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Abstract—Over the past decade, there has been a persistent
trend in edge computing, driving the migration of intelligence
closer to the edge. The increasing need to process data locally has
fueled the deployment of highly efficient computing hardware and
artificial intelligence (AI) models onto edge devices. The perfor-
mance and robustness of edge computing systems are significantly
influenced by the heterogeneity of computing systems and the
diverse nature of data to be processed by each edge device. This
paper aims to explore the principles of software/hardware co-
design for edge computing systems in AI applications. We will
delve into the robustness concerns faced by edge AI due to the
inherent heterogeneity of systems and data. Furthermore, we will
present various solutions that effectively mitigate these adverse
effects and enhance the resilience of edge AI systems.

Index Terms—Artificial intelligence, Edge AI, Edge computing,
Efficiency, Heterogeneity, Robustness

I. INTRODUCTION

Artificial intelligence (AI) has become a cornerstone of a

myriad of applications covering image classification, speech

recognition, language processing, activity detection, etc. Es-

pecially, AI-applied edge computing brings a pinnacle of sen-

sation by realizing a dramatic advance in technologies, such as

self-driving, real-time recommendation, and the construction

of smart cities, by executing machine learning onto distributed

edge devices. Through local computing of AI close to users

and data sources, edge AI takes advantage of the obviation

of the delay latency in data transfer and the promise of

environmental consistency.

Among state-of-the-art technologies fortified for edge AI,

two mainstreams stand out in the software and hardware fields:

federated learning (FL) and processing-in-memory (PIM).

FL is a popular framework for distributed machine-learning

systems. The straightforward training of a distributed system

is gathering local data from mobile devices and training in the

server, but it raises privacy and efficiency concerns. Instead,

FL orchestrates participating clients to train a global model

in collaboration, preserving secure communication. Hardware

has also been developed by taking a new paradigm, PIM.

Breaking the rule of conventional hardware, i.e., distinct

separation of memory and computing units, PIM has emerged

by infusing arithmetic capability into storage units. Since the

missing memristor [23] has been found with nano-scale thin-

file structures, the realization and utilization of emerging non-

volatile memories (eNVMs) notably propel fruitful outcomes

in PIM research.

However, edge computing is producing a prodigious amount

of data beyond expectation. For instance, a modern manufac-

turing plant constructs a production line with 2,000 differ-

ent pieces of equipment, and each piece might gather data

through hundreds of sensors, generating 2,200 TB of data

per month [20]. Accordingly, edge AI in resource-constrained

environments faces several challenges spanning extensive per-

spectives. This paper focuses on three challenges—efficiency,
heterogeneity, and robustness, which researchers actively ad-

dress through software, hardware, and co-design approaches

to guarantee sustainable edge AI.

Efficiency has been a primary goal regardless of the field,

but the drastic data increase on edge devices especially accents

its importance because data communication and processing

induce high costs. Algorithms have developed besides accu-

racy by introducing cutting-edge techniques like sparsification

through pruning and quantization. In addition, the development

has evolved to satisfy FL demands to guarantee communica-

tion and computation efficiency simultaneously. The compute-

intensive machine-learning algorithms have pushed PIM ac-

celerators to match the advances of algorithms. Further ex-

ploration regarding PIM architecture dimension and dataflow

improves hardware efficiency.

However, FL has struggled with the inherent heterogeneity
of distributed data. FL personalization strategies like device

selection have tackled the heterogeneity. In integrating com-

ponents, PIM accelerator systems also encounter heterogeneity

across different hardware levels and hierarchies. Undesirable

Authorized licensed use limited to: Duke University. Downloaded on January 10,2025 at 18:46:10 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Pipeline of FedMask designed for efficient FL Learning

(Figure 4 in [14]).

and unexpected issues and noises occur via integration stages,

e.g., device issues like nonlinearity and process/device varia-

tions, circuit issues involving IR drop, thermal/shot noises, and

sneak-path current, to the system level. The failure of in-depth

consideration of heterogeneity causes unreliability in systems.

Grafting software and hardware strategies, co-design solu-

tions are gaining ground for robustness. To soothe the con-

cern toward device disengagement, we introduce a pioneered

research outcome in FL, vertical FL (VFL) for robustness.

From the hardware perspective, hardware enhancement itself

is crucial for robustness by implementing a separate unit to

detect errors and designing accelerators without heterogeneity.

