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Abstract
We provide a fast distributed algorithm for detecting h-cycles in the Congested Clique model, whose
running time decreases as the number of h-cycles in the graph increases. In undirected graphs,
constant-round algorithms are known for cycles of even length. Our algorithm greatly improves upon
the state of the art for odd values of h. Moreover, our running time applies also to directed graphs,
in which case the improvement is for all values of h. Further, our techniques allow us to obtain a
triangle detection algorithm in the quantum variant of this model, which is faster than prior work.

A key technical contribution we develop to obtain our fast cycle detection algorithm is a new
algorithm for computing the product of many pairs of small matrices in parallel, which may be of
independent interest.
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1 Introduction

Finding small subgraph patterns is a fundamental computational task, with a multitude of
applications for uncovering connections between elements in a data set. Research has been
thriving, addressing the complexity of different variants of subgraph isomorphism for fixed
size subgraph patterns H in a larger host graph G: detecting whether a copy of H exists,
listing all of its copies, counting the number of occurrences, and more.

In this paper, we provide a fast distributed algorithm for detecting h-cycles in the
Congested Clique model [37], in which n machines communicate by sending O(log n)-bit
messages to each other, in synchronous rounds.

The pioneering work of [19] showed that all copies of any fixed h-vertex graph H in an
n node graph can be listed in this model within O(n1−2/h) rounds. This result of course
applies also to the detection variant. For the case when H is a cycle, [12] provided an h-cycle
detection algorithm running in 2O(h)nρ rounds, for both undirected and directed graphs
(henceforth digraphs). Here, ρ is the exponent of distributed fast matrix multiplication
(FMM) in the Congested Clique model, i.e., the value such that O(nρ) rounds are sufficient
for multiplying two n× n matrices. The value of ρ is currently known to be at most 1− 2/ω

where ω is the centralized fast matrix multiplication exponent, and since ω ≤ 2.371552 [2],
© Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ckeren@cs.technion.ac.il
http://ckeren.net.technion.ac.il/
https://orcid.org/0000-0003-4395-5205
mailto:tomer.even@campus.technion.ac.il
https://orcid.org/0009-0001-8942-3637
mailto:virgi@mit.edu
https://orcid.org/0000-0003-4844-2863
https://doi.org/10.4230/LIPIcs.DISC.2024.12
https://www.arxiv.org/abs/2408.15132
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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Figure 1 An illustrative comparison between our results and prior work, for the case of triangles.
For each algorithm, we plot the base-n logarithm of the number of rounds as a function of the base-n
logarithm of the number of triangles.

we get a bound for ρ of 0.15667. In the case of 4-cycles in undirected graphs, [12] obtained a
constant-round detection algorithm, and this result was later generalized by [10] to hold for
detection of any even-length cycle in undirected graphs.

This leaves the complexity of odd-cycle detection as an open question, as well as the
detection of cycles of any length in digraphs. For triangles, [19] showed a detection algorithm
that completes within Õ(n1/3/(t2/3 + 1)) rounds, w.h.p.1, where t is the number of triangles.
Since [20] hints that lower bounds for H detection in this model are not within reach, it
remains open whether the above is optimal.

Question: For a given graph H, is there a faster H-detection algorithm when the number of
instances of H in the input graph is large?

We answer this question in the affirmative, providing a fast h-cycle detection algorithm
whose complexity decreases as the number t of instances of H grows. Our algorithm has the
same running time for detecting h-cycles in graphs as well as in digraphs. For triangles, the
complexity of our algorithm greatly improves upon that of [19]. For larger odd cycles in
graphs, as well as cycles of any length in digraphs, to the best of our knowledge, this is the
first improvement over [12].

An important insight of our main technical contribution is to identify a new refined
parameter as a key player for detection: the number of vertices x that participate in an
h-cycle. Below, we elaborate on our result and technical approach.

1.1 Our Contributions and Technical Overview
To frame our technical contributions, we first briefly overview the two previous approaches
for the case of triangles. In [19], an Õ(n1/3/(t2/3 + 1))-round algorithm is presented, where t

is the number of triangles. The algorithm samples n induced subgraphs, and for each sample

1 High probability in this paper refers to a probability that is at least 1 − 1/nc for some constant c ≥ 1.
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it checks for a triangle by letting a dedicated vertex collect the edges of the sample. In [12],
a 2O(h)nρ-round algorithm is presented which employs fast matrix multiplication over the
entire graph.

Warm-up. As a warm-up, consider the following combination of these approaches to get the
best of both worlds, leading to an algorithm that completes in Õ(nρ/(t2ρ + 1)) rounds, which
is already an improvement over the prior state of the art (recall that ρ < 1/3). To obtain
this, we sample only t2 induced subgraphs to which each vertex is added with probability
1/t. Using the second moment method, we can show that at least one sampled subgraph
contains a triangle with probability Ω (1). To check if each subgraph contains a triangle we
use matrix multiplication, and so no vertex has to collect the edges of an entire sample. To
compute the product of t2 square matrices of size n/t, we develop a new algorithm, which
computes the product of s pairs of square matrices of size k in O(nρ−2 · k2 · s1−ρ) rounds.
This algorithm may be of independent interest.

Another natural approach to consider is one that samples a subset of vertices and checks
whether any of these vertices participates in a triangle, rather than attempting to sample
a complete triangle. Here, we can sample each vertex with probability 1/t1/3 and check
whether it is in a triangle by invoking rectangular matrix multiplication. While this too
improves upon the state of the art for some graphs, it is always slower than our first approach.
Note that trying to reduce the running time by sampling with a probability that is smaller
than 1/t1/3 would reach a dead-end since it is not likely to hit any vertex in a triangle in
case all t triangles are induced by a clique of t1/3 vertices. See Figure 1 for a comparison of
the two approaches, as well as the previous algorithms, and our new algorithm.

