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Cerebellar associative learning underlies
skilled reach adaptation
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The cerebellumis hypothesized to refine movement through online
adjustments. We examined how such predictive control may be generated
using amouse reach paradigm, testing whether the cerebellumuses
within-reach information as a predictor to adjust reach kinematics. We first
identified a population-level response in Purkinje cells that scales inversely
with reach velocity, pointing to the cerebellar cortex as a potential site linking
kinematic predictors and anticipatory control. Next, we showed that mice can
learnto compensate for a predictable reach perturbation caused by repeated,
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closed-loop optogenetic stimulation of pontocerebellar mossy fiber inputs.
Both neural and behavioral readouts showed adaptation to position-locked
mossy fiber perturbations and exhibited aftereffects when stimulation was
removed. Surprisingly, position-randomized stimulation schedules drove
partial adaptation but no opposing aftereffects. Amodel that recapitulated
these findings suggests that the cerebellum may decipher cause-and-effect
relationships through time-dependent generalization mechanismes.

Cerebellar damage and disease lead to motor abnormalities such as dis-
coordination, dysmetricmovement endpoints and theinability toadapt
movements to new conditions'®. This array of symptoms suggests that
the cerebellum may improve motor control by learning anticipatory
controlsignals, such as those that mediate predictive control” . Cer-
ebellar learning paradigms, such as classical conditioning and motor
adaptation, have provided cluesinto the neurobiological basis of these
learned anticipatory signals™. Delay eyeblink conditioning, for example,
illustrates how neutral conditioned stimuli paired with reflex-eliciting
unconditioned stimuli become predictive cues eliciting conditioned
responses (for example, a tone repeatedly paired with a corneal air
puffeventually elicits a predictive eyeblink). Mechanistically, neutral
cues can be replaced fully by cerebellar mossy fiber stimulation'>* and
unconditioned stimuli can be replaced fully by climbing fiber stimula-
tion". Climbing fibers elicit complex spikes (Cspks) in Purkinje cell (PC)
dendrites*** that, over many trials, reduce parallel fiber efficacy onto
PCs, leadingtofiringrate pauses at the predicted time of the uncondi-
tioned stimulus. Through subsequent disinhibition of the cerebellar
nuclei, these pauses then drive anticipatory conditioned responses.
Similar mechanisms are proposed to underlie motor adaptation, where

adaptive changes to behavior, which are consistently associated with
instructive Cspks, are attributed to reweighting of sensorimotor infor-
mation conveyed to the cerebellum'®™,

Key differences, however, between motor adaptation and clas-
sical conditioning raise important questions about sites of learning.
For example, skilled movements, such asreach, involve both cerebral
cortexand cerebellum, both of which may change with adaptation® >,
Thus, learning-related changes in cerebellar Purkinje firing could be
inherited from the cerebral cortex, generated by cerebellar plasticity
or both**. More generally, perturbations that drive motor adapta-
tion*>*?*?” engage sensorimotor feedback loops at multiple levels of
the nervous system. This complicates the view that cerebellar input-
output remapping explains adaptation fully because inconsistent
cerebellar inputs, caused by learning at sites outside the cerebellum,
would deprive associative mechanisms of a stable cue.

Here, weleveraged arecent discovery that acute disruption of cer-
ebral cortical input to the cerebellum impairs skilled reach kinematics®.
We reasoned that, because mossy fiber stimulation can be used as an
associative cue in delay eyelid conditioning and is hypothesized to be
remapped in motor adaptation, we could explicitly link these roles by
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using optogenetic activation of cerebellar inputs to both perturb and
predictively cue skilled reach adjustments. We monitored kinematic
and neurophysiological signatures of learning while applying repeated
optogenetic manipulations of mossy fibers in closed loop with reach,
triggered at either consistent or randomized kinematic landmarks. A
cerebellar model of timed adaptation withinamovement recapitulated
our key experimental findings and gives mechanistic insight into the
circuit properties underlying cerebellar reach adaptation. Together,
these experiments unify the frameworks of cerebellar associative learn-
ing and motor adaptation in skilled movements, an important step in
understanding mechanisms of motor learning and predictive control.

Results
A PC population code tuned to reach velocity
Neuronsintheanteriorinterposed nucleus fire proportionally toreach
velocity and scale limb deceleration causally, such that the limb lands
ontarget despiteinitial kinematic variability*?. To determine whether
upstream PCs may drive these decelerative bursts in the cerebellar
nuclei, we combined kinematic and electrophysiological recordings
in mice engaged in a skilled, head-fixed reach task. After mice were
proficient at the task, we recorded reach kinematics with high-speed
cameras viaaninfrared-reflective marker affixed to the mouse’s hand
(Fig. 1a and Extended Data Fig. 1). Acute recordings in the cerebellar
cortex were made simultaneously, using either single electrodes or
Neuropixel probes (Fig. 1a and Supplementary Video 1). Recordings
were targeted to a cerebellar cortical site situated between lobules 4
and 5andthelobule simplex knownto influence forelimb movements
inmice". Confirmed PCs were identified by the presence of Cspks and
anassociated simple spike pause, whereas putative PCs were identified
asneuronswithafiring rate of >40 spikes s, coefficient of variation 2
(CV2) of >0.20 and median absolute difference from the medianinter-
spike interval (MAD) of <0.008 (Methods; Extended Data Fig. 2). For
many of the analyses below, we pooled confirmed and putative PCs,
and refer to them simply as PCs, because simple spike statistics are
unique to PCsrelative to all other known cerebellar cortical cell types.
We note the caveat that future studies may uncover new cell types that
are inadvertently included in our analyses. Therefore, supplemental
datarestricted to confirmed PCs are also provided for select analyses.
We found that activity inmany PCs was highly modulated around
the time of the reach across cells and sessions (Fig. 1). To test the pre-
diction that decelerative signals in the cerebellar nuclei derive from
Purkinje neuron activity patterns during reach, we first sought to
understand whatindividual PCs encode. We used least absolute shrink-
age and selection operator (LASSO) regression to model PC simple

spike firing rate using limb kinematics on a trial-by-trial basis, with a
tenfold crossvalidation step to avoid overfitting (Fig. 1b; Methods)*°.
On average, kinematics of the limb alone could explain a modest
18.0 + 0.01% (mean + standard error of the mean) of the variance in
simple spike firing rate on individual trials, although trial-averaged
datawasamuch closer fit (58.0 + 0.01%; Fig.1c,d), consistent with other
studies of PC simple spike tuning to limb movements in primates® .
Kinematic encoding was not a result of generic movement-related
modulation but was specific to the kinematics of individual reaches, as
demonstrated by two control analyses: first, a ‘reach-shuffled’ control
reassigned PC firing to different reaches; and, second, a ‘spike-shuffled’
control, where simple spike times on each trial were time shuffled and
regressed against kinematics. In both cases, regression performance
on the empirical data was significantly higher than the shuffled con-
trols, indicating simple spike firing rates encode reach kinematicsona
reach-by-reach basis (Fig.1d; N=11animals, n = 465 cells; for empirical
versus reach shuffle, P=1.1x 107", weights (W) =103,803, correlation
coefficient (r) = 0.83; for empirical versus spike shuffle, P= 6.9 x 1078,
W=108,331, r = 0.87; Wilcoxon signed-rank test). The regression model
performance was stable across the spatial trajectory of reaches, sug-
gesting kinematic encoding is continuous in individual cells (Fig. 1e).
Comparable values were seen in Cspk-identified PCs (Extended
Data Fig. 3f,g; N=8 animals, n = 59 cells; for empirical versus reach
shuffle, P=4.4 x10™, W=1,758, r= 0.86; for empirical versus spike
shuffle, P=2.4 x10™, W=1,770, r= 0.87; Wilcoxon signed-rank test).
To assess which kinematic variables in the regression model were the
mostimportant in modeling simple spike firing rate, we repeated the
regression with each variable independently time shuffled and meas-
ured the changein variance explained relative to the complete model*®
(Extended DataFig.3d,e,h,i). Positional terms—outward, upward and
lateral—each accounted for approximately 10% of the explained vari-
ance of the complete model, with each of the remaining 20 variables
accounting for <5%, although there was a wide variety in the relative
importance of different kinematic variables across cells. These meas-
urements are roughly consistent with PC-limb kinematic relationships
observed in primates®**; however, the relatively weak encoding on
individual trials obscures how the cerebellum might influence control
over movements to make them smooth and accurate.

Asnoted previously, PC simple spike rates fluctuate during move-
ments, with modulations that are either predominately positive or
negative® 8, 0f 465 PCsrecorded during reach, 226 displayed increases
inactivity during the reach epoch and 239 showed a decrease (Fig. 1f).
When segregated into groups that predominantly increase or decrease
rates during reach, both populations had lower firing rates during faster

Fig.1|Net population activity in PCs predicts reach velocity. a, Schematic
diagram of conceptual framework and experimental paradigm. Predictions
computed by the cerebellum are hypothesized to be learned through
reweighting of cerebellar inputs, including copies of motor commands,
instructed by changes in climbing fiber activity. PCs of the deep central sulcus
were recorded with either single electrodes or Neuropixel probes while the
reaching hand was tracked in real time with high-speed cameras. b, Kinematic
regressors in multilinear LASSO regression were used to model firing rates
onindividual reaches across sessions. ¢, Examples of three PCs fit with LASSO
regression. Top, trial-averaged empirical and LASSO-predicted firing rates.
Bottom, outward position and velocity aligned to firing rate at optimal lag.

d, Modest single-trial R?for single cells in empirical, reach-shuffled and spike-
shuffled LASSO regressions. P=1.1x 107! for empirical versus reach shuffle,
P=6.9 x107 for empirical versus spike shuffle; Wilcoxon signed-rank test.

e, Absolute model error (empirical versus predicted, across outward, upward
and lateral positions) as a function of reach position. Stable error suggests
continuous encoding of reach kinematics across reach epoch. Positions binned
at 0.1cm.f, During reach (kinematics, green), PCs group roughly into cells that
increase firing rate (red) and cells that decrease firing rate (blue), aligned to the
time the hand passed the ‘threshold’, 1cmin the outward direction. g, Simple

spike firing rate modulation during reaches grouped by reach speed. Cells that
increase (red) and decrease (blue) firing rate both showed lower firing rates
during faster reaches. Dashed lines represent time of peak rate modulation.

