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Measuring the importance of a node in a network is a major goal in the analysis of social networks, biological
systems, transportation networks, and so forth. Different centrality measures have been proposed to capture
the notion of node importance. For example, the center of a graph is a node that minimizes the maximum
distance to any other node (the latter distance is the radius of the graph). The median of a graph is a node
that minimizes the sum of the distances to all other nodes. Informally, the betweenness centrality of a nodew
measures the fraction of shortest paths that have w as an intermediate node. Finally, the reach centrality of
a node w is the smallest distance r such that any s-t shortest path passing through w has either s or t in the
ball of radius r aroundw .

The fastest known algorithms to compute the center and the median of a graph and to compute the be-
tweenness or reach centrality even of a single node take roughly cubic time in the number n of nodes in the
input graph. It is open whether these problems admit truly subcubic algorithms, i.e., algorithms with running
time Õ (n3−δ ) for some constant δ > 0.1

We relate the complexity of the mentioned centrality problems to two classical problems for which no
truly subcubic algorithm is known, namely All Pairs Shortest Paths (APSP) and Diameter. We show that
Radius, Median, and Betweenness Centrality are equivalent under subcubic reductions to APSP, i.e., that a
truly subcubic algorithm for any of these problems implies a truly subcubic algorithm for all of them. We
then show that Reach Centrality is equivalent to Diameter under subcubic reductions. The same holds for
the problem of approximating Betweenness Centrality within any finite factor. Thus, the latter two centrality
problems could potentially be solved in truly subcubic time, even if APSP required essentially cubic time.

On the positive side, our reductions for Reach Centrality imply an improved Õ (Mnω )-time algorithm
for this problem in case of non-negative integer weights upper bounded by M , where ω is a fast matrix
multiplication exponent.

CCS Concepts: • Theory of computation→ Graph algorithms analysis;

Additional Key Words and Phrases: Fine-grained complexity, subcubic reductions, APSP, Radius, Median,
Diameter, Betweenness Centrality, reach centrality

1The Õ notation suppresses poly-logarithmic factors in n and M .
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1 INTRODUCTION

Identifying the importance of nodes in networks is a major goal in the analysis of social networks
(e.g., citation networks, recommendation networks, or friendship circles), biological systems (e.g.,
protein interaction networks), computer networks (e.g., the Internet or peer-to-peer networks),
transportation networks (e.g., public transportation or road networks), and so forth. A variety of
graph theoretic notions of node importance have been proposed; among themost relevant ones are
betweenness centrality [25], graph centrality [36], closeness centrality [54], and reach centrality
[35].

The graph centrality of a nodew is the inverse of its maximum distance to any other node. The
closeness centrality of w is the inverse of the total distance of w to all the other nodes. The reach
centrality ofw is themaximumdistance betweenw and the closest endpoint of any s-t shortest path
passing through w . Informally, the betweenness centrality of w measures the fraction of shortest
paths havingw as an intermediate node.
In this article we study four fundamental graph centrality computational problems associated

with the mentioned centrality measures. Let G = (V ,E) be an n-node m-edge (directed or undi-
rected) graph, with integer edge weights w : E → {0, . . . ,M } for some M ≥ 1. Though we focus
here on non-negative weights, part of our results can be extended to the case of directed graphs
with possibly negative weights and no negative cycles. Let dG (s, t ) denote the distance from node
s to node t , and let us use d (s, t ) instead whenG is clear from the context.

• The Radius problem is to compute R∗ := minr ∗ ∈V maxv ∈V d (r ∗,v ) (radius of the graph).
• The Median problem is to computeMed := minm∗ ∈V

∑
v ∈V d (m∗,v ).

• The Reach Centrality problem (for a given node b) is to compute

RC (b) = max
s,t ∈V :

d (s,t )=d (s,b )+d (b,t )

{min{d (s,b),d (b, t )}}.

• The Betweenness Centrality problem (for a given node b) is to compute the number BC (b) of
shortest paths that have b as an intermediate node.2

All of these notions are related in one way or another to shortest paths. In particular, we can
solve the first three problems by running an algorithm for the classical All-Pairs Shortest Paths
(APSP) problem on the underlying graph and doing a negligible amount of post-processing. The
same holds for Betweenness Centrality by assuming that shortest paths are unique by a simple
algorithm. This was recently extended to the case of (possibly) non-unique shortest paths in un-
weighted graphs [12]. Part of our results for Betweenness Centrality assume the uniqueness of
shortest paths. Using the best known algorithms for APSP [61], this leads to a slightly subcubic
(by an no (1) factor) running time for the considered problems, and no faster algorithm is known.

Each of these problems, however, only asks for the computation of a single number. It is natural
to ask, is solving APSP necessary? Could it be that these problems admit much more efficient
solutions? In particular, do they admit a truly subcubic3 algorithm?

2Another slightly different definition of the problem is used in the literature; this is discussed later.
3We recall that a truly subcubic algorithm is an algorithm with running time Õ (n3−δ ) for some constant δ > 0.
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Besides the fundamental interest in understanding the relations between such basic computa-
tional problems (can Radius be solved truly faster than APSP?), these questions are well motivated
from a practical viewpoint. As evidence to the necessity of faster algorithms for the mentioned
centrality problems, we remark that some papers presenting algorithms for Betweenness Central-
ity [8] and Median [37] have received more than 1,000 citations each.

1.1 Approach

The techniques of this article fall within the realm of fine-grained complexity (see [58] for a survey
on the topic). A refinement of NP-hardness, the fine-grained approach strives to prove, via “fine-
grained” reductions, that improving on a given upper bound for a computational problem B would
yield breakthrough algorithms for many other famous and well-studied problems. At a high level,
the idea is to consider two problemsA and B for which the fastest known algorithms have running
times O (a(n)) and O (b (n)) (here n is a size parameter such as the number of nodes in a graph),
respectively. TypicallyA is a problem that is widely believed to need a(n)1−o (1) time. The approach
then uses special reductions to transform an instance of A to instances of B, so that if there were
an algorithm for B with running time O (b (n)1−ε ) for some ε > 0, then composing this algorithm
with the reduction would yield an algorithm forA running in timeO (a(n)1−δ ) for δ > 0. SinceA is
widely believed to not have such an algorithm, this can be used as evidence that aO (b (n)1−ε ) time
algorithm for problem B is unlikely to exist (or at least very hard to find). When a(n) = b (n) = n3,
a reduction of the above kind is called a subcubic reduction [64] from A to B. We say that two
problems A and B are equivalent under subcubic reductions if there exists a subcubic reduction
from A to B and from B to A. In other terms, a truly subcubic time algorithm for one problem
implies a truly subcubic time algorithm for the other and vice versa.
In this article we will also consider randomized reductions of the above type. In more detail,

there exists a Monte-Carlo subcubic reduction with success probability p from A to B if, given a
truly subcubic algorithm for B, we can solve A in truly subcubic time and the answer is correct
with probability at least p. If p ≥ 1−1/nO (1) , the above Monte-Carlo reduction is a high-probability
one. Equivalence under such Monte-Carlo reductions is defined similarly.
Vassilevska Williams and Williams [64] introduced this approach to the realm of graph al-

gorithms to show the subcubic equivalence between APSP and a list of seven other problems,
including deciding if an edge-weighted graph has a triangle with negative total weight (Nega-
tive Triangle), deciding if a given matrix defines a metric, and the Replacement Paths problem
[33, 34, 53, 59, 62]. Other examples of this approach [1, 3, 48] include the famous results on 3-SUM
hardness starting with the work of Gajentaan and Overmars [26]. More recently, the fine-grained
approach has gained popularity. The main prototypical hard problems used are CNF-SAT, APSP,
and 3SUM, but also some others such as k-Clique and more. Many incredibly diverse problems are
now known to have fine-grained reductions from these prototypical hard problems. See the survey
by Vassilevska Williams [58].
In this article we exploit both APSP andDiameter as our prototypical problem and prove a collec-

tion of subcubic equivalences with the above graph centrality problems. Recall that the Diameter
problem is to compute the largest distance in the graph. There is a trivial subcubic reduction from
Diameter to APSP, and although no truly subcubic algorithm is known for Diameter, finding a
reduction in the opposite direction is one of the big open questions in this area: can we compute
the largest distance faster than we can compute all the distances?

1.2 Subcubic Equivalences with APSP

Our first main result is to show that Radius, Median, and Betweenness Centrality are equivalent
to APSP under subcubic reductions. Therefore, we add three relevant problems to the list of
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APSP-hard problems [64], and if any of these problems can be solved in truly subcubic time, then
all of them can.

Theorem 1.1. Radius is equivalent to APSP under subcubic reductions.

Theorem 1.2. Median is equivalent to APSP under subcubic reductions.

Theorem 1.3. Betweenness Centrality (with unique shortest paths) is equivalent to APSP under

high-probability Monte-Carlo subcubic reductions.

We remark that, in the proof of Theorem 1.3, randomization is used only to guarantee the
uniqueness of shortest paths in the reduction from APSP to Betweenness Centrality. In particu-
lar, dropping the uniqueness requirement, the same reduction would be deterministic. However,
the converse reduction would not work as we mentioned earlier since the number of alternative
shortest paths could be exponentially large.
Unfortunately, this is strong evidence that a truly subcubic algorithm for computing these cen-

trality measures is unlikely to exist (or at least is very hard to find) since it would imply a huge
and unexpected algorithmic breakthrough.
We find the APSP-hardness result for Radius quite interesting since, prior to our work, there

was no good reason to believe that Radius might be a truly harder problem than Diameter. Indeed,
in terms of approximation algorithms, any known algorithm to approximate the diameter can
be converted to also approximate the radius in undirected graphs within the same factor [4, 7,
14, 52]. Furthermore, the exact algorithms for Diameter and Radius in graphs with small integer
weights are also extremely similar [17]. The same holds for the lower bounds on fast approximation
algorithms for Radius and Diameter in sparse graphs [2, 52].

1.3 Subcubic Equivalence between Reach Centrality and Diameter

Our second main result is to show that Reach Centrality and Diameter are equivalent under sub-
cubic reductions.

Theorem 1.4. Diameter and Reach Centrality are equivalent under subcubic reductions.

On the positive side, it is within the realm of possibility that Diameter is a truly easier problem
than APSP, which would imply the same for Reach Centrality. On the negative side, Theorem 1.4
shows that finding a subcubic algorithm for Reach Centrality is as hard as finding a subcubic
algorithm for Diameter—a big open problem.
As a consequence of the tightness of our reductions, namely not only the number of nodes but

also the largest absolute weight is roughly preserved, we also obtain a faster algorithm for Reach
Centrality in directed graphs with small integer weights.

Theorem 1.5. There exists an Õ (Mnω ) time algorithm for Reach Centrality in directed graphs.

Above ω ∈ [2, 2.373) [16, 19, 27, 28, 63] denotes fast matrix multiplication exponent. The previ-
ous best algorithm for small integer weights, which is based on the solution of APSP, takes time
Õ (M0.752n2.529) [66].

1.4 Approximation Algorithms

An approximate value of the mentioned graph centrality measures might be sufficiently good in
practice. This is indeed the topic of several empirical works on Betweenness Centrality [6, 9, 29].
Furthermore, there are practically fast shortest paths algorithms based on reach centrality [30, 31,
35]: these algorithms can be adapted to work with approximate values of the reach centrality as
well. In this article we formally study the approximability of the mentioned problems.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 3. Publication date: February 2023.



