
0 0
00

0

0
0

0
0
0

0 0 0

0 0 0
0 0
00

0
7
8

0

5
6

0

0 0

40
0

5
6 7

8 9 00

00

(a) A sparse matrix.

1 2 3 1 2
1

2

4 5 3
4

3 4
1

2 3
6 7 85 6

45 6
7 8 9

1 2 3
1 2
1 2

4 5
3 4
3 4
1 2

3

6 7 8
5 6

4 5 6
7 8 9

(b) Row-major layout.

(c) Block-major layout.
Figure 7: The row-major layout and block-major layout of a

sparse matrix.

performed on A to get C the exponents of the elements in the

vector segment.

5.3 Streaming and Scheduling

For the original large-scale sparse matrix, the non-zero elements

are stored in either row-major or column-major order. However, the

computation in ReRAM crossbars requires accessing elements in a

matrix block, i.e., elements indexed by the samewindow of rows and

columns. Thus, there is a mismatch between the data storage format

in the original application, e.g., Matrix Market File Format [10], and

the most suitable format for ReFloat accelerator. Direct access

to the elements in each matrix block will result in random access

and wasted memory bandwidth. We propose a block-major layout

to overcome this problem, which ensures that most matrix block

elements can be read sequentially. Specifically, the non-zeros of

each 2𝑏 × 2𝑏 block are stored consecutively, and the non-zeros

of every 𝑃 blocks among the same set of rows are stored linearly

before moving to a different set of rows, as shown in Figure 7. Here,

𝑃 is the number of blocks that can be processed in parallel, which is

determined by the hyper-parameters 𝑏, 𝑒 , and 𝑓 for a given number

of available ReRAM crossbars.

6 EVALUATION

6.1 Evaluation Setup

We list the configurations for the baseline GPU platform, the state-

of-the-art ReRAM accelerator [32] for scientific computing (Fein-

berg) and our ReFloat in Table 4. We use an NVIDIA Tesla V100

GPU, which has 5120 Cuda cores and a 32GBHBM2memory.We use

CUDA version 11.7 and cuSPARSE routines in the iterative solvers

for the processing on sparse matrices. We measure the running

time for the solvers on the GPU. For the two ReRAM accelerators,

i.e. Feinberg [32] and ReFloat, we use the parameters in Table 4

for simulation. Both the two ReRAM accelerators have 128 Banks

Table 4: Platform Configuration.

GPU (Tesla V100 SXM2)

Architecture Volta CUDA Cores 5120

Memory 32GB HBM2 CUDA Version 11.7

Feinberg [32]

Bank 128 Crossbar Size 128 × 128

Clusters/Bank 64 Precision double
Xbars/Cluster 128 Comp. ReRAM 17.1Gb

ReFloat

Bank 128 Crossbar Size 128 × 128

Subbank 128 Precision refloat
Xbars/Subbank 64 Comp. ReRAM 17.1Gb

ADC

10-bit pipelined SAR ADC @ 1.5GS/s

ReRAM Cells

1-bit SLC, 𝑇w = 50.88ns, Comp. Latency=107ns @ (128×128).

Table 5: Matrices in the evaluation.

ID Name #Rows NNZ NNZ/R 𝜅
353 crystm01 4,875 105,339 21.6 4.21e+2

1313 minsurfo 40,806 203,622 5.0 8.11e+1

354 crystm02 13,965 322,905 23.1 4.49e+2

2261 shallow_water1 81,920 327,680 4.0 3.63e+0

1288 wathen100 30,401 471,601 15.5 8.24e+3

1311 gridgena 48,962 512,084 10.5 5.74e+5

1289 wathen120 36,441 565,761 15.5 4.05e+3

355 crystm03 24,696 583,770 23.6 4.68e+2

2257 thermomech_TC 102,158 711,558 6.9 1.23e+2

1848 Dubcova2 65,025 1,030,225 15.84 1.04e+4

2259 thermomech_dM 204,316 1,423,116 6.9 1.24e+2

845 qa8fm 66,127 1,660,579 25.1 1.10e+2

353 1313 354 2261 1288 1311 1289 355 2257 1848 2259 845

and the crossbar size is 128 × 128. In Feinberg [32], we configure

64 clusters for each bank, which is slightly larger than that (56) in

Feinberg [32]. There are 128 crossbars in each cluster. The precision

in Feinberg [32] is double floating-point. In ReFloat, we configure

128 banks, 128 subbanks per bank, and 64 crossbars per subbank.

The precision in ReFloat is refloat with a default setting that

𝑒 = 3, 𝑓 = 3, 𝑒𝑣 = 3 and 𝑓𝑣 = 8. For the two ReRAM accelerators,

the equivalent computing ReRAM is 17.1Gb. The ADC and ReRAM

cells for the two accelerators are of the same configuration. We use

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

ReFloat: Low-Cost Floating-Point Processing in ReRAM for Accelerating Iterative Linear Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

1.
00

2.
64

19
.8
1

1.
00

2.
63 3.
75

13
.2
0

1.
00

3.
42

18
.1
5

1.
00 1.
44

25
.8
6

1.
00

2.
94 3.
33

20
.0
6

1.
00 1.
38

1.
38

16
.5
2

1.
00

2.
50 3
.6
0

19
.8
7

1.
00

3.
90

32
.8
6

1.
00

0.
02 0
.0
4

1.
37

1.
00

0.
25 0
.4
1

20
.9
9

1.
00

0.
03

0.
99

1.
00 1.
21

41
.9
9

1.
00

0.
73 1.
04

13
.3
4

1.
00

2.
20

14
.0
6

1.
00

2.
93

2.
93

21
.8
2

1.
00

2.
46

16
.7
7

1.
00 1.
12

19
.4
7

1.
00

2.
75

2.
75

14
.9
5

1.
00
1.
09

1.
08

10
.8
0

1.
00

3.
12

3.
13

18
.5
7

1.
00

3.
05

20
.5
3

1.
00

0.
02 0.
03

0.
90 1.
00

0.
35

0.
35

16
.7
7

1.
00

0.
02

0.
67 1.
00

1.
03

29
.8
9

1.
00

0.
77

0.
84

10
.5
2

 Feinberg-fc ReFloat GPU Feinberg

C
G

B
IC

G
ST

A
B

Figure 8: The performance of GPU, Feinberg [32], Feinberg-fc and ReFloat for CG and BiCGSTAB solvers.