At the same time, hardware-aware solutions utilize software

to consider hardware issues in advance and deal with the

robustness issue in PIM. We elaborate on software techniques,

domain-specific accelerators, and co-design solutions for three

critical challenges in the following sections.

II. TOWARDS EFFICIENCY

A. Efficient Federated Learning

One of the main challenges in federated learning (FL) is

to achieve communication and computation efficiency con-

currently. Research progress on communication efficiency has

focused on two main strategies: quantization [30] and spar-

sification [29]. Both strategies aim to compress the param-

eters for transmission between devices. On the other hand,

efforts to boost computation efficiency are made to reduce

local training costs [13], [14] and accelerate global training

convergence [12], [19]. In this context, we highlight two

prominent methods, Hermes [13] and FedMask [14], which

simultaneously address efficiency in both communication and

computation.

1) Hermes: Hermes draws inspiration from the lottery

ticket hypothesis [4]. Instead of updating the entire network on

edge devices, Hermes identifies a structured-sparse subnetwork

for each device via pruning. It then solely trains and commu-

nicates this subnetwork. Acknowledging that only segments

Fig. 2: Conceptual diagram of the difference between (a)

conventional architecture and (b) PIM. Two dataflow types

(WS and IS) are feasible in a PIM accelerator.

of the parameters overlap across devices, Hermes introduces

an innovative aggregation scheme. Empirical data demonstrate

that Hermes elevates inference accuracy by margins of 0.53%

to 32.17% relative to conventional baselines. It also curtails

communication costs by factors of 1.92× to 3.48×. Addition-

ally, Hermes realizes a 1.83× acceleration in inference latency

and achieves a notable 70% reduction in memory footprint.

2) FedMask: FedMask adeptly accomplishes both commu-

nication and computation efficiencies. At its core, it harnesses

the over-parametrization inherent to deep neural networks

(DNNs). Rather than training and transmitting the entirety of

neural networks, FedMask centers on the training and commu-

nication of a binary mask. Subsequently, this mask is applied

element-wise to a neural network with fixed parameters (Fig.

1). Contrasting with baseline methods that convey network

parameters in 32-bit float32 format, FedMask astoundingly

reduces overheads by a factor of 32, utilizing a concise 1-

bit binary mask. Empirical results showcase that FedMask

enhances inference accuracy by margins ranging from 2.43%

to 28.47% when compared to conventional baselines. In tan-

dem, it slashes communication costs by factors ranging from

32.25× to 34.48×, while also yielding computational savings

from 1.37× to 2.44× during the training phase.

B. Processing-in-Memory Accelerators

As shown in Fig. 2(a), conventional architecture distin-

guishes memory and computing units into individual compo-

nents. The data transfer across the separation incurs a bottle-

neck phenomenon because of the mismatch with computing

speed, drawing a line in efficiency. Breaking through the lim-

itation, hardware designers have focused on domain-specific

accelerators on edge devices. Domain-specific accelerators

can leverage existing hardware like graphics processing units

(GPUs) or novel paradigms. Processing-in-memory (PIM)

infusing the computing capability to memories (Fig. 2(b))

is an emerging but promising paradigm, as PIM alleviates

resource waste by data movement. Resistive random-access

memory (RRAM) is a representative eVNM, providing device

merits like low power and small area consumption. More

importantly, the integrability of eNVM with the array con-

figuration boosts the efficiency of the matrix operations, as

illustrated in Fig. 3(a). The memories remember weights as

their conductance and adjust the stored conductance according

to supplied voltage. According to Ohm’s law and Kirchhoff’s
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Fig. 3: Conceptual diagram of the difference between Von

Neumann architecture and PIM.

law, RRAM produces currents with the supplied voltage, and

the accumulated current of an array signifies the multiplication

and sum of matrix operations. RRAM-applied PIM has been

explored from extensive perspectives.