Subcubic Equivalences between Graph Centrality Problems, APSP, and Diameter 3:5

Fig. 1. The main subcubic reductions considered in this article. Dashed arrows correspond to trivial reduc-

tions. All the remaining reductions are given in this article, excluding the one fromAPSP to Negative Triangle,

which is taken from [64].

In more detail, given a quantity X (e.g., a graph centrality measure), an α-approximation algo-
rithm computes a quantity x such that 1

α
X ≤ x ≤ αX for some α ≥ 1 (α is the approximation

factor). A polynomial-time approximation scheme (PTAS) for a given measure X is an algo-
rithm that, given an input parameter ε > 0, computes a 1 + ε approximate solution x in the above
sense. Furthermore, the running time is polynomial for every fixed constant ε > 0. Our high-level
goal is to design fast α-approximation algorithms with α as close to 1 as possible. It is known how
to solve APSP within a multiplicative error (1 + ε ) in time Õ (nω ) for any constant ε [65]. This
provides truly subcubic (1 + ε ) approximation algorithms for Radius and Median. However, this
approach does not help with Reach/Betweenness Centrality, since in those measures almost short-
est paths are irrelevant. Here we present some negative and (conditionally) positive results on the
approximability of the latter two problems.
We define the Approximate Betweenness Centrality problem as the problem of computing an

α-approximation of BC (b) for some finite α > 0. The Approximate Reach Centrality problem is de-
fined analogously. We present reductions from Approximate Reach/Betweenness Centrality to the
following Positive Betweenness Centrality problem: determine whether there exists some shortest
path using b as an intermediate node. To the best of our knowledge, the latter problem was not
studied before and it might be of independent interest. We show that Positive Betweenness Cen-
trality is equivalent to Diameter (under subcubic reductions), while the corresponding All-Nodes

version (where we solve the problem for all possible b) is equivalent to APSP! This explains why
it has been difficult to develop approximation algorithms for Betweenness Centrality and Reach
Centrality that are at the same time fast and provably accurate.
On the positive side, we show that a truly subcubic algorithm for Diameter implies a truly sub-

cubic Monte-Carlo PTAS for Betweenness Centrality. Analogously to the case of Reach Centrality,
this gives some more hope that a truly subcubic PTAS for Betweenness Centrality exists; however,
such algorithm is probably not easy to find. Part of the mentioned reductions are summarized in
Figure 1.

1.5 SETH Hardness

We consider the problem of solving Approximate Reach/Betweenness Centrality in sparse graphs.
Here we can prove, again passing through Positive Betweenness Centrality, that O (m2−ε ) time
algorithms do not exist unless the Strong Exponential Time Hypothesis (SETH) fails. Our
reduction can be adapted to the stronger Orthogonal Vector Conjecture (OVC).

1.6 Related Work

APSP is among the best-studied problems in Computer Science. If the edge weights are non-
negative, one can run Dijkstra’s algorithm [21] from every source node and solve the problem
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in time O (mn + n2 logn) (by implementing Dijkstra’s algorithm with Fibonacci heaps [24]). John-
son [43] showed how to obtain the same running time in the case of negative weights also (but
no negative cycles). Pettie [49] improved the running time to O (mn + n2 log logn) and together
with Ramachandran to O (mn logα (m,n)) [50]. If the graph is undirected and the edge weights
are integers fitting in a word, one can solve the problem in time O (mn) in the word-RAM model
[57]. In dense graphs the running time of these algorithms is O (n3). Slightly subcubic algorithms
were developed as well, starting with the work of Fredman [23]. Following a long sequence of
improvements (among others, [11, 38]), Williams [61] obtained an algorithm with running time

Õ (n3/2Ω(
√
logn) ). Faster algorithms are known for small integer weights bounded in absolute value

by M : in undirected graphs APSP can be solved in Õ (Mnω ) time [56] and in directed graphs in

Õ (n2 (Mn)
1

4−ω ) time [66]. The result for the directed case can be refined to Õ (M0.752n2.529) using
fast rectangular matrix multiplication [39].
As we already mentioned, for general edge-weights the fastest known algorithms for Diameter

and Radius solve APSP (hence taking roughly cubic time). In the case of directed graphs with small
integer weights bounded by M there are faster, Õ (Mnω ) time algorithms (see [17] and the refer-
ences therein). Faster approximation algorithms are known. Aingworth et al. [4] showed how to
compute a (roughly) 3/2 approximation of the diameter in time Õ (m

√
n + n2). The same approxi-

mation factor and running time can be achieved for Radius in undirected graphs [7]. The running
time for both Radius and Diameter was reduced to Õ (m

√
n) by Roditty and Vassilevska Williams

[52] (see also [14] for a refinement of the approximation factor). The authors also show that a
3/2−ε approximation for Diameter running in timeO (m2−ε ) (for any constant ε > 0) would imply
that the SETH of [40] fails, thus showing that improving on the 3/2-approximation factor while
still using a fast algorithm would be difficult. A similar hardness result for Radius was shown in
[2] under the Hitting Set Conjecture. Under SETH, there is no better than 5/3 approximation for
Diameter in timeO (m3/2−ε ) [5]. See also [10] for related results on Diameter and Radius. Upper and
lower bounds on fast approximation algorithms to compute the Eccentricity of all nodes are given
in [2, 5, 10, 14]. Some more recent fine-grained complexity results on the fast approximability of
Diameter are given in [18].
The notion of betweenness centrality was introduced by Freeman in the context of social net-

works [25] and since then became one of the most important graph centrality measures in the
applications. For example, this notion is used in the analysis of protein networks [20, 42], social
networks [47, 51], sexual networks [45], and terrorist networks [15, 44]. From an algorithmic point
of view, betweenness centrality was used to identify a highway-node hierarchy for routing in road
networks [55]. Brandes’s algorithm [8] computes the betweenness centrality of all nodes in time
O (mn+n2 logn). This result is based on a counting variant of Dijkstra’s algorithm.We remark that
[8], similarly to other papers in the area, neglects the bit complexity of the counters that store the
number of pairwise shortest paths. This is reasonable in practice since the maximum number N
of alternative shortest paths between two nodes tends to be small in many of the applications. By
considering also N , the running time grows by a factor of O (logN ) = O (n logn). Indeed, in some
applications one can even assume that shortest paths are unique (as we do in some parts of this
article). The uniqueness of shortest paths is either a consequence of tie-breaking rules (Canonical-
Path Betweenness Centrality problem [29]) or can be enforced by perturbing edge weights [30].
Chan et al. [12] obtain an Õ (n3) time algorithm for the case of non-unique shortest paths in un-
weighted graphs. The running time to compute the exact betweenness centrality can be prohibitive
in practice for very large networks even assuming the uniqueness of shortest paths. For this rea-
son, some work was devoted to the fast approximation of the betweenness centrality of all nodes
[6, 9, 29]. Those works are based on random pivot-sampling techniques. They do not provide any
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theoretical bound on the approximation factor: this is not surprising a posteriori, in view of our
APSP-hardness results. In contrast, our results suggest a candidate way to obtain a provably fast
and accurate algorithm for Approximate Betweenness Centrality (for a single node). Our approach
deviates substantially from [6, 9, 29] for small values of the betweenness centrality.
The Reach Centrality notion was introduced by Gutman [35] in the framework of practically

fast algorithms to solve the Single-source Shortest Paths problem. In particular, the values RC (b)
can be used to filter out some nodes during an execution of Dijkstra’s algorithm. The notion of
Reach Centrality is also used in other works on the same topic [30, 31].
Eppstein and Wang [22] consider the problem of approximating the closeness centrality of all

nodes. They present a random-sampling-based O ((m + n logn) logn
ε2

) time algorithm that w.h.p.
computes estimates within an additive error εD∗, where D∗ is the diameter of the graph. The same
problem is investigated in [9] from an experimental point of view. The Median problem was also
studied in a distance-oracle query model [13, 32, 41].

1.7 Preliminaries and Notation

W.l.o.g. we assume that the considered graphG = (V ,E) is connected, hencem ≥ n − 1. We make
the usual assumption that the nodes of the considered graph are labeled with integers between 0
and n − 1, and where needed we implicitly assume that n is lower bounded by a sufficiently large
constant. For two nodes u,v ∈ V , by uv we indicate either an undirected edge between u and v or
an edge directed from u to v . The interpretation will be clear from the context.
For a given node w ∈ V , we let Rad (w ) := maxv ∈V {d (w,v )} (eccentricity of w) and Med (w ) :=∑
v ∈V d (w,v ). A node w minimizing Rad (w ) and Med (w ) is a center and a median of the graph,

respectively. By BCs,t (b) we denote the number of shortest s-t paths that have b as an internal
node. In particular, BCs,s (b) = BCs,b (b) = BCb,t (b) = 0. Furthermore, BCs,t (b) ∈ {0, 1} in the case
of unique shortest paths. Notice that BC (b) =

∑
s,t ∈V BCs,t (v ).4 In the literature the betweenness

centrality is sometimes defined differently as BC (b) =
∑

s,t ∈V−{b },s�t
σs,t (b )
σs,t

, where σs,t is the num-

ber of distinct shortest paths from s to t , and σs,t (b) is the number of such paths that use node b

as an intermediate node. Here when σs,t = 0 (hence σs,t (b) = 0),
σs,t (b )
σs,t

is assumed to be 0. Notice

that this is equivalent to our definition in the case of unique shortest paths.
We remark that, in our subcubic reductions, it would be sufficient to preserve (modulo poly-

logarithmic factors) the number n of nodes only. However, whenever possible, we will also try to
preserve (in the same sense) alsom andM . In many cases we obtain extremely tight reductions that
even allow us to obtain new faster algorithms, as is the case with Reach Centrality via our tight
reduction to Diameter. In some claims we assume that a T (n,m) time, T (n,M ) time, or T (n,m,M )
time algorithm for some problem is given. In all those claims we implicitly assume that those
running times are polynomial functions of the input parameters lower bounded by Ω(m). This
way, one has that O (m) +T (O (n),O (m),O (M )) = Õ (T (n,m,M )) and similarly for T (O (n),O (M ))
and T (O (n),O (m)). We will use this fact multiple times along the article. We remark that this is
without loss of generality since all the considered problems admit a polynomial-time algorithm in
the mentioned parameters, and a lower bound of Ω(m) is implied by the input size.

Throughout this article, with high probability (w.h.p.) means with probability at least 1 −
1/nO (1) .

In some reductions involving Betweenness Centrality we will need to enforce the uniqueness
of shortest paths. This can be enforced w.h.p. using the Isolation Lemma from [46].5

4We remark that the s-t pairs are ordered; in particular, in undirected graphs shortest s-t paths are counted twice.
5In [46] the lemma is stated in a slightly less general form, but the proof extends trivially.
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Lemma 1.6 (Isolation Lemma [46]). Consider a set system (U ,S) over a universeU of h elements.

Let us assign an integer weight w (i ) ∈ {1, . . . ,q} chosen uniformly and independently at random to

each i ∈ U and define the weight of each set S ∈ S as w (S ) =
∑

i ∈S w (i ). Then there exists a unique

set of minimum weight with probability at least 1 − h/q.

Corollary 1.7. Let G = (V ,E) be a directed or undirected graph with edge weights w : E →
{0, . . . ,M } and let c ≥ 5 be an integer. Consider the random weight function w ′ : E → {1, . . . ,nc +
nc+1M } given byw ′(e ) = nc+1w (e )+r (e ), where each r (e ) ∈ {1, . . . ,nc } is chosen independently and
uniformly at random (random perturbation). Then with probability at least 1 − 1/nc−4 all shortest
paths induced on G by weightsw ′ are unique. Furthermore, any such path is deterministically also a

shortest path w.r.t. weightsw .

