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Cerebellar associative learning underlies 
skilled reach adaptation

Dylan J. Calame1,2, Matthew I. Becker1,2 & Abigail L. Person    3 

The cerebellum is hypothesized to refine movement through online 
adjustments. We examined how such predictive control may be generated 
using a mouse reach paradigm, testing whether the cerebellum uses 
within-reach information as a predictor to adjust reach kinematics. We first 
identified a population-level response in Purkinje cells that scales inversely 
with reach velocity, pointing to the cerebellar cortex as a potential site linking 
kinematic predictors and anticipatory control. Next, we showed that mice can 
learn to compensate for a predictable reach perturbation caused by repeated, 
closed-loop optogenetic stimulation of pontocerebellar mossy fiber inputs. 
Both neural and behavioral readouts showed adaptation to position-locked 
mossy fiber perturbations and exhibited aftereffects when stimulation was 
removed. Surprisingly, position-randomized stimulation schedules drove 
partial adaptation but no opposing aftereffects. A model that recapitulated 
these findings suggests that the cerebellum may decipher cause-and-effect 
relationships through time-dependent generalization mechanisms.

Cerebellar damage and disease lead to motor abnormalities such as dis-
coordination, dysmetric movement endpoints and the inability to adapt 
movements to new conditions1–6. This array of symptoms suggests that 
the cerebellum may improve motor control by learning anticipatory 
control signals, such as those that mediate predictive control7–10. Cer-
ebellar learning paradigms, such as classical conditioning and motor 
adaptation, have provided clues into the neurobiological basis of these 
learned anticipatory signals11. Delay eyeblink conditioning, for example, 
illustrates how neutral conditioned stimuli paired with reflex-eliciting 
unconditioned stimuli become predictive cues eliciting conditioned 
responses (for example, a tone repeatedly paired with a corneal air 
puff eventually elicits a predictive eyeblink). Mechanistically, neutral 
cues can be replaced fully by cerebellar mossy fiber stimulation12,13 and 
unconditioned stimuli can be replaced fully by climbing fiber stimula-
tion13. Climbing fibers elicit complex spikes (Cspks) in Purkinje cell (PC) 
dendrites14,15 that, over many trials, reduce parallel fiber efficacy onto 
PCs, leading to firing rate pauses at the predicted time of the uncondi-
tioned stimulus. Through subsequent disinhibition of the cerebellar 
nuclei, these pauses then drive anticipatory conditioned responses. 
Similar mechanisms are proposed to underlie motor adaptation, where 

adaptive changes to behavior, which are consistently associated with 
instructive Cspks, are attributed to reweighting of sensorimotor infor-
mation conveyed to the cerebellum16–19.

Key differences, however, between motor adaptation and clas-
sical conditioning raise important questions about sites of learning. 
For example, skilled movements, such as reach, involve both cerebral 
cortex and cerebellum, both of which may change with adaptation20–23. 
Thus, learning-related changes in cerebellar Purkinje firing could be 
inherited from the cerebral cortex, generated by cerebellar plasticity 
or both24. More generally, perturbations that drive motor adapta-
tion22,25,26,27 engage sensorimotor feedback loops at multiple levels of 
the nervous system. This complicates the view that cerebellar input–
output remapping explains adaptation fully because inconsistent 
cerebellar inputs, caused by learning at sites outside the cerebellum, 
would deprive associative mechanisms of a stable cue.