a 1.5GS/s 10-bit pipelined SAR ADC [60] for conversion. The DAC

is 1-bit, which is implemented by wordline activation. We use 1-bit

SLC [74] and the write latency is 50.88ns. The computing latency

for one crossbar, including the ADC conversion, is 107ns [32].

Table 5 lists the matrices used in the evaluation. We evaluate

on 12 solvable matrices from the SuiteSparse Matrix Collection

(formerly UF Sparse Matrix Collection) [24]. The matrices’ size

(number of rows) ranges from 4,875 to 204,316 and the Number of

Non-Zero entries (NNZ) of the matrices ranges from 105,339 for

1,660,579. NNZ/Row is a metric for sparsity. A smaller NNZ/Row

indicates a sparser matrix. NNZ/Row ranges from 4.0 to 27.7. The

condition number 𝜅 ranges widely from 3.6 to 5.74e+5. We also

visualize the matrices in Table 5. We apply the iterative solvers CG

and BiCGSTAB on the matrices. The convergence criteria for the

solvers is that the L-2 norm of the residual vector (we use the term

“residual” denoted by 𝑅2 for simplicity to call the L-2 norm of the

residual vector in this section) is less than 10−8.

6.2 Performance

We show the performance of the GPU, a state-of-the-art ReRAM ac-

celerator Feinberg [32] and ReFloat for CG and BiCGSTAB solvers

in Figure 8. We evaluate the processing time 𝑡 for the iterative solver
to satisfy that the residual is less than 10−8. The performance 𝑝 is

defined as 𝑝 = 𝑡GPU/𝑡𝑥 , 𝑥 = Feinberg [32], Feinberg-fc or ReFloat.

For Feinberg [32], we evaluate both function (convergence) and

hardware performance. Note that as we discussed in Sec. 3.3, the

vector issue in [32] may lead to non-convergence on most matrices.

Feinberg-fc is a strong baseline where we assume the function is

correctly the same as that of the default double. Specifically, we
assume Feinberg-fc converges and takes the same iteration num-

ber to convergence as that in double and evaluate the hardware

performance of Feinberg-fc.

CG solver. Overall, the geometric-mean(GMN) performance of

Feinberg [32]-fc and ReFloat are 0.8362× and 12.59×(up to 29.89×)
respectively. GPU and ReFloat converge on all matrices while

Feinberg [32] does not converge on 6 out of 12 matrices and the

IDs of not converged matrices are 353, 354, 2261, 355, 2259, and
845. The GMN of ReFloat compared to Feinberg [32] on the six

converged matrices is 12.94×. For most of the matrices, ReFloat

performs better than the baseline GPU. For matrix 2257, 1848 and

2259, the performance of ReFloat is 0.8973×, 16.77× and 0.6660×
respectively. However, the performance of Feinberg [32] is even

lower, and it is 2.21E-2×, 3.48E-1× and NC respectively. The slow

down is because the required number of clusters for SpMV is larger

than the number available on the accelerators. If the number of

clusters for SpMV on one matrix is fewer than the available clusters

on an accelerator, the deployed clusters will be only invoked once

to perform the SpMV. But, if the number of clusters for SpMV on

one matrix is larger than the available clusters on an accelerator,

(1) cell writing for mapping new matrix blocks to clusters and (2)

cluster invoking to perform part of SpMV will happen multiple

times, thus more time is consumed for one SpMV on the whole

matrix. In Feinberg [32], with the default floating-point mapping,

i.e., 118 crossbars for a cluster, there are only 2221 clusters available.

However, to perform one SpMV on the whole matrix, 209263, 15797,

and 381321 clusters are required respectively for matrix 2257, 1848,
and 2259. The required cluster number for the two matrix is far

larger than the available number in Feinberg [32], resulting in cell

writing and cluster invoking 103, 8, and 187 times respectively for

the three matrices. So the performance of Feinberg [32] is lower

than the baseline GPU on the two matrices. In ReFloat, to perform

one SpMV on the whole matrix, the same numbers as that in Fein-

berg [32] of clusters are required for matrix 2257 and matrix 2259.
We configure 𝑒 = 3, 𝑓 = 3 for ReFloat, so the available clusters

for matrix 2257 and matrix 2259 are 21845. The cell writing and

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

SC ’23, November 12–17, 2023, Denver, CO, USA Linghao Song, Fan Chen, Hai Li, and Yiran Chen

B
IC
G
ST
A
B

C
G 100 101 102

10-10

100

1010
353

100 101 102
10-10

100

1010
1313

100 101 102
10-10

100

1010
354

100 101
10-10

100

1010
2261

100 102
10-10

100

1010
1288

1 1.5
10-10

100

1010
1311

100 102
10-10

100

1010
1289

100 101 102
10-10

100

1010
355

100 102 104
10-10

100

1010
2257

100 102
10-10

100

1010
1848

100 102 104
10-10

100

1010
2259

100 101 102
10-10

100

1010
845

100 101 102
10-10

100

1010
353

100 101
10-10

100

1010
1313

100 101 102
10-10

100

1010
354

2 4 6 8
10-10

100

1010
2261

100 102
10-10

100

1010
1288

1 1.5
10-10

100

1010
1311

100 102
10-10

100

1010
1289

100 101 102
10-10

100

1010
355

100 102
10-10

100

1010
2257

100 102
10-10

100

1010
1848

100 102 104
10-10

100

1010
2259

100 101 102
10-10

100

1010
845

Figure 9: Convergence traces of CG and BiCGSTAB solvers of GPU (black line), Feinberg [32]-fc (red line) and ReFloat (blue

line). The Y axis is the residual and the X axis is the normalized (to GPU) iteration number.