Proof. Consider the directed case, the undirected one being analogous (with slightly better
bounds). We first observe that deterministically any shortest path for (G,w ′) has to be a shortest
path also for (G,w ). Indeed, any such shortest path of length W in (G,w ) has length at most
(n−1)nc +nc+1W in (G,w ′), while any non-shortest path would have length at least 1+nc+1 (W +1)
in (G,w ′).
For each pair of distinct nodes (a,b), we consider the set system (E,Sab ), where Sab is the

set of shortest a-b paths in (G,w ) (interpreted as subsets of edges), of (common) lengthW . By the
previous observation, any shortest a-b path in (G,w ′) must belong toSab . Define r (S ) =

∑
e ∈S r (e )

for each S ∈ Sab . The Isolation Lemma 1.6 implies that there exists exactly one S ∈ Sab with
minimum r (S ) with probability at least 1 − |E |/nc ≥ 1 − 1/nc−2. Since w ′(S ) = nc+1W + r (S )
deterministically for each S ∈ Sab , this implies that there exists exactly one shortest path in Sab
(hence inG) according to weightsw ′ with the same probability. The claim follows by applying the
union bound over the possible pairs (a,b). �

2 SUBCUBIC EQUIVALENCEWITH APSP

In this section we prove the subcubic equivalence between APSP and the following problems:
Radius, Median, and Betweenness Centrality. As mentioned in the introduction, reducing these
problems to APSP is fairly straightforward and here we will focus on the opposite reductions.
We exploit Negative Triangle as an intermediate sub-problem: determine whether a given undi-

rected graph G = (V ,E), with integer edge weights w : E → {−M, . . . ,M }, contains a triangle
whose edges sum to a negative number; such a triangle is called a negative triangle. The latter
problem was shown to be equivalent to APSP under subcubic reductions in [64].

Lemma 2.1 ([64]). Negative Triangle and APSP (in directed or undirected graphs) are equivalent

under subcubic reductions.

In order to simplify our proofs, we assume that the input instance of Negative Triangle satisfies
the following properties:

(1) Path lengths are even. This can be achieved by multiplying the weights by a factor of 2.
(2) Any two nodes are connected by a path containing at most 2 edges. This can be achieved by

adding a dummy node r , and n edges of weight 2M between r and any other node. Observe
that no new negative triangle is created this way.

(3) By appending at most n + 1 leaf nodes to r with edges of cost 2M , we can assume w.l.o.g.
that n is a power of 2.

These reductions can be performed in linear time; they increase the number of nodes by O (n),
the number of edges by O (n), and the maximum absolute weight by a factor of 2. Therefore,
any algorithm with (polynomial and at least linear in m) running time Õ (T (n,m,M )) for the
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Fig. 2. Reduction from Negative Triangle to Betweenness Centrality (partially drawn). Full and dashed gray

edges have weight 3Q − 1 and 3Q , respectively. The pair 0I , 0L does not contribute to BC (b) (since 0 belongs
to a negative triangle), while the pair 3I , 3L does contribute to BC (b) (since 3 does not belong to any negative
triangle).

modified instance can be used to solve the original instance in time Õ (m+T (O (n),m+O (n), 2M )) =
Õ (T (n,m,M )). A similar claim holds for T (n,m) and T (n,M ).

Combining the reductions below with Lemma 2.1 proves Theorem 1.3.

2.1 Betweenness Centrality

We start with the reduction to Betweenness Centrality. We obtain slightly different results assum-
ing that the algorithm for Betweenness Centrality works on general instances or only under the
restriction that shortest paths are unique. Later whenwe talk about the case of non-unique shortest
paths, we mean that the shortest paths might not be unique.

Lemma 2.2. Given a T (n,m) time algorithm for Betweenness Centrality in directed or undirected

graphs in the case of non-unique (resp., unique) shortest paths, there exists a deterministic (resp., high-

probability Monte-Carlo) Õ (T (n,m)) time algorithm for Negative Triangle.

Proof. Let (G = (V ,E),w ) be the input instance of Negative Triangle (reduced as described
above). Let n = 2k+1 be the number of nodes of G, for some non-negative integer k . We initially
consider the case of non-unique shortest paths.
We start with the simpler directed case (see also Figure 2). We construct a weighted directed

graph (G ′,w ′) as follows. Graph G ′ contains four sets of nodes I , J , K , and L (layers). Each layer
contains a copy of each node v ∈ V . Let vI be the copy of v in I , and define analogously v J , vK ,
and vL . LetQ = Θ(M ) be a sufficiently large integer. For each edge uv ∈ E, we add toG ′ the edges
uIv J , u JvK , and uKvL and assign to those edges weight 2Q+w (uv ). We add toG ′ a dummy node b,
and edgesvIb and bvL for anyv ∈ V , of weight 3Q − 1 and 3Q , respectively. We also add toG ′ two
sets of nodes Z = {z0, . . . ,zk } and O = {o0, . . . ,ok }. For any v ∈ V , we add the following edges of
weight 3Q − 1 to G ′. Let v0,v1, . . . ,vk be a binary representation of v (interpreted as an integer
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between 0 and n − 1 = 2k+1 − 1). For each j = 0, . . . ,k , we add edges vIzj and ojvL if v j = 0, and
edges vIoj and zjvL otherwise. We also add edges ojzj and zjoj of weight 3Q − 1 for j = 0, . . . ,k .
Observe that k = O (logn); hence there are O (n logn) edges of the latter type.
On (G ′,w ′) we compute BC (b) and output YES to the input Negative Triangle instance if and

only if BC (b) < n. Let us prove the correctness of this reduction. The only paths passing through
b are of the form sI ,b, tL and have weight 6Q − 1. For s � t , there must exist a node w ∈ Z ∪ O
such that sI ,w, tL is a path of cost 6Q − 2. Therefore, the only pairs of nodes that can contribute to
BC (b) are of the form (sI , sL ). The shortest path of type sI ,v J ,wK , sL has weight at most 6Q − 2 if
s belongs to a negative triangle, and at least 6Q otherwise. Therefore, BCsI ,sL (b) = 1 if s does not
belong to any negative triangle, and BCsI ,sL (b) = 0 otherwise. The correctness follows.
In the undirected case, we use the same weighted graph (G ′,w ′) as before, but removing edge

directions (and leaving one copy of parallel edges). The rest of the reduction is as before, with
the difference that now the answer is YES if and only if BC (v ) < 2n (the extra factor 2 here is
due to the fact that there are potentially 2n shortest paths passing through b). Proving correctness
requires a slightly more complicated case analysis. Consider any pair s, t ∈ V − {b}. Suppose
(s, t ) � (I × L) ∪ (L × I ). Then any s-t path passing through b costs at least 2(3Q − 1) + (2Q −M ).
On the other hand, any s ∈ Z ∪ O can reach any t ∈ Z ∪ O within distance 2(3Q − 1), and any
t ∈ I ∪ J ∪K ∪L within distance 3Q −1+2(2Q +M ). If s, t ∈ I ∪ J ∪K ∪L, there exists an s-t path of
length at most 3(2Q +M ). It remains to consider the case that s = sI ∈ I and t = tL ∈ L. The path
sI ,b, tL has cost 6Q − 1. If s � t , analogously to the directed case there existsw ∈ Z ∪O such that
sI ,w, tL is a path of weight 6Q − 2. We can conclude that, like in the directed case, the only pairs
that can contribute to BC (b) are of the form (sI , sL ). The shortest path of the form sI ,v J ,wk , sL has
weight at most 6Q −2 if s belongs to a negative triangle, and at least 6Q otherwise. Any other path
avoiding b contains at least 4 edges, and therefore costs at least 4(2Q −M ). We can conclude that
BCsI ,sL (b) = 1 if s is not contained in a negative triangle of (G,w ), and BCsI ,sL (b) = 0 otherwise.
The correctness follows.

It remains to consider the case of unique shortest paths. Observe that in the above reduction
shortest paths are not necessarily unique. The latter property can, however, be enforced w.h.p.
by modifying weights as in Corollary 1.7. Notice that this randomized reduction gives the right
answer (at least) whenever shortest paths are unique; hence this happens w.h.p. Since weights
increase by a polynomial factor in n while n andm are asymptotically preserved, the running time
is Õ (T (n,m)), as required. �

We remark that in the reduction in Lemma 2.2 the blow-up of the weights happens only when
we need to enforce the uniqueness of shortest paths. In particular, if we had a Õ (T (n,m,M )) time
algorithm for the variant of Betweenness Centrality not requiring such uniqueness, this would
imply a Õ (T (n,m,M )) time algorithm for Negative Triangle.

Proof of Theorem 1.3. One direction is obtained by chaining Lemmas 2.1 and 2.2. The other
direction is trivial: simply solve APSP and count (in O (n2) total time) how many pairs (s, t ), s, t ∈
V − {b}, satisfy d (s, t ) = d (s,b) + d (b, t ). �

2.2 Radius

Our reduction from Negative Triangle to Radius is similar to the one in Lemma 2.2. Consider the
same construction when we remove the node b from the graph. The key observation is that a node
sI has distance at most 6Q−2 to every node tL (including sL) if and only if s is in a negative triangle
in G. Intuitively, this allows us to show that an algorithm distinguishing between radius 6Q − 2
and radius 6Q − 1 can solve Negative Triangle. To complete the reduction we need to make sure
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Fig. 3. Reduction from Negative Triangle to Radius. Only edges in the shortest path tree from 0I are

illustrated. The full and dashed gray edges have weight Q and 3Q − 1, respectively.

that sI is close to every node in the graph (not only nodes in part L) and that the center can only
lie in part I .

Lemma 2.3. Given a T (n,m,M ) time algorithm for Radius in directed or undirected graphs, there

exists a Õ (T (n,m,M )) time algorithm for Negative Triangle.

Proof. Let (G = (V ,E),w ) be the considered instance of Negative Triangle (modified as de-
scribed before). We start with the directed case (see also Figure 3). Let Q = Θ(M ) be a sufficiently
large integer. We construct a directed weighted graph (G ′,w ′) as follows. Similarly to the proof
of Lemma 2.2, graph G ′ contains four copies I , J , K , and L of the node set V (layers). Let vX be
the copy of v ∈ V in layer X . For each edge uv ∈ E, we add to G ′ edges uIv J , u JvK , and uKvL of
weight Q +w (vu). We also add to G ′ two sets of nodes Z = {z0, . . . , zk } and O = {o0, . . . ,ok }. We
add edges incident to nodes Z ∪O in the same way as in Lemma 2.2, using edges of costQ . In more
detail, let v0,v1, . . . ,vk be the binary representation of node v : we add the edges vIzj and ojvL if
v j = 0, and the edges vIoj and zjvL otherwise. We also add edges zjoj and ojzj of weight Q for all
j = 0, . . . ,k . Finally, we add nodes x and y, and for any v ∈ V we add edges vIx , xvI , and xv J of
weight Q , and edges vIy of weight 3Q − 1.