1) Supporting Advanced Learning Models: In early explo-

ration, Hu et al. demonstrated the analogy of RRAM to the

synaptic function [6] in the implementation of the brain-state-

in-a-box (BSB) model. With the prosperity of deep neural

networks (DNN), many RRAM-based PIM accelerators aim

for diverse DNN models. For convolutional neural networks

(CNNs), PipeLayer [21] proposes an accelerator for training

through a pipeline technique. However, the inefficiency of

training in inference, or vice versa, was captured in AtomLayer

because of large on-chip buffers and bubbles in pipelining

[18]. AtomLayer proposes a universal accelerator with atomic

layer computation, that is, computing only one network layer

each time. Memory-intensive CNNs bring about the appear-

ance of software techniques like compression, binarization,

and lightweight convolutions. Shortly after neural networks

involve numerous but mostly unnecessary zeros (sparsity),

pruning/compression techniques have been researched and

supported in hardware. According to [5], sparse-skipping

mechanisms are conducive to saving sparsity-relevant re-

sources but introduce irregular data access patterns which

demand large input buffers. The proposed cascading structured

pruning technique induces predictable sparsity patterns so that

the buffer size can be reduced only for unique activation

data access. On the other hand, Kim et al. [9] design an

accelerator optimized for binarization in networks. In [9], a

simplified computing process is developed with presumption,

and binarized weight convolution is accelerated through 3D

architecture. As convolution variances in compact networks

cause inefficiency in array utilization, Mobilattice [38] ad-

dresses the under-utilization issue of depth-wise convolution

by hybrid digital/analog mode. Besides CNNs, other machine-

learning techniques are also realized through RRAM-based

PIM accelerators. GraphR [22] is designed with memory and

graph engine (GE), and GE conducts graph computations

in sparse matrix format. ReTransformer [35] accelerates the

scaled dot-production attention for transformer models by re-

moving data dependency through computation decomposition.

The personalized recommendation algorithm is accelerated in

[28] by optimization at the architecture level, inner-product

engines, and at the algorithm level, an access-aware mapping

algorithm.

2) 3D Architecture: While PIM accelerators have widely

adopted the 2D array configuration for efficiency in matrix

multiplication, the potential of 3D architecture is witnessed

because of its high bit-cost scalability and diverse designs for

efficiency. Fig. 3(b) displays a vertically-stacked architecture,

one of the representative and fundamental 3D designs. Dif-

ferent 3D RRAM structures have been proposed and demon-

strated for pattern recognition in [10], [25], [26] by utilizing

a reinforcement learning algorithm. The studies adopted the

double-cell structure, where two devices are dedicated to a

single value to express positive and negative values. While

the double-cell design typically improves the signal margin

but sacrifice area in 2D, the architectural advantage of 3D, i.e.,

area efficiency, compensated for the sacrifice, even achieving

better efficiency than the 2D array design. Beyond simply

reducing the occupied area, 3D can be exploited for efficiency

with various design strategies. A 3D RRAM array design

accelerates the binarized network by concurrently propagating

computations with different inputs into corresponding layers

in [9]. INCA [11], a state-of-the-art study, proposes a novel 3D

RRAM design with a two-transistor-one-RRAM cell structure

for input-stationary (IS) dataflow, as discussed in the subse-

quent explanation.

3) Dataflow: Other hardware types of accelerators (e.g.,

systolic arrays, GPUs) have been studied and verified the

dataflow importance with different performances according to

dataflow. However, PIM-based accelerators have shown little

attention to dataflow by keeping weights in PIM units and

fetching/storing inputs (activations) to separate memory units,

which only induces a single dataflow, called weight-stationary

(WS). INCA [11] catches the importance of dataflow in PIM

accelerators and proposes an input-stationary (IS) dataflow for

the first time (Fig. 2(b)). In INCA, inputs (activations) are

placed RRAM PIM units to retain generated outputs in PIM,

which will be consumed by the subsequent layer in a short

time. By eliminating redundant accesses for activations and

only demanding to fetch weights from buffers, INCA could

save the number of buffer accesses and improve hardware

efficiency. INCA further highlights the dataflow importance,

providing insights that dataflow impacts the number of neces-

sary RRAM cells, array utilization, and accuracy. According

to INCA, RRAM cells can hardly be recycled in WS because

weights are necessary until the end of the computations.

WS also drops the array utilization in compact CNNs and

degrades the accuracy due to the sensitivity of accuracy to

weight parameters, which are affected by device noises in WS.

INCA proves the RRAM-saving, utilization-, and accuracy-

keeping effects in IS, by enabling to recycle RRAMs during

the computations, fully utilizing RRAMs regardless of light

weights, and less affecting accuracy which is immune to input

(activation) variations by device noises.