Table 6: Absolute iteration number to reaching convergence.

ID
CG BiCGSTAB

double refloat+/- double refloat+/-
353 68 85 +17 49 51 +2

1313 52 55 +3 34 69 +35

354 81 95 +14 58 79 +21

2261 11 11 0 7 7 0

1288 262 305 +43 195 205 +10

1311 1 1 0 1 1 0

1289 294 401 +107 211 317 +106

355 80 95 +15 59 52 -7

2257 55 56 +1 43 36 -7

1848 162 214 +52 118 145 +27

2259 57 58 +1 45 36 -9

845 53 54 +1 41 35 -6

cluster invoking times for matrix 2257 and matrix 2259 are 10 and

18 respectively, which are less than the cell writing and cluster

invoking times in Feinberg [32].

Another reason leading to higher performance of ReFloat com-

pared with Feinberg [32] is that fewer cycles are consumed within

a cluster. In Feinberg [32], 233 cycles are consumed for the multi-

plication even with the assumption that 6 bits are enough for the

exponent [32]. In ReFloat, 28 cycles are consumed for the multi-

plication. Notice that with a fewer number of exponent bits and

fraction bits, we can get (a) a fewer number of clusters required

for a whole matrix, (b) a fewer number of cycles consumed for one

matrix block floating-point multiplication within a cluster. The two

effects (a) and (b) can lead to higher performance, but we also have

a third effect (c) larger number of iterations to reaching conver-

gence, which leads to lower performance. However, effects (a) and

Table 7: Bit number for exponent and fraction ofmatrix block

and vector segment in ReFloat.

CG BiCGSTAB

𝑒 𝑓 𝑒𝑣 𝑓𝑣 𝑒 𝑓 𝑒𝑣 𝑓𝑣
3 3 3 8 3 3 3 8

(b) is stronger than effect (c), so the performance of ReFloat is

higher. The number of iterations for the evaluated matrices to reach

convergence is listed in Table 6.

BiCGSTAB solver. The geometric-mean(GMN) performance of

Feinberg [32]-fc and ReFloat are 1.036× and 13.34× (up to 41.99×)
respectively. The GPU and ReFloat converge on all matrices while

Feinberg [32] does not converge on 6 out of 12 matrices and the

IDs of not converged matrices are 353, 354, 2261, 355, 2259, and
845. The GMN of ReFloat compared to Feinberg [32] on the four

converged matrices is 15.98×. The trend for the three platforms on

the evaluated matrices are similar to that for CG solver. In each

iteration, for CiCGSTAB solver, there are two SpMV on the whole

matrix, while for CG solver, there is one SpMV on the whole matrix.

From Table 6 we can see, the difference of (+/-) number of iterations

to get converge in BiCGSTAB solver is smaller than the gap in

CG solver for most matrices. For matrix 355, 2257, 2259 and 845,
the difference is negative, which means it takes fewer iterations in

refloat compared with that in double.

6.3 Accuracy

We show the convergence traces (the residual over each iteration)

of GPU, Feinberg-fc, and ReFloat for CG and BiCGSTAB solvers in

Figure 9. The iteration number is normalized by the consumed time

for the GPU baseline. Table 7 lists the configurations of bit number

for matrix block and vector segment in refloat for all matrices

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

ReFloat: Low-Cost Floating-Point Processing in ReRAM for Accelerating Iterative Linear Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

#
It
er
at
io
ns Speed

up

0.1 1 10 25
50

100

150

200

250

300

5

10

15

20

25

Figure 10: The iteration number and speedup of ReFloat on

crystm03 v.s. noise.

Table 8: Memory overhead of ReFloat v.s. Feinberg [32].
ID 353 1313 354 2261 1288 1311 1289 355 2257 1848 2259 845

.173 .176 .173 .176 .173 .174 .173 .173 .312 .179 .300 .173

except 1288 and 1828. For 1288 and 1828, the only difference is the
𝑓𝑣 = 16. The absolute (non-normalized) iteration number to reach

convergence is listed in Table 6.

For CG solver, from Table 6 we can see, refloat leads to more

number of iterations to get converged when we do not consider

the time consumption for each iteration. From Figure 9 we can see,

with the low bit representation, the residual curves are almost the

same trend as the residual curves of GPU and Feinberg-fc in default

double. Most importantly, all the traces in refloat get converged

faster than the traces of GPU and Feinberg-fc. For matrix 1288 and

matrix 1848, the bit number for fraction of vector segment is 16 be-

cause the default 8 leads to non-convergence. For BiCGSTAB solver,

from Table 6 we can see, while refloat leads to more number of

iterations to reaching convergence for 5 matrices, the number of

iterations to reaching convergence for 4 matrices are even fewer

than those in double. We infer that is because lower bit representa-

tion helps to enlarge the changes in the correction term, thus leads

to fewer iterations. We also notice there are spikes in the residual

curves in refloatmore frequently than spikes in double, but they
finally reach convergence.

6.4 Robustness to Noise

To study the robustness to noise of ReFloat, we disable the er-

ror correction. We model the random telegraph noise (RTN) [17]

which is widely adopted in ReRAM accelerator noise modeling

[3, 32, 47]. We use crystm03 with CG solver for a case study and

show the speedup (compared to GPU) and iteration number v.s.

noise deviation 𝜎 from 0.1% to 25% in Figure 10. Within 10% noise,

the speedup degrades very little and at 25% noise, ReFloat still

maintains a 6.85× speedup. As we discussed before, the iterative

solvers naturally tolerate noise and deviation.