We compute the radiusR∗ of (G ′,w ′) and output YES to the input instance of Negative Triangle if
and only ifR∗ ≤ 3Q−1. The running time of the algorithm is Õ (m+T (O (n),O (m+n logn),O (M ))) =
Õ (T (n,m,M )). Let us prove its correctness. We first observe that the center r ∗ of the graph belongs
to I ∪ {x } since the other nodes cannot reach any node in I . Observe that d (x ,y) = 4Q − 1. On the
other hand, any node sI is at distance at most 2Q to nodes in Z ∪O ∪ J ∪ {x } ∪ (L − {sL }), at most
2Q + 2M to nodes in K (using the copy r J of the root node r ), and exactly 3Q − 1 to node y. Note
also that if s belongs to a negative triangle, there exists an sI -sL path of the form sI ,v J ,wK , sL with
length at most 3Q − 2. Otherwise, one shortest sI -sL path passes through nodes in Z ∪O and has
length 3Q . We can conclude that the center of the graph belongs to I , and that the corresponding
radius is upper bounded by 3Q − 1 if and only if there exists a negative triangle in (G,w ).

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 3. Publication date: February 2023.



3:12 A. Abboud et al.

Fig. 4. Reduction from Negative Triangle to Median (partially drawn). Gray edges have weight Q/4. The
path 0A, 1B , 2C is shorter than the path 0A, 2C : this corresponds to a negative triangle.

In the undirected casewe use precisely the same construction, but removing edge directions (and
leaving only one copy of parallel edges). The algorithm is analogous as well as its running time
analysis. Its correctness can also be proved analogously. In more detail, similarly to the directed
case, nodes in I can reach any other node within distance at most 3Q + 3M . Since d (y,x ) = 4Q − 1,
and d (s,y) ≥ (3Q − 1) + (Q −M ) for s � I ∪ {y}, we can conclude that r ∗ ∈ I . Also in this case, for
any node sI , its maximum distance to any other node is d (sI ,y) = 3Q − 1 if s belongs to a negative
triangle, and d (sI , sL ) ≥ 3Q otherwise. �

Proof of Theorem 1.1. One direction is trivial, and the other is given by Lemmas 2.1 and
2.3. �

2.3 Median

The reduction to Median is based on a rather different approach.

Lemma 2.4. Given a T (n,M ) time algorithm for Median in undirected or directed graphs, there

exists a Õ (T (n,M )) time algorithm for Negative Triangle.

Proof. Let (G = (V ,E),w ) be the given instance of Negative Triangle. First, consider the di-
rected case (see also Figure 4). We create a weighted directed graph (G ′,w ′). Graph G ′ contains
five copies A,B,B′,C,C ′ of V . With the usual notation, vA is the copy of v in A and similarly for
the other sets. Let Q = Θ(M ) be a large enough integer. For any pair of nodes u,v , we add the
edges uAvB of weightQ +w (uv ),uAvB′ of weightQ −w (uv ),uAvC of weight 2Q −w (uv ),uAvC ′ of
weight 2Q +w (uv ), and uBvC of weight Q +w (uv ). In this construction, when uv � E (including
the special caseu = v), we simply assumew (uv ) = 2M . Furthermore, we add a dummy node r and
edges rvA and vAr of weight Q/4 for any v ∈ V .

In this graph we compute the median valueMed and output YES to the input instance of Nega-
tive Triangle if and only if Med < Q/4 + (n − 1)Q/2 + 6nQ . The running time of the algorithm is
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Õ (m +T (O (n),O (M ))) = Õ (T (n,M )). Let us show its correctness. Let d (·) denote distances in G ′.
The median node has to be in A ∪ {r } since the remaining nodes cannot reach r . Recall that, for a
nodew ,Med (w ) :=

∑
v ∈V d (w,v ). Note that

Med (r ) ≥ n
(Q
4
+

(Q
4
+Q
)
+

(Q
4
+Q −M

)
+

(Q
4
+ 2Q −M

)
+

(Q
4
+ 2Q

))

=
29

4
Qn − 2Mn >

Q

4
+ (n − 1)Q

2
+ 6nQ .

In the first inequality above we lower bounded the distances to nodes in A, B, B′, C, and C ′ with
Q/4, Q/4 +Q , Q/4 +Q −M , Q/4 + 2Q −M , and Q/4 + 2Q , respectively. In the second inequality
above we used the assumption thatQ is sufficiently larger thanM . On the other hand, for any node
vA,

Med (vA) =

= d (vA, r ) +
∑
u ∈V

d (vA,uA) +
∑
u ∈V

(d (vA,uB ) + d (vA,uB′ )) +
∑
u ∈V

(d (vA,uC ) + d (vA,uC ′ ))

=
Q

4
+ (n − 1)Q

2
+
∑
u ∈V

(Q +w (vu) +Q −w (vu)) +
∑
u ∈V

(d (vA,uC ) + 2Q +w (vu)))

=
Q

4
+ (n − 1)Q

2
+ 2nQ +

∑
u ∈V

(d (vA,uC ) + 2Q +w (vu)))

≤ Q

4
+ (n − 1)Q

2
+ 6nQ .

Therefore, the median is inA. In the last inequality we upper bounded d (vA,uC ) withw ′(vAuC ) =
2Q − w (vu). Here a strict inequality holds if there exists a third node zB such that w ′(vAzB ) +
w ′(zBuC ) < w ′(vAuC ). However, this can happen only if vu ∈ E, since otherwise w ′(vAuC ) =
2Q−2M ≤ w ′(vAzB ) + w ′(zBuC ). Note also that, if either vz � E or zu � E, then w ′(vAzB ) +
w ′(zBuC ) ≥ 2Q+M ≥ w ′(vAuC ). Therefore, we can conclude that the strict inequality holds if and
only if there exists a triangle {v, z,u} in G such that Q+w (vz) + Q+w (zu) < 2Q − w (vu), i.e., a
negative triangle. The claim follows.
Consider next the undirected case. We construct the same weighted graph (G ′,w ′) as in the

directed case, but removing edge directions (and leaving one copy of parallel edges). The rest of
the algorithm is as in the directed case, and the running time remains Õ (T (n,M )). In order to
prove correctness, we need a slightly more complicated case analysis. Like in the directed case,
Med (vA) ≤ Q/4 + (n − 1)Q/2 + 6nQ , where a strict inequality holds if and only if v belongs to a
negative triangle. For any uB ∈ B,

Med (uB ) ≥ (Q −M +Q/4) + 2n(Q −M ) + n(2Q − 2M ) + n(3Q − 2M )

= (7n + 5/4)Q − (6n + 1)M .

Similarly,
Med (uB′ ) ≥ (9n + 5/4)Q − (7n + 1)M,

Med (uC ) ≥ (10n + 9/4)Q − (9n + 2)M,

and
Med (uC ′ ) ≥ (12n + 9/4)Q − (8n + 1)M .

Furthermore,

Med (r ) ≥ nQ/4 + 2n(5Q/4 −M ) + n(9/4Q − 2M ) + n(9/4Q −M )

= (29n/4)Q − 5nM .
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We can conclude that the median is in A. The correctness follows. �

Proof of Theorem 1.2. One direction is trivial, and the other is given by Lemmas 2.1 and
2.4. �

Finally, we also prove a similar reduction for the following All-Nodes Median Parity problem:
computeMed (v ) (mod 2) for all nodes v .

Lemma 2.5. Given aT (n,M ) time algorithm for the All-Nodes Median Parity problem in a directed

or undirected graph, there exists a Õ (T (n,M )) time algorithm for Negative Triangle.

Proof. Let (G = (V ,E),w ) be the considered instance of Negative Triangle. Let us start with
the directed case. Let Q = Θ(M ) be a sufficiently large even integer. Similarly to the proofs of
Lemmas 2.2 and 2.3 and with a similar notation, we construct a four-layer weighted directed graph
(G ′,w ′) with layers I , J , K , and L, and edges vIu J , v JuK , and vKuL of weight 2Q +w (vu) for any
uv ∈ E. We also introduce a fifth copy B of V , and for any vB ∈ B we add edges vIvB and vBvL
of weight 3Q and 3Q − 1, respectively. We also add edges vIuB of weight 3Q + 3M + 2 for any
u � v . Finally, we add a node r , and edges vI r and rvI of weight Q for all v ∈ V . Observe that
the edges of type vBvL are the only edges of odd weight (by the preprocessing of the Negative
Triangle instance).

In this graph we compute Med (v ) (mod 2) for all v ∈ V (G ′) and we output YES to the input
Negative Triangle instance if and only ifMed (vI ) (mod 2) = 0 for somevI ∈ I (i.e., someMed (vI )
is even). The running time is Õ (T (O (n),O (M ))) = Õ (T (n,M )). Let us prove correctness. Consider
any vI ∈ I . Any node is reachable from vI ; hence Med (vI ) is finite. Any path of type vI ,u ′,uL ,
u � v , cannot be a shortest path since it has length 6Q + 3M + 2 − 1 while there exists a vI -uL
path of length at most 6Q + 3M avoiding B. Therefore, the unique candidate shortest path of odd
weight is vI ,v ′,vL of length 6Q − 1. However, by the usual argument, this is not a shortest path if
v is contained in some negative triangle. The claim follows.

In the undirected case we can use the same graph (G ′,w ′), but removing edge directions (and
leaving one copy of parallel edges). The rest of the algorithm is the same and its analysis is analo-
gous to the directed case. �

Corollary 2.6. Given a truly subcubic algorithm for All-Nodes Median Parity, there exists a truly

subcubic algorithm for APSP.

3 SUBCUBIC EQUIVALENCE BETWEEN REACH CENTRALITY AND DIAMETER

In this section we show that Diameter is equivalent to Reach Centrality under subcubic reductions.
We start with the simple reductions from Diameter.

Lemma 3.1. Given a T (n,m) time algorithm for Reach Centrality in directed or undirected graphs,

there is a Õ (T (n,m)) time algorithm for Diameter in the same graph class.

Proof. Let (G = (V ,E),w ) be the input instance of Diameter, and let M be the largest integer
weight. Consider first the directed case. Let G ′ be an auxiliary graph consisting of a copy of G
plus a dummy node b and edges vb and bv for all v ∈ V . For each integer D ∈ [1, (n − 1)M], we
define an auxiliary weight functionw ′(D) on the edges ofG ′, which is D/2 for the edges incident
on b and identical to w on the remaining edges. Observe that in (G ′,w ′(D)) any pair of nodes
s, t ∈ V is connected by a path of length D using b. We identify the largest value D ′ of D such that
RC (b) ≥ D/2 for the Reach Centrality instance induced by (G ′,w ′(D)): this is done via a binary
search over D ∈ [1, (n − 1)M], and using the Reach Centrality algorithm given in the claim. The
output value of the diameter is D ′. For the sake of presentation, in the above reduction we tolerate
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fractional weights for odd D: this can be trivially avoided by initially multiplying all weightsw by
a factor of 2, considering even values of D only, and finally outputting D ′/2.
The running time of the algorithm is Õ ((m+T (n+1, 2n+m)) log(nM )) = Õ (T (n,m)). Let (s∗, t∗)

be a witness pair for the diameter D∗. In any execution where D∗ ≥ D, there exists a shortest s∗-t∗

path using node b and hence the answer is RC (b) ≥ D/2. In any other execution (where D∗ < D),
any shortest s-t path avoiding b has length at most D∗ ≤ D − 1, while passing through b would
cost at least D (thus the answer is RC (b) = 0). The correctness of the algorithm follows.
For the undirected case, we use the same auxiliary weighted graph, but without edge directions

(and leaving one copy of parallel edges). The algorithm is the same. The running time is Õ ((m +
T (n + 1,n +m)) log(nM )) = Õ (T (n,m)). Similarly to the directed case, in any execution where
D is upper bounded by the diameter D∗, there exists a shortest s∗-t∗ path using node b; hence
RC (b) ≥ D/2. In the remaining executions no shortest path uses b; hence RC (b) = 0. �

Now, we present the more tricky reduction to Diameter. The following very efficient reduction
completes the equivalence between Diameter and Reach Centrality in directed graphs and implies
directly Theorem 1.5.