III. CHALLENGES ON HETEROGENEITY

A. Heterogeneous data

Data heterogeneity has persistently posed challenges in

FL, prompting a myriad of research endeavors. Historically,
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(a) Global Balanced One-class (b) Global Balanced Two-class (c) Global Imbalanced One-class (d) Global Imbalanced Two-class

Fig. 4: Comparison of three client selection strategies: ’All’, ’Random’, and ’Class-Balanced’, evaluated under four distinct

scenarios (Figure 1 in [37]). Random selection harms the training performance as the selected clients are not guaranteed to

provide class-balanced data in (a) and (b). Class-balanced selection can achieve better results under global imbalance scenarios.

the bulk of these efforts can be grouped into three main

categories: modification of local training loss, refinement of

global aggregation algorithms, and strategic device selection.

The issue with data heterogeneity in FL arises as models

tend to update in considerably varied directions. Consequently,

some researchers [15] incorporate regularization terms into the

local training loss to ensure training stability. Others [7] fine-

tune the aggregation algorithms to curtail variance, while a

distinct group [1], [2], [17] focuses on selective device itera-

tion. However, when system heterogeneity appears, especially

in such a computational resource variance, device selection

emerges as a potent solution that addresses both forms of

heterogeneity. This section will spotlight two contemporary

exemplars, FedCor [27] and FedCBS [37], of device selection

within FL.

1) Fed-CBS: Fed-CBS addresses the performance degra-

dation resulting from global class imbalance across disparate

devices. The authors introduce several foundational concepts:

the ”Local dataset”, denoting individual device datasets; the

”Global dataset”, representing the amalgamation of all de-

vices’ datasets; and the ”Group dataset”, referring to the

combined datasets of select devices. Initial experiments re-

vealed a noteworthy impact of class imbalance on MNIST.

Random device selection was found to adversely affect train-

ing performance, while a purposeful selection of a group

dataset boasting balanced classes exhibited superior results, as

depicted in Fig 4. Building on these observations, Fed-CBS

advocates for client selection based on the Quadratic Class-
Imbalance Degree — a novel metric presented in the paper

that elucidates how a client’s local label distribution influences

global class imbalance in pairwise terms. Empirical evidence

shows that Fed-CBS can enhance accuracy on CIFAR-10 [46]

by margins of 2% to 7% and expedite the convergence rate

by factors ranging from 1.3× to 2.8× when juxtaposed against

the leading contemporary method [33].

2) FedCor: FedCor addresses the deceleration in conver-

gence induced by class imbalance. Empirical findings under-

score that an astute client selection strategy can markedly

enhance the convergence rate of the Federated Learning (FL)

procedure. The authors discerned that prior research [2] tends

to undervalue the correlation of loss across clients, thereby

only attaining incremental improvements over uniform selec-

tion. In response, the authors introduce FedCor—a novel FL

framework grounded in a correlation-centric client selection

approach, designed to amplify the FL convergence rate. At

its core, FedCor is developed on the empirical observation

that fluctuations in client losses across communication rounds

can be aptly represented by a Gaussian Process (GP), de-

picted in Fig. 5. Intriguingly, correlations amongst clients

are unveiled through the GP’s covariance. The devised algo-

rithm judiciously opts for clients that augment global training

(characterized by high correlation coefficients relative to other

clients) while eschewing repetitive or redundant selections

(signified by low correlation coefficients with already chosen

clients). Empirical evaluations elucidate that, when bench-

marked against prevailing methods, FedCor bolsters conver-

gence rates by 34%∼99% and 26%∼51% for FMNIST and

CIFAR-10 datasets, respectively.

B. Heterogeneity Causing Noises and Costs in Hardware

As Fig. 6 displays, the integration of hardware components

into a system should face and overcome heterogeneity across

different levels; otherwise, it could fail to design a reliable and

robust system. Other than the strategies introduced here, co-

design methodologies to combat the combination of the issues

are discussed in Section IV.

1) Device Level: Memory devices have diverse non-ideal

properties, such as nonlinearity and process/device variation.

Nonlinear devices generate output currents that are not linearly

proportional to the applied voltage and could distort the

multiplication results, causing inaccuracy. Process and device

variations occur owing to the random diffusion and drift of

ions and vacancies in devices. Process variation refers to vary-

ing data whenever accessing devices for reading and writing.