h, Pooling all PCs reveals net firing rate suppression that scales with reach
velocity percentile. Top, binned reach velocities associated with recordings.
Bottom, net PC population firing rate change for each reach velocity bin.

i, Magnitude of net firing rate suppression in total PC population as a function
of outward velocity. Firing rate during the suppression in population activity
was strongly negatively related to reach velocity. P= 4.0 x 10*; linear regression.
j, Time of population suppression is intermediate between peak outward
acceleration and peak outward velocity, preceding deceleration. Plot relates
the median timing of reach start, peak outward acceleration, peak outward
velocity and peak outward deceleration to the time of population simple spike
suppression for each reach velocity bin shown ini. Sample size: N =11animals,
n=465cells.*P<0.05. All error bars and bands represent mean + s.e.m. In box-
and-whisker plots, box denotes median and 25th-75th percentiles, whiskers
denote 10th and 90th percentiles; circle indicates mean. CbN, cerebellar nuclei;
CS, complex spike; 10, inferior olive; MF, mossy fibers; SS, simple spike; FR, firing
rate; max, maximum; pos., position; s.e.m., standard error of the mean; Sspk,
simple spike; vel., velocity.
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reaches relative to slower reaches (Fig. 1g; highest peak velocity). The Populations of -40 PCs converge onto single nuclear cells®. In the
peak rates of the population of positively modulated cells preceded oculomotor vermis—where heterogenous rate modulation profiles
negatively modulated cells (dashed verticallines, ~220 ms difference),  of PCs strongly resemble the patterns we saw during reach—group-
raising the question of how these subpopulations collaborateasagroup.  ing PCs into populations across classes revealed much stronger
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kinematic relationships with saccades®*°. Speculating that similar
population-encoding principles may be seenin reach-related PCs, we
next grouped all PCs across all animals and looked at average activity
forreaches binned by outward velocity. Firing rate increases were fol-
lowed by sharp dropsinnetactivity during the reach epoch thatscaled
with the velocity of outreach (Fig. 1h). Quantifying the minimum simple
spike firing rate during the reach window (Methods) showed a strong
negative relationship with outreach velocity, such that the popula-
tion showed a suppression of activity that scaled with reach velocity
(Fig. 1i; N=11animals, n =465 cells, 2,100 reaches, 11,806 reach-cell
pairs; coefficient of determination (R?) = 0.99, slope = -0.094, with
95% confidence interval [-0.111,-0.077], P= 4.0 x 10™*, F=307.5). This
observation held in the Cspk-identified PC subpopulation, with sig-
nificantly deeper rate modulation on faster reaches (Extended Data
Fig.3j,k; N=8animals, n =59 cells,n=1,003 reaches, 1,665 reach-cell
pairs; P=3.7 x10%, W= 325,815, r=0.068; Wilcoxon signed-rank test).
Thetiming of rate suppression was intermediate between peak outward
acceleration and peak outward velocity, just before the transitionto the
decelerative phase of reach (Fig. 1jand Extended Data Fig. 31). Notably,
eachvelocity percentile contained equal populations of positively and
negatively modulated neurons. These data suggest that PC suppres-
sion scales in a way that is the inverse of decelerative nuclear bursts
that slow the limb causally.

In summary, we found that individual PCs are privately and mod-
estly tuned to specific kinematic features of reach but weakly related to
previously observed patterns of firing in the cerebellar nuclei. Yet, at the
populationlevel, PCactivity shows scaled suppressioninactivity shortly
before deceleration, consistent with a disinhibitory mechanism driving
decelerative burstsinnuclear cells. We hypothesize that this firing rate
suppression may be mechanistically akin to conditioned responses
seenin delay eyeblink conditioning—learned rate changes that produce
anticipatory movementsin response to predictive cues. Both the precise
timing and scaling of the population activity suppression observed here
are consistent with learned cerebellar responses linked to motor and
sensory contingencies to control movement. As such, this behavior
offersaunique opportunity to test theories relating motor adaptation
to associative learning in service of skilled movement'$**,

Cspks signal movement onset and reach outcome

To probe mechanisms that might shape cerebellar cortex scaling of
outputasafunction of kinematics, we firstidentified cerebellar record-
ings with Cspks, the drivers of learning in PCs. Cspks could be sorted
stably across the experimentin 59 of 465 putative PCs, 58 of which had
Cspks during the perireach window (-1-s window centered on reach;
Methods). Cspk probability increased shortly before movement onset,
consistent with reports of early synchronized Cspk activity occurring at
movementinitiation***, then dropped near steady-state levels (Fig. 2a;
P=3.3x107 F=2.6,repeated measures (RM) one-way analysis of vari-
ance (ANOVA); mean Cpsk probability versus -500-msbin, P=7.1x10™,
Cohen’sd (d) =-0.62, Dunnett’s multiple comparisons test). Inaddition,
awideliteraturerelates late Cspks occurring after movement initiation
to movement errors and sculpting of simple spike rates during move-
ment. Therefore, we analyzed the kinematics of reaches with early or
late Cspks (Methods). Trials with late Cspks had distinct kinematics
compared with trials without late Cspks, showing significantly deviated
endpoints (Fig. 2b—e, N=8 animals, n = 58 cells; Euclidean distance
from session median for no Cspk trials versus Cspk trials, P=8.1x107*,
W=-847,r=-0.43, Wilcoxon signed-rank test) but not peak velocity
(Fig.2f; P=0.81,t=0.24,d = 0.032, paired t-test). By contrast, reaches
with early Cspks had no discernable kinematic differences (Extended
DataFig.4a,b; N=8 animals, n = 58 cells; Euclidean distance from ses-
sion median for no Cspk trials versus Cspk trials, P= 0.32, W=-257,
r=-0.13, Wilcoxon signed-rank test; peak velocity for no Cspk trials
versus Cspktrials, P=0.75,t=0.32,d =-0.042, paired t-test), although
we cannot rule out changes in reaction time*>*°,

To test whether PC tuning is unique on Cspk trials, indicative of an
encoding error, we compared simple spike rates on Cspk and non-Cspk
trials for early and late Cspks. Across neurons, simple spike rate was
significantly elevated on late-Cspk trials (Fig. 2g,h; no-Cspk trials versus
Cspk trials, P=2.8 x10™,t=3.9,d=-0.51, paired t-test), and this eleva-
tionled toashiftin therelationship of simple spike rate toreach velocity
(Fig.2i; no-Cspk trials versus Cspk trials, P=1.0 x 1073, W=-833,r=-0.42,
Wilcoxon signed-rank test). Trials with early Cspks did not show ele-
vated simple spike rates during outreach or changes in the relationship
between simple spikes and reach velocity across sessions (Extended Data
Fig. 4c-e; simple spike rate during outreach, for no-Cspk trials versus
Cspktrials, P=0.37,t=0.90,d =-0.12, paired t-test; simple spike rate to
peakvelocity ratio, for no-Cspk trials versus Cspktrials, P=0.29, W=-273,
r=-0.14, Wilcoxon signed-rank test). Cspks functiontodepress PCinputs,
leading to reductions of simple spike rate. If Cspks are responding to
erroneous simple spike elevation, we speculated that simple spike rate
should be elevated shortly before the time of a Cspk, as has been previ-
ouslydemonstrated*. Therefore, we analyzed simple spike rates aligned
to the time of the Cspk, or the same time on the previous or next trial. In
late-Cspk trials, Cspks were associated with higher-than-average simple
spikeratesinthe 100 msbefore a Cspk compared with the previoustrial,
and simple spikesin this window were lowered on the trial after the Cspk
trial (Fig. 2j,k; P=9.8 x10™*, F=8.0,RM one-way ANOVA; for previous trial
versus Cspk trial, P=3.6 x 1073, d = -0.45; for Cspk trial versus next trial,
P=0.024,d=0.36; Tukey’s multiple comparisons test). Incontrast, early
Cspksthatoccurred before the onset of reach did not display increasesin
simple spikes before the Cspk (Extended DataFig. 4f,g; P=0.17, F= 0.69,
RMone-way ANOVA). Together, these datareveal dynamics of PC Cspks,
simple spikes and associated kinematics that suggest acontinuous recali-
bration of kinematic tuning in PCs.

Behavioral adaptation to mossy fiber stimulation

Next, we sought to probe whether PCs reweight cerebellar inputs that
shape movementkinematics. Previous work has shown that stimulation
of pontine afferents to the cerebellum perturbs reaching movements
inmice®. This effect is interpretable as corrupted cortical information
enteringthe cerebellum, whichinitially drives an erroneous cerebellar
control policy observableinacute kinematic effects. If cerebellar asso-
ciativelearning mechanismsimplement the formation of an anticipa-
tory control policy, anumber of predictions emerge: pontocerebellar
mossy fiber stimulation that drives reach errors will, when repeated
over many reaches, lead to adaptation of PC responsivity. Removing
the perturbation should lead to aftereffects due to accumulated learn-
ing of new contingencies. Finally, adaptation and aftereffects will be
dependent on the temporal context of the perturbation within the
movement, where learning only accumulates when perturbations are
temporally locked to the execution of the movement.