Here, we leveraged a recent discovery that acute disruption of cer-
ebral cortical input to the cerebellum impairs skilled reach kinematics28. 
We reasoned that, because mossy fiber stimulation can be used as an 
associative cue in delay eyelid conditioning and is hypothesized to be 
remapped in motor adaptation, we could explicitly link these roles by 
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spike firing rate using limb kinematics on a trial-by-trial basis, with a 
tenfold crossvalidation step to avoid overfitting (Fig. 1b; Methods)30. 
On average, kinematics of the limb alone could explain a modest 
18.0 ± 0.01% (mean ± standard error of the mean) of the variance in 
simple spike firing rate on individual trials, although trial-averaged 
data was a much closer fit (58.0 ± 0.01%; Fig. 1c,d), consistent with other 
studies of PC simple spike tuning to limb movements in primates31–35. 
Kinematic encoding was not a result of generic movement-related 
modulation but was specific to the kinematics of individual reaches, as 
demonstrated by two control analyses: first, a ‘reach-shuffled’ control 
reassigned PC firing to different reaches; and, second, a ‘spike-shuffled’ 
control, where simple spike times on each trial were time shuffled and 
regressed against kinematics. In both cases, regression performance 
on the empirical data was significantly higher than the shuffled con-
trols, indicating simple spike firing rates encode reach kinematics on a 
reach-by-reach basis (Fig. 1d; N = 11 animals, n = 465 cells; for empirical 
versus reach shuffle, P = 1.1 × 10−71, weights (W) = 103,803, correlation 
coefficient (r) = 0.83; for empirical versus spike shuffle, P = 6.9 × 10−78, 
W = 108,331, r = 0.87; Wilcoxon signed-rank test). The regression model 
performance was stable across the spatial trajectory of reaches, sug-
gesting kinematic encoding is continuous in individual cells (Fig. 1e).  
Comparable values were seen in Cspk-identified PCs (Extended 
Data Fig. 3f,g; N = 8 animals, n = 59 cells; for empirical versus reach 
shuffle, P = 4.4 × 10−11, W = 1,758, r = 0.86; for empirical versus spike  
shuffle, P = 2.4 × 10−11, W = 1,770, r = 0.87; Wilcoxon signed-rank test). 
To assess which kinematic variables in the regression model were the 
most important in modeling simple spike firing rate, we repeated the 
regression with each variable independently time shuffled and meas-
ured the change in variance explained relative to the complete model36 
(Extended Data Fig. 3d,e,h,i). Positional terms—outward, upward and 
lateral—each accounted for approximately 10% of the explained vari-
ance of the complete model, with each of the remaining 20 variables 
accounting for <5%, although there was a wide variety in the relative 
importance of different kinematic variables across cells. These meas-
urements are roughly consistent with PC–limb kinematic relationships 
observed in primates24,34; however, the relatively weak encoding on 
individual trials obscures how the cerebellum might influence control 
over movements to make them smooth and accurate.

As noted previously, PC simple spike rates fluctuate during move-
ments, with modulations that are either predominately positive or 
negative37,38. Of 465 PCs recorded during reach, 226 displayed increases 
in activity during the reach epoch and 239 showed a decrease (Fig. 1f).  
When segregated into groups that predominantly increase or decrease 
rates during reach, both populations had lower firing rates during faster 

using optogenetic activation of cerebellar inputs to both perturb and 
predictively cue skilled reach adjustments. We monitored kinematic 
and neurophysiological signatures of learning while applying repeated 
optogenetic manipulations of mossy fibers in closed loop with reach, 
triggered at either consistent or randomized kinematic landmarks. A 
cerebellar model of timed adaptation within a movement recapitulated 
our key experimental findings and gives mechanistic insight into the 
circuit properties underlying cerebellar reach adaptation. Together, 
these experiments unify the frameworks of cerebellar associative learn-
ing and motor adaptation in skilled movements, an important step in 
understanding mechanisms of motor learning and predictive control.

Results
A PC population code tuned to reach velocity
Neurons in the anterior interposed nucleus fire proportionally to reach 
velocity and scale limb deceleration causally, such that the limb lands 
on target despite initial kinematic variability2,29. To determine whether 
upstream PCs may drive these decelerative bursts in the cerebellar 
nuclei, we combined kinematic and electrophysiological recordings 
in mice engaged in a skilled, head-fixed reach task. After mice were 
proficient at the task, we recorded reach kinematics with high-speed 
cameras via an infrared-reflective marker affixed to the mouse’s hand 
(Fig. 1a and Extended Data Fig. 1). Acute recordings in the cerebellar 
cortex were made simultaneously, using either single electrodes or 
Neuropixel probes (Fig. 1a and Supplementary Video 1). Recordings 
were targeted to a cerebellar cortical site situated between lobules 4 
and 5 and the lobule simplex known to influence forelimb movements 
in mice11. Confirmed PCs were identified by the presence of Cspks and 
an associated simple spike pause, whereas putative PCs were identified 
as neurons with a firing rate of >40 spikes s–1, coefficient of variation 2 
(CV2) of >0.20 and median absolute difference from the median inter-
spike interval (MAD) of <0.008 (Methods; Extended Data Fig. 2). For 
many of the analyses below, we pooled confirmed and putative PCs, 
and refer to them simply as PCs, because simple spike statistics are 
unique to PCs relative to all other known cerebellar cortical cell types. 
We note the caveat that future studies may uncover new cell types that 
are inadvertently included in our analyses. Therefore, supplemental 
data restricted to confirmed PCs are also provided for select analyses.