6.5 Memory Overhead

In Table 8, we compare the memory overhead for the matrix in

refloat normalized to that in double (used in Feinberg [32]).

On average, refloat consumes 0.192× memory compared with

double. For matrices except 2257 and 2259, refloat consumes

less than 0.2× memory compared with double. For matrix 2257
and matrix 2259, the average density within a matrix is relatively

lower, thus more memory is consumed for the matrix block index

and the exponent base.

7 RELATED WORKS

ReRAM-based accelerators. In recent years, the architecture de-

sign of ReRAM-based accelerators have been developed for various

applications, including deep learning [6, 11, 16, 33, 49, 50, 54, 81,

88, 104], graph processing [13, 89] and scientific computing [32].

The noise and reliability issues in ReRAM-based computing are

significantly alleviated by coding techniques and architectural opti-

mizations [33, 70, 96–98]. ReRAM-based accelerators are demon-

strated on silicon by [15, 69, 76, 93, 101–103]. Most ReRAM-based

accelerators are designed for fixed-point processing, especially for

deep learning. Besides [32], [34] applied preconditioner and Float-

PIM [49] accelerated floating-point multiplication in ReRAM, but

FloatPIM is designed for deep learning in full-precision floating

point.

Scientific computing acceleration.Computing routines on general-

purpose platforms CPUs and GPUs have been developed for sci-

entific computing, such as CuSPARSE [73], MKL [94], and LA-

PACK [5]. Architectural and architecture-related optimizations

[23, 35, 55, 61, 68, 82, 105] on CPUs/GPUs are explored for acceler-

ating scientific computing. [26–28] leveraged machine learning for

the acceleration of scientific computing and [85–87] accelerated

sparse linear algebra and solvers on FPGAs. Scientific computing

is a major application in high performance computing and heavily

relies on general-purpose platforms, but it is a new application do-

main for emerging PIM architectures and it is challenging because

of high cost and low performance of floating-point processing.

Data format. Data formats for efficient computing are explored

for CPUs/GPUs [9, 53, 65, 67, 71, 83]. Format and architecture co-

optimization includes [37, 43, 90] on CMOS platforms but they are

not for emerging PIM architectures and not for scientific computing.

Data compression are explored on DRAM systems [62, 77, 78].

8 CONCLUSION

ReRAM has been proved promising for accelerating fixed-point

applications such as machine learning, while scientific computing

is an application domain that requires floating-point processing.

The main challenge for efficiently accelerating scientific comput-

ing in ReRAM is how to support low-cost floating-point SpMV

in ReRAM. In this work, we address this challenge by proposing

ReFloat, a data format, and a supporting accelerator architecture.

ReFloat is tailored for processing on ReRAM crossbars. The num-

ber of effective bits is significantly reduced to reduce the crossbar

cost and cycle cost for the floating-point multiplication on a matrix

block. The evaluation results across a variety of benchmarks reveal

that the ReFloat accelerator delivers a speedup of 5.02× to 84.28×
compared with a state-of-the-art ReRAM-based accelerator [32] for

scientific computing even with the assumption that the accelera-

tor [32] functions the same as FP64 solvers. We released the source

code at https://github.com/linghaosong/ReFloat.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive feedbacks.

This work is supported by NSF EPMD-1955246, CNS-2112562, and

ARO W911NF-19-2-0107.

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

SC ’23, November 12–17, 2023, Denver, CO, USA Linghao Song, Fan Chen, Hai Li, and Yiran Chen

REFERENCES
[1] [n. d.]. Build and train machine learning models on our new Google Cloud

TPUs. https://www.blog.google/topics/google-cloud/google-cloud-offer-tpus-
machine-learning/.

[2] [n. d.]. Google supercharges machine learning tasks with TPU custom
chip. https://cloudplatform.googleblog.com/2016/05/Google-supercharges-
machine-learning-tasks-with-custom-chip.html.

[3] Sapan Agarwal, Steven J Plimpton, David R Hughart, Alexander H Hsia, Isaac
Richter, Jonathan A Cox, Conrad D James, and Matthew J Marinella. 2016.
Resistive memory device requirements for a neural algorithm accelerator. In
2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 929–938.

[4] Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive random access memory
(ReRAM) based on metal oxides. Proc. IEEE 98, 12 (2010), 2237–2251.

[5] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James
Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling,
Alan McKenney, et al. 1999. LAPACK users’ guide. SIAM.

[6] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin
Foltin, R Stanley Williams, Paolo Faraboschi, Wen-mei W Hwu, John Paul
Strachan, Kaushik Roy, et al. 2019. PUMA: A programmable ultra-efficient
memristor-based accelerator for machine learning inference. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, 715–731.

[7] Athanasios C Antoulas. 2005. Approximation of large-scale dynamical systems.
Vol. 6. Siam.

[8] Mario Arioli, James W Demmel, and Iain S Duff. 1989. Solving sparse linear
systems with sparse backward error. SIAM J. Matrix Anal. Appl. 10, 2 (1989),
165–190.

[9] Brett W Bader and Tamara G Kolda. 2008. Efficient MATLAB computations
with sparse and factored tensors. SIAM Journal on Scientific Computing 30, 1
(2008), 205–231.

[10] Ronald F Boisvert, Roldan Pozo, Karin Remington, Richard F Barrett, and Jack J
Dongarra. 1997. Matrix market: a web resource for test matrix collections. In
Quality of Numerical Software. Springer, 125–137.