To drive erroneous activity in PCs during reaching movements,
we injected AAV-expressing hSyn-ChR2 into the pontine nuclei in
mice, amajor hub relaying motor commands from motor cortex to the
cerebellum®**° (Fig.3 and Extended DataFigs. 5aand 6a,b). Recordings
of PCsshowed that optogenetic stimulation of mossy fiber afferentsinthe
cerebellar cortexdrove bothincreases and decreasesin simple spike fir-
ingrates (Extended DataFig. 5b; N =4 animals; 43 of 151 cells, 26 increase,
17 decrease; P< 0.05, paired t-test). This diverging stimulation effect is
likely due to network propertiesinthe cerebellarinputlayersleadingto
either net excitatory or inhibitory drive onto PCs®. Interestingly, cells
with sorted Cspks (Methods) showed a small but significantincreasein
Cspk probability in the 250 ms after stimulation during rest compared
with the probability outside of this epoch in response to mossy fiber
stimulation (Extended DataFig. 5¢; N=4animals; n=239 cells; P=5.6 107>,
t=2.9,d=-0.45, paired t-test), consistent with previous findings during
electrical stimulation of mossy fibers*°. Cspks time locked to mossy
fiber stimulation suggest that optogenetically driven simple spikes may
engage plasticity mechanisms to respond to perturbation.
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Fig. 2| Reaches with Cspks have erroneous kinematics and elevated simple
spike rates. a, Cspks are positively modulated in the 500 ms before reach before
dropping close to baseline values. Top, mean velocity of reaches with Cspks
recorded. Bottom, peri-event time histogram (PETH) of Cspk activity relative
to the time of threshold crossing. N = 8 animals, n =59 cells. P=3.3 x10”°,RM
one-way ANOVA; P=7.1x107*, post hoc Dunnett’s multiple comparisons test
(*); pis probability in p(Cspk). b, Positional profiles from an example session
separated into reaches with (red) and without Cspks (black) during or shortly
after outreach. ¢, Endpoint of reaches relative to session median in the outward
and upward directions (top) and outward and lateral directions (bottom) for
trials with and without Cspks. Large red or gray dot indicates mean and s.e.m.
from Cspk and non-Cspk reaches. For band ¢, N =28 Cspk reaches, 48 non-Cspk
reaches. d, Session endpoints relative to session median for Cspk and non-Cspk
reaches for each recorded cell with Cspks during or after outreach. Gray line
links Cspk endpoint average with non-Cspk endpoint average for anindividual
session with the recorded cell. Left, outward and upward endpoint position.
Right, outward and lateral endpoint position. e, Reach endpoints on Cspk

trials were significantly further from session median compared with non-Cspk
trials. P=8.1x10™, Wilcoxon signed-rank test. f, Peak outward velocity was not
significantly different between Cspk and non-Cspk trials. P = 0.81, paired ¢-test.
g, PCSspks on Cspk and non-Cspk trials aligned to threshold crossing. h, PC Sspk
rates were significantly higher during outreachin trials with Cspks. P=2.8 x 107,
paired t-test. i, Ratio of simple spike rate to outward velocity was significantly
higher during outreach in trials with Cspks. P=1.0 x 10, Wilcoxon signed-rank
test.j, Simple spike rate aligned to the time of a Cspk, or simple spikes aligned to
the same time relative to threshold crossing on the previous trial showed simple
spikeincreases shortly before the Cspk. k, Quantification of simple spike rates in
the 100 ms before a Cspk on a Cspk trial or the previous or next trial aligned to the
same time of the Cspk relative to threshold crossing. P= 9.8 x 10, RM one-way
ANOVA; for previous trial versus Cspk trial, P= 3.6 x 107%; for Cspk trial versus next
trial, P= 0.024; Tukey’s multiple comparisons test. For d-k, N= 8 animals, n = 58
cells.*P < 0.05. All error bars and bands represent mean + s.e.m. In box-and-
whisker plots, box denotes median and 25th-75th percentiles, whiskers denote
10th and 90th percentiles and circle indicates the mean. NS, not significant.
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Fig.3| Adaptation to mossy fiber stimulation during reach. a, Head-fixed
mice expressing ChR2 in pontocerebellar mossy fibers were trained to reach

for food pellets while the hand was tracked with high-speed cameras. On laser
trials, light directed to the cerebellar primary fissure through animplanted
fiber was triggered in closed loop after the hand crossed a plane 1 cm outward
from reach start position. Bottom, perturbation schedule followed canonical
adaptation structure, with a baseline (no-stimulation) block, stimulation block
with stimulation on every reach, followed by awashout block with stimulation
omitted. b, Hand position 100 ms after threshold crossing in the first stimulated
(blue) and washout (red) reaches heading to the target (white), after ref. 28.

¢, Hand position during baseline (gray), compared with hand position measured
across the adaptation and washout blocks in an example mouse. Blue shading
denotes the time of mossy fiber stimulation. n =1animal, 20 sessions.

d, Summary of stimulation-induced kinematic effects, which decay over the
adaptation block and show opposing aftereffects. Baseline subtracted hand
position, rectified relative to the direction of kinematic effect of stimulation,
isshown for reaches in the early (first reach), middle (middle five) and late (last
five) phases for both stimulation (blue) and washout (red) blocks. e, Summary
of adaptation effects across animals and sessions. Relative change in outward

position was assessed in the 50-ms window after the end of stimulation. Asterisks
indicate statistically significant differences between blocks. P=1.7 10, RM
one-way ANOVA; for early stimulation to middle stimulation, P= 8.9 x1073; for
early stimulation to early washout, P= 0.030; for early stimulation to middle
washout, P=0.017; for early stimulation to late washout, P= 0.031; for early
washout to late washout, P= 0.042; Tukey’s multiple comparisons test. f, Same as
e, but with outward velocity assessed in the 50 ms after the start of stimulation.
P=4.7 x10%,RM one-way ANOVA; for early stimulation to middle stimulation,
P=0.024; for early stimulation to early washout, P = 0.041; for early stimulation
to middle washout, P=3.5 x107%; for early stimulation to late washout, P= 0.030;
for late stimulation to early washout, P = 0.048; Tukey’s multiple comparisons
test. g, The magnitude and direction of early stimulation effect was related to
aftereffects. Plot shows linear regression relating the magnitude of the early
stimulation outward position effect and early washout outward position effect
compared with baseline reaches. P= 0.034, linear regression. Ford-g,N=35
mice, 104 sessions. *P < 0.05. All error bars and bands represent mean + s.e.m. In
box-and-whisker plots, box denotes median and 25th-75th percentiles, whiskers
denote 10th and 90th percentiles and circle indicates mean. Stim., stimulation;
wash., washout.
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To assess whether repeated closed-loop stimulation could engage
cerebellar learning mechanisms to produce sensorimotor adaptation,
optical fibers were implanted in the cerebellar cortex at the interface
betweenlobule simplex and lobules 4 and 5 (Extended Data Fig. 6¢,d).
Experiments were structured in ablock format, where animals reached
unperturbedin abaseline block; followed by a stimulation block, where
closed-loop stimulation of pontocerebellar axons (50-ms train) was
delivered oneveryreach whenthe hand passed al-cmthresholdinthe
outward direction; and, finally, a washout block, where stimulation
was removed to assess any aftereffects of learning. Each block was
roughly 15-30 reaches long, determined by each individual animal’s
endurance in the task (Fig. 3a; baseline, 23.1 + 6.24 reaches; stimula-
tion, 22.4 + 5.77 reaches; washout, 20.56 + 6.65 reaches; mean = s.d.;
N =5 animals, 104 sessions). Early in the stimulation block, we found
that stimulation caused acute changes in reach kinematics: in four of
fiveanimalsit caused hypermetricreaches in the outward position, and
in one animal it caused hypometric reaches (Fig. 3b—c and Extended
Data Fig. 7a examples 1 and 2). To assess the relative change in hand
position over the stimulation block, we measured the magnitude of
the stimulation effect over the block, defining the initial direction of
the stimulation effect on hand position as positive and the opposing
directionas negative. We found that the magnitude of the stimulation
effect decreased over the stimulation block. When the stimulation was
removed, reaches deviated in the direction opposite the initial stimu-
lation direction early in the washout block, before eventually correct-
ing back to baseline at the end of the washout block in both outward
position and velocity (Fig. 3d-f; N=5 animals, 104 sessions; outward
position, P=1.7 x 1073, F=11.3, RM one-way ANOVA; early stimula-
tion to middle stimulation, P=8.9 x107, d =2.0; early stimulation to
earlywashout, P=0.030, d = 1.5; early stimulation to middle washout,
P=0.017, d=1.7; early stimulation to late washout, P=0.031, d=1.4;
early washout to late washout, P=0.042, d = -1.3; Tukey’s multiple

Fig.4|PCs show electrophysiological correlates of behavioral adaptation
over the stimulation and washoutblocks. a, Mossy fibers were stimulated at
threshold crossing during outreach while recording PCs with Neuropixel probes.
b, Mossy fiber stimulation effect during reach of all reach-modulated PCs. The
difference insimple spike rate during the stimulation window is compared with
the same epoch during baseline reaches. Significant differences are denoted by
the color map on the right.n =159 cells. ¢, Population summary of activity of PC
firing rate adaptation over stimulation block for all PCs positively modulated by
stimulation. Top, meanreach velocity for all sessions. Bottom, average change in
simple spike rates for the last five baseline reaches (black) and the first five (cyan),
middle five (light blue), and last five (dark blue) stimulated reaches. Blue shading
denotes the time of mossy fiber stimulation.n =17 cells.d, Same as in ¢, but for
the population of PCs negatively modulated by stimulation. n =25 cells. e, Same
asin ¢, but measuring the magnitude of stimulation across stimulationincrease
and stimulation decrease cells. Here the effect of stimulation is measured in the
direction of the initial stimulation effect, thus a positive deflection for stimulation
increase cells means anincrease in firing rate relative to baseline, and a positive
deflection for stimulation decrease cells means a decrease in firing rate relative to
baseline. f, Quantification of the datashownine.P=7.2 x 10, RM one-way ANOVA;
for end baseline versus first five stimulations, P= 2.6 x 10~ for end baseline versus
middle five stimulations, P= 0.037; for end baseline versus last five stimulations,
P=0.32; Tukey’s multiple comparisons test. e,f, n = 42 cells. g, Population activity
across all reach-modulated cells. The first stimulated trial shows a negative
deflectionin net firing rate relative to baseline. Conversely, the first washout
reach shows a net positive deflection. Gray box indicates the time of stimulation
or analogous time in the washout block. h, Quantification of simple spike firing
rates in the stimulation window for the data shown in g and the last five stimulated
reaches and washout reaches. P=2.3 x 10~%, RM one-way ANOVA; for end baseline
versus first stimulation, 0.012; for end baseline versus first washout, P = 0.039; for
firststim versus last five stimulations, P= 7.4 x 10*; for first stimulation versus first
washout, P=3.0 x107; for first stimulation versus last five washouts, P=1.9 x 107
for last five stimulations versus first washout, P= 0.019; for last five stimulations
versus last five washouts, P= 0.015; Tukey’s multiple comparisons test. g,h, n =159
cells.*P < 0.05. All error bars and bands represent mean + s.e.m.

comparisons test; outward velocity, P=4.7 x 107, F=12.1, RM one-way
ANOVA; early stimulation to middle stimulation, P= 0.024,d = 1.6; early
stimulation to early washout, P=0.041, d =1.3; early stimulation to
middlewashout, P=3.5x107,d = 2.6; early stimulation to late washout,
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P=0.030, d=1.5; late stimulation to early washout, P=0.048,d=1.3,
Tukey’s multiple comparisons test). The magnitude of the initial stimu-
lation effect on outward position predicted the magnitude of the initial
washout aftereffect across animals (Fig. 3g, R = 0.820, slope =-0.608
with 95% confidenceinterval [-1.13,-0.0853], P= 0.034, F=13.7); how-
ever, hypometric effects were generally larger than hypermetric effects
(both during stimulation and washout), possibly due to biomechani-
cal constraints of the limb and reaching apparatus imposing a ceiling
effect on hypermetric movements. Interestingly, the aftereffect did
not appear until the time that stimulation would have been delivered
during outreach (Fig. 3c and Extended DataFig. 7d). In control experi-
ments using red light (635 nm), we observed no kinematic deviations
or adaptation profiles as seen with blue-light stimulation (Extended
DataFig.7e).Further, blue-light stimulation at rest produced negligible
movements (Extended DataFig. 7f; N =4 animals, 21 sessions; maximum
outward velocity during stimulation of 0.26 cms™).