Lemma 3.2. Given a T (n,m,M ) time algorithm for Diameter in directed graphs, there is a

Õ (T (n,m,M )) time algorithm for Reach Centrality in directed graphs.

Proof. Let (G = (V ,E),w,b) be the input instance of Reach Centrality. Observe that RC (b) is
upper bounded by one-half of the diameter of G; hence in particular RC (b) ≤ (n − 1)M/2. We
show how to determine whether RC (b) ≥ K for a given integer parameter 0 ≤ K ≤ (n − 1)M/2
in Õ (T (n,m,M )) time. The value of RC (b) can then be determined via binary search with an extra
factor of O (log(nM )) = Õ (1) in the running time.
Observe that, if the answer is YES, there must be two nodes s, t ∈ V −{b} such that some shortest

s-t path passes through b,K +M > d (s,b) ≥ K , andK +M > d (b, t ) ≥ K . We construct an instance
(G ′,w ′) of Diameter as follows. We add to G ′ a copy of G. Furthermore, we add a set of nodes A
that contains a node vA for each node v ∈ V such that K +M > d (v,b) ≥ K . Symmetrically, we
add a set of nodes B that contains a node vB for each node v ∈ V such that K +M > d (b,v ) ≥ K .
We also add edges vAv and vvB of weight K +M − d (v,b) and K +M − d (b,v ), respectively. Note
that the weight of the latter edges is in [1,M] by construction. Finally, we add a directed path
P = v0, . . . ,vq , q = 
(2K + 2M − 2)/M�, whose edge weights are chosen arbitrarily in [1,M] so
that the length of P is exactly 2K + 2M − 2. For every v ∈ V , we add edges vv0 and vqv of weight
zero. We also add edges av0 of weight 1 and vqa of weight 0 for any a ∈ A. Symmetrically, we add
edges vqb of weight 1 and bv0 of weight 0 for any b ∈ B.

We compute the diameter D∗ of (G ′,w ′) and output that RC (b) ≥ K if and only if D∗ ≥ 2K +2M .
The running time of the algorithm is Õ (m +T (O (n),O (m + n),M )) = Õ (T (n,m,M )). Consider its
correctness. The distance between any two nodes in G ∪ P is at most 2K + 2M − 2. The distance
between any node inG ∪ P and any other node is at most 2K + 2M − 1. The distance between any
node in B and any other node is at most 2K + 2M − 1. The distance between any node in A and
any node in G ∪ P ∪A is at most 2K + 2M − 1.
Consider next any pair sA ∈ A and tB ∈ B. An sA-tB path using P would cost at least 2K + 2M .

A shortest sA-tB path avoiding P costs 2K + 2M − d (s,b) − d (b, t ) + d (s, t ) ≤ 2K + 2M , where the
equality holds if and only if b is along some shortest s-t path. Therefore, D∗ ≤ 2K + 2M and the
equality holds if and only if there exists a pair (sA, tB ) ∈ A × B such that d (s, t ) = d (s,b) + d (b, t ),
i.e., if and only if RC (b) ≥ K . The correctness follows. �

Proof of Theorem 1.5. It follows from Lemma 3.2 by exploiting the Õ (Mnω ) time algorithm
for Diameter in directed graphs in [17]. �
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Notice that Lemma 3.2 works only for directed graphs. In the next section we will prove the
following reduction, which works also for undirected graphs at a cost of not preserving asymptot-
ically the edge weights.

Lemma 3.3. Given aT (n,m) time algorithm for Diameter in directed or undirected graphs, there is

a Õ (T (n,m)) time algorithm for Reach Centrality in the same graph class.

Theorem 1.4 directly follows.

Proof of Theorem 1.4. One direction is implied by Lemma 3.1 and the other by Lemma 3.3. �

4 APPROXIMATION OF REACH AND BETWEENNESS CENTRALITY

In this section we present our results about the approximability of Reach and Betweenness Central-
ity. A key idea in our approach is to consider the following Positive Betweenness Centrality problem,
which might be of independent interest: determine whether, for a given node b, there exists some
shortest path using b as an intermediate node. We let PosBC (b) denote the answer to this problem
(YES or NO).

The following two lemmas show that Approximate Betweenness and Reach Centrality are at
least as hard as Positive Betweenness Centrality under subcubic reductions.

Lemma 4.1. Given aT (n,m) time algorithm for Approximate Betweenness Centrality in the case of

non-unique (resp., unique) shortest paths, there exists a deterministic (resp., high-probability Monte-

Carlo) Õ (T (n,m)) time algorithm for Positive Betweenness Centrality with non-unique (hence unique)

shortest paths.

Proof. Let us initially modify the edge weights of the input Positive Betweenness Centrality
instance as follows. We first multiply edge weights by 3n. Then we add 1 to the weights of edges
incident to b (considering both ingoing and outgoing edges for directed graphs), and we add 3 to
all other edges. Let w ′ be the new edge weights. Observe that any shortest path w.r.t. w ′ is also a
shortest path w.r.t. w by an argument similar to Corollary 1.7. In more detail, letW be the length
of an a-c shortest path for some pair of distinct nodes a and c w.r.t.w . The same path w.r.t.w ′ has
length at most 3(n − 1) + 3nW , while any non-shortest a-c path w.r.t.w would have length at least
1 + 3n(W + 1) w.r.t.w ′.

Let PosBC ′(b) be the answer to the Positive Betweenness Centrality instance induced by the
weightsw ′. We claim that PosBC ′(b) = PosBC (b) (i.e., the two instances are equivalent). Indeed, if
PosBC (b) = NO, it must be PosBC ′(b) = NO since, as said before, we are not creating alternative
shortest paths using b with weights w ′. Suppose instead PosBC (b) = YES . This implies that w.r.t.
weightsw there exists a shortest path P , say from u to v , that goes through b, where u,v,b are all
distinct. Consider the nodes right before and after b on P ; call them a and c . Here again, a,b, c are
all distinct. LetW be the length of the abc path. With weights w ′ any a-c path avoiding b would
cost at least 3nW + 3, while abc costs 3nW + 2 only. Thus, all shortest a-c paths w.r.t. w ′ pass
through b. In particular, PosBC ′(b) = YES .
If the given algorithm for Approximate Betweenness Centrality works in the case of non-unique

shortest paths or the input instance of Positive Betweenness Centrality has unique shortest paths,
we simply apply that algorithmwithweightsw ′ and return NO if and only if the approximate value
is 0. The claim on the running time holds trivially. Let BC ′(b) be the value of BC (b) w.r.t. weights
w ′. If PosBC ′(b) = NO , then BC ′(b) = 0 since the initial modification of the weights does not
create new shortest paths. Hence the approximate solution must be 0. Otherwise, by construction
necessarily BC ′(b) > 0; hence the approximate value must be positive. The correctness follows.
Otherwise, we first randomly perturb the weights w ′ of the input Positive Betweenness Cen-

trality instance as in Corollary 1.7. Let w ′′ be the perturbed weights. Next assume that shortest
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paths are unique w.r.t. weights w ′′, which happens w.h.p., and let BC ′′(b) be the value of BC (b)
w.r.t. weights w ′′. Then we apply the approximation algorithm for Betweenness Centrality and
declare PosBC ′(b) = NO if and only if the approximate value is 0. Clearly the running time is as in
the claim sincem and n are preserved, while the largest edge weight is increased by a polynomial
factor in n. By the above arguments, if PosBC ′(b) = NO, it must be the case that BC ′′(b) = 0 since
the perturbation from Corollary 1.7 does not create alternative shortest paths using b. Hence the
approximate algorithmwould return 0. Otherwise, there will be some pair (a, c ) such that all short-
est a-c paths w.r.t. weights w ′ use node b; hence one such path will cause BC ′′(b) > 0. Therefore,
the approximation algorithm has to return a positive value. �

Lemma 4.2. Given a T (n,m) time algorithm for Approximate Reach Centrality, there is a

Õ (T (n,m)) time algorithm for Positive Betweenness Centrality with non-unique shortest paths.

Proof. By definition, RC (b) ≥ min{d (b,b),d (b,b)} = 0 and RC (b) > 0 implies PosBC (b) = YES .
However, due to 0 weights, it might still be that RC (b) = 0 and PosBC (b) = YES . To avoid this
issue we build weightsw ′ exactly as in the proof of Lemma 4.1. Recall that, with the same notation,
PosBC ′(b) = PosBC (b). Furthermore, PosBC ′(b) = YES if and only if there exists some pair of
nodes (a, c ), with a,b, c all distinct, such that all shortest a-c paths use node b. Let RC ′(b) denote
the value of RC (b) w.r.t. weightsw ′.

We apply the approximation algorithm for Reach Centrality to the resulting instance and return
PosBC (b) = NO if and only if the answer is 0. The running time satisfies the claim sincem and
n are preserved, while the largest edge weight is increased by a polynomial factor in n. For the
correctness, observe that PosBC ′(b) = PosBC (b) = NO implies that RC ′(b) = 0; hence the ap-
proximation algorithm has to return 0. Otherwise, since all weights are at least 1, the mentioned
pair (a, c ) guarantees that RC ′(b) ≥ 1; hence the approximation algorithm has to return a positive
value. �

4.1 Some Results on Positive Betweenness Centrality

A simple observation is that on unweighted graphs, Positive Betweenness Centrality is asking
whether there is an in-neighbor x of b and an out-neighbor y of b such that xy � E, and there-
fore can be solved in O (m) time. We next show that, on weighted graphs, Positive Betweenness
Centrality and Diameter are equivalent under subcubic reductions.

Theorem 4.3. Diameter and Positive Betweenness Centrality with non-unique shortest paths are

equivalent under subcubic reductions.

Theorem 4.3 follows directly from the next two lemmas.

Lemma 4.4. Given a T (n,m) time deterministic (resp., high-probability Monte-Carlo) algorithm

for Positive Betweenness Centrality with non-unique shortest paths in directed or undirected graphs,

there is a deterministic (resp., high-probability Monte-Carlo) Õ (T (n,m)) time algorithm for Diameter

in the same graph class.

Proof. Let us focus on the deterministic case, the other case being analogous. This proof is
similar in spirit to the proof of Lemma 3.1. Let (G = (V ,E),w ) be the input instance of Diameter,
whereM is the largest integer weight. Consider first the directed case (see also Figure 5). Let D be
an integer in [1, (n−1)M]. Let (G ′,w ′(D)) denote the auxiliary weighted graph consisting of a copy
of (G,w ) plus a dummy nodeb and dummy edgesvb andbv of weight6 D/2 for anyv ∈ V . Observe
that any pair of nodes s, t ∈ V is connected by a path of length D using b. By performing a binary

6Fractional weights can be avoided similarly to the proof of Lemma 3.1.
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Fig. 5. (Left) Reduction from Diameter to Positive Betweenness Centrality in directed graphs. Gray edges

have weight D/2, where D is a guess of the diameter. (Middle) Reduction from Positive Betweenness Cen-

trality to Diameter in directed graphs. Here D̃ is a proper upper bound on the diameter. Notice that the

preprocessing involving the dummy node r is not illustrated in the figure. (Right) Reduction from the Nega-

tive Triangle instance of Figure 2 to All-Nodes Positive Betweenness Centrality in directed graphs (partially

drawn). Gray edges have weight 3Q . One has BC (3B ) > 0 and BC (0B ) = 0 since node 3 does not belong to a
negative triangle, while node 0 does.

search on D and solving each time the resulting instance (G ′,w ′(D),b) of Positive Betweenness
Centrality, we determine the largest value D ′ of D such that the answer is YES (i.e., BC (b) > 0).
The output value of the diameter is D ′.