The device-to-device variation is also unignorable because

different cells of an array engender a variation range around

Fig. 5: Through the depicted histograms, the first principal

component approximates a Gaussian distribution in FL under

heterogeneous data conditions (Figure 2 in [27]).
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Fig. 6: Heterogeneity in the hardware integration into a system

across hierarchy levels and components. The figure shows a

typical RRAM-based PIM accelerator system hierarchy.

a targeted value, instead of a uniform value. Furthermore, it

is well-known that eNVMs have low endurance, the number

of program/erase operations to guarantee reliable data. The

advance in device materials mitigates the issues by providing

higher endurance [8].

2) Circuit Level: Circuit-level issues, i.e., IR drop, ther-

mal/shot noises, and sneak-path current, are imperative when

integrating memory devices into an array. The IR drop be-

comes severe as the array size increases, insufficiently de-

livering the applied voltage to the target device. Also, the

electron’s random movement by heat in conductance materials

is unpredictable and uncontrollable, which causes thermal

noise (a.k.a, Johnson–Nyquist noise). The shot noise occurs

because of the discrete nature of electrons. Both noises stand

out in the high operating frequency system, which is preferred

for computing efficiency. The array structure with one memory

device introduces the sneak-path current. The absence of

”switch” induces the participation of unselected cells because

the untargeted current is created independently and flows

along with a targeted current. Nonlinearity can function as

a switch in the 1R-based array structure, and accordingly, it is

intentionally utilized to overcome the sneak path issue [10].

3) System Level: Peripheral circuits are necessary for

smooth communication in a system, e.g., row selection circuits

like a decoder and switch matrix for arrays and amplifiers not

to lose signals during the propagation. In particular, co-existing

heterogeneous analog and digital approaches in a system

necessitate converters like analog-to-digital/digital-to-analog

(ADC/DAC) for communication with other components. How-

ever, ADC/DAC are power-hungry components and demand

huge areas, presenting a bottleneck in hardware. Although

the advantage of analog computing in RRAM devices lies

in multi-bit precision computing of high performance, the

interpretation for multi-bit precision could cost even more than

the computing expense. The circuit complexity of converters

is also one of the design issues. To address the ADC/DAC

overhead, only a single domain is adopted between analog

and digital. Digital approaches with RRAM are presented by

[9], [35]. Spiking-based circuits are another solution in the

analog domain to eliminate the need for converters [16].

Fig. 7: Vertical Federated Learning (Figure 1 of [24]).

IV. ENHANCEMENT OF ROBUSTNESS

A. Improve Device Quitting Robustness

Robustness has been a prominent research focus within FL.

Nonetheless, scant attention has been dedicated to robustness

concerning unexpected device disengagement. The authors

of [24] pioneer this avenue, concentrating on a unique FL con-

text termed Vertical Federated Learning (VFL) [24]. Contrary

to standard FL, which distributes data samples across clients,

clients possess varying feature sets of overlapping individuals

in VFL. Typically, one party, which has the labels of the

overlapping samples and a subset of features, is designated

as the active party. Meanwhile, other parties of only feature

subsets are termed passive parties. While passive parties

primarily hone feature extractors, training-wise active parties

refine both feature extractors and classifiers which incorporate

features from passive entities, as shown in Fig. 7.

At the inference juncture in VFL, it is imperative for clients

to disclose their held features. This mandates that the aggregate

performance be particularly vulnerable to device disconnec-

tions. As illustrated in Fig. 8, a conspicuous performance dip

from 63% to 53% is observed when a party withdraws from

collaboration in a standard setup. Addressing this, the authors

advocate a ’party-specific dropout’ strategy. The active party’s

training loss undergoes a transformation, culminating in multi-

objective training, detailed as:

Ep2,...,pK [L(Θ;D)]

=
∑

z=(z2,...,zK)∈{0,1}K−1

K∏

k=2

(pk)z
k

(1− pk)(1−zk)�z,
(1)

where

�z =

N∑

i=1

L(SθS (H
1
i , {z2=0}H2

i , ..., {zK=0}H
K
i ), yi),

and pk is the probability to drop out party k, SθS is the

predictor on active party, and Hk is the feature extracted by

the feature extractor of k-th party. Empirical assessments in

a two-party CIFAR10 context reveal that despite a modest

performance decrement (from 75.1% to 73.7%), robustness, in

the face of party 2’s dropout, is considerably bolstered (from

53% to 62.7%).