A caveat is that the first approach does not extend for h-cycles, as the number of samples
it needs to perform increases with h. For example, for C4 detection, if we sample uniformly
random induced subgraph with n/t vertices, it contains a copy of C4 with probability at
least roughly 1/t3 which means we have to sample at least t3 subgraphs to ensure that we
find a copy of C4 with a constant probability. This is slower than the previous best known
algorithm of [12] which takes 2O(h)nρ rounds. In other words, the first approach is slower as
h is larger.

Our contribution. Our key insight is that we can further boost these two approaches such
that they complement each other, in the following sense. For a fixed value of t, the first
approach is better when the number of vertices that participate in a triangle, which we
denote by x, is small, while the second approach is better when x is large. This refinement
of considering the parameter x along with t allows us to bring these two approaches a big
leap forward by obtaining a faster algorithm for triangle detection, as well as an algorithm
for h-cycle detection for longer cycles, in both graphs and digraphs.

Our first algorithm, which we refer to as Find-Cycle, follows the first approach. It samples
s = x3/t subsets of vertices (U1, . . . , Us), by adding each vertex to Ui independently with
probability 1/x. The algorithm then checks for every i ∈ [s] if G[Ui] contains a triangle. This
involves computing the product of s pairs of square matrices of size n/x each, which we do
in Õ(nρ−2 · (n/x)2 · s1−ρ) = Õ(nρ · (1/x)2 · (x3/t)1−ρ) rounds. Using the second moment
method (which is very similar to Chebyshev’s inequality) we show that at least one of the s

induced subgraphs contains a triangle with a constant probability.
Our second algorithm, which we refer to as Find-Vertex-In-Cycle, follows the second

approach. It samples a subset of vertices S, by adding each vertex to S independently with
probability 1/x. The algorithm then checks if one of the vertices from S participates in a
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12:4 Faster Cycle Detection in the Congested Clique

triangle by computing the product of a rectangular matrix of size n/x × n and a square
matrix of size n. Interestingly, the algorithm Find-Vertex-In-Cycle also achieves the same
round complexity, as a function of x, for h-cycle detection, for h = O(1).

Our final algorithm alternates between the two algorithms until one of them terminates.
Among all n vertices with t triangles, the final algorithm is the slowest when the two
algorithms have the same round complexity, which happens when x3−1.82408 = Θ(t).

The following states the running time of our fast h-cycle detection algorithm, and is
proven in Appendix A.

▶ Theorem 1 (h-Cycle Detection). Let G be a (directed) graph with t copies of h-cycles.
There is a randomized Congested Clique algorithm for h-cycle detection, which takes Õ(hO(h) ·
n0.1567/(t

0.4617
h−1.82408 + 1)) rounds w.h.p.

Here, the constants 0.1567, 0.4617 arise from the complexity of rectangular multiplication.
We are able to show that the product of a rectangular matrix of size k×n and a square matrix
can be computed in O(n0.1567/k0.4617) rounds, using the formula of [27] and an adaptation
of the code of [5]. To get a flavor of the above complexity, note that a crucial implication of
Theorem 1 is that we detect a triangle in Õ(1) rounds for graphs with at least t = Ω(n0.3992)
triangles, improving upon the previously known threshold of t = Ω(n1/2) from [19].

Many Matrix Multiplications in Parallel. To implement our Find-Cycle algorithm, we need
to compute the product of many small random square matrices, which are submatrices of
the adjacency matrix of the input graph. We state this informally in the following theorem.

▶ Theorem 2 (Informal). Let k, s be two integers such that k ∈ [
√

n, n], and s ≤ (n/k)2.
Then, in the Congested Clique model, the n vertices can compute the product of s pairs of
square matrices of size k in O(nρ−2 · k2 · s1−ρ) rounds, given that the input is distributed
among the vertices in a “balanced” manner.

The formal definitions and the proof of Theorem 2 appear in Section 3, as well as the
definitions and claims we need for the proof of Theorem 1.

The conceptual contribution of Theorem 2 is as follows. On one hand, it is known that n

vertices can compute the product of n pairs of matrices of size
√

n in a constant number of
rounds, given that the input is balanced, by letting the i-th vertex collect all the entries of
the i-th pair of matrices and computing their product. On the other hand, n vertices can
also compute the product of one square matrix of size n in O(nρ) rounds, as shown in [12].
Theorem 2 gives a smooth trade-off between these two extremes.

Note that [27] provides an algorithm for computing the product of s pairs of square
matrices of size n in O(nρ · s1−ρ) rounds for s ≤ n. The paper also provides an algorithm
for computing the product of s pairs of rectangular matrices of sizes n × m and m × n,
where the bound on the round complexity is more involved and is not given by an analytic
expression, see Section 3.3 for a discussion. Moreover, we need to compute the product of
square matrices of size smaller than n, which is not covered by the above algorithm.

Before providing intuition about our proof of Theorem 2, we explain what we mean by a
balanced input and how the output should be distributed. Given a set of s pairs of square
matrices Q = {(Si, Ti)}i∈[s] of size k each, where sk2 ≤ n2, we think of the input as a “flat”
array of sk2 entries. The input is distributed as follows. The input given to the first vertex
is the first n entries in this array. The second vertex gets the next n entries and so on. For
the output {(Pi)}i∈[s], where Pi = Si · Ti for i ∈ [s], we again transform the set of output
matrices into a flat array and let each vertex learn distinct consecutive n entries from it. Note
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that as long as each vertex holds unique n entries from the input, and every vertex knows
which entries from the input every other vertex holds, then the input can be redistributed in
O(1) rounds, using Lemma 8. We therefore define a balanced input as such.

▶ Definition 3 (Balanced Input). An input for n vertices is balanced if it is partitioned
between the vertices such that each vertex holds at most n (unique) entries from the input,
and every vertex knows which entries from the input are held by every other vertex.