[11] Mahdi Nazm Bojnordi and Engin Ipek. 2016. Memristive boltzmann machine:
A hardware accelerator for combinatorial optimization and deep learning. In
2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 1–13.

[12] AJ Bower. 1990. NICAM 728: Digital two-channel sound for terrestrial television.
STIN 91 (1990), 15460.

[13] Nagadastagiri Challapalle, Sahithi Rampalli, Linghao Song, Nandhini Chan-
dramoorthy, Karthik Swaminathan, John Sampson, Yiran Chen, and Vijaykrish-
nan Narayanan. 2020. GaaS-X: graph analytics accelerator supporting sparse
data representation using crossbar architectures. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 433–445.

[14] Todd Chapman, Philip Avery, Pat Collins, and Charbel Farhat. 2017. Accelerated
mesh sampling for the hyper reduction of nonlinear computational models.
Internat. J. Numer. Methods Engrg. 109, 12 (2017), 1623–1654.

[15] Wei-Hao Chen, Kai-Xiang Li, Wei-Yu Lin, Kuo-Hsiang Hsu, Pin-Yi Li, Cheng-
Han Yang, Cheng-Xin Xue, En-Yu Yang, Yen-Kai Chen, Yun-Sheng Chang, et al.
2018. A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro with
sub-16ns multiply-and-accumulate for binary DNN AI edge processors. In 2018
IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 494–496.

[16] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-memory Architecture
for Neural Network Computation in ReRAM-basedMainMemory. In Proceedings
of the 43rd International Symposium on Computer Architecture (Seoul, Republic
of Korea) (ISCA ’16). 27–39.

[17] Shinhyun Choi, Yuchao Yang, and Wei Lu. 2014. Random telegraph noise and
resistance switching analysis of oxide based resistive memory. Nanoscale 6, 1
(2014), 400–404.

[18] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Hasel-
man, et al. 2018. Serving dnns in real time at datacenter scale with project
brainwave. IEEE Micro 38, 2 (2018), 8–20.

[19] IEEE Standards Committee et al. 2008. 754-2008 IEEE standard for floating-point
arithmetic. IEEE Computer Society Std 2008 (2008), 517.

[20] Altera Corporation. 2005. TFFT/IFFT Block Floating Point Scaling.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/an/an404.pdf.

[21] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
In Advances in neural information processing systems. 3123–3131.

[22] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830
(2016).

[23] Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, and Wen-mei Hwu. 2019.
Accelerating reduction and scan using tensor core units. In Proceedings of the
ACM International Conference on Supercomputing. 46–57.

[24] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011), 1.

[25] James W Demmel. 1997. Applied numerical linear algebra. Vol. 56. Siam.
[26] Wenqian Dong, Gokcen Kestor, and Dong Li. 2023. Auto-HPCnet: An Automatic

Framework to Build Neural Network-based Surrogate for High-Performance
Computing Applications. In Proceedings of the 32nd International Symposium on
High-Performance Parallel and Distributed Computing. 31–44.

[27] Wenqian Dong, Jie Liu, Zhen Xie, and Dong Li. 2019. Adaptive neural network-
based approximation to accelerate eulerian fluid simulation. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–22.

[28] Wenqian Dong, Zhen Xie, Gokcen Kestor, and Dong Li. 2020. Smart-PGSim:
Using neural network to accelerate AC-OPF power grid simulation. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–15.

[29] David Elam and Cesar Lovescu. 2003. A block floating point implementation
for an N-point FFT on the TMS320C55X DSP. Texas Instruments Application
Report (2003).

[30] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. 2011.
Dark silicon and the end of multicore scaling. In 2011 38th Annual International
Symposium on Computer Architecture (ISCA). 365–376.

[31] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. 2004. GPU
Cluster for High Performance Computing. In Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing. IEEE Computer Society, USA, 47. https://doi.
org/10.1109/SC.2004.26

[32] Ben Feinberg, Uday Kumar Reddy Vengalam, Nathan Whitehair, Shibo Wang,
and Engin Ipek. 2018. Enabling scientific computing on memristive acceler-
ators. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 367–382.

[33] Ben Feinberg, Shibo Wang, and Engin Ipek. 2018. Making memristive neural
network accelerators reliable. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 52–65.

[34] Ben Feinberg, Ryan Wong, T Patrick Xiao, Christopher H Bennett, Jacob N
Rohan, Erik G Boman, Matthew J Marinella, Sapan Agarwal, and Engin Ipek.
[n. d.]. An Analog Preconditioner for Solving Linear Systems. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 761–774.

[35] Boyuan Feng, Yuke Wang, Guoyang Chen, Weifeng Zhang, Yuan Xie, and Yufei
Ding. 2021. EGEMM-TC: accelerating scientific computing on tensor cores with
extended precision. In Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 278–291.

[36] Joel H Ferziger and Milovan Perić. 2002. Computational methods for fluid
dynamics. Vol. 3. Springer.

[37] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S Chung, and Greg Stitt.
2014. A high memory bandwidth fpga accelerator for sparse matrix-vector
multiplication. In 2014 IEEE 22nd Annual International Symposium on Field-
Programmable Custom Computing Machines. IEEE, 36–43.

[38] David J Frank, Robert H Dennard, Edward Nowak, Paul M Solomon, Yuan Taur,
and Hon-Sum Philip Wong. 2001. Device scaling limits of Si MOSFETs and their
application dependencies. Proc. IEEE 89, 3 (2001), 259–288.

[39] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2018. In-Memory Data Parallel
Processor. In Proceedings of the Twenty-Third International Conference onArchitec-
tural Support for Programming Languages and Operating Systems (Williamsburg,
VA, USA) (ASPLOS ’18). ACM, 1–14.

[40] Gene H Golub and James M Ortega. 2014. Scientific computing: an introduction
with parallel computing. Elsevier.