The running time of the algorithm is Õ ((m+T (n+1, 2n+m)) log(nM )) = Õ (T (n,m)). Let (s∗, t∗)
be a witness pair for the diameter D∗. In any execution where D∗ ≥ D, there exists a shortest s∗-
t∗ path using node b and hence the answer is YES. In any other execution (where D∗ < D), any
shortest s-t path avoiding b has length at most D∗ ≤ D − 1, while passing through b would cost at
least D (thus the answer is NO). The correctness of the algorithm follows.
For the undirected case, we use the same auxiliary weighted graph, but without edge directions

(and leaving one copy of parallel edges). The algorithm and its analysis are analogous to the di-
rected case. �

Lemma 4.5. Given aT (n,m,M ) time algorithm for Diameter in directed or undirected graphs, there

is a Õ (T (n,m,M )) time algorithm for Positive Betweenness Centrality with non-unique (hence unique)

shortest paths in the same graph class.

Proof. Let (G,w,b) be the input instance of Positive Betweenness Centrality. Observe that the
answer is YES if and only if there exists a shortest path of the form s,b, t .
Let us consider the directed case first. By adding a dummy node r and dummy edges vr and rv

of weightM for anyv ∈ V − {b}, we can assume that the diameter ofG is at most D̃ = 3M (w.l.o.g.,
b has at least one in-neighbor and one out-neighbor). Note that we did not introduce new paths of
the form s,b, t . Furthermore, the new graph has n + 1 nodes,m + 2n edges, and maximum weight
M . Hence a Õ (T (n,m,M )) time algorithm for the modified instance implies the same running time
for the original one.
We construct an instance (G ′,w ′) of Diameter as follows (see also Figure 5). Initially G ′ = G.

We add a copy A ofV . Let vA be the copy of v ∈ V . For every v ∈ V , we add edges vAv and vvA of
weight D̃ + 1−w (vb) and D̃ + 1−w (bv ), respectively. If edges vb or bv are missing (including the
casev = b), we set the weight of the corresponding edgesvAv andvvA, respectively, to 0. Observe
that edge weights are O (M ).
In this graph we compute the diameter D∗ and output YES to the input Positive Betweenness

Centrality instance if and only if D∗ ≥ 2D̃ + 2. The running time of the algorithm is Õ (m +
T (O (n),O (m),O (M ))) = Õ (T (n,m,M )). Consider a witness pair s∗, t∗ for the value of the diameter.
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Since edges of typevAv andvvA have non-negative weight, we can assumew.l.o.g. that s∗ = sA ∈ A
and t∗ = tA ∈ A. If both edges sb and bt are missing, one has D∗ = dG (s, t ) ≤ D̃. If exactly one of
the mentioned edges is missing, say bt , one has D∗ = D̃ + 1 −w (sb) + dG (s, t ) ≤ 2D̃ + 1. Finally,
if both edges are present, one has D∗ = 2(D̃ + 1) − w (sb) − w (bt ) + dG (s, t ) ≤ 2D̃ + 2, where
equality holds if and only if s,b, t is a shortest path. In particular, if there exists a shortest path of
the mentioned type, D∗ = 2D̃ + 2, and otherwise D∗ ≤ 2D̃ + 1. The correctness follows.
By simply removing edge directions (and leaving one copy of parallel edges) in the above con-

struction, one obtains the claim in the undirected case. �

We can exploit the above equivalence to derive (indirectly) the equivalence between Diameter
and Reach Centrality in both directed and undirected graphs (recall that we showed this equiva-
lence only in directed graphs; see Lemma 3.2).

Lemma 4.6. Given a T (n,m) time algorithm for Positive Betweenness Centrality with non-unique

shortest paths in directed or undirected graphs, there is a Õ (T (n,m)) time algorithm for Reach Cen-

trality in the same graph class.

Proof. Let (G,w,b) be the input instance of Reach Centrality. We show how to determine
whether RC (b) ≥ K for a given parameter K in Õ (T (n,m)) time. The value of RC (b) can then
be determined via binary search with an extra factor of O (log(nM )) = Õ (1) in the running time.
Let us consider the directed case first. We compute the shortest path distances from and to b in

G. Next we construct an auxiliary weighted graph (G ′,w ′) as follows. We letG ′ initially contain a
copy of G − {b} = G[V − {b}], plus an isolated node b. Next, for any v ∈ V − {b}, we add an edge
vb of weight d (v,b) if and only if d (v,b) ≥ K . Symmetrically, we add an edge bv of weight d (b,v )
if and only if d (b,v ) ≥ K .
We solve the Positive Betweenness Centrality instance (G ′,w ′,b) and output that RC (b) ≥ K

if and only if the answer is YES. The running time of the algorithm is Õ (m + T (n,m + 2n)) =
Õ (T (n,m)). Let us prove its correctness. Suppose that RC (b) ≥ K and let (s, t ) be a witness pair
of that. Then s,b, t is a shortest s-t path in G ′ and therefore the answer to the Positive Between-
ness Centrality instance is YES. Vice versa, suppose that the answer to the Positive Betweenness
Centrality instance is YES; i.e., there exists a shortest s-t path passing through b. This implies that
there exists a shortest path of the form s ′,b, t ′. Observe that the shortest paths not involving node
b are the same in G and G ′. Therefore, there exists a shortest s ′-t ′ path in G ′ passing through b.
Since by construction dG (s ′,b),dG (b, t ′) ≥ K , the pair (s ′, t ′) witnesses that RC (b) ≥ K .

The claim in the undirected case follows from the same reduction, but removing edge directions
(and leaving only one copy of parallel edges). �

Lemma 3.3 directly follows.

Proof of Lemma 3.3. It follows by chaining Lemmas 4.5 and 4.6. �

Another interesting observation about Positive Betweenness Centrality is that although solving
it for a single node b is equivalent to Diameter under subcubic reductions, the all-nodes version of
the problem (where one wants to determine whether BC (b) > 0 for all nodes b) is actually at least
as hard as APSP.

Lemma 4.7. Given aT (n,m,M ) time algorithm for All-Nodes Positive Betweenness Centrality with

non-unique shortest paths in directed or undirected graphs, there is a Õ (T (n,m,M )) time algorithm

for Negative Triangle.

Proof. Let (G,w ) be the input instance of Negative Triangle. Consider first the directed case
(see also Figure 5). We create a directed weighted graph (G ′,w ′) as follows. GraphG ′ contains five
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copies I , J , K , L, and B of the node set V . With the usual notation vX is the copy of node v ∈ V
in set X . Let Q = Θ(M ) be a sufficiently large integer. For every edge uv ∈ E we add the edges
uIv J ,u JvK ,uKvL to G ′ and set their weight to 2Q+w (uv ). We also add edges uIuB and uBuL for
every node u in G and set the weight of these edges to 3Q .

The algorithm solves the All-Nodes Positive Betweenness Centrality problem on (G ′,w ′) in time
Õ (T (n,m,M )) and outputs YES to the input Negative Triangle instance if and only if BC (uB ) > 0
for some uB ∈ B. To show correctness, observe that the only path through uB is from uI to uL and
it has weight 6Q , while every path of type uI ,v J ,wK ,uL corresponds to a triangle {u,v,w } in G
and the weight of the path equals the weight of the triangle plus 6Q . The claim follows.
The same construction, without edge directions, proves the claim for undirected graphs. �

Corollary 4.8. Given a truly subcubic algorithm for All-Nodes Approximate Reach Centrality

or for All-Nodes Approximate Betweenness Centrality with non-unique shortest paths, there exists a

truly subcubic algorithm for APSP.

Proof. In case of strictly positive weights, a truly subcubic algorithm for All-Nodes Approx-
imate Reach Centrality or for All-Nodes Approximate Betweenness Centrality with non-unique
shortest paths directly implies a truly subcubic algorithm for All-Nodes Positive Betweenness Cen-
trality with non-unique shortest paths (the answer for a node b is YES if and only if the associate
approximate value is strictly positive). Notice that in the reduction of Lemma 4.7 all weights are
positive; hence this implies a truly subcubic algorithm for Negative Triangle. The claim follows by
the subcubic equivalence between Negative Triangle and APSP [64]. �

4.2 A PTAS for Betweenness Centrality

In this section we prove the subcubic equivalence between Approximate Betweenness Centrality
and Diameter.

Theorem 4.9. Diameter and Approximate Betweenness Centrality with unique shortest paths are

equivalent under subcubic high-probability Monte-Carlo reductions.

The main result in this section is the proof of the following lemma.

Lemma 4.10. Given a truly subcubic algorithm for Diameter, there exists a truly subcubic high-

probability Monte-Carlo PTAS for Betweenness Centrality with unique shortest paths.

We recall that a PTAS for the problem of estimating a valueX is an algorithm that takes in input
an instance of the problem and a parameter ε > 0 and outputs a (1 + ε ) approximation x or X , i.e.,
1

1+εX ≤ x ≤ (1 + ε )X . Furthermore, the running time of the algorithm is polynomial whenever ε
is lower bounded by some constant. The proof of Theorem 4.9 follows easily.

Proof of Theorem 4.9. Lemma 4.10 gives one direction. The other direction is obtained by
chaining Lemmas 4.1 and 4.4. �

It remains to prove Lemma 4.10. Let (G,w,b) be the considered instance of Betweenness Cen-
trality, and define B∗ = BC (b). Observe that, under the assumption that shortest paths are unique,
BCs,t (b) ∈ {0, 1} and thereforeB∗ ∈ {0, . . . , (n−1) (n−2)}. Given s, t ∈ V−{b} such thatBCs,t (b) = 1,
we call (s, t ) a witness pair, s a witness source, and t a witness target (of BC (b)).

Let also Bmed ∈ {0, . . . , (n − 1) (n − 2)} be an integer parameter to be fixed later. Our PTAS is
based on two different algorithms: one for B∗ ≤ Bmed (small B∗) and the other for B∗ > Bmed (large
B∗).
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Fig. 6. Reduction from Positive (S,T )-Betweenness Centrality to Diameter with S = T = {1, 2}. Gray edges

have weight K − 1. On the left and right are the reduction for the directed and undirected case, respectively.

4.2.1 An Exact Algorithm for Small B∗. Let us start with the algorithm for small B∗. Recall that
a witness pair (s, t ) satisfies BCs,t (b) = 1. A crucial observation is that the number of witness pairs
is equal to B∗ in case of unique shortest paths.
It is convenient to define a generalization of Betweenness Centrality, where we consider only

some pairs (s, t ). For S,T ⊆ V − {b}, we define BCS,T (b) :=
∑

(s,t )∈S×T BCs,t (b). The (S,T )-
Betweenness Centrality problem is to compute BCS,T (b). The Positive (S,T )-Betweenness Centrality
problem is to determine whether BCS,T (b) > 0. We use the shortcuts BCs,T (b) = BC {s },T (b) and
BCS,t (b) = BCS, {t } (b). Our first ingredient is a reduction of Positive (S,T )-Betweenness Centrality
to Diameter.

Lemma 4.11. Given a T (n,m) time algorithm for Diameter in directed or undirected graphs, there

exists a Õ (T (n,m)) time algorithm for Positive (S,T )-Betweenness Centrality with non-unique (hence
unique) shortest paths in the same graph class.