Now we can give the intuition behind the proof of Theorem 2. We partition the n vertices
into s sets of size n/s each. For every i ∈ [s] we call the i-th set in the partition the i-th team.
The i-th team is responsible for computing the product (Si, Ti) (this partitioning method is
similar to that of [27]). After partitioning, the problem boils down to computing one product
of square matrices of size k using n/s vertices with bandwidth of size s log n, which we solve
by extending the work of [12], which considers only the product of square matrices of size
equal to the number of vertices.

Recall that our main motivation for this tool of Theorem 2 is to implement the algorithm
Find-Cycle. That is, given a graph G with n vertices, we sample s subsets of vertices
(U1, . . . , Us), where each vertex joins each set independently with probability p. Each set
Ui defines an induced subgraph G[Ui] with an adjacency matrix Ai. We need to compute
(Ai)h for every i ∈ [s], and we denote the set Q = {(Ai, Ai)}i∈[s] as the input, where we
assume s ≤ 1/p2. In order to implement the algorithm Find-Cycle using Theorem 2, we need
to show that Q is a balanced input. However, this does not precisely hold, but we can show
a sufficient guarantee of Q being “almost” balanced w.h.p., in which the requirements in
Definition 3 are weakened. These weaker conditions still allow us to quickly redistributed
the elements into a balanced input in O(log n) rounds w.h.p.

To conclude, we obtain a fast algorithm for h-cycle detection, which beats the previous
state-of-the art for odd-length cycles, as well as directed cycles. The algorithm is faster as
the number of copies of h-cycles increases, where the key parameter for the algorithm and
the analysis is the number of vertices in the graph that participate in an h-cycle.

Triangle Detection in the Quantum Congested Clique Model. Our new matrix multiplic-
ation tool turns out to be helpful for additional tasks. In the quantum setting, we obtain
the following in the Quantum Congested Clique model, which is similar to the Congested
Clique model, but the vertices exchange messages of O(log n) qubits in each round instead of
standard bits.

▶ Theorem 4. There exists a Quantum Congested Clique Õ((n/(t2 + 1))3ρ/4)-round algorithm
for triangle detection, with a success probability of at least 1/2.

Due to space considerations, the proof of Theorem 4 is deferred to the full version of
the paper. Theorem 4 obtains a Õ(n3ρ/4)-round algorithm that remains effective even when
t = 0. This is faster than the previous state-of-the-art algorithm from [12], which takes
O(nρ) rounds and does not leverage the additional capabilities that the Quantum Congested
Clique model offers. For subgraphs other than triangles, there are detection algorithms in the
Quantum Congested Clique which use the extra power of the model. For example, [9] provides
an algorithm for larger clique detection. Moreover, in the quantum Congest model, there
are algorithms for clique and cycle detection [32, 26], which are faster than their Congest
counterparts.

Our algorithm uses a Grover search [30], which is a quantum algorithm to find an element
in an unsorted list of size L, while accessing only

√
|L| entries from the list. Generally, given

a function f : X → {0, 1} and a universe X, Grover search is a quantum algorithm which

DISC 2024



12:6 Faster Cycle Detection in the Congested Clique

finds an x ∈ X such that f(x) = 1 (assuming such x exists), by querying f at most
√
|X|

times w.h.p. In [35] a distributed implementation of Grover search was provided, for the
quantum Congest model, which was later extended to the Quantum Congested Clique model
in [31, 9].

We provide an overview of our algorithm, which has two steps. In the first step, we
sample s = 1/t2 random induced subgraphs (U1, . . . , Us), where each vertex joins every set
independently with probability 1/t. We partition the vertices into s sets, each of n/s vertices,
which we call teams. For i ∈ [s], the i-th team uses Grover search to detect a triangle in the
subgraph G[Ui], as follows. It samples ℓ = 8 log n/q3 subsets of vertices (W1, . . . , Wℓ), where
each vertex from Ui joins each set independently with probability 1/q. The universe for the
search is the set X ≜ {G[Wi]}i∈[ℓ], and the boolean function g is defined as g(G[Wi]) = 1 if
G[Wi] contains a triangle, and 0 otherwise.

The correctness of the algorithm follows because if the graph G has t triangles, then
there exists an index i ∈ [s] such that G[Ui] contains a triangle with probability at least 1/10.
The i-th team finds this triangle using

√
1/q3 evaluations of g w.h.p. The final detail of the

algorithm is to set q such that each evaluation of g takes O(1) rounds, which optimizes the
round complexity of this approach.

Our above fast triangle detection algorithm for the Quantum Congested Clique model is
given in the full version of the paper, as well as a discussion on why extending our approach
to h-cycle detection is not straightforward.

Additional Related Work. In this Congested Clique model, matrix multiplication was first
studied by [20]. After the aforementioned works of [12, 27], the work of [13] showed an
algorithm whose running time improves with the sparsity of the input matrices, and [8]
showed algorithms for sparse matrix multiplication which also enjoy the sparsity of the
output or when only a sparse piece of the output is needed.

The task of listing subgraphs has also received great attention in the Congested Clique
model. Here, each vertex needs to output a list of copies of the subgraph H, such that the
union of the lists is exactly the set of all copies of H in the graph. As mentioned, [19] give an
algorithm for listing all h-vertex graphs within O(n1−2/h) rounds. For triangles, this is known
to be tight by [32, 38]. This optimality extends to larger cliques due to [25]. Listing triangles
in sparse graphs can be done faster, as first shown by [38] with a randomized algorithm, and
then followed up by [13] with a deterministic algorithm. Afterward, [11] showed faster sparse
listing for larger cliques, which also has a deterministic algorithm due to [10].

We mention that in the closely-related Congest model, in which the communication graph
is the input graph itself, rather than being a complete network, the state of affairs is in
stark contrast to the Congested Clique model. For listing cliques, optimal algorithms are
known due to [16, 7], with deterministic solutions in [17, 14, 15]. The underlying approach,
initiated by [16], is to construct an expander decomposition, which partitions the vertices
into components with good expansion (low mixing time). At a very high level, the vertices
of each component list cliques for which some edges are inside the component, and then
recurse over the remaining edges. However, for an algorithmic approach of the Congested
Clique model to have a fast implementation in the Congest model, also when using the known
routing procedures [28, 29], the algorithm has to adhere to certain conditions. In other words,
it is not the case that any algorithm in the Congested Clique model can be executed efficiently
by the components of the expander decomposition in the Congest model.