[41] Andreas Griewank and Andrea Walther. 2008. Evaluating derivatives: principles
and techniques of algorithmic differentiation. Vol. 105. Siam.

[42] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep learningwith limited numerical precision. In International Conference
on Machine Learning. 1737–1746.

[43] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: Efficient inference engine on compressed deep
neural network. ACM SIGARCH Computer Architecture News 44, 3 (2016), 243–
254.

[44] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and huffman
coding. arXiv preprint arXiv:1510.00149 (2015).

[45] Paul Harrison and Alex Valavanis. 2016. Quantum wells, wires and dots: theoreti-
cal and computational physics of semiconductor nanostructures. John Wiley &
Sons.

[46] Magnus Rudolph Hestenes and Eduard Stiefel. 1952. Methods of conjugate
gradients for solving linear systems. Vol. 49. NBS Washington, DC.

[47] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M Grafals, Noraica
Davila, Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, and R Stanley

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

ReFloat: Low-Cost Floating-Point Processing in ReRAM for Accelerating Iterative Linear Solvers SC ’23, November 12–17, 2023, Denver, CO, USA

Williams. 2016. Dot-product engine for neuromorphic computing: Programming
1T1M crossbar to accelerate matrix-vector multiplication. In Proceedings of the
53rd annual design automation conference. ACM, 19.

[48] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1 (2017), 6869–6898.

[49] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. Floatpim:
In-memory acceleration of deep neural network training with high precision.
In Proceedings of the 46th International Symposium on Computer Architecture.
802–815.

[50] Mohsen Imani, Mohammad Samragh Razlighi, Yeseong Kim, Saransh Gupta,
Farinaz Koushanfar, and Tajana Rosing. 2020. Deep learning acceleration with
neuron-to-memory transformation. In 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 1–14.

[51] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-
drew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization
and Training of Neural Networks for Efficient Integer-Arithmetic-Only Infer-
ence. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
IEEE, 2704–2713.

[52] Frank Jensen. 2017. Introduction to computational chemistry. John wiley & sons.
[53] Inah Jeon, Evangelos E Papalexakis, Uksong Kang, and Christos Faloutsos. 2015.

Haten2: Billion-scale tensor decompositions. In 2015 IEEE 31st International
Conference on Data Engineering. IEEE, 1047–1058.

[54] Yu Ji, Youyang Zhang, Xinfeng Xie, Shuangchen Li, Peiqi Wang, Xing Hu,
Youhui Zhang, and Yuan Xie. 2019. FPSA: A Full System Stack Solution for
Reconfigurable ReRAM-based NNAccelerator Architecture. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 733–747.

[55] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018.
Dissecting the NVIDIA volta GPU architecture via microbenchmarking. arXiv
preprint arXiv:1804.06826 (2018).

[56] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-
ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-
mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-
hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-datacenter
performance analysis of a tensor processing unit. In Proceedings of the 44th
Annual International Symposium on Computer Architecture. 1–12.

[57] Paresh Kharya. [n. d.]. TensorFloat-32 in the A100 GPU Accelerates AI Train-
ing, HPC up to 20x. https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-
precision-format/.

[58] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and
Dongjun Shin. 2015. Compression of deep convolutional neural networks for
fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015).

[59] O Klank and D Rottmann. 1989. DSR-receiver for the digital sound broadcast-
ing via the European satellites TV-SAT/TDF. IEEE Transactions on Consumer
Electronics 35, 3 (1989), 504–511.

[60] Lukas Kull, Danny Luu, Christian Menolfi, Matthias Braendli, Pier Andrea
Francese, Thomas Morf, Marcel Kossel, Hazar Yueksel, Alessandro Cevrero, Ilter
Ozkaya, et al. 2017. 28.5 A 10b 1.5 GS/s pipelined-SAR ADC with background
second-stage common-mode regulation and offset calibration in 14nm CMOS
FinFET. In 2017 IEEE International Solid-State Circuits Conference (ISSCC). IEEE,
474–475.

[61] Junjie Lai and André Seznec. 2013. Performance upper bound analysis and
optimization of SGEMM on Fermi and Kepler GPUs. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
IEEE, 1–10.

[62] Sangpil Lee, Keunsoo Kim, Gunjae Koo, Hyeran Jeon, Won Woo Ro, and Murali
Annavaram. 2015. Warped-compression: Enabling power efficient GPUs through
register compression. ACM SIGARCH Computer Architecture News 43, 3S (2015),
502–514.

[63] Bing Li, Linghao Song, Fan Chen, Xuehai Qian, Yiran Chen, and Hai Helen Li.
2018. Reram-based accelerator for deep learning. In 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 815–820.

[64] Fengfu Li, Bo Zhang, and Bin Liu. 2016. Ternary weight networks. arXiv preprint
arXiv:1605.04711 (2016).

[65] Jiajia Li, Jimeng Sun, and Richard Vuduc. 2018. HiCOO: Hierarchical storage of
sparse tensors. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 238–252.

[66] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio.
2015. Neural networks with few multiplications. arXiv preprint arXiv:1510.03009
(2015).

[67] Bangtian Liu, Chengyao Wen, Anand D Sarwate, and Maryam Mehri Dehnavi.
2017. A unified optimization approach for sparse tensor operations on gpus. In
2017 IEEE international conference on cluster computing (CLUSTER). IEEE, 47–57.

[68] Changxi Liu, Biwei Xie, Xin Liu, Wei Xue, Hailong Yang, and Xu Liu. 2018.
Towards efficient SpMV on sunway manycore architectures. In Proceedings of
the 2018 International Conference on Supercomputing. 363–373.