Tosummarize, we have shownthat animals adapttoaprecisely timed
internal perturbation of pontocerebellar mossy fibers, and this learning
isreflected in opposing aftereffects when the perturbation is removed.
Adaptation was temporally precise, with changes in limb kinematics
earlyinthe washoutblock timed to the predicted point of perturbation.

PC adaptation to mossy fiber stimulation

To investigate cellular correlates of learning in PCs during behavioral
adaptationto thiscircuit-level perturbation, we performed stimulation
experiments while recording near the optical fiber with a Neuropixel
probe (Fig.4a). To assure that any firing rate changes were not attribut-
able to unstable cell isolation across the experiment, we assessed the
stability of every PC using two metrics: a correlation of spike template
waveforms, and the displacement of units along the electrode in the
baseline and washout blocks (Extended Data Fig. 8; Methods). Of 314
putative PCs, 203 were stable across the experiment, 159 of which were
modulated with reach. Inthe analyses that follow, we analyzed stimulus
responsivity over the stimulus blockin all stimulus-responsive PCs, and
population-level changes over adaptation of all reach-modulated PCs.
First, to assess optogenetic stimulus responsivity in these neurons, we
compared simple spike firing rates between baseline and stimulated
reaches withinthe 50-ms stimulation epoch. Consistent with mossy fiber
stimulation atrest, we observed a diverging effect pattern with stimula-
tion during reach: 17 cells showed significant increases in simple spike
firing and 25 cells showed decreases (Fig. 4b, P< 0.05, paired t-test). In
bothgroups, the efficacy of stimulation dropped over the course of the
stimulationblock, consistent with adaptation (Fig. 4c,d). To statistically
analyze the progression of the stimulus effect over the stimulation block,
we defined the direction of the initial response as positive for all cells
(pooling cells that were inhibited and excited by stimulation) and then
measured the response magnitude over time. The response magnitude
droppedacross the stimulationblock such that, in later trials, firing rates
were not significantly different frombaseline (Fig. 4e,f; N=5animals, 42
stimulation-modulated cells; P=7.2 x 1073, F=5.5,RM one-way ANOVA; for
end baseline versus first five stimulated trials, P=2.6 x 1073, d =—-0.56; for
end baseline versus middle five stimulated trials, P= 0.037,d = -0.41;
for end baseline versus last five stimulated trials, P=0.32,d=—-0.26;
Tukey’s multiple comparisons test). Notably, stimulation-affected cells
did notshow consistent aftereffects opposing the direction of theinitial
stimulation effect when the perturbation was removed.

Next, we analyzed how mossy fiber perturbations affected sim-
ple spike firing across the population of all reach-modulated PCs
(stimulus-responsive and nonresponsive cells). We observed transient
effects of stimulation and opposing aftereffects that were visible on the
first trial of the stimulation and washout blocks, respectively (Fig. 4g).
Across the population, the net effect of the first stimulation was a
reduction of simple spike firing rate relative to baseline (Fig. 4g,h; N=6
animals, 159 reach-modulated cells; for rates during the stimulation
epoch,P=2.3x10"% F=13.8, RMone-way ANOVA; for end baseline versus

first stimulation, P=0.012, d = 0.26; for end baseline versus first wash-
out, P=0.039, d = -0.23; for first stimulation versus last five stimula-
tions, P=7.4 x10™*, d=-0.47; for first stimulation versus first washout,
P=3.0x107%, d=-0.42; for first stimulation versus last five washouts,
P=1.9x107, d=-0.47; for last five stimulations versus first washout,
P=0.019, d=-0.25; for last five stimulations versus last five washouts,
P=0.015,d=-0.25; Tukey’s multiple comparisons test). This effect was
rapidly adapted such that, by the end of the stimulation block, mean
simple spike firing returned tobaseline levels. On the first washout reach,
there was marked increase in simple spike rates, an aftereffect opposite
the direction of the initial stimulation effect. This aftereffect was only
marginally lower by the end of the washout block; however, simple spike
firing outside of the stimulation window showed a more visible normaliza-
tion to baseline levels (Extended Data Fig. 9a). This pattern of opposing
rate deviations from baseline between the first stimulation and first
washout reach were also seen in Cspk-identified PCs (Extended Data
Fig. 9¢,d). The dataset was underpowered to relate Cspk probability to
these changes but, in the PCs in which Cspks were observed, the mean
Cspk rate in the 250 ms after stimulation was not significantly different
across the blocks (Extended DataFig. 9b; N = 5animals, n =13 Cspk-sorted
cells, P=0.31, F=1.2, RM one-way ANOVA). Overall, these data demon-
strate acute neural effects of stimulation that adapt across the stimula-
tion block, and population-level net aftereffects that oppose the initial
firing rate deflection caused by stimulation, consistent with kinematic
adaptation to perturbation and opposing aftereffects seenin reaches.

Random perturbations dissociate adaptation and aftereffect
In the experiments above, we showed that adaptation is temporally
specific (for example, Extended Data Fig. 7b). We hypothesized that
the temporal specificity of perturbation within the reach produced a
fixed association between active inputs and error, facilitating adapta-
tion. Therefore, we predicted that, by presenting spatially inconsistent
stimulitrial to trial, mice would not adapt to stimulation. To test this, we
repeated block-stimulation experiments but, rather than stimulating
whenthe hand passed the 1-cmoutward plane, we stimulated ata pseu-
dorandomized positionin the outward direction uniformly distributed
between 0.3and 1.8 cm (Fig.5a,b). To assess the effect of stimulation at
different pointsinthereach, we aligned reachesto the time of stimula-
tion and measured the difference in position compared with aligned
baseline block reaches. Baseline subtracted reach profiles showed a
characteristic changein outward positionaligned to the time of stimula-
tion, similar to results in fixed-position stimulation experiments. Sur-
prisingly, even though perturbation positions were distributed across
the stimulation block, we found that animals still exhibited adaptation to
the stimulation early inthe stimulation block, although this adaptation
plateaued tointermediate levels between middle and late block epochs
inoutward position and velocity (Fig. 5c,d; N = 5animals, 60 sessions; for
outward position, P=0.016, F=10.8, RM one-way ANOVA; for baseline to
early stimulation, P=3.6 x10™*, d = -3.9, Tukey’s multiple comparisons
test; for outward velocity, P=0.016, F = 7.5, RM one-way ANOVA; for
baselineto early stimulation, P= 0.040, d = -1.1; for early stimulation to
late stimulation, P=0.017, d = 1.4, Tukey’s multiple comparisons test).
To assess the presence of aftereffects, we analyzed the positional and
velocity differences between baseline and washout reaches near the
mean of the distribution of stimulus thresholds (50-100 ms after cross-
ing the 1-cm outward plane). Despite evidence for adaptation to the
randomized stimulation, there were no consistent aftereffects; instead,
reachestended to have agreater distribution of positional differences
that averaged to roughly zero (Fig. 5e and Extended Data Fig. 10; for
outward position, P=0.65, F=0.40, RM one-way ANOVA; for outward
velocity, P=0.76, F=0.23, RM one-way ANOVA).

Time-based generalization explains adaptation profiles
To better understand the nonintuitive adaptation profile of
position-randomized stimulation, we modified a simple model of PC
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Fig. 5| Dissociation of adaptation and aftereffects with randomized
stimulation position. a, Stimulation location during outreach was distributed
pseudorandomly between 0.3 and 1.8 cmin the outward direction during the
stimulation block. b, Examples of reaches stimulated at five different locations
during outreach. Each stimulated reach is compared with the last five baseline
reaches of each session. The horizontal dashed line indicates the threshold
crossing that triggered stimulation. Blue shading denotes the time of mossy
fiber stimulation. c, Summary data of relative change in outward position for
stimulation reaches in the early, middle and late block. d, Quantification of
stimulation effect on outward position across adaptation block. For each reach,
the analysis window was the 50-100 ms after stimulation onset aligned to the
time of threshold crossing for each reach (inset). Quantification of aftereffects

on outward position during washout block. Here the analysis window is the
50-100 ms after crossing the 1-cm threshold for each reach—the same as

the analysis in fixed-position stimulation experiments. P= 0.016, RM one-

way ANOVA; for baseline to early stimulation, P=3.6 x10™*, Tukey’s multiple
comparisons test. e, Same as d, but instead quantifying of outward velocity in the
stimulus window, and aftereffects in the 50 ms after crossing the 1-cm threshold
for each reach. P=0.016, RM one-way ANOVA; for baseline to early stimulation,
P=0.040; for early stimulation to late stimulation, P = 0.017; Tukey’s multiple
comparisons test. N = 5animals, 60 sessions. *P < 0.05. All error bars and bands
represent mean + s.e.m. Inbox-and-whisker plots, box denotes median and
25th-75th percentiles, whiskers denote 10th and 90th percentiles and the circle
indicates mean.

firing based on a previously published study®'. As an input, the model
takes parallel fibers and inhibitory interneurons, each active for15 ms,
that as a population tile a 400-ms hypothetical movement (Fig. 6a).
The PC rate mimicked the net firing rate suppression that we see in
population activity during reach. At equilibrium, the populations of
parallelfibers and interneurons are perfectly balanced during the move-
ment and cause no deviation in the PC firing rate from trial to trial.
The model used alearning rule such that any elevation of the PC rate
fromthis equilibriumwould lead to depressing the weights of parallel
fibers active at the time of deviation through a Cspk-like error signal,
asincerebellar long-term depression. Conversely, parallel fibers with
depressed weightsrelax back to baseline levels in the absence of Cspks.
We ttitrated the learning rate to match that observed in fixed-position
stimulation experiments (Methods).