Specifically, we stress that for the detection variant in Congest, the state of the art even
just for triangles is the same as for listing. That is, even the O(nρ) algorithm of [12] does
not have an implementation in the Congest model, and it is unknown how to detect triangles
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in less than the time it takes for listing them (interestingly, the only lower bounds that are
known are that a single round does not suffice [1, 25]). For larger h-cycles, detection for odd
values of h is known to have a complexity of Θ̃(n) [21]. Much work is invest in studying the
complexity of detecting even cycles [21, 34, 10, 22, 9, 39, 26], with the state of the art being
a recent result showing that h-cycles can be detected in Õ(n1−2/h) rounds for even values of
h [26].

Investigations into the subgraph detection problem have also been conducted in additional
models such as the quantum Congest and Quantum Congested Clique models, where vertices
exchange qubits instead of standard bits. In [33], a quantum Congest Õ(n1/4)-round algorithm
for triangle detection was presented, which outperforms the Õ(n1/3)-round Congest algorithm.
This approach was further improved in [9] by developing an Õ(n1/5) rounds quantum
algorithm. Additional upper and lower bounds for cycle detection in the quantum Congest
model were presented in [39, 26]. In [9], an Quantum Congested Clique algorithm for p-clique
detection, for p ≥ 4, was presented, which achieves an Õ(n1−2/(p−1))-round complexity, which
is faster than the classical Congested Clique algorithm. Further research in the quantum
distributed models includes both upper and lower bounds for various problems [23, 31, 39].

There is extensive research about subgraph finding in additional models of distributed
computing. All of these important works are a bit more far from our work here, and hence
we refer the reader to the survey of [6], which contains a recent overview of subgraph finding
algorithms for distributed settings.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}. We denote the base graph by G, its vertices by V (G),
where unless stated otherwise we assume V (G) = [n]. Fix some constant integer h ≥ 0. Let t

denote the number of h-cycles in G, and let VCh
(G) denote the set of vertices that participate

in an h-cycle in G, where we denote by x the size of the set VCh
(G). This parameter plays

a crucial role in the analysis in Appendix A. We establish a connection between the two
parameters x and t as follows.

▶ Definition 5 (δ). For undirected graph, G with t copies of h-cycle, and VCh
(G) = x, we

define δ as such that xh−δ = 2h · t. If G is directed, we define δ as such that xh−δ = h · t.

We present two claims on δ. We show that δ ∈ [0, h− 1], and that the term x−δ is equal to
is the probability for h vertices sampled uniformly at random with replacement from VCh

(G)
to form an h-cycle in G.

▷ Claim 6. Let G be a graph with t copies of an h-cycle and x vertices that participate in
at least one h-cycle. Sample h vertices (v1, . . . , vh) from VCh

(G) uniformly at random with
replacement from VCh

(G). Then the probability that they form an h-cycle is exactly x−δ.

▷ Claim 7. It holds that δ ∈ [0, h− 1].

The proofs of Claims 6 and 7 are deferred to the full version of the paper.

2.1 Additional Tools
▶ Lemma 8 (Lenzen’s Routing Lemma [36]). The following is equivalent to the Congested
Clique model: In every round, each vertex can send (receive) {bi}i∈[n] bits to (from) the i-th
vertex, for any sequence {bi}i∈[n] satisfying

∑n
i=1 bi = O(n log n). In other words, any routing

scheme in which no vertex sends or receives more than O(n) messages can be preformed in
O(1) rounds.
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12:8 Faster Cycle Detection in the Congested Clique

▶ Theorem 9 (Chernoff Bound [18, Corollary 1.10.6.]). Let X1, . . . , Xn be independ-
ent random variables taking values in [0, 1] and X =

∑
i Xi. Let δ ∈ [0, 1]. Then,

Pr [|X − E [X] ≥ δE [X]|] ≤ 2 exp
(
−δ2 · E [X] /3

)
▶ Theorem 10 (Reverse Markov’s inequality [18, (1.6.4)]). Let X be a random variable with
support contained in [0, M ]. Then, for R ∈ R, we have Pr [X > R] ≥ E[X]−R

M−R .

▶ Theorem 11 (FMM-based triangle detection [12]). There is a deterministic algorithm for
triangle detection, which takes O(nρ) rounds.

3 Fast Matrix Multiplication in Congested Clique

3.1 Preliminaries and Balanced Products
In this section, we define the problem of computing s pairs of square matrices of size k

each, as well as defining what is a balance input. We assume throughout the paper that the
matrices are over a field F, where each element can be represented using O(log n) bits. Due
to space constraints, we the proofs of this section are omitted, and can be found in the full
version of the paper. We introduce the following definitions to specify the required input.

▶ Definition 12 (The notations A[i, ∗] and A[∗x∗, ∗y∗]). Let A be some matrix. We denote
the i-th row of A by A[i, ∗]. For a matrix A of dimension n× n and two indices x, y ∈ [

√
k]

for k ≤ n, we also use A[∗x∗, ∗y∗] to denote a matrix of dimension n/
√

k × n/
√

k, which is
the following submatrix of A. For every index v ∈ [n], we split it into three indices v = v1v2v3
where v1, v3 ∈ [n1/2 · k−1/4], v2 ∈ [

√
k]. The expression ∗x∗ then refers to all v for which

v2 = x.

The following definition formally defines the problem of multiple matrix multiplications.

▶ Definition 13 (Product (Q)). Given set of s pairs of square matrices Q = {(Si, Ti)}i∈[s]
of size k × k. In the Product (Q) problem, n nodes need to compute the products of those
pairs of matrices. The input is distributed as follows. Each vertex v ∈ V is assigned a label
ℓ(v) = (i, x, y), where i ∈ [s], and x, y ∈ [

√
n/s]. The vertex v gets as input the submatrix

Si[∗x∗, ∗y∗], Ti[∗x∗, ∗y∗], and has to learn the entries of the submatrix Pi[∗x∗, ∗y∗], where
Pi = Si · Ti for i ∈ [s]. We denote the round complexity of this problem by MM (k, k, k; s).