We found that activity in many PCs was highly modulated around 
the time of the reach across cells and sessions (Fig. 1). To test the pre-
diction that decelerative signals in the cerebellar nuclei derive from 
Purkinje neuron activity patterns during reach, we first sought to 
understand what individual PCs encode. We used least absolute shrink-
age and selection operator (LASSO) regression to model PC simple 

Fig. 1 | Net population activity in PCs predicts reach velocity. a, Schematic 
diagram of conceptual framework and experimental paradigm. Predictions 
computed by the cerebellum are hypothesized to be learned through 
reweighting of cerebellar inputs, including copies of motor commands, 
instructed by changes in climbing fiber activity. PCs of the deep central sulcus 
were recorded with either single electrodes or Neuropixel probes while the 
reaching hand was tracked in real time with high-speed cameras. b, Kinematic 
regressors in multilinear LASSO regression were used to model firing rates 
on individual reaches across sessions. c, Examples of three PCs fit with LASSO 
regression. Top, trial-averaged empirical and LASSO-predicted firing rates. 
Bottom, outward position and velocity aligned to firing rate at optimal lag.  
d, Modest single-trial R2 for single cells in empirical, reach-shuffled and spike-
shuffled LASSO regressions. P = 1.1 × 10−71 for empirical versus reach shuffle, 
P = 6.9 × 10−78 for empirical versus spike shuffle; Wilcoxon signed-rank test.  
e, Absolute model error (empirical versus predicted, across outward, upward 
and lateral positions) as a function of reach position. Stable error suggests 
continuous encoding of reach kinematics across reach epoch. Positions binned 
at 0.1 cm. f, During reach (kinematics, green), PCs group roughly into cells that 
increase firing rate (red) and cells that decrease firing rate (blue), aligned to the 
time the hand passed the ‘threshold’, 1 cm in the outward direction. g, Simple 

spike firing rate modulation during reaches grouped by reach speed. Cells that 
increase (red) and decrease (blue) firing rate both showed lower firing rates 
during faster reaches. Dashed lines represent time of peak rate modulation.  
h, Pooling all PCs reveals net firing rate suppression that scales with reach 
velocity percentile. Top, binned reach velocities associated with recordings. 
Bottom, net PC population firing rate change for each reach velocity bin.  
i, Magnitude of net firing rate suppression in total PC population as a function 
of outward velocity. Firing rate during the suppression in population activity 
was strongly negatively related to reach velocity. P = 4.0 × 10-4; linear regression. 
j, Time of population suppression is intermediate between peak outward 
acceleration and peak outward velocity, preceding deceleration. Plot relates 
the median timing of reach start, peak outward acceleration, peak outward 
velocity and peak outward deceleration to the time of population simple spike 
suppression for each reach velocity bin shown in i. Sample size: N = 11 animals, 
n = 465 cells. *P < 0.05. All error bars and bands represent mean ± s.e.m. In box-
and-whisker plots, box denotes median and 25th–75th percentiles, whiskers 
denote 10th and 90th percentiles; circle indicates mean. CbN, cerebellar nuclei; 
CS, complex spike; IO, inferior olive; MF, mossy fibers; SS, simple spike; FR, firing 
rate; max, maximum; pos., position; s.e.m., standard error of the mean; Sspk, 
simple spike; vel., velocity.
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reaches relative to slower reaches (Fig. 1g; highest peak velocity). The 
peak rates of the population of positively modulated cells preceded 
negatively modulated cells (dashed vertical lines, ~220 ms difference), 
raising the question of how these subpopulations collaborate as a group.

Populations of ~40 PCs converge onto single nuclear cells39. In the 
oculomotor vermis—where heterogenous rate modulation profiles 
of PCs strongly resemble the patterns we saw during reach—group-
ing PCs into populations across classes revealed much stronger 

Time from FR
suppression (ms)

Real-time 
kinematic
tracking

Cerebellar
recordings

CSSS

2 ms

Time from threshold crossing (ms)

1 s

Outward pos.
Upward pos.
Lateral pos.