First, we modeled fixed-position optogenetic perturbation experi-
ments by artificially increasing activity in arandom subset of parallel

fibersandinterneurons 50 msinthe middle of the hypothetical move-
ment (Fig. 6a). Differential parallel fiber to interneuronactivation ratios
lead to a net activation of the PC to engage the Cspk-on learning rule
(Methods). Initially, this modification of PC inputs caused a large devia-
tioninthe PCfiringratein the stimulated window, resultinginan error
and synaptic depression of the concomitantly active parallel fibers
(Fig. 6b). Over several repeated perturbation trials, this reweighting
minimized the effect of the perturbation, correcting PC firing rate back
to baseline. After 20 trials, we removed the perturbation. The model
output then exhibited opposing aftereffects in PC firing rate at the
previous time of perturbation, before relaxing back to baseline eventu-
ally. The adaptation profile was similar quantitatively to the empirically
observed behavior. Importantly, we note that the aftereffect seen in
the PC firing profile is a consequence of depressed weights in both
perturbed parallel fibers and other unperturbed parallel fibers that
were coincidentally active at the time of the perturbation (Fig. 6c,d).
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Fig. 6| A cerebellar model accounts for adaptation and aftereffect
dissociation. a, Schematic diagram of the temporal cerebellar learning model.
The modelinputis a population of 2,000 cells, divided into two balanced
populations of 1,000 parallel fibers and 1,000 interneurons, activated during
abriefwindow during a simulated 400-ms movement. The output of the

PC module that receives this information is compared with theinputin the
cerebellar nuclei. At equilibrium, the two populations are perfectly balanced
(parallel fibers cause net activation of the PC, and the interneurons cause anet
decrease; bottom) and the PC module outputs an activity curve (Gaussian that
mimics the firing rate suppression observed in empirical data) that spans the
movement. Positive deviations from this curve (errors) lead to mismatchin

the nuclei and subsequent activation of the inferior olive, which reduces the
weights of parallel fibers active shortly before the error. To simulate optogenetic
perturbation experiments (barcode-like pattern at 200 ms), a step of activity
was added to a subset of parallel fibers and interneurons for 50 msin the center
of the movement (fixed stim.) or randomized across the block (random stim.).
Note that stimulation can either activate a cell twice (for example, parallel fiber
1,257 indicated by an asterisk) or overlap with endogenous activity (for example,
1,490, ind#), and nonstimulated neurons can be active endogenously during
the stimulus window (for example, 1,561, arrowhead). ¢, time. b, PC simple spike
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activity during the stimulation block (top, blue) and washout block (bottom, red)
showing progressively adapting response magnitudes during the adaptation
block, and progressively decaying aftereffects during washout. c, Parallel fiber
weight changes at the end of the fixed-position stimulation block. Top, change
inweights of ‘artificially’ stimulated and nonstimulated parallel fibers plotted

by time of endogenous activation. Bottom, heat map of parallel fiber weight
changes on the top and unchanged interneurons on the bottom. Note population
weight change concentrated at time of stimulation, seen in both artificially
stimulated and unstimulated fibers during the stimulation epoch. d, Comparison
of model output to empirical observations for fixed-position stimulus conditions
(Fig.3). Model closely matches behavioral adaptation. N = 5 animals, 104
sessions. €, Same as b, but here the stimulation window is randomized across the
reach. f, Same as ¢, but for random-position stimulation experiments.

Note the absence of clustered weight changes in unstimulated parallel fibers.

g, Comparison of model output to empirical observations for random-position
stimulus conditions (Fig. 5) showing that both model and empirical observations
show adaptation but not directional aftereffects. N = 5 animals, 60 sessions. In
box-and-whisker plots, box denotes median and 25th-75th percentiles, whiskers
denote 10th and 90th percentiles and the circle indicates mean. PF, parallel fiber.

Thus, the model was unable to distinguish the difference between
parallel fibers that caused or did not cause a deviation fromthe target
PC activity within the perturbation epoch.

Next, we modeled the position-randomized mossy fiber stimu-
lation paradigm (Fig. 6e-g). As with the empirical results, we saw a
reductionin the magnitude of the perturbation effect, consistent with
high probabilities of Cspks around the time of a perturbation; that is,
the perturbed inputs are subject to learning because they are always
aligned to the error that follows (Fig. 6e). Although the magnitude of
adaptation was smaller than that observed in the fixed-position model,
we found that the model learning plateaued late in the perturbation
block, similar toempirical observations (Fig. 6g). When the perturba-
tionwasremoved, there were minimal aftereffects, also consistent with
experimental data. Model weights at the end of the perturbation show
that thisabsence of aftereffects is explained by the lack of accumulated
learningin coincidentally active parallel fibers; thatis, when perturba-
tions are distributed across the movement, coincidently active paral-
lel fibers are different from trial to trial and, therefore, subjected to

transient plasticity only (Fig. 6f). Thus, inrandomized stimulation, the
presence of adaptationillustrated a mechanism by which the cerebel-
lum distinguishes cause and effect using time: adaptationis explained
by the conserved causal relationship between stimulated PC inputs and
error, whereas the absence of an aftereffectis the result of unaccumu-
lated trial-over-trial learning in coincidentally active nonstimulated
inputs. By contrast, aftereffects in the fixed-position paradigm are a
consequence of the system generalizing attribution of error to fibers
that were merely coincidently active relative to perturbation but did
not necessarily drive error.

Discussion

We discovered a net PC population firing rate suppression during
mouse reaching movements that scaled with the velocity of outreach
and occurred shortly before the transition to the decelerative phase
of movement. This suppression is reminiscent of emergent PC popu-
lation kinematic coding in the oculomotor vermis during saccades”.
We speculate that this suppression is a type of conditioned response:
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sensorimotor information relayed through mossy fibers becomes a
learned cue for PCs to scale the decelerative phase of movement via
disinhibition of the anterior interposed nucleus. We further demonstrate
kinematic effects of mossy fiber stimulation that decrease over trials,
akinto sensorimotor adaptation, with concordant changesin PCactivity
thatimply cerebellar associative learning. We observed asurprising dis-
sociation of adaptation and aftereffects when randomizing the position
of stimulation during reach, designed to test the reliance of adaptation
on perturbation context. Amodel demonstrated that aftereffectsare a
consequence of misattribution of error to consistently coactive parallel
fibers. Conversely, the dissociation of adaptation and aftereffects reflects
alack of accumulated plasticity at a single point during the movement.

By demonstrating remapping of inputs to outputs of the cerebellar
cortex, we link concepts developed in delay eyeblink conditioning to
adaptation of a skilled volitional movement. Specifically, the mossy
fiber stimulation used here to drive reach perturbations is analogous
to mossy fiber stimulation used as a conditioned stimulus in eyeblink
conditioning. We speculate that motor plan or early kinematic infor-
mation acts endogenously as a conditioned stimulus associated with
reach outcome that, when erroneous, drives cerebellar learning*. We
note some nuanced differences between paradigms, however. For
instance, adaptation to pontocerebellar stimulation occurs within
tens of trials, many fewer than conditioned eyeblink responses, which
require hundreds of pairings®’. However, nonhuman primates and cats
exhibit rapid adaptation consistent with our results in other sensori-
motor adaptation paradigms®***. Multiple factors may explain this
difference, including the richness of granule cell population coding
during movements versus quiescent associations**, and building on
pre-existing associations of pontocerebellar inputs to reach kinematics
versus de novo mapping cues to outcomes in classical conditioning.

Another conspicuous departure from learning seen in eyeblink
conditioningis that mossy fiber stimulation duringreach drives anerror.
Thus, the unconditioned stimulusis not externallyimposed butisrather
theerroneousbehavior thatresults from the perturbed mossy fiber activ-
ity. In this sense, the mossy fiber activity that interferes with cerebellar
control acts as both a conditioned stimulus and generates amovement
error that acts as an unconditioned stimulus to drive learning.

Isolating a locus of skilled reach adaptation to the cerebellum
poses animportant conceptual hurdle. Cerebral cortex is amajor input
to the pontine nuclei—the focus of perturbation in this study—thus
learning in the motor cortex must be accounted for in cerebellar con-
tributions to movement. Likewise, cerebellar outputs relay informa-
tionback to motor cortexindirectly via the thalamus®. Previous work
demonstrated that reach-associated pontocerebellar stimulation
drives activity in motor cortex®®, meaning each learner in this loop stays
apprised of the activity in the other. Could plasticity sites outside the
cerebellum account for our observations? Our data argue for a locus
of learning in the cerebellum in two major ways. First, we observe
reduced efficacy of mossy fiber drive onto PCs over many repeated
trials. A parsimonious explanation is that highly plastic parallel fiber
synaptic weights are changing during adaptation rather than cortical
commands overriding these proximal perturbations. Second, if PCfir-
ingrate changes were caused by modulated afferents to the cerebellum,
itwould be difficult to reconcile such amechanism with adaptation to
randomized stimulation because these compensatory cerebellarinputs
could not predict the time of stimulation. Of course, one caveat to these
findings is the prevalence of putative PCs in our dataset. Although
thereis currently not a known cell type that is easily mistaken for a PC
based on simple spike firing statistics, future discoveries could prompt
reinterpretation of these data.

How might multiple connected brain regions, all of which are
implicated in learning, accomplish learning a task in parallel? In our
study, mice were expertly trained when we introduced optogenetic
perturbation of inputs. Thus, stimulating pontocerebellar fibers, we
corrupted therelationship of action directed by motor cortex and the

established cerebellar response tuned to that action. Through adap-
tation, the cerebellum learned to assist movements with these newly
modified inputs as evidenced by the diminishing kinematic effect on
thelimb; when stimulation was removed, the novel mismatch of cortical
and adapted cerebellar contribution to the movement again manifests
asmovement errors.

Our data unite two threads of cerebellar theory, classical condi-
tioning and motor adaptation under the umbrella of associative learn-
ing, where active inputsto the cerebellum can be reformatted flexibly
toaccomplish agoal more accurately.
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Methods

Animals

All procedures followed National Institutes of Health Guidelines and
were approved by the Institutional Animal Care and Use Committee at
the University of Colorado Anschutz Medical Campus. Animals were
housed in an environmentally controlled room, kept on a 12-h light-
dark cycle and had ad libitum access to food and water, except during
behavioral training and testing as described below. Adult C57BL/6
(Charles River Laboratories) mice of either sex (11 females, 8 males)
were used in all experiments.