Note that every vertex can learn the label of each other vertex in O(1) rounds. The following
theorem is the main theorem for this section, in which we provide an upper bound for the
round complexity of the Product (Q) problem.

▶ Theorem 14. For any two integers k, s where k ∈ [
√

n, n] and s ≤ (n/k)2, we have that

MM (k, k, k; s) = O(nρ−2 · k2 · s1−ρ).

To prove the theorem, we first partition the n nodes into s sets of size n/s each. For
every i ∈ [s] we call the i-th set in the partition the i-th team. The i-th team is responsible
for computing the i-th product in Q, i.e., the product (Si, Ti). After partitioning into teams,
the problem boils down to computing one product of square matrices of size k using n/s

node with bandwidth of size s log n. This extends [12], in which only the product of square
matrices of size equal to the number of vertices is considered, and uses [27], in which multiple
products are divided into teams. A crucial step in the algorithm for Theorem 14 is to
compute the product of a single matrix of size R using n′ nodes, which we define next.
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▶ Definition 15 (Single9Product (n′, R)). Let H be a team with n′ vertices. Let S, T be two
square matrices of dimension R for some R ∈ [1, (n′)2], and define P = ST . Each vertex
v ∈ H is assigned a label ℓ′(v) = xy, where x, y ∈ [

√
n′]. The input of each vertex v ∈ H

with label ℓ′(v) = xy is S[∗x∗, ∗y∗] and T [∗x∗, ∗y∗], and its output should be P [∗x∗, ∗y∗]. We
denote this problem by Product (n′, R).

▶ Proposition 16. The Single9Product (n′, R) problem can be solved in the Congested Clique
model with n′ vertices in the base graph and bandwidth B, in O((n′)ρ · (R/n′)2 · F

B ) rounds,
where each entry in R can be represented using O(F ) bits. Using bandwidth B means that in
each round, each vertex in the base graph can send B bits to every other vertex.

3.2 Multiple Products of Random Submatrices
In this subsection, we explain how to use the tools we developed in the previous subsection,
to detect an h-cycle in s induced subgraphs sampled uniformly at random. Specifically, we
explain how to compute the h-th power of the adjacency matrices of those subgraphs.

Let U = (U1, . . . , Us) be a set of subsets of vertices, where each subset is a uniformly
random set. That is, each vertex joins to the set Ui independently and uniformly at random,
with probability p. For each i ∈ [s], we denote the the adjacency matrix of G[Ui] by Ai, and
define Q = {(Ai, Ai)}i∈[s].

We explain how to compute the h-th power of {Ai}i∈[s] in parallel by reducing this
problem into the Product(Q) problem. In other words, we explain how to redistribute the
initial input, into an input for the Product(Q) problem. We show that the reduction takes
O(log n) rounds (Proposition 20) w.h.p., and provide an algorithm that tests whether the
reduction algorithm can be executed in O(log n) or not (Claim 23). The testing algorithm
takes O(1) rounds. In case the testing algorithm indicates that we sampled a set U for which
the reduction takes more than O(log n) rounds, we discard the current sample set U , and
sample a new set. We also prove that w.h.p. we will not have to discard the sampled set
(Claim 22).

In Section 3.1, we described an algorithm to compute the product of s pairs of matrices of
size k each. Here, we describe an algorithm to compute the product of 1/pa pairs of matrices
of size at most 4np each. The connection between the parameters s, k, p and a is as follows.
We set k = 4np, and s = 1/pa where a ∈ [0, 2]. We get that sk2 ≤ n2 as desired. We provide
a definition for a set U for which we can redistribute the input in O(log n) rounds. We call
such a set a p-balanced set.

▶ Definition 17 (p-Balanced Set). Given is a parameter p. Let U be a set of subsets of
vertices from V (G). Let a be a constant for which |U| = p−a. We say that U is a p-balanced
set if all the following conditions hold:
1. a ∈ [0, 2] (so |U| ≤ (1/p)2).
2. n−1/2 ≤ p ≤ 1.
3. Every vertex v ∈ V (G) belongs to at most ⌈|U| · p⌉4 log n =

⌈
p1−a

⌉
4 log n sets in U .

4. Every set U ∈ U is of size at most ⌈4np⌉.
Note that (1) and (2) imply that |U| ≤ n.

The next claim proves that if U = (U1, . . . , Up−a) is a p-balanced set, then every vertex v

can learn the IDs of all vertices in Uj for each set Uj to which v belongs.

▷ Claim 18. Let U = (U1, . . . , Up−a) be a p-balanced set, where every vertex knows to which
Uj it belongs. There is an O(log n)-round Congested Clique algorithm that allows each vertex
to learn the IDs of all vertices in Uj for each set Uj to which v belongs.
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In what follows, we explain how to route the input of a p-balanced set U , after each
vertex learns the IDs of all vertices in Uj for each set Uj to which v belongs, to match the
input of the Product(Q) problem. This routing takes O(log n) rounds. Before providing a
routing algorithm, we introduce new notation that we need in order to explain how the input
is routed.

▶ Definition 19 (The notation A[i, Uj ]). Recall that V = [n], and let Uj ⊂ V , and let i be
some vertex in Uj. Let Aj be the corresponding adjacency matrix of Uj. For vertex i in the
set Uj we define A[i, Uj ] as the submatrix of A, which contains only the i-th row, and all k

columns, for k ∈ Uj.