Outward vel.
Speed

FR

Predicted FR

LASSO regression

C
el

l (
n)

N
orm

alized FR

–2,000 –1,000 0 1,000 2,000

100

200

300

400

–1.0

–0.5

0

0.5

1.0

150

100

50

100

50

0

200

125

50

Time from threshold crossing (ms)

a

c d eIncreaser Decreaser Mixed

0.5 cm
5 cm s–1

Outward postion
Outward velocity

FR
 (H

z)

n = 465 cells

Predicted
Empirical

–1,000 0 1,000
Outward velocity

precentile

Ss
pk

 ra
te

 (H
z)

h i j

Ss
pk

 F
R 

ch
an

ge
 (H

z)

R2 = 0.99

Time from threshold crossing (ms)

O
ut

w
ar

d 
ve

lo
ci

ty
(c

m
 s

–1
)

b

f gOutward

Lateral
Upward

**

0.4

0.6

0.2

0

Si
ng

le
-t

ria
l R

2

Sspk suppression m
agnitude (H

z)

Fastest 50%
Slowest 50%

Fastest 50%
Slowest 50%

0–20% 
20–40%
40–60%
60–80%
80–100%

Max outward
deceleration

Max outward
velocity

Max outward
acceleration

Reach start

–100 0 100

5

0

–5

–10

0 20 40 60 80 100

80

75

70

65

60

20

10

0

–2,000 2,000

15

10

5

0

–5

–10

20

–1,
000

–5
00 0

500
1,0

00

–1,
000

–5
00 0

500

–1,
000

–5
00 0

500
1,0

00

Empiric
al 

data

Reac
h sh

u�le

Spike
 sh

u�le
1,0

00

10

0

–10

O
ut

w
ar

d 
ve

lo
ci

ty
 (c

m
 s

–1
)

Time from threshold crossing (ms)
–2,000 –1,000 0 1,000 2,000

40

30

20

10

0

–10

–20

–30

Ss
pk

 F
R 

ch
an

ge
 (H

z)

Velocity 
percentile

Controller
(motor cortex)

Plant
(arm)

CbN

IO

Sensory–motor
MF input

Motor output

Goal Movement

Forward model
(cerebellum)

Movement error

Motor command

Cerebellar 
prediction

Parallel
fibers

PC

Climbing 
fiber

20

30

40

M
od

el
 e

rr
or

 (H
z)

0 0.5 1.0 1.5
Position (cm)

Outward

Lateral
Upward

(unconditioned stimulus)

2.0

(conditioned
stimulus)

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 26 | June 2023 | 1068–1079 1071

Article https://doi.org/10.1038/s41593-023-01347-y

kinematic relationships with saccades37,40. Speculating that similar 
population-encoding principles may be seen in reach-related PCs, we 
next grouped all PCs across all animals and looked at average activity 
for reaches binned by outward velocity. Firing rate increases were fol-
lowed by sharp drops in net activity during the reach epoch that scaled 
with the velocity of outreach (Fig. 1h). Quantifying the minimum simple 
spike firing rate during the reach window (Methods) showed a strong 
negative relationship with outreach velocity, such that the popula-
tion showed a suppression of activity that scaled with reach velocity 
(Fig. 1i; N = 11 animals, n = 465 cells, 2,100 reaches, 11,806 reach–cell 
pairs; coefficient of determination (R2) = 0.99, slope = −0.094, with 
95% confidence interval [−0.111, −0.077], P = 4.0 × 10−4, F = 307.5). This 
observation held in the Cspk-identified PC subpopulation, with sig-
nificantly deeper rate modulation on faster reaches (Extended Data  
Fig. 3j,k; N = 8 animals, n = 59 cells, n = 1,003 reaches, 1,665 reach–cell 
pairs; P = 3.7 × 10−2, W = 325,815, r = 0.068; Wilcoxon signed-rank test). 
The timing of rate suppression was intermediate between peak outward 
acceleration and peak outward velocity, just before the transition to the 
decelerative phase of reach (Fig. 1j and Extended Data Fig. 3l). Notably, 
each velocity percentile contained equal populations of positively and 
negatively modulated neurons. These data suggest that PC suppres-
sion scales in a way that is the inverse of decelerative nuclear bursts 
that slow the limb causally.