Proof. We use a construction similar to the one in the proof of Lemma 4.5 (see also Figure 6).
Let (G,w,b, S,T ) be the considered instance of Positive (S,T )-Betweenness Centrality.
We start with the directed case. Let us construct a directed weighted graph (G ′,w ′). Graph G ′

contains a copy ofG. Furthermore, it contains a copy S ′ of S and a copyT ′ ofT . LetvS be the copy
of node v in S , and define vT analogously. Let K := 2 + A, where A is the maximum distance of
type dG (s,b) and dG (b, t ), with s ∈ S and t ∈ T . For each s ∈ S and t ∈ T , we add edges sSs and ttT
of weight K − dG (s,b) and K − dG (b, t ), respectively. We add one dummy node r ′ (resp., r ′′) and
bidirected7 edges r ′v for all v ∈ S ′ ∪V (resp., r ′′v for all v ∈ T ′ ∪V ). We also add edges r ′′v for
eachv ∈ S ′ (in particular these edges are not bidirected). Finally, we add bidirected edges r ′r ′′. All
edges incident on r ′ and r ′′ have weight K − 1 (dummy edges). We compute the diameter D∗ of
(G ′,w ′) and output YES if and only if D∗ = 2K .
The running time of the algorithm is Õ (m + T (O (n),O (m))) = Õ (T (n,m)). Let us prove its

correctness. Let s∗, t∗ be a witness pair for the diameter. If s∗ ∈ V ∪T ′∪ {r ′, r ′′}, thenD∗ ≤ 2(K −1).
Hence we can assume s∗ = sS ∈ S ′ for some s ∈ S . If t∗ ∈ S ′ ∪V ∪ {r ′, r ′′}, then D∗ ≤ 2(K − 1). So
we can also assume t∗ = tT ∈ T ′.

Any sS -tT path using dummy edges has to use at least two such edges. If it uses three such edges,
it costs at least 3(K−1) > 2K . Otherwise, it costs at leastK−dG (s,b)+2(K−1) ≥ K−A+2(K−1) =
2K or 2(K − 1) +K −dG (b, t ) ≥ K −A+ 2(K − 1) = 2K . Any shortest sS -tT avoiding dummy edges
has cost 2K −dG (s,b)−dG (b, t )+dG (s, t ) ≤ 2K , where the equality holds if and only if b belongs to
some shortest s-t path in G. Summarizing, if there exists a shortest s-t path passing through b (in
which case the answer is YES), then the diameter is 2K . Otherwise, the diameter is at most 2K − 1.

7By a bidirected edge uv of weight w , we mean a directed edge uv and a directed edge vu , both of weight w .
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The construction for the undirected case is similar, where we remove edge directions (leaving
one copy of parallel edges) and the edges of type r ′′v withv ∈ S ′. By the same argument as before,
we can assume that s∗, t∗ ∈ S ′ ∪ T ′ and furthermore they do not belong simultaneously to S ′ or
to T ′ (otherwise, D∗ ≤ 2(K − 1)). Thus, modulo switching the endpoints (which is w.l.o.g. in the
undirected case), we can assume s∗ = sS ∈ S ′ and t∗ = tT ∈ T ′. Then by the same argument as
before, one has that the diameter is 2K if there exists a shortest s-t path passing through b (in
which case the answer is YES), and otherwise the diameter is at most 2K − 1. �

We will exploit the following recursive algorithm for (S,T )-Betweenness Centrality.

Lemma 4.12. Given a T (n,m) time algorithm for Diameter in directed (resp., undirected) graphs,

there is a Õ (W ·T (n,m)) time algorithm for (S,T )-Betweenness Centrality with unique shortest paths,
whereW is the number of pairs (s, t ) ∈ S ×T such that BCs,t (b) = 1.

Proof. We describe a recursive algorithm with the claimed running time, given a Õ (T (n,m))
time algorithm for Positive (S,T )-Betweenness Centrality. The claim follows from Lemma 4.11.
The recursive algorithm works as follows. It initially solves the corresponding Positive (S,T )-

Betweenness instance. If the answer is NO, the algorithm outputs 0. If the answer is YES, we
distinguish two subcases. If |S | = |T | = 1, the algorithm outputs 1. Otherwise, the algorithm
partitions arbitrarily S into two subsets S1 and S2, which differ by at most 1 in cardinality, and it
splits similarly T into T1 and T2. Then the algorithm solves recursively the sub-problem induces
by the pairs (Si ,Tj ), i, j ∈ {1, 2} and outputs the sum of the four obtained values.
The correctness of the algorithm is obvious. Concerning its running time, consider the recur-

sion tree. Let us call a subproblem whose corresponding Positive (S,T )-Betweenness Centrality
instance is a YES/NO instance a YES/NO subproblem. Observe that, excluding the root problem,
any NO subproblem must have at least one sibling YES subproblem in the recursion tree. Fur-
thermore, each sub-problem has at most four children in the recursion tree. Therefore, if the root
subproblem is a YES subproblem, the total number of subproblems is at most 4 times the number
of YES subproblems. Note also that the number of leaf YES subproblems is equal toW , and that
each YES subproblem must have at least one leaf YES subproblem among its descendants. Finally,
the depth of the recursion tree isO (log( |S | + |T |)) = O (logn). Thus the number of subproblems is
Õ (W ). The claim on the running time follows. �

We are now ready to present our algorithm for small B∗.

Lemma 4.13. Given an instance (G,w,b) of Betweenness Centrality with unique shortest paths, a

parameter Bmed , and an algorithm for Diameter of running timeT (n,m), there is an Õ (BmedT (n,m))
time algorithm that either outputs B∗ = BC (b) or answers NO, in which case B∗ > Bmed .

Proof. Consider the recursive algorithm from Lemma 4.12. We run that algorithm with S =
T = V , however with the following modifications. We keep track of the numberW of leaf YES
sub-problems found so far. IfW > Bmed at any point, we halt the recursive algorithm and output
NO. Otherwise, we output the valueW returned by the root call of the recursive algorithm.
The correctness of the algorithm follows immediately since the number of leaf YES subprob-

lems in the original (non-truncated) algorithm equals B∗. An easy adaptation of the running time
analysis in Lemma 4.12 shows that the running time is as in the claim (in particular, the number
of recursive calls is O (Bmed )). �

4.2.2 A Monte-Carlo PTAS for Large B∗. We next assume that B∗ > Bmed , and we present an
algorithm for this case. In order to lighten the notation, since b is clear from the context, we next
use BCS,T instead of BCS,T (b) and similarly for related notation. Observe that a nodew is a witness
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source (resp., witness target) if BCw,V > 0 (resp., BCV ,w > 0). At high level, our algorithm is based
on the computation of the contribution BCs,V to BC of a random sample of candidate witness
sources s . Then we exploit Chernoff’s bound to prove that the approximation factor is small w.h.p.
One technical difficulty here is that some witness sources might give a very large contribution to
BC , which is problematic since we need concentrated results. In order to circumvent this problem,
we first sample a random subset of candidate witness targets to identify the problematic witness
sources (which are considered separately).

In more detail, we sample a random subsetT of pmed · n nodes, where pmed =
C logn√
Bmed

andC is a

sufficiently large constant (more precisely C = O (1/ε2) is sufficient). We compute all the shortest
paths ending in T and use them to derive BCs,T for all s ∈ V . We partition V into sets Slarдe and
Ssmall , where s ∈ V belongs to Slarдe if and only if BCs,T ≥ C logn. Then we sample a random
subset Rsmall of pmed |Ssmall | nodes in Ssmall and compute BCs,V for all s ∈ Rsmall . Finally, we
output the estimate

B̃ =
1

pmed

���
∑

s ∈Slarдe

BCs,T +
∑

s ∈Rsmall

BCs,V
���.

It is easy to see that the running time of the algorithm is Õ ( Cnm√
Bmed

). It is also not hard to see

that E[ 1
pmed

∑
s ∈Slarдe BCs,T ] =

∑
s ∈Slarдe BCs,V and E[ 1

pmed

∑
s ∈Rsmall

BCs,V ] =
∑

s ∈Ssmall
BCs,V .

Therefore, E[B̃] = B∗. The following lemma shows that B̃ is concentrated around its mean.

Lemma 4.14. For C = O (1/ε2) large enough, w.h.p. B̃ ∈ [(1 − 2ε )B∗, (1 + 2ε )B∗].
Proof. We start by showing that w.h.p., for any s ∈ V , if s ∈ Slarдe , then BCs,V ≥

√
Bmed/(1+ε ),

and otherwise BCs,V ≤
√
Bmed/(1 − ε ). Define B′ = BCs,T and B = BCs,V . Note that E[B′] =

C logn√
Bmed

B. Note also that B′ = BCs,T =
∑

t ∈V Xs,t , where Xs,t = 0 if t � T and Xs,t = BCs,t

otherwise. Since the variables Xs,t are negatively correlated, we can apply Chernoff’s bound to

BCs,T . In particular, conditioning implicitly on B <
√
Bmed

1+ε , one obtains

Pr [B′ ≥ C logn] = Pr

[
B′ ≥

√
Bmed

B
E[B′]

]
≤ �� e (

√
Bmed /B )−1

(
√
Bmed/B)

√
Bmed /B

��
C logn√
Bmed

B

≤
(
eε/(1+ε )

1 + ε

)C logn

.

Above we used the fact that the function xe1−x is increasing for x ∈ [0, 1
1+ε ] (and strictly smaller

than 1 in the same range). Similarly, conditioning implicitly on the event that B >
√
Bmed

1−ε , one

obtains E[B′] = C logn√
Bmed

B ≥ C logn
1−ε and

Pr [B′ < C logn] = Pr

[
B′ <

√
Bmed

B
E[B′]

]
≤ Pr [B′ ≤ (1 − ε )E[B′]]

≤ e−
ε2E[B′]

2 ≤ e−
ε2C logn
2(1−ε ) .

Thus summarizing, for a fixed s ,

Pr

[
s ∈ Slarдe |Bs,V <

√
Bmed

1 + ε

]
≤
(
eε/(1+ε )

1 + ε

)C logn

, and

Pr

[
s ∈ Ssmall |Bs,V >

√
Bmed

1 − ε

]
≤ e−

ε2C logn
2(1−ε ) .
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From the union bound and assuming that the constant C = O (1/ε2) is large enough, we conclude
that w.h.p. for all s ∈ Slarдe one has BCs,V ≥

√
Bmed/(1 + ε ) and for all s ∈ Ssmall one has

BCs,V ≤
√
Bmed/(1 − ε ).

Next assume that the mentioned high-probability event happens for all s ∈ V . Define B∗
larдe

=∑
s ∈Slarдe BCs,V and B∗

small
=
∑

s ∈Ssmall
BCs,V . Clearly B∗ = B∗

larдe
+ B∗

small
. Define also B̃larдe :=

1
pmed

∑
s ∈Slarдe BCs,T and B̃small :=

1
pmed

∑
s ∈Rsmall

BCs,V , so that B̃ = B̃larдe + B̃small .

Consider any s ∈ Slarдe , and define B′ = BCs,T and B = BCs,V . Recall that by assumption

B ≥
√
Bmed

1+ε and observe that E[B′] = pmedB ≥ C logn
1+ε . Then, by Chernoff’s bound,

Pr [|B′ − E[B′]| ≥ εE[B′]] ≤ 2e−
ε2

3 E[B′] ≤ 2e−
ε2

3(1+ε )C logn .