▶ Proposition 20 (Redistributing the Input). Given a parameter p, let U ≜ (U1, . . . , Up−a)
be a set of subsets of vertices from V (G) which is a p-balanced set. For each i ∈ [p−a],
let Ai be the adjacency matrix of the induced graph G[Ui]. Label each vertex v ∈ [n] as
ℓ(v) ≜ (x, y, i) ∈ [

√
npa]× [

√
npa]× [p−a] . Partition the vertices into p−a teams, each of

size n · pa, where the j-th team contains all vertices v with label ℓ(v) = (x, y, i) such that
i = j. Then, in parallel, each vertex v with label ℓ(v) = (x, y, i) can learn Ai[∗x∗, ∗y∗] in
O(log n) rounds.

The next corollary address the detection of an h-cycle in one of the sampled graphs. It
follows from Proposition 20 and Theorem 14. The algorithmic aspects of this corollary are
presented in Appendix A.

▶ Corollary 21. Given r and p, let U = (U1, . . . , Ur) be a set of subsets of vertices from
V (G), where U is a p-balanced set, and every vertex in G knows whether it belongs to Uj

for every j ∈ [s]. For each i ∈ [p−a], let Ai be the adjacency matrix of the induced graph
G[Ui]. Label each vertex v ∈ [n] as ℓ(v) ≜ (x, y, i) ∈ [

√
npa]× [

√
npa]× [p−a] . Then, for

every integer h, in parallel, each vertex v with label ℓ(v) = (x, y, i) can learn (Ai)h[∗x∗, ∗y∗]
in O(log(h) · nρ · p2+a(ρ−1) + log n) rounds.

The remainder of this subsection shows that a set U of uniformly random subsets of
vertices is a p-balanced set w.h.p. We also provide an algorithm to test whether a set of
subsets of vertices is a p-balanced set in a constant number of rounds. We create s ≜ p−a

subsets of vertices, by letting each vertex join each set independently with probability p

(each vertex knows p and a). We denote the sets by U = (U1, . . . , Us), and show that U
is p-balanced w.h.p., and that the vertices can determine whether this is the case in O(1)
rounds. If U is indeed p-balanced then in O(log n) rounds each vertex can learn the IDs of
all vertices in each set Uj to which it belongs. This is

▷ Claim 22. U is balanced with probability at least 1− 2/n3.

▷ Claim 23. There is a Congested Clique algorithm that decides if U is p-balanced in O(1)
rounds.

3.3 Rectangular Matrices
Here we set the ground for computing the product of two rectangular matrices in Congested
Clique. We build on the work of [27], which shows that computing the product of two
rectangular matrices S, T of size n× nβ0 and nβ0 × n respectively takes O(no(1)) rounds.
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▶ Definition 24 (Rectangular matrix multiplication RM (S, T )). Given two matrices S, T of
dimension n×nz and nz ×n where z ∈ [0, 1], the RM (S, T ) problem is to compute P = S ·T
in the Congested Clique model with n nodes. The input of each vertex i ∈ [n] is S[i, ∗] and
T [∗, i], and its output should be P [i, ∗]. We abuse the notation and use it also to denote the
complexity of the problem by MM (n, n, nz) or RM (nz).

▶ Remark 25. For two matrices S, T of size nz × n and n× n (or n× n and n× nz), we get
the same round complexity [24, Theorem 6]. In this case, we assume the input is of each
vertex i ∈ [n] is S[∗, i] and T [∗, i], and its output should be P [i, ∗].

▶ Definition 26 (The exponent of matrix multiplication). The exponent of the sequential
complexity of computing the product of two matrices of dimensions n × nz and nz × n

respectively is denoted by ω(z). We denote by O(nρ(z)) the round complexity of computing
this product in the Congested Clique model. Let α0 = limε→0 sup {z | ω(z) ≤ 2 + ε} , and
β0 = limε→0 sup {z | ρ(z) = ε}. Then α0 ≥ 0.321334 [40] and β0 ≥ (1 + α0)/2 ≥ 0.660667
[27, 40].

We would like to upper bound the function ρ(z) by some analytic function, which is easy to
work with. To do so, we use the following notation.

▶ Definition 27 (The notation B, A). We will use B, A for two real non-negative constants
such that, for every y ∈ [0, 1− β0] we have ρ(1− y) ≤ B− Ay.

We give two explicit linear functions which bound the function ρ(1− y). First, if the function
ρ(z) is convex, then we can set A = ρ(1)/(1− β0) and B = ρ(1), by taking the line passing
through the points (β0, ρ(β0)) and (1, ρ(1)). This is of course the “best” (minimizing l∞
norm) linear function that upper bounds the function ρ(1 − y). Yet, proving that ρ(z) is
convex is beyond the scope of this paper. Instead, the following claim is an additional explicit
linear function we provide, which does not assume that ρ(z) is convex.

▷ Claim 28. We can set A = 0.4617 and B = 0.1567.

The proof of Claim 28 (appears in the full version) is numeric: We build a step function
which is always above ρ(z), and then find a line which is above the step function in the
desired range. For any choice of B, A that fits Definition 27 and any p ∈ (0, 1) we have
RM (np) = O(nρ(1−logn(1/p))) ≤ O(nB−A·logn(1/p)) = O(nB ·pA). Thus, by the above discussion
and by Claim 28 we get the following.

▶ Conclusion 1. For p ∈ (0, 1) we have RM (np) ≤ O(n0.1567 · p0.4617) . If ρ(z) is convex, we
have RM (np) ≤ O(nρ · pρ/(1−β0)).
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A h-Cycle Detection

In this section, we prove the following theorem.

▶ Theorem 1 (h-Cycle Detection). Let G be a (directed) graph with t copies of h-cycles.
There is a randomized Congested Clique algorithm for h-cycle detection, which takes Õ(hO(h) ·
n0.1567/(t

0.4617
h−1.82408 + 1)) rounds w.h.p.

We do so by presenting two algorithms and analyzing their running time and success
probability as a function of the parameters n, t, and x. Figure 2 depicts their running times.
All the proofs, and implementation details are omitted due to space constraints and can be
found in the full version of the paper.