[69] Qi Liu, Bin Gao, Peng Yao, Dong Wu, Junren Chen, Yachuan Pang, Wenqiang
Zhang, Yan Liao, Cheng-Xin Xue, Wei-Hao Chen, et al. 2020. 33.2 A fully
integrated analog ReRAM based 78.4 TOPS/W compute-in-memory chip with
fully parallel MAC computing. In 2020 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 500–502.

[70] Tao Liu, Wujie Wen, Lei Jiang, Yanzhi Wang, Chengmo Yang, and Gang Quan.
2019. A fault-tolerant neural network architecture. In 2019 56th ACM/IEEE
Design Automation Conference (DAC). IEEE, 1–6.

[71] Weifeng Liu and Brian Vinter. 2015. CSR5: An efficient storage format for
cross-platform sparse matrix-vector multiplication. In Proceedings of the 29th
ACM on International Conference on Supercomputing. 339–350.

[72] Cleve B Moler. 1967. Iterative refinement in floating point. Journal of the ACM
(JACM) 14, 2 (1967), 316–321.

[73] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi. 2010. Cus-
parse library. In GPU Technology Conference.

[74] Dimin Niu, Cong Xu, Naveen Muralimanohar, Norman P Jouppi, and Yuan
Xie. 2013. Design of cross-point metal-oxide ReRAM emphasizing reliability
and cost. In 2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 17–23.

[75] Marco S Nobile, Paolo Cazzaniga, Andrea Tangherloni, and Daniela Besozzi.
2017. Graphics processing units in bioinformatics, computational biology and
systems biology. Briefings in bioinformatics 18, 5 (2017), 870–885.

[76] Yachuan Pang, Bin Gao, DongWu, Shengyu Yi, Qi Liu, Wei-Hao Chen, Ting-Wei
Chang, Wei-En Lin, Xiaoyu Sun, Shimeng Yu, et al. 2019. 25.2 A reconfigurable
RRAM physically unclonable function utilizing post-process randomness source
with< 6× 10- 6 native bit error rate. In 2019 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 402–404.

[77] Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu,
Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry. 2013. Linearly
compressed pages: A low-complexity, low-latency main memory compression
framework. In Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture. 172–184.

[78] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Michael A Kozuch, Phillip B
Gibbons, and Todd CMowry. 2012. Base-delta-immediate compression: Practical
data compression for on-chip caches. In 2012 21st international conference on
parallel architectures and compilation techniques (PACT). IEEE, 377–388.

[79] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision. Springer, 525–542.

[80] Yousef Saad. 2003. Iterative methods for sparse linear systems. Vol. 82. siam.
[81] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,

John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog
Arithmetic in Crossbars. In 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA). IEEE, 14–26.

[82] Du Shen, Shuaiwen Leon Song, Ang Li, and Xu Liu. 2018. Cudaadvisor: Llvm-
based runtime profiling for modern gpus. In Proceedings of the 2018 International
Symposium on Code Generation and Optimization. 214–227.

[83] Shaden Smith and George Karypis. 2015. Tensor-matrix products with a com-
pressed sparse tensor. In Proceedings of the 5th Workshop on Irregular Applica-
tions: Architectures and Algorithms. 1–7.

[84] Fengguang Song, Stanimire Tomov, and Jack Dongarra. 2012. Enabling and Scal-
ingMatrix Computations onHeterogeneousMulti-Core andMulti-GPU Systems.
In Proceedings of the 26th ACM International Conference on Supercomputing (San
Servolo Island, Venice, Italy) (ICS ’12). Association for Computing Machinery,
New York, NY, USA, 365–376. https://doi.org/10.1145/2304576.2304625

[85] Linghao Song, Yuze Chi, Licheng Guo, and Jason Cong. 2022. Serpens: A
high bandwidth memory based accelerator for general-purpose sparse matrix-
vector multiplication. In Proceedings of the 59th ACM/IEEE Design Automation
Conference. 211–216.

[86] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young-kyu Choi, Jason Lau, and
Jason Cong. 2022. Sextans: A streaming accelerator for general-purpose sparse-
matrix dense-matrix multiplication. In Proceedings of the 2022 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 65–77.

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

SC ’23, November 12–17, 2023, Denver, CO, USA Linghao Song, Fan Chen, Hai Li, and Yiran Chen

[87] Linghao Song, Licheng Guo, Suhail Basalama, Yuze Chi, Robert F Lucas, and
Jason Cong. 2023. Callipepla: Stream Centric Instruction Set and Mixed Pre-
cision for Accelerating Conjugate Gradient Solver. In Proceedings of the 2023
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 247–
258.

[88] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. Pipelayer: A pipelined
reram-based accelerator for deep learning. In 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 541–552.

[89] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. 2018. GraphR:
Accelerating graph processing using ReRAM. In 2018 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA). IEEE, 531–543.

[90] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi,
and Zhiru Zhang. 2020. Tensaurus: A versatile accelerator for mixed sparse-
dense tensor computations. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 689–702.

[91] Henk A Van der Vorst. 1992. Bi-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal
on scientific and Statistical Computing 13, 2 (1992), 631–644.

[92] M Mitchell Waldrop. 2016. The chips are down for Moore’s law. Nature News
530, 7589 (2016), 144.

[93] Weier Wan, Rajkumar Kubendran, S Burc Eryilmaz, Wenqiang Zhang, Yan Liao,
Dabin Wu, Stephen Deiss, Bin Gao, Priyanka Raina, Siddharth Joshi, et al. 2020.
33.1 a 74 tmacs/w cmos-rram neurosynaptic core with dynamically reconfig-
urable dataflow and in-situ transposable weights for probabilistic graphical
models. In 2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE,
498–500.

[94] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance
Computing on the Intel® Xeon Phi™. Springer, 167–188.

[95] Shibo Wang and Pankaj Kanwar. 2019. BFloat16: the secret to high performance
on cloud TPUs. Google Cloud Blog (2019).