B. Approaches in Hardware

Robustness can intensify by a separate physical unit

(hardware-enhanced) and/or the exploit of software (hardware-
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Fig. 8: Party-wise Dropout Impact on CIFAR10 (as referenced

in Figure 3 of [24]). The black dashed line and ’Vanilla VFL’

signify the accuracy achieved without party 2 and from train-

ing without resorting to party-specific dropout, respectively.

aware) by reflecting the impacts of hardware issues in advance,

as Fig. 9 exhibits the typical process of the co-design method.

1) Hardware-enhanced solutions: Robustness is a partic-

ularly critical issue in some applications, e.g., robotics and

automation in mechanical, because missing errors could result

in terrible outcomes. The errors can be detected and corrected

by separate codes and hardware modules. In [3], an RRAM-

based array is utilized as an error detection module that detects

potential failures of other components. Furthermore, the study

also tackles the nonideal scenarios by a precision crossbar

array to ensure quantization accuracy which is synchronized

with weight update for the precision match. The work further

enhances hardware design for the programming variation with

serial-connected RRAMs instead of single cells.

Since emerging devices have a critical weakness in en-

durance because of device immaturity, conventional memory-

based PIM designs are also researched in hardware for the im-

mediate use of PIM with high reliability. Unlike the multi-bit

storage capability of emerging devices, conventional memories

typically have one-bit storage per cell. To extricate from the

communication costs, a state-of-the-art work [31] proposes an

ADC-less SRAM CIM macro with the digital approach. The

proposed SRAM-PIM design rarely modifies the cell structure

and can take advantage of the commercial fabrication process

with low costs. The design shows high throughput as 1.041

Mb/mm2 and 27.38 TOPS/W.

2) Hardware-aware design solution: While expecting that

the non-ideal properties improve with advanced materials and

technologies, software is leveraged for hardware robustness.

For noise tolerating in PIM, Yang et al. proposed to de-

sign an RRAM-based stochastic-noise-aware (ReSNA) train-

ing method [34]. Considering thermal and shot noises, ReSNA

obtains the noise distribution at specific operating frequencies

and temperatures. The amplitude of the distribution is analyzed

to be interpreted as impact levels on the weight parameters.

Then the proposed training process reflects the interpreted

impact levels and PIM hardware configurations to combat the

noise repercussion. The hardware-aware method in ReSNA

can also deal with noises in inference by further considering

random telegraph noise and programming noise

However, the only consideration of circuit-level issues is

insufficient to ensure hardware for robust intelligence. In the

Fig. 9: Software/hardware co-design method for robustness.

case of training, frequent RRAM reprogramming is necessary

for weight update, which makes the variation issues at the

device level severe. The variations could lead to a failure of

successful training and low accuracy, Driven by the issue,

ESSENCE [36] proposes an endurance-considered training

with a structured sparse gradient matrix in weight update. The

number of programming operations is reduced by 10×. It is

noteworthy that ESSENCE even provides higher stability in

training results with the presence of variations. According to

ESSENCE, accuracy improves 59% than the training method

without under 2.0% the Gaussian distributed random noise,

which is for modeling variations.

In a recent study, HERO [32], the generalization gap

between training and inference is bounded by a l2 weight

perturbation. Gradient equations with the Hessian value are

conducive to the minimization of the generalization gap and

quantization loss simultaneously. Hence, HERO proposes to

unify and optimize the performance and robustness in quan-

tization with the Hessian-enhance regularization optimization

method. The acquired more flattened loss surface around the

weight convergence area proves the effectiveness of HERO.

The proposed method enables PIM designs to have various

precision bits in weight parameters with high quantization

robustness.

V. CONCLUSION

Edge AI—fusing edge computing and AI technologies—

offers tremendous opportunities in diversified applications.

This paper provided insights on three crucial points, efficiency,

heterogeneity, and robustness, which edge AI research faces

and deals with. Specifically, we focused on two technologies,

FL and PIM. FL is a promising solution for heterogeneity

in a distributed system of edge AI. On the other hand, PIM

has demonstrated its effectiveness for hardware in supporting

advanced machine-learning algorithms. However, the inherent

heterogeneity could cause the degradation of efficiency and

robustness in both technologies. Various solutions for FL

and PIM were summarized, including co-design approaches

beyond separate efforts made in hardware and software.
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