Before presenting the algorithms, we overview the color-coding technique [4], which is
a common method used to find paths or cycles of constant length h. To detect an h-cycle,
first color the vertices of the graph using h colors, where each vertex is colored uniformly at
random and independently of all other vertices. Then look for a colorful h-cycle, which is an
h-cycle with exactly one vertex of each color. This provides additional structure, which a
detection algorithm can benefit from. However, not every coloring induces a colorful h-cycle,
which means that to detect an h-cycle, we might have to repeat this experiment multiple
times, until we sample a coloring that induces a colorful h-cycle.

In more detail, given a graph G with n vertices, we sample a uniformly random coloring
φ : V → [h], which means that φ colors each vertex uniformly independently at random. We
then build the auxiliary graph Gφ which is a directed graph, as follows.

▶ Definition 29 (Gφ). Given a graph G, and a coloring φ : V → [h], we define a
new directed graph Gφ on the same vertex set, with a set of directed edges E(Gφ) ≜
{(u, v) ∈ E(G) | φ(v) = (φ(u) + 1) mod h}. That is, only a subset of the edges is kept,
and it consists of the edges from the vertices of color i to the vertices of color (i + 1) mod h,
for i ∈ [h].
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Theorem 1

Figure 2 An illustrative comparison between our results and prior work, for the case of triangles.
For each algorithm, we plot the base-n logarithm of the number of rounds as a function of the base-n
logarithm of the number of triangles. An additional axis represents the value of δ ranging from 0 to
2. For a fixed t, Find-Cycle performs faster as δ decreases, with its round complexity depicted by the
area shaded in teal. Conversely, Find-Vertex-In-Cycle performs better as δ increases, and its round
complexity is shown by the area shaded in violet.

The graph Gφ has the property that every walk of length smaller than h is a simple path,
and every closed walk of length h is a cycle. Here, a walk of length h on a (directed) graph
is a sequence of vertices (v1, v2, . . . , vh+1) not necessarily distinct, such that for i ∈ [h] we
have that (vi, vi+1) is an edge in G. We say that a walk is a simple path if all the vertices in
the walk are distinct. A walk (v1, v2, . . . , vh, vh+1) is closed if v1 = vh+1.

We explain how we benefit from the property that every closed walk of length h in Gφ is
a cycle. Let Aφ denote the adjacency matrix of Gφ. We can compute the h-th power of the
matrix Aφ, and look at the diagonal of the obtained matrix. Then, Gφ is h-cycle free if and
only if all the entries on the diagonal are equal to 0. Clearly, if G does not contain an h-cycle,
then for any coloring φ, we have that Gφ does not contain an h-cycle. The more interesting
property of this random coloring is that if G contains an h-cycle, then the probability that
Gφ contains one is at least 1/hh, as we prove next.

▷ Claim 30. Let G be a graph with at least one h-cycle. Let φ : V → [h] be some uniformly
random coloring. Then Gφ contains an h-cycle with probability at least 1

hh .

A.1 The Algorithm Find-Vertex-In-Cycle
We explain how to detect an h-cycle in time O(MM (n, n, n/x)·log2 n) w.h.p., with a one-sided
error, as stated in the next theorem.

▶ Theorem 31. There exists a randomized Congested Clique algorithm to detect an h-cycle
in time Õ(MM

(
n, n, n

x

)
) w.h.p., with a one-sided error.

Let G be a graph with n vertices and t copies of an h-cycle, for a fixed constant h. For a
graph H, we denote by VCh

(H) the set of vertices that participate in an h-cycle in H. Let
x = |VCh

(G)|. We prove Theorem 31 by analyzing the following random process.
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Find-Vertex-In-Cycle. The input of the algorithm is a graph G and some value p ∈ [0, 1].
The output is “True” if at least one h-cycle is detected, and “False” otherwise. The algorithm
works as follows. The algorithm samples a coloring φ : V (G)→ [h], uniformly at random,
and uses it to define a new auxiliary graph Gφ, as explained in Definition 29. Let Vi denote
the set of vertices in Gφ that are assigned the color i, for i ∈ [h]. The algorithm then samples
a subset of vertices from V1, by sampling each vertex independently with probability p. Let
U1 denote the set obtained. Define Fφ as the induced subgraph of Gφ with the vertex set
U1 ∪

⋃h
i=2 Vi. Let AFφ denote the adjacency matrix of the graph Fφ. Next, the algorithm

exactly counts the number of h-cycles in Fφ using rectangular matrix multiplication. That
is, it computes the trace of the h-th power of AFφ

, and outputs “True” if it is not zero,
and “False” otherwise. Clearly, this can be computed by first computing the h-th power of
AFφ

, and then computing its trace, which takes O(MM (n, n, n)) rounds. However, a faster
well-known way to compute this trace, without computing the h-th power of AFφ , is as
follows. Compute the following product:

AFφ
[U1, V2] ·AFφ

[V2, V3] · · ·AFφ
[Vh−1, Vh] ·AFφ

[Vh, U1] ,

where for S, T ⊆ V the matrix AFφ
[S, T ] denotes the rectangular matrix with |S| rows and

|T | columns, every for every s ∈ S and T ∈ t we have that (AFφ [S, T ])s,t = 1 if (s, t) ∈ E(Fφ)
and 0 otherwise. This matrix is also called the biadjacency matrix. The order in which the
multiplications are computed affects the round complexity. The algorithm computes this
product by sequentially multiplying a rectangular matrix of size at most 4np×n and a matrix
of size at most n × n, to get a new matrix of size 4np × n. In other words, the algorithm
first computes the product AFφ [U1, V2] · AFφ [V2, V3], to obtain some matrix B2, and then
computes the product B2 · AFφ

[V3, V4]. In this way, the algorithm does not multiply two
square matrices of size n, and can benefit from the fact that it only computes the product
of one smaller rectangular matrix with a square one. This completes the description of the
algorithm.

Clearly, the algorithm never outputs “True” if the graph G is h-cycle free. In what follows,
we give a lower bound on the probability that it outputs “True” when the graph has h-cycles.