In summary, we found that individual PCs are privately and mod-
estly tuned to specific kinematic features of reach but weakly related to 
previously observed patterns of firing in the cerebellar nuclei. Yet, at the 
population level, PC activity shows scaled suppression in activity shortly 
before deceleration, consistent with a disinhibitory mechanism driving 
decelerative bursts in nuclear cells. We hypothesize that this firing rate 
suppression may be mechanistically akin to conditioned responses 
seen in delay eyeblink conditioning—learned rate changes that produce 
anticipatory movements in response to predictive cues. Both the precise 
timing and scaling of the population activity suppression observed here 
are consistent with learned cerebellar responses linked to motor and 
sensory contingencies to control movement. As such, this behavior 
offers a unique opportunity to test theories relating motor adaptation 
to associative learning in service of skilled movement18,41–43.

Cspks signal movement onset and reach outcome
To probe mechanisms that might shape cerebellar cortex scaling of 
output as a function of kinematics, we first identified cerebellar record-
ings with Cspks, the drivers of learning in PCs. Cspks could be sorted 
stably across the experiment in 59 of 465 putative PCs, 58 of which had 
Cspks during the perireach window (~1-s window centered on reach; 
Methods). Cspk probability increased shortly before movement onset, 
consistent with reports of early synchronized Cspk activity occurring at 
movement initiation44,45, then dropped near steady-state levels (Fig. 2a; 
P = 3.3 × 10−5, F = 2.6, repeated measures (RM) one-way analysis of vari-
ance (ANOVA); mean Cpsk probability versus −500-ms bin, P = 7.1 × 10−4, 
Cohen’s d (d) = −0.62, Dunnett’s multiple comparisons test). In addition, 
a wide literature relates late Cspks occurring after movement initiation 
to movement errors and sculpting of simple spike rates during move-
ment. Therefore, we analyzed the kinematics of reaches with early or 
late Cspks (Methods). Trials with late Cspks had distinct kinematics 
compared with trials without late Cspks, showing significantly deviated 
endpoints (Fig. 2b–e, N = 8 animals, n = 58 cells; Euclidean distance 
from session median for no Cspk trials versus Cspk trials, P = 8.1 × 10−4, 
W = −847, r = −0.43, Wilcoxon signed-rank test) but not peak velocity 
(Fig. 2f; P = 0.81, t = 0.24, d = 0.032, paired t-test). By contrast, reaches 
with early Cspks had no discernable kinematic differences (Extended 
Data Fig. 4a,b; N = 8 animals, n = 58 cells; Euclidean distance from ses-
sion median for no Cspk trials versus Cspk trials, P = 0.32, W = −257, 
r = −0.13, Wilcoxon signed-rank test; peak velocity for no Cspk trials 
versus Cspk trials, P = 0.75, t = 0.32, d = −0.042, paired t-test), although 
we cannot rule out changes in reaction time45,46.

To test whether PC tuning is unique on Cspk trials, indicative of an 
encoding error, we compared simple spike rates on Cspk and non-Cspk 
trials for early and late Cspks. Across neurons, simple spike rate was 
significantly elevated on late-Cspk trials (Fig. 2g,h; no-Cspk trials versus 
Cspk trials, P = 2.8 × 10−4, t = 3.9, d = −0.51, paired t-test), and this eleva-
tion led to a shift in the relationship of simple spike rate to reach velocity 
 (Fig. 2i; no-Cspk trials versus Cspk trials, P = 1.0 × 10−3, W = −833, r = −0.42, 
Wilcoxon signed-rank test). Trials with early Cspks did not show ele-
vated simple spike rates during outreach or changes in the relationship 
between simple spikes and reach velocity across sessions (Extended Data  
Fig. 4c–e; simple spike rate during outreach, for no-Cspk trials versus 
Cspk trials, P = 0.37, t = 0.90, d = −0.12, paired t-test; simple spike rate to 
peak velocity ratio, for no-Cspk trials versus Cspk trials, P = 0.29, W = −273, 
r = −0.14, Wilcoxon signed-rank test). Cspks function to depress PC inputs, 
leading to reductions of simple spike rate. If Cspks are responding to 
erroneous simple spike elevation, we speculated that simple spike rate 
should be elevated shortly before the time of a Cspk, as has been previ-
ously demonstrated47. Therefore, we analyzed simple spike rates aligned 
to the time of the Cspk, or the same time on the previous or next trial. In 
late-Cspk trials, Cspks were associated with higher-than-average simple 
spike rates in the 100 ms before a Cspk compared with the previous trial, 
and simple spikes in this window were lowered on the trial after the Cspk 
trial (Fig. 2j,k; P = 9.8 × 10−4, F = 8.0, RM one-way ANOVA; for previous trial 
versus Cspk trial, P = 3.6 × 10−3, d = −0.45; for Cspk trial versus next trial, 
P = 0.024, d = 0.36; Tukey’s multiple comparisons test). In contrast, early 
Cspks that occurred before the onset of reach did not display increases in 
simple spikes before the Cspk (Extended Data Fig. 4f,g; P = 0.17, F = 0.69, 
RM one-way ANOVA). Together, these data reveal dynamics of PC Cspks, 
simple spikes and associated kinematics that suggest a continuous recali-
bration of kinematic tuning in PCs.