Surgical procedures

All surgical procedures were conducted under ketamine-xylazine
anesthesia. Afterinduction of anesthesia, the surgical site was cleaned
and injected subcutaneously with bupivacaine (2.5 mg ml™). Pressure
injections of approximately 150 nl of AAV2-hSyn-ChR2-mCherry were
stereotaxically targeted to the left pontine nuclei (4.0 mm anterior—
posterior,—0.5 mm medial-lateral, -5.4 mm dorsal-ventral, measured
from bregma) and animals were allowed to recover for aminimum of
8weeksto ensure expressionin mossy fiber terminalsin the cerebellar
cortex. Custom-made aluminum head plates were affixed to the skull,
centered on the bregma, using luting (3 M) and dental acrylic (Teets
Cold Cure). Optical fibers (105 um core diameter; Thor Labs) attached
toaceramic ferrule (1.25 mm; Thor Labs) were implanted into the pri-
mary fissure, betweenlobules 4 and 5 and the lobule simplex (-6.25 mm
anterior-posterior, 1.9 mm medial-lateral, measured from bregma),
atadepthof1.2 mm (ref.11). For recording experiments, acraniotomy
was made medial to the fiber placement and arecording chamber was
secured with dental acrylic, as previously described™.

Behavioral task

Animals were allowed a minimum of 2 days of recovery after
head-fixation surgery, and were then food restricted to 80-90% of
their baseline weight for reach training. Mice were habituated to the
head-fixed apparatus by presenting food pellets (20 mg; catalog no.
F0163, BioServ) that could be retrieved with their tongue, and pellets
were then progressively moved further from the mouth until animals
began reaching for food. Pellets were positioned to the right of the
animal to encourage reaching with the right forelimb and moved toa
consistent position specific to eachmouse ~1.2-2.5 cm from the reach
start. Sessions lasted until animals successfully retrieved 20 pellets or
until 30 min had elapsed, whichever came first. Mice were trained for a
minimum of 15 days and were considered fully trained once they could
successfully retrieve 50% of pellets 3 daysin arow.

Kinematic tracking and closed-loop optogenetic stimulation
Hand position was tracked in real time using an infrared-based
machine-vision, motion-capture system (six Optitrack Slim3U Cam-
eras mounted with LED ring arrays; Motive Software) at 120 frames
persecond as previously described®. Cameras were positioned in front
and to theright of the animal and focused on the approximately 8 cm?
spatial volume that covered the reach area of the right forelimb. Ret-
roreflective markers (1 mm diameter) were used for camera calibration
and affixed to the mouse hand for kinematic tracking. A custom-built
calibration wand and ground plane were used to set position and ori-
entation of the cameras in Optitrack Motive software. Camera calibra-
tion was refined monthly to account for any drift of the cameras over
time. Calibrations that reported amean triangulation error <0.05 mm
were considered passes. The spatial origin was set to be at the center
of the bar where mice placed their hand during rest. Spatial blocking
and cameradetection thresholds were adjusted to prevent erroneous
tracking of minimally infrared-reflective objects.

Real-time hand positions were streamed into MATLAB (2018a) with
alatency under1ms. Custom-written MATLAB code was used to detect
when the hand passed a positional threshold 1-cm outward from the

bar where the mice rested their hand and then send a ‘go’ signal to an
Arduino microcontroller (Uno), which triggered alaser with transistor-
transistor logic pulses. To ensure low-latency closed-loop stimulation
we used an open-source C++ dynamic link library*’ edited to reflect
the parameters of laser stimulation (50 ms stimulation, 100 Hz, 2 ms
train). This system has a closed-loop latency of 9.5 ms from the time
of threshold crossing (camera frame rate of 120 frames per second,
0.5+ 0.1 ms (mean +s.d.) MATLAB-Arduino communication). Hand
positions and stimulation times were streamed into MATLAB and saved
for postprocessing.

Kinematic analysis

All kinematic analysis was performed using custom-written MATLAB
code. First, erroneously tracked objects were removed using a nearest
neighbor analysis, which assessed the closest markers in subsequent
frames and removed others, to produce a single positional trajectory
of the hand marker over time. Any dropped frames where the marker
was not detected were interpolated over, and then data were filtered
using a second-order low-pass Butterworth filter (10 Hz)*® using MAT-
LAB’s zero-phase filter function filtfilt. Last, interpolated points were
removed, such that the filtered marker positional data reflected only
data captured during the experimental session.

To segment continuous data into reaches, we found instances
of the marker passing the 1-cm positional threshold in the outward
direction and clipped 10-s segments centered on this time point. We
defined outreach as the segment of this data from the time before
threshold crossing that the hand exceeded 2 cm s™ in outward and
upward velocity to the time after threshold crossing where the hand
stopped moving in the positive outward direction (outward velocity
<0 cms™). Occasionally, the marker would become obscured behind
the pellet holder during reach or spurious detection of the nose would
jumpthe marker positionto the nose and be detected asareach. There-
fore, to prevent against analyzing reaches that had large segments
of data missing, any threshold crossings where the marker dropped
greater than 25% of points between the start and end of the outreach
were not considered for further analysis.

Reachvelocity and acceleration were calculated using the numeri-
cal gradient between position time points in each dimension. To pro-
duce aligned reach position curves, we interpolated data at 10 ms,
centered on the time the hand passed the 1-cm positional threshold,
crossinginanoutward direction. The effect of stimulation was assessed
by measuring changes in stimulation and washout reaches (early,
middle and late) relative to the last five baseline reaches in the 50-ms
interval after the end of stimulation. To assess the unadapted effect of
stimulation or washout, early reaches were defined as the first reach
in each block; middle and late reaches were the middle five and last
fivereaches of reachblock, respectively. To align random-stimulation
positionreaches, we found the positional threshold of stimulation on
each reach; aligned stimulation reaches and baseline reaches to the
time they crossed this boundary during outreach, averaged across
reaches; and then measured the differencein these curves, yielding the
stimulation-aligned positional difference between end baseline and
stimulation reaches. For washout reaches in random-position stimu-
lation experiments, reaches were aligned to the time of the thresh-
old crossing at 1 cm, such that the aftereffect could be compared to
fixed-position stimulation experiments. To account for varying effects
of stimulation seen across animals (hypermetric and hypometric move-
ments), the direction of positional change in early stimulation reaches
relative to baseline for each animal in random- or fixed-position stimu-
lation experiments was defined as the positive direction, and the oppos-
ing direction as negative for that animal in each paradigm, allowing us
togroup dataacross animals with diverging effects. To assess the time
course of stimulation effects within individual animals, we measured
differences in position at each time point between the early stimula-
tionreaches and baseline reaches using a Wilcoxon signed-rank test.
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Electrophysiology recording procedure

Craniotomies were made over the cerebellum, ipsilateral to the reach-
ing arm, in fully trained animals. A custom-made recording cham-
ber was implanted over the craniotomy, the brain was covered with
triple-antibiotic cream (Globe) and the recording chamber was sealed
with Kwik-Sil silicone (World Precision Instruments) such that it could
be preserved for multiple recordings.

Single-electrode recordings

Single-electrode recordings were performed with 3-5-MQ platinum-
tungsten optrodes (Thomas Recording). Once animals were head fixed,
the electrode was targeted to —6.25 mm anterior-posterior, 1.9 mm
medial-lateral (measured from bregma), and then lowered into the
brain up to a depth of 1.8 mm using a motorized micromanipulator
(Newport Motion Controller Model 861). Signals were band-pass fil-
tered at 300-5000 Hz, amplified with a MultiClamp 700 A amplifier
(Axon Instruments) and digitized (CED Power3 1401) and recorded
using Spike2 software (CED). Once a putative PC was isolated, the
braintissue was allowed to relax for 15 min. Cell sorting was performed
offline using Psort.

Neuropixel recordings

Neuropixels were lowered into the brain using a motorized microman-
ipulator (Sensapex uMp micromanipulator). Once the electrode shank
spanned the putative PC layer, the tissue was allowed to relax for 15 min.
Electrophysiology data were acquired using an OpenEphys system
(https://open-ephys.org/gui). Datawere sorted offline in Kilosort2 (ref. 59)
and manually curated in phy (https://github.com/cortex-lab/phy).

Neural data analysis
Aftersorting, isolated units were analyzed offline using custom-written
MATLAB code. In well-isolated, single-electrode units, simple spikes
and identifiable Cspks were sorted using Psort. To identify Cspks in
Neuropixel recordings, we crosscorrelated cells with high firing rates
inthe cortex with adjacent low-firing-rate clusters and looked for the
presence of a Cspk-aligned simple spike pause and characteristic simple
spike and Cspk waveforms. In many cells, Cspks could not be identified
across the length of the experiment. In these cases, we identified PCs
based on cortical location and electrophysiological criteria using the
firing rate, CV2 and MAD®. Cerebellar cortical cells with a firing rate
>40 spikes per second, CV2 of >0.20 and MAD of <0.008 were labeled
as PCs (Extended Data Fig. 2). Using these metrics, we were able to
positively identify 94.9% of Cspk-identified cells. We visualized these
metricsinatwo-dimensional space using the tSNE functionin MATLAB
(withthe parameters distance = ‘euclidean’, exaggeration = 4, perplex-
ity =30, learningrate = 5,000). Instantaneous firing rates for PCs were
calculated fromtheinverse of the interspike intervals, convolving with
a20-ms Gaussian and then sampling at 10-msintervals. We found that
most PCs with Cspks could be positively identified as such by using fir-
ingrate criteriaalone, with a false negative rate of roughly 5.1% (5 of 98).
Althoughwe do not have atrue false positive criterion to identify cells
mistaken as PCs, as a proxy we note that the two distinct clusters of
cellsinthe tSNE analysis corresponded roughly to PCs and non-PCs. By
analyzingthe cells that were identified as PCs in the non-PC cluster, we
were able to estimate the false positive rate at roughly 3.8% (20 of 527).
In Neuropixel recording adaptation experiments, we analyzed
reach-modulated PCs, defined as exhibiting a firing rate change during
the reach epoch >1s.d. of the mean firing rate of the cell. Cell record-
ings from the baseline (unstimulated) block from cerebellar stimula-
tion experiments during reach were included in the datasets in Figs. 1
and 2. For analysis of the pooled population firing rate data in Fig. 1,
we normalized reaches by velocity for each session and binned them
into velocity quintiles. Thus, each cell was equally represented across
allvelocity quintiles. To find the magnitude of the firing rate decrease
in grouped population PC data, we found the minimum value of the

population firing rate traces for each percentile bin within the peri-
reach window (=500 to +500 ms from threshold crossing). We found
the time of firing rate suppression by measuring the point at which
eachtracedecreased firing by 50% from peak to nadir in this perireach
window. We characterized early Cspks as those that occurred within
500 msbeforereachonset, corresponding to roughly the time of Cspk
elevation seen across cells (Fig. 2a). Late Cspks were characterized as
those that occurred during outreach or the 500-ms window after the
end of outreach.