▷ Claim 32. If the sampling probability of vertices from V1 into U1 satisfies p ≥ 4hh

x , then
the algorithm outputs “True” with probability at least 1

4hh .

The implementation of the algorithm in the Congested Clique model appears in the full
version of the paper.

A.2 The Algorithm Find-Cycle
In the next two subsections, we explain how to prove the following theorem.

▶ Theorem 33. There exists a randomized Congested Clique algorithm to detect an h-cycle
in time Õ(MM

(
n
x , n

x , n
x ; xδ

)
) w.h.p., with one-sided error.

Recall that G is a graph with n vertices and t copies of an h-cycle for h = O(1). For a
graph H, we denote by VCh

(H) the set of vertices that participates in an h-cycle in H. Let
x = |VCh

(G)|. We also use δ for the solution for xh−δ = 2ht satisfies that δ ∈ [0, h− 1].

▶ Remark 34. Recall that MM
(

n
x , n

x , n
x ; xδ

)
= O(nρ · x−(2+δ(ρ−1))), by Corollary 21.

We prove Theorem 33 by analyzing the following random process.
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Find-Cycle. The input of the algorithm is a graph G A graph G, a value p ∈ [0, 1], and a
value a ∈ [0, 2]. The output is “True” if at least one h-cycle is detected, and “False” otherwise.
The algorithm works as follows.
1. Sample uniformly at random a coloring φ : V → [h].
2. Sample r ← 8(4h)h+2 · p−a subsets of vertices U = (U1, . . . , Ur), where each vertex joins

Ui independently with probability p for i ∈ [r].
3. For every U ∈ U , define two graphs. The first one is the induced graph F = G[U ], and

the second one is the colored directed graph Fφ, obtained from applying φ on F . Denote
the adjacency matrix of Fφ by MU .

4. For U ∈ U , compute the trace of the h-th power of the matrix MU , and output “True” if
for at least one set U , this trace is not zero. Otherwise, output “False”.

Fix some set U ∈ U , and a random coloring φ, and let F = G[U ], and Fφ = (G[U ])φ. We
prove that for p ≥ 1/x, the subgraph Fφ contains an h-cycle with probability Ω

(
x−δ

)
. For

that, it suffices to prove that if p ≥ 1/x then F contains an h-cycle with probability at least
1

xδ·(4h)h+1 : We proved in Claim 30 that if F contains an h-cycle then Fφ contains an h-cycle
with probability at least 1

hh . In the next proposition, we prove that the subgraph F contains
an h-cycle with probability at least 1

xδ·(4h)h+2 , if p ≥ 1
x .

▶ Proposition 35. If p ≥ 1
x , then F contains an h-cycle with probability at least 1

xδ·(4h)h+2 .

To prove the above, we use the second moment method [3, Theorem 4.3.1]. The proof of the
proposition, as well as the implementation of the algorithm in the Congested Clique model, is
deferred to the full version of the paper.

A.3 Wrap-Up: Fast Cycle Detection

In this subsection, we wrap up to prove our fast algorithm for h-cycle detection, when
h = O(1), in both undirected and directed graphs. Our algorithm is the fastest for odd cycle
detection when the number of cycles is super polylogarithmic, and for h-cycle detection in
directed graphs, when the number of h-cycles is super polylogarithmic. For graphs with
small t, our algorithm has the same running time as the fastest algorithm for multiplying
two matrices of size n×n, and our running time is never worse than it up to polylogarithmic
factors.

▶ Theorem 1 (h-Cycle Detection). Let G be a (directed) graph with t copies of h-cycles.
There is a randomized Congested Clique algorithm for h-cycle detection, which takes Õ(hO(h) ·
n0.1567/(t

0.4617
h−1.82408 + 1)) rounds w.h.p.

Let R(G) denote the round complexity of Theorem 1. Let R1(G),R2(G) denote the
round complexity of the algorithms in Theorem 33 and Theorem 31 respectively. To prove
Theorem 1, we show that for every graph G with n vertices and t copies of an h-cycle, we
have min {R1(G),R2(G)} ≤ R(G). To show that, we use a case analysis. Recall that x

denotes the number of vertices in G that participate in an h-cycle, and that xh−δ = 2ht. We
show that if δ ≥ 1.82408, then R2(G) ≤ R(G), and if δ ≤ 1.82408, then R1(G) ≤ R(G).

The theorem then follows, as we can run the algorithms Find-Cycle and Find-Vertex-In-Cycle
one step at a time, until one of them detects a triangle.

Proof of Theorem 1.
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The Case δ ≥ 1.82408. The execution of the algorithm Find-Vertex-In-Cycle takes
MM

(
n
x , n, n

)
rounds, where MM

(
n
x , n, n

)
≤ nB ·x−A by Definition 27. Since we assumed that

δ ≥ 1.82408, we have x = (2ht)1/(h−δ) ≥ t1/(h−1.82408). We get that R2(G) ≤ nB · t− A
2−1.82408 .

By plugging in A = 0.4617, B = 0.1567, (see Claim 28) we get that the round complexity is
bounded by n0.1567 · t− 0.4617

2−1.82408 , which completes the proof of this case.
The Case δ ≤ 1.82408. The execution of the algorithm Find-Vertex-In-Cycle takes
MM

(
n
x , n

x , n
x ; xδ

)
rounds, where

MM
(n

x
,

n

x
,

n

x
; xδ

)
=O(nρ/x2+δ(ρ−1))

=O(nρ/t
2+δ(ρ−1)

h−δ )

≤O(nρ/t
2+1.82408(ρ−1)

h−1.82408 )

≤O(n0.1567 · t
0.4617

h−1.82408 )

The first equality follows from Theorem 14. The penultimate inequality follows since the
function δ 7→ 2+δ(ρ−1)

h−δ is monotonically decreasing in the range δ ∈ [0, 1.82408]. The last
inequality follows by setting ρ← 0.1567, which completes the proof. ◀
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