[96] WenWen, Youtao Zhang, and Jun Yang. 2018. Wear leveling for crossbar resistive
memory. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).
IEEE, 1–6.

[97] Wen Wen, Youtao Zhang, and Jun Yang. 2019. Renew: Enhancing lifetime for
reram crossbar based neural network accelerators. In 2019 IEEE 37th International
Conference on Computer Design (ICCD). IEEE, 487–496.

[98] Wen Wen, Youtao Zhang, and Jun Yang. 2020. Accelerating 3D vertical resis-
tive memories with opportunistic write latency reduction. In 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE, 1–8.

[99] James Hardy Wilkinson. 1994. Rounding errors in algebraic processes. Courier
Corporation.

[100] H-S Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu, Pang-
Shiu Chen, Byoungil Lee, Frederick T Chen, and Ming-Jinn Tsai. 2012. Metal–
oxide RRAM. Proc. IEEE 100, 6 (2012), 1951–1970.

[101] Tony F Wu, Haitong Li, Ping-Chen Huang, Abbas Rahimi, Jan M Rabaey, H-
S Philip Wong, Max M Shulaker, and Subhasish Mitra. 2018. Brain-inspired
computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimen-
sional computing case study. In 2018 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 492–494.

[102] Cheng-Xin Xue, Wei-Hao Chen, Je-Syu Liu, Jia-Fang Li, Wei-Yu Lin, Wei-En
Lin, Jing-Hong Wang, Wei-Chen Wei, Ting-Wei Chang, Tung-Cheng Chang,
et al. 2019. 24.1 a 1Mb multibit ReRAM computing-in-memory macro with 14.6
ns parallel MAC computing time for CNN based AI edge processors. In 2019
IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 388–390.

[103] Cheng-Xin Xue, Tsung-Yuan Huang, Je-Syu Liu, Ting-Wei Chang, Hui-Yao Kao,
Jing-Hong Wang, Ta-Wei Liu, Shih-Ying Wei, Sheng-Po Huang, Wei-Chen Wei,
et al. 2020. 15.4 A 22nm 2Mb ReRAM Compute-in-Memory Macro with 121-
28TOPS/W for Multibit MAC Computing for Tiny AI Edge Devices. In 2020 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE, 244–246.

[104] Tzu-Hsien Yang, Hsiang-Yun Cheng, Chia-Lin Yang, I Tseng, Han-Wen Hu,
Hung-Sheng Chang, Hsiang-Pang Li, et al. 2019. Sparse ReRAM engine: joint
exploration of activation and weight sparsity in compressed neural networks.
In Proceedings of the 46th International Symposium on Computer Architecture.
ACM, 236–249.

[105] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou, and
Mingyu Chen. 2017. Understanding the gpu microarchitecture to achieve bare-
metal performance tuning. In Proceedings of the 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. 31–43.

[106] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. 2017. Incre-
mental network quantization: Towards lossless cnns with low-precision weights.
arXiv preprint arXiv:1702.03044 (2017).

[107] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.
2016. Dorefa-net: Training low bitwidth convolutional neural networks with
low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI

10.5281/zenodo.8126949

ARTIFACT IDENTIFICATION

We present ReFloat in this work. ReFloat is a ReRAM based accel-

erator architecture for linear solvers. The computational artifacts

include a GPU implementation of conjugate gradient (CG) and

biconjugate gradient stabilized method (BiCGSTAB) for solving

linear systems, an implementation of a C++ based simulator for the

ReFloat accelerator architecture. The GPU implementation serves

as the baseline for the evaluation, the C++ simulator simulates the

performance of the ReRAM accelerators.

REPRODUCIBILITY OF EXPERIMENTS

The workflow will be: (1) download matrices from SuiteSparse, (2)

compile the GPU code and the simulators’ code, (3) run a script

to report the evaluation results. The estimated execution time is 2

hours. The expected results are the speedups reported in Figure 8,

the iteration numbers reported in Table 6. The evaluation results

show that our accelerator ReFloat performs better than the GPU

and the accelerator presented by Feinberg et al (ISCA’18), and the

accelerator presented by Feinberg et al does not converge on many

matrices, but our accelerator does.

The evaluation requires (1) an NVIDIA Tesla V100 GPU, or

a similar NVIDIA GPU, (2) CUDA version 11.7, and (3) Ubuntu

20.04. The datasets are matrices from SuiteSparse. We provided

a script to download the matrices. The source code is available

on https://github.com/linghaosong/ReFloat. We provided detailed

steps about how to compile, how to download the input matrices,

and how to run the evaluation.

ARTIFACT DEPENDENCIES REQUIREMENTS

1. An NVIDIA Tesla V100 GPU, or a similar NVIDIA GPU. 2. Cuda

version 11.7. 3. Ubuntu 20.04. 4. The datasets are matrices from

SuiteSparse. We provided a script to download the matrices. 5. The

source code is available on https://github.com/linghaosong/ReFloat.

We provided detailed steps about how to compile, how to download

the input matrices, and how to run the evaluation.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS

To obtain a copy of the source code

git clone https://github.com/linghaosong/ReFloat.git

To download the matrices

cd ReFloat/matrices sh download.sh

We have tested the GPU implemneation on a Nvidia V100 GPU

with CCuSparse (CUDA version 11.7). To compile the GPU code,

cd ReFloat/gpu make

We provided a script to run the evaluations,

sh run_gpu.sh

We provided the CPU implemneation and the simulation code

under the src directory. We suggest that your CPU paltform has

OpenMP installed. To compile,

cd src make

To run the CPU implementation,

cd run/cpu sh run_cpu.sh

To run the ReFloat, go to

cd ReFloat/src/run/refloat sh run_refloat.sh

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:54:39 UTC from IEEE Xplore. Restrictions apply.