In pontocerebellar stimulation experiments, to assure that
observed simple spike adaptation was not the result of changing
unitisolation across the experiment, we assessed unit stability with
two metrics: waveform correlation and unit displacement across the
experiment. To assess waveform correlation, weisolated the template
waveforms for eachunitonthe electrode with the greatest spike ampli-
tude and the 32 surrounding electrodes (33 total). We averaged 1,000
randomly selected spike waveforms for each channel fromthe baseline
block and the washout block, concatenated waveform templates across
the 33 channels and then correlated the concatenated waveforms from
the baseline and washout blocks (Pearson correlation). As a shuffled
control, we correlated concatenated templates from neighboring units
inthe baseline and washout block. Neighboring units were defined as
those whose 32 surrounding electrodes overlapped with the unit of
interest. PCs whose across experiment waveform correlation did not
exceed the 99th percentile (0.76) of the across-unit shuffled control
correlation were excluded from further analysis.

To assess cell displacement across the experiment we calculated
the position of unit (x, y) using

00y) = (Einaiz Z:_Vﬂyiaiz>

N 5 N
=1 i

where Nisthe number of electrodes, x;and y;arethelateraland upward
position of the electrode and q; is the peak-to-peak spike waveform
amplitude on the ith electrode. Unit displacement was defined as the
Euclidean distance between unit positionsin the baseline and washout
blocks. As a shuffled control, the displacement between neighboring
units (as defined above) across the experiment was calculated. PCs
whose displacement was above the first percentile (2.36 um) of shuffled
control were excluded from further analysis.

LASSO regression

To quantify the variance of PC simple spike firing rate that could be
explained by reach kinematics, we used LASSO regression*’. LASSO
has the advantage of performing both regressor selection and regu-
larization, producing a sparse model of many correlated kinematic
regressors. A total of 23 kinematic variables were used as regressors,
including position, velocity and acceleration in the upward, outward
and lateral directions; speed; and unsigned acceleration, with each
velocity and acceleration term additionally broken into positive and
negative components. A full list of regressors is included in Extended
Data Fig. 3. Data for each reach were clipped into 2-s segments, cen-
tered at the time of al-cm threshold crossing in the outward direction.
Regression was performed using a custom-written MATLAB code using
thelasso function. All kinematic data were standardized to have amean
of zero and a variance of one, and regression was performed with a
tenfold crossvalidation to avoid overfitting. To find the appropriate
offset of firing rate and kinematics, instantaneous simple spike firing
rates for each reach were offset by lags from 0 to -300 ms (firing rate
leading kinematics) in 10-ms steps. The lag that minimized the mean
squared error of the regression was selected for each cell. To calculate
the variance of firing rate explained, the predicted firing rates from
the best fit regression were calculated from the kinematic data and
compared to empirical data. R* was calculated using
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R2=1- SStes

SStot”
where SS,., is the sum of squared residuals and SS,,, is the total sum
of squares.

For the spike-shuffled control, spike times on individual trials
were shuffled in time so that each reach epoch had the same mean fir-
ingrate and then converted to instantaneous firing rates as described
above. For the reach-shuffled control, reaches were assigned to firing
rates recorded on different reaches. For both controls, regressions
were performed at the lag that minimized the mean squared error
for empirical data and repeated 100 times; R* values of each shuffled
control weretaken asthe average of these 100 regressions. To assess the
unique contribution ofindividual kinematic regressors to the fraction
of variance explained in the empirical dataregression, each regressor
was time shuffled independently and regressions were repeated. The
change in R? value between the regressor-shuffled regression com-
pared to the complete empirical data model is the fraction of unique
contribution to total variance explained for each kinematic variable*®.

Cerebellar model

The cerebellar modelinthe paper was derived froma previously pub-
lished model** and written using custom code in Python. A major dif-
ference between our paper’'smodel and the cited oneis the assumption
of a continuous temporal input of parallel fiber activity distributed
across a hypothetical 400-ms movement, rather than asingle parallel
fiber input trial over trial. The model PC was fed 1,000 parallel fibers
that positively modulated the PCfiring rate and 1,000 molecular layer
interneurons (MLIs) that negatively modulated the PCfiring rate, which
were eachactive for15 ms duringa400-msinterval, mimicking hypoth-
esized temporal basis sets produced by the granule cell layer® . In the
absence of perturbation, these populations were perfectly balanced,
leading to no changes of PC firing from trial to trial. PC firing at time ¢
onthenthtrial was calculated as the sum of the weighted contribution
of all parallel fibers (PF) and MLIs at time ¢:

1000 1,000 .
PC,(8) =PCo () + Y, wiPF, ()= Y MLI, (9.
i i

Here, wi, is the weight of parallel fiber i on the nth trial and PC, is
the baseline firing rate of the PC.

Parallel fiber weights were subject to alearning rule based on devia-
tions of the PCfiring rate fromtrial to trial. Weights were adjusted after
each trial according to two parameters: the probability of a Cspk (CS)
asafunctionoftrialerror BP(CS|E,)where (0.15) dictates the strength
of synaptic depressioninresponseto a Cspk, and a decay term ag (0.95)
that relaxes parallel fiber weights back to their initial value wi;:

wh = wh — (11— apr) (wg —wi) = BP(CS(0) |E, (1)) ifPF'(¢) > 0.

The probability of a Cspkis afunction of t, where positive deviations
inthe PCratefrombaseline at time ¢lead to elevation of Cspk rates from
baseline, leading to long-term depression, and negative deviations of
PC rate lead to reduction of Cspk rates from baseline levels, leading to
long-term potentiation. Specifically, the error at time ¢ (E,, (¢)) was used to
calculate the probability of aCspk at eachtime in the movement interval:

PCSOIEND) = 1 a

_a _4a
et 2’

To obtain values for the parameters a and 7, we fit a curve to the
change in position of early, middle and late stimulated reaches in
fixed-position stimulation experiments and then took the derivative
of this curve to obtain the error correction (trial-over-trial positional
change) for a given error magnitude.

Weranthe simulations mimicking the experimental block structure
used for empirical data, including abaseline block with no perturbation,
anexperimental block with a perturbation on every trialand awashout
block with the perturbation removed. For net positive perturbation
trials, we added activity to a random subset of 150 parallel fibers and
50 MLIsat =200 msfor 50 msthat, whencombined, drove anincrease
of 60 simple spikes per second in PCs at their initial weights (Extended
Data Fig. 10). For net negative perturbation trials, we added activity
to arandom subset of 50 parallel fibers and 150 MLIs at t =200 ms for
50 ms, which drove anetdecrease of 60 simple spikes per secondin PCs
(Extended DataFig. 9). For each simulation, after 20 perturbation trials,
the perturbation was removed, and the model was run for an additional
20 washout trials. To simulate random-position perturbation experi-
ments, the time of perturbation was changed on every trial.

Statistics and reproducibility
Data reported in the manuscript reflect statistical summaries from
each animal across multiple sessions. For electrophysiological data,
each neuron was treated as an independent sample. All data were
tested for normality with the Kolmogorov-Smirnov test to choose the
appropriate statistical analysis. All t-tests mentioned in the manuscript
were two sided, unless stated otherwise. Inbox-and-whisker plots, the
box displays the median and 25th and 75th percentiles and the whisk-
ers extend to the 10thand 90th percentiles of the data, with the mean
displayed as a dotin the box, unless otherwise stated.

Effect sizes for parametric tests were estimated using Cohen’s d.
For datasets with fewer than 50 samples, the Cohen’s d value was cor-
rected for small sample size by multiplying by

(755 V)

where Nisthe number of samples. Effect sizes for nonparametric tests
were estimated by calculating r defined as

A
where Zis the Zstatistic and Nis the number of samples.
Nostatistical data were used to predetermine sample sizes, but the
datasets are on par with similar studies. Randomization and controls
aredescribed in the main text. Experimenters were notblind to alloca-

tion during experiments and outcomes assessment. Nonparametric
tests were used when datasets violated normality assumptions.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source data used to make each of the figures are provided with this
paper.Raw data are available upon reasonable request to the authors.

Code availability
The codefor cerebellar model and custom analysis code can be found
at https://github.com/dycala.
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Extended Data Fig.1| Reach tracking and reach performance over sessions.

a. The right hand was tracked with high-speed cameras as mice reached upwards
and outwards towards a food pellet. Positional outreach trajectories from asingle
session viewed are shown from a lateral (left) or bottom-up (right) vantage point
with traces colored by the magnitude of outward velocity. b. Mice were trained
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foraminimum of 15 days on the reaching task. Pellet retrieval success was tracked
throughout training for each mouse, mean is shown in red. c. Quantification of
success rate on day 1 of training and day 15. (p-values: (c) 6.4x10%, paired t-test;
Samplesize: n =19 animals; *indicates p-value < 0.05).
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Extended Data Fig. 2| PCidentification by firing rate characteristics.

a. Cerebellar recordings using single electrodes were first anatomically

targeted to cerebellar cortex. If arecorded cell had visible Cspks they were

classified as PCs. Otherwise, if cells had a firing rate > 40 Hz, a median absolute

difference firing rate from the median interspike interval (MAD) < 0.008, and a

CV2>0.2, they were classified as PCs®'. b. Neuropixel-recorded single units were

crosscorrelated with nearby (<200 microns) low firing rate (<5 Hz) single units.