Since E[B̃larдe ] =
1

pmed
[
∑

s ∈Slarдe BCs,T ] = B∗
larдe

, we can conclude that w.h.p. B̃larдe ∈ [(1 −
ε )B∗

larдe
, (1 + ε )B∗

larдe
].

Consider next B̃small . Define B′ = pmed B̃small =
∑

s ∈Rsmall
BCs,V . Observe that E[B′] =

pmedB
∗
small

. Furthermore, B′ is the sum of independent random variables each one of value at

most
√
Bmed

1−ε by the assumption on Ssmall . Therefore, by Chernoff’s bound,

Pr [B′ ≥ E[B′] + εpmedB
∗] ≤

������
e

εB∗
B∗
small(

εB∗
B∗
small

+ 1
) εB∗
B∗
small

+1

������

(1−ε )C lognB∗
small

Bmed

.

Assuming B∗
small

≥ εBmed/2 and observing that B∗ ≥ B∗
small

, one obtains

Pr [B′ ≥ E[B′] + εpmedB
∗] ≤

(
eε

(1 + ε )1+ε

) (1−ε )εC logn
2

.

Otherwise, B∗
small

< εBmed/2 ≤ εB∗/2 and thus

Pr [B′ ≥ E[B′] + εpmedB
∗] ≤

�������
eε

(
1 + εB∗

B∗
small

) B∗small
B∗ +ε

�������

(1−ε )C lognB∗
Bmed

≤
(e
3

)ε (1−ε )C logn
.

Similarly,

Pr [B′ ≤ E[B′] − εpmedB
∗] ≤ e

− 1
2

(
εB∗

B∗
small

)2
pmed B

∗
small√

Bmed /(1−ε )

= e
− (1−ε )ε2

2
(B∗ )2

B∗
small

C logn
Bmed ≤ e−

(1−ε )ε2
2 C logn .

Therefore, w.h.p. B̃small ∈ [B∗small
− εB∗,B∗

small
+ εB∗]. Altogether, w.h.p. one has

(1 − 2ε )B∗ ≤ (1 − ε )B∗larдe + B
∗
small − εB

∗ ≤ B̃

≤ (1 + ε )B∗larдe + B
∗
small + εB

∗ ≤ (1 + 2ε )B∗. �

The following lemma summarizes the above discussion.
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Fig. 7. Reduction from CNF-SAT to Positive Betweenness Centrality (left) and Reach Centrality (right) in

undirected graphs for the CNF-SAT formula c1∧c2∧c3∧c4 = (X ∨Y ∨Z )∧ (Z ∨Y )∧ (X ∨Y ∨Q )∧ (X ∨Z ∨Q ).
The set of variables areA = {X ,Y } and B = {Z ,Q }. NodeAF F corresponds to the partial assignment (X ,Y ) =
(F , F ) and similarly for the other nodes. Bold edges have weight 2; all other edges have weight 1. The shortest
paths AF F ,b,BTT on the left and AF F ,xA,b,xB ,BTT on the right witness that (X ,Y ,Z ,Q ) = (F , F ,T ,T ) is
a satisfying assignment.

Lemma 4.15. Given an instance (G,w,b) of Betweenness Centrality with unique shortest paths and
BC (b) = B∗ ≥ Bmed , there is an Õ ( nm

ε2
√
Bmed

) time algorithm that returns a (1 + ε ) approximation of

B∗ w.h.p.

Proof. Consider the above algorithm. Its running time is Õ ( nm
ε2
√
Bmed

) since C = O ( 1
ε2
). By

Lemma 4.14, the estimate B̃ of B∗ that it outputs satisfies the claim (modulo scaling ε by a con-
stant factor). �

Combining the algorithms for small and large B∗, we obtain Lemma 4.10.

Proof of Lemma 4.10. Let Õ (n3−δ ) be the running time of the given Diameter algorithm, for
some constant δ > 0. From Lemmas 4.13 and 4.15, we can use it to compute w.h.p. a (1+ε ) approx-

imation of the betweenness centrality of a given node in time Õ (Bmedn
3−δ + n3

ε2
√
Bmed

). Choosing

Bmed =
n2δ /3

ε4/3
gives a truly subcubic running time in Õ ( n

3−δ /3

ε4/3
). �

4.3 Reductions Based on SETH

We are able to show that, assuming the SETH [40], a subquadratic algorithm for Positive Between-
ness Centrality does not exist even in sparse graphs. We recall that SETH claims that CNF-SAT on
n variables cannot be solved in time O ((2 − δ )n ) for any constant δ > 0. One obtains as a corol-
lary a lower bound on the running time of any approximation algorithm for Betweenness/Reach
Centrality by the reductions in Lemmas 4.1 and 4.2.

Theorem 4.16. Suppose that there is an O (m2−ε ) time algorithm, for some constant ε > 0, that
solves Positive Betweenness Centrality with non-unique shortest paths in directed or undirected graphs

with edge weights in {1, 2}. Then SETH is false.
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Proof. Let F be a CNF-SAT formula on n variables. Our goal is to show that we can determine
whether F is satisfiable in O∗ (2(1−δ )n ) time8 for some constant δ > 0. Using the sparsification
lemma of [40] (as, e.g., in [14]), we can assume w.l.o.g. that F contains O (n) clauses.

Let us consider the undirected case first (see also Figure 7). We partition the variables into two
sets A and B, which differ by at most 1 in cardinality, and create a node ϕA (resp., ϕB ) for each
partial assignment ϕA of the variables in A (resp., ϕB of the variables in B). We also add a node for
each clause c and add one edge of weight 1 between each clause c and any partial assignment ϕ
of A or B that does not satisfy any literal of c (including the special case that c does not contain
any variable in A or B). We also add two nodes xA and xB and add one edge of weight 1 between
them and any node inA and B, respectively. Finally, we add a node b and add one edge of weight 2
between b and each assignment of A and B. The algorithm returns YES (i.e., F is satisfiable) if and
only if BC (b) > 0.

Let us prove correctness. The distance between any clause node c and any other node is at most
4, while any path passing through b would cost at least 5. Hence the corresponding shortest paths
do not use b. The same claim holds for xA and xB . The distance between any two assignments of
A or of B is at most 2, while passing through b would cost at least 4. Hence also the corresponding
shortest paths do not use b. It remains to consider shortest paths from some node of type ϕA to
some node of type ϕB . Observe that there exists one such path of length 2 (hence BCϕA,ϕB (b) = 0)
if and only if there exists a clause c that is not satisfied by ϕA or by ϕB . Otherwise (i.e., ϕA and ϕB
together satisfy F ), ϕA,b,ϕB is a shortest such path (hence BC (b) > 0). The graph has O (2n/2n)
edges, leading to a running time of the form O∗ (2(1−ε/2)n ). The claim follows.
In the directed case we use a similar construction (with a similar notation), without nodes xA

and xB , and orienting the edges from the assignments of A to the clause nodes and to b, and from
the latter nodes to the assignments of B. The algorithm is the same. The proof of correctness is
simpler: the only shortest paths that can use b are from a node of type ϕA to a node of type ϕB .
Similarly to the undirected case, ϕA and ϕB together satisfy F if and only if ϕA,b,ϕB is a shortest
path (hence BC (b) > 0). Also in this case the running time isO∗ (2(1−ε/2)n ), implying the claim. �

Corollary 4.17. Suppose that there is an O (m2−ε ) time algorithm for Approximate Betweenness

Centrality with non-unique shortest paths or for Approximate Reach Centrality, for some constant

ε > 0. Then SETH is false.

Proof. It follows by chaining Theorem 4.16 with Lemmas 4.1 and 4.2. �

For Reach Centrality we can also show an approximation lower bound for unweighted undi-
rected graphs.

Theorem 4.18. Suppose there is anO (m2−ε ) time (2− ε )-approximation algorithm for Reach Cen-

trality in undirected unweighted graphs, for some constant ε > 0. Then SETH is false.

Proof. Similarly to the proof of Theorem 4.16, we can start with a CNF-SAT formula F contain-
ing n variables andm = O (n) clauses [40]. We will show how to construct an instance (G,b) of
Reach Centrality on an unweighted undirected graph G = (V ,E) with |V | = O (2n/2 +m) nodes
and |E | = O (2n/2m) edges, such that RC (b) = 2 if F is satisfiable and RC (b) = 1 otherwise. The
generation of the graph from the formula takesO (2n/2m) time and therefore if we could compute
a (2 − ε ) approximation of RC (b) in O∗ ( |E |2−ε ) time, for some ε > 0, we would be able to solve
CNF-SAT in O∗ (2(1−ε/2)n ) time (which would refute SETH).

8The O∗ notation suppresses polynomial factors.
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Similarly to the proof of Theorem 4.16, we partition the variables into two subsets A and B that
differ by at most 1 in cardinality and create a node for each partial assignment of the variables in
A and B. We also create a node c for each clause c and connect c to each partial assignment that
does not satisfy any literal in c . We also add nodes xA and xB and add edges between them and
any node in A and B, respectively. Finally, we add a node b and connect it to xA and xB (note that
the final part of the construction deviates from Theorem 4.16).
To show correctness, note that b is on the shortest path between xA and xB and therefore

RC (b) ≥ 1. Furthermore, b cannot be on the shortest path between a clause node c and another
node inG, and therefore RC (b) = 2 if and only if b is on the shortest path between an assignment
ϕA of A and an assignment ϕB of B. But a shortest path between ϕA and ϕB goes through b if and
only if for every clause node c either ϕAc is not an edge or ϕBc is not an edge. By definition of
these edges, this implies that for every clause c , either ϕA or ϕB satisfies c (i.e., ϕA and ϕB induce
a satisfying assignment of F ). The claim follows. �

As observed by one careful reviewer, the above reductions can be adapted to the Orthogonal
Vector Conjecture (OVC). In the Orthogonal Vector (OV) problems we are given a set on n
binary vectors of dimension D = O (logn). The goal is to determine whether there exists a pair of
orthogonal vectors in the set. OVC states that there is no O (n2−δ ) time algorithm for OV where
δ > 0 is a fixed constant. We remark that SETH implies OVC; i.e., OVC is a stronger conjecture
[60]. Our reductions can be adapted as follows. For each vector v we create a node vA in the set
A (resp., vB in the set B). The set C contains one nodew for each dimension/entryw . We connect
each vector node vA ∈ A (resp., vB ∈ B) to each dimension nodew such that thewth entry of v is
1. Now a length 2 path between vA ∈ A and uB ∈ B through a node in C means that the vectors v
and u are not orthogonal. The rest of the construction is similar. The simple details are left to the
reader.

5 CONCLUSIONS AND OPEN PROBLEMS

There aremany interesting problems thatwe left open. Themain one is probablywhetherDiameter
and APSP are equivalent under subcubic reductions. By our reductions, on one hand a positive
answer would indicate that truly subcubic algorithms for Reach Centrality and for Approximate
Betweenness Centrality are unlikely to exist. On the other hand, a negative answer would give
truly subcubic algorithms for the latter problems as well.
We have shown that Reach Centrality can be solved in Õ (Mnω ) time in directed graphs, improv-

ing on the previous best algorithm based on APSP. Similar running times are known for Diameter
and Radius [17]. To the best of our knowledge, it is open whether an Õ (Mnω ) time algorithm exists
also for Median and Betweenness Centrality in directed graphs.
We proved that a subquadratic 2 − ε approximation algorithm for Reach Centrality in sparse

graphs is unlikely to exist. In [2, 52] analogous results are proved for Diameter and Radius. It
would be interesting to show similar negative results for Betweenness Centrality and Median (or
find faster approximation algorithms in sparse graphs for those problems).
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