Behavioral adaptation to mossy fiber stimulation
Next, we sought to probe whether PCs reweight cerebellar inputs that 
shape movement kinematics. Previous work has shown that stimulation 
of pontine afferents to the cerebellum perturbs reaching movements 
in mice28. This effect is interpretable as corrupted cortical information 
entering the cerebellum, which initially drives an erroneous cerebellar 
control policy observable in acute kinematic effects. If cerebellar asso-
ciative learning mechanisms implement the formation of an anticipa-
tory control policy, a number of predictions emerge: pontocerebellar 
mossy fiber stimulation that drives reach errors will, when repeated 
over many reaches, lead to adaptation of PC responsivity. Removing 
the perturbation should lead to aftereffects due to accumulated learn-
ing of new contingencies. Finally, adaptation and aftereffects will be 
dependent on the temporal context of the perturbation within the 
movement, where learning only accumulates when perturbations are 
temporally locked to the execution of the movement.

To drive erroneous activity in PCs during reaching movements, 
we injected AAV-expressing hSyn-ChR2 into the pontine nuclei in 
mice, a major hub relaying motor commands from motor cortex to the  
cerebellum28,48,49 (Fig. 3 and Extended Data Figs. 5a and 6a,b). Recordings 
of PCs showed that optogenetic stimulation of mossy fiber afferents in the 
cerebellar cortex drove both increases and decreases in simple spike fir-
ing rates (Extended Data Fig. 5b; N = 4 animals; 43 of 151 cells, 26 increase, 
17 decrease; P < 0.05, paired t-test). This diverging stimulation effect is 
likely due to network properties in the cerebellar input layers leading to 
either net excitatory or inhibitory drive onto PCs28. Interestingly, cells 
with sorted Cspks (Methods) showed a small but significant increase in 
Cspk probability in the 250 ms after stimulation during rest compared 
with the probability outside of this epoch in response to mossy fiber 
stimulation (Extended Data Fig. 5c; N = 4 animals; n = 39 cells; P = 5.6 × 10−3, 
t = 2.9, d = −0.45, paired t-test), consistent with previous findings during 
electrical stimulation of mossy fibers50. Cspks time locked to mossy 
fiber stimulation suggest that optogenetically driven simple spikes may 
engage plasticity mechanisms to respond to perturbation.
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Fig. 2 | Reaches with Cspks have erroneous kinematics and elevated simple 
spike rates. a, Cspks are positively modulated in the 500 ms before reach before 
dropping close to baseline values. Top, mean velocity of reaches with Cspks 
recorded. Bottom, peri-event time histogram (PETH) of Cspk activity relative 
to the time of threshold crossing. N = 8 animals, n = 59 cells. P = 3.3 × 10−5, RM 
one-way ANOVA; P = 7.1 × 10−4, post hoc Dunnett’s multiple comparisons test 
(*); p is probability in p(Cspk). b, Positional profiles from an example session 
separated into reaches with (red) and without Cspks (black) during or shortly 
after outreach. c, Endpoint of reaches relative to session median in the outward 
and upward directions (top) and outward and lateral directions (bottom) for 
trials with and without Cspks. Large red or gray dot indicates mean and s.e.m. 
from Cspk and non-Cspk reaches. For b and c, N = 28 Cspk reaches, 48 non-Cspk 
reaches. d, Session endpoints relative to session median for Cspk and non-Cspk 
reaches for each recorded cell with Cspks during or after outreach. Gray line 
links Cspk endpoint average with non-Cspk endpoint average for an individual 
session with the recorded cell. Left, outward and upward endpoint position. 
Right, outward and lateral endpoint position. e, Reach endpoints on Cspk 

trials were significantly further from session median compared with non-Cspk 
trials. P = 8.1 × 10−4, Wilcoxon signed-rank test. f, Peak outward velocity was not 
significantly different between Cspk and non-Cspk trials. P = 0.81, paired t-test. 
g, PC Sspks on Cspk and non-Cspk trials aligned to threshold crossing. h, PC Sspk 
rates were significantly higher during outreach in trials with Cspks. P = 2.8 × 10−4, 
paired t-test. i, Ratio of simple spike rate to outward velocity was significantly 
higher during outreach in trials with Cspks. P = 1.0 × 10−3, Wilcoxon signed-rank 
test. j, Simple spike rate aligned to the time of a Cspk, or simple spikes aligned to 
the same time relative to threshold crossing on the previous trial showed simple 
spike increases shortly before the Cspk. k, Quantification of simple spike rates in 
the 100 ms before a Cspk on a Cspk trial or the previous or next trial aligned to the 
same time of the Cspk relative to threshold crossing. P = 9.8 × 10−4, RM one-way 
ANOVA; for previous trial versus Cspk trial, P = 3.6 × 10−3; for Cspk trial versus next 
trial, P = 0.024; Tukey’s multiple comparisons test. For d–k, N = 8 animals, n = 58 
cells. *P < 0.05. All error bars and bands represent mean ± s.e.m. In box-and-
whisker plots, box denotes median and 25th–75th percentiles, whiskers denote 
10th and 90th percentiles and circle indicates the mean. NS, not significant.
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Fig. 3 | Adaptation to mossy fiber stimulation during reach. a, Head-fixed 
mice expressing ChR2 in pontocerebellar mossy fibers were trained to reach 
for food pellets while the hand was tracked with high-speed cameras. On laser 
trials, light directed to the cerebellar primary fissure through an implanted 
fiber was triggered in closed loop after the hand crossed a plane 1 cm outward 
from reach start position. Bottom, perturbation schedule followed canonical 
adaptation structure, with a baseline (no-stimulation) block, stimulation block 
with stimulation on every reach, followed by a washout block with stimulation 
omitted. b, Hand position 100 ms after threshold crossing in the first stimulated 
(blue) and washout (red) reaches heading to the target (white), after ref. 28.  
c, Hand position during baseline (gray), compared with hand position measured 
across the adaptation and washout blocks in an example mouse. Blue shading 
denotes the time of mossy fiber stimulation. n = 1 animal, 20 sessions.  
d, Summary of stimulation-induced kinematic effects, which decay over the 
adaptation block and show opposing aftereffects. Baseline subtracted hand 
position, rectified relative to the direction of kinematic effect of stimulation, 
is shown for reaches in the early (first reach), middle (middle five) and late (last 
five) phases for both stimulation (blue) and washout (red) blocks. e, Summary 
of adaptation effects across animals and sessions. Relative change in outward 

position was assessed in the 50-ms window after the end of stimulation. Asterisks 
indicate statistically significant differences between blocks. P = 1.7 × 10−3, RM 
one-way ANOVA; for early stimulation to middle stimulation, P = 8.9 × 10−3; for 
early stimulation to early washout, P = 0.030; for early stimulation to middle 
washout, P = 0.017; for early stimulation to late washout, P = 0.031; for early 
washout to late washout, P = 0.042; Tukey’s multiple comparisons test. f, Same as 
e, but with outward velocity assessed in the 50 ms after the start of stimulation. 
P = 4.7 × 10−3, RM one-way ANOVA; for early stimulation to middle stimulation, 
P = 0.024; for early stimulation to early washout, P = 0.041; for early stimulation 
to middle washout, P = 3.5 × 10−3; for early stimulation to late washout, P = 0.030; 
for late stimulation to early washout, P = 0.048; Tukey’s multiple comparisons 
test. g, The magnitude and direction of early stimulation effect was related to 
aftereffects. Plot shows linear regression relating the magnitude of the early 
stimulation outward position effect and early washout outward position effect 
compared with baseline reaches. P = 0.034, linear regression. For d–g, N = 5 
mice, 104 sessions. *P < 0.05. All error bars and bands