If this crosscorrelation exhibited the characteristic firing rate pause seenin PC

simple spikes after a Cspk, these units were classified as the simple spikes and

Cspks of asingle PC. If no pause was seen, cells that exhibited the same firing rate,
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MAD, and CV2 profile described in a were classified as PCs. c. Example simple
spike pause aligned to the time of a Cspk from a Neuropixel recording.

d. Embedding MAD, CV2, and FR into a two-dimensional space using tSNE shows
two distinct clusters, one corresponding largely to cells that were identified
using the criteriain aand b and the other corresponding to other cells (n =1268
sorted cells). e. Three example cells from a single session showing a neuron that
was classified as a PC due to the presence of complex spikes (red, left), aneuron
that was classified as a PC using firing rate criteria (blue, middle), and aneuron
that was classified as other (grey, right). The simple spike raster and averaged
simple spike firing rate PETH are shown on the bottom and top, respectively.
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Extended Data Fig. 3 | Single cell and population reach encoding
supplemental information. a. Schematic of LASSO regressions. 23 kinematic
variables were regressed against firing rate at different lags from 0 to -300 ms.
Thelag that minimized the mean squared error (MSE) of the regressions was
selected. b. Peak modulation time of all cells across all reaches. ¢. Optimal lags
of the LASSO regression for each cell. d. Fraction of the unique contribution to
total variance explained for each regressor. e. Fraction of regressions with each
variable selected (mean shown for each regressor). f. Same as in Fig. 1d but only
analyzing the subset of PCs that had Cspks identified. g. PCs with Cspks show no
changesin model error across the reach, consistent with the total PC dataset.
h. PCs with Cspks display kinematic variables with similar relative contributions
to model variance explained compared to the total PC dataset. i. Variables

Time from theshold crossing (ms) Time from FR suppression (ms)

included in the LASSO model in PCs with Cspks are consistent with datain the
total PC dataset (mean shown for each regressor). j. Same as in Fig. 1h but only
analyzing PCs with Cspks. The top and bottom 50% of outward reach velocities
are analyzed. k. Quantification of the simple spike suppression of the datain
f.1. Time of FR suppression for the datainf. (p-values: (f) empirical vs. reach
shuffle: 4.4 x10™, empirical vs spike shuffle: 2.4 x10™, Wilcoxon signed rank
test (k) 3.7 x10?%, Wilcoxon signed rank test; Sample size: (b-e) N = 11 animals,
465 cells (f-k) N = 8 animals, 59 cells; *indicates p-value < 0.05; all error bars and
bands represent mean + SEM; in box and whiskers plots box denotes median and
25%/75% percentiles, whiskers denote 10™ and 90 percentiles, circle indicates
mean).
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Extended Data Fig. 4 | Kinematic and simple spike correlates of early Cspks. withnon-Cspk trials. f. Simple spike firing aligned to the time of early Cspks
a.Cspksinthe 500 ms before reach onset were not associated with differencesin compared to similarly aligned trials without early Cspk trials.g. No difference in
target error as assessed with euclidean distance form session median compared simple spike rate in the 100 ms preceding early Cspks was seen compared to the
tonon-Cspk trials. b. No difference in peak outward velocity was observed similarly aligned previous or next trial. (p-values: (a) 0.32, Wilcoxon signed rank
between Cspks and non-Cspk trials. c. Simple spike firing rate in trials with early test (b) 0.75, paired t-test (d) 0.37, paired t-test (e) 0.29, Wilcoxon signed rank
Cspk and non-Cspk trials. d. No difference in simple spike rate during outreach test (g) 0.47, RM one-way ANOVA, previous trial vs cspk trial: 0.97, cspk trial vs
was seenin early Cspk trials compared with non-Cspk trials. e. No differencein next trial: 0.42, Tukey’s multiple comparisons test; Sample size: N = 8 animals, 58
simple spike rate per outward velocity was seen in early Cspk trials compared cells; all error bars and bands represent mean + SEM).
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Extended Data Fig. 5| Changes in PCfiring during optogenetic stimulation cells with Cspks binned at 50 ms. A single trace showing a Cspk after stimulation
of mossy fibers. a. Mossy fiber boutons expressing hSyn-ChR2-mCherry in the is shown above. Right: Quantification of Cspk probability in the 250 ms after
cerebellar cortex. b. Simple spike responses to mossy fiber stimulation. Left: stimulation and non-stimulated epochs for each cell. (p-values: (b) paired t-test,
examples of single-cell simple spike responses to mossy fiber stimulation. Right: (€) 5.6 x10°%, paired t-test Sample size: (a) 1 of 4 mice displayed, (b) N =4 animals,
quantification of simple spike responses to all recorded cells. Significance of 151 cells (c¢) N = 4 animals, 39 cells; *indicates p-value < 0.05; all error bars and
differences are indicated by the color and corresponding p-value map. c. Cspk bands represent mean + SEM).

responses to mossy fiber stimulation. Left: PSTH of the population of recorded
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Left Pons
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Extended Data Fig. 6 | Opsin expression for mice in behavioral experiments.
a. Histological section showing ChR2-mCherry expression at the injection site in
the left pontine nuclei (Pn: pontine nuclei; RtTg: reticulotegmental nuclei; PnO:
pontine reticular nuclei, oral part; PnC: pontine reticular nuclei, caudal part; 1 of
7 mice displayed). b. Contours of ChR2 expression in the pontine nuclei for mice
used inbehavioral experiments. c. Right cerebellum of the animal shownin a.
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Mossy fiber axons (grey arrow) and boutons (white arrow) can be seen expressing
ChR2inthe cerebellar cortex. The approximate location of the optical fiber

and recording site path are shown in white (1of 7 mice displayed). d. Location

of fiber placement in a representative section for animals used in behavioral
experiments.
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Extended Data Fig. 7 | Fixed-position stimulation supplemental data.

a. Two example mice with differing effects of stimulation on early reaches in the
stimulation block. To account for diverging effects we define the direction of
deviation with stimulation as positive and the opposing direction as negative.
b.Summary of the relative change in upward position for the same datashown
inFig. 3e. Relative change in upward position was assessed in the 50-ms window
following the end of stimulation. c. Summary of the relative change in lateral
position for the same data shown in Fig. 3e. d. Summary of the relative change in

outward position for in the 50-ms window before stimulation. e. Stimulating
with 635-nm light did not cause deviations in position or adaptation profiles.

f. Stimulating while the mouse was awake with its hand at rest on the bar
produced virtually no movement. (Sample size: (b-d) N = 5mice; 104 sessions,
(e) N=2mice; 19 sessions, (f) N = 4 animals, 21 sessions; all error bars and bands
represent mean + SEM; in box and whiskers plots box denotes median and
25%/75% percentiles, whiskers denote 10™ and 90 percentiles, circle

indicates mean).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Assessing unit stability across recording sessions and
population responses during fixed-position stimulation experiments. a. Left:
Waveforms templates detected on each Neuropixel electrode for a cell during
baseline and during washout. Right: Histogram of waveform correlation of PCs
across sessions (red) and of mismatched neighboring cells, across the session
(shuffled control, grey). PCs with an across-session waveform correlation that fell
below the 99" percentile of the shuffled control (dashed line) were excluded from
further analysis. b. Left: Unit displacement for cells across a session. Baseline unit
position is shown in grey and washout position is shownin red. Right: Histogram
of unit displacement of PCs across sessions (red) and of mismatched neighboring
cells, across the session (shuffled control, grey). PCs with an across-session
displacement that fell below the 1* percentile of the shuffled control (dashed
line) were excluded from further analysis. c. Same as data shown in Fig. 4g with

the last 5 stimulated and washout reaches included. The initial stimulation

and washout effects are reduced across the stimulation and washout blocks,
respectively. d. Cspks analyzed during fixed-position stimulation experiments
for the baseline, stimulation, and washout blocks. e. Same as the analysis shown a
but only including PCs with Cspks. These cells show similar negative deflections
with stimulation then adaptation upwards over the stimulation block compared
to the total PC dataset. f. Quantification of simple spike firing rates in the
stimulation window for the data shownin c. (p-values: () 5.1 x10°, RM one-way
ANOVA, end baseline vs. first wash: 0.022, end baseline vs. first 5 wash: 0.047,
first stim vs. last 5stim: 0.043, first stim vs. first wash: 6.1 x10*, first stim vs. last 5
wash: 3.8 x1073, last 5 stim vs. first wash: 0.034, Tukey’s multiple comparisons test;
Samplesize: (c) n =159 cells (d-f) n =13 cells; * indicates p-value < 0.05; all error
bars and bands represent mean + SEM).
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Extended Data Fig. 9 | Temporal analysis of early washout effect for
fixed-position and random-stimulation experiments. a. Analysis of
fixed-position stimulation experiment early washout reaches in 50-ms time
windows across the reach. Each window is shifted 10 ms from the adjacent
time window. Aftereffect emerges around the time stimulation was delivered
inthe stimulation block. b. Same as a but for random-position stimulation

experiments. Consistent aftereffects relative to baseline reaches do not emerge
inany of the analyzed windows. (Sample size: (a) N = 5mice, 104 sessions, (b)

N =5mice, 60 sessions; in box and whiskers plots box denotes median and
25'/75' percentiles, whiskers denote 10™ and 90" percentiles, circle indicates

mean).
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Extended Data Fig.10 | Cerebellar model adaptation to a negative-going
perturbation. a. Model as described in Fig. 6. In this case the number of
stimulated MLIs is greater than the number of parallel fibers (bottom) leading
to anet negative stimulation effect. Negative simple spike error lowers the
probability of Cspks below baseline, leading to LTP (top). b. PC simple spike
activity during the stimulation block and washout block of fixed-position
stimulation as described in Fig. 6b. Here the stimulation reduces firing rate.
c.Sameas described in Fig. 6¢. Here parallel fiber weight changes increase to

compensate for the stimulation. Note that while not displayed the quantification
ofthe adaptationisidentical to the data displayed in Fig. 6d. d. Comparison of
model output to empirical observations for fixed-position stimulus conditions
(Fig.3). Model closely matches behavioral adaptation. e. Same asb. but here

the stimulation window is randomized across the reach. Note that while not
displayed the quantification of the adaptation is identical to the data displayed
inFig. 6d.
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Data exclusions  Reaches that where >25% of points were dropped during outreach were excluded from further analysis. For analysis of electrophysiological
data during stimulation adaptation experiments, we excluded cells where isolation was unstable across the experiment (described in Methods
section).

Replication Experiments were replicated across animals and sessions. Animal and session replicates are described in the text.
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efficacy of drug across groups. Rather, within-subject controls were used to determine efficacy and plasticity of stimulation effects. No-across-
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of uniform computer analyses of physiology and behavior.
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Laboratory animals Mice were C57BL/6 (19 total: 11 females, 8 males, obtained from Charles River) < 3 months old.
Wild animals Wild animals were not used.
Field-collected samples  No field-collected material was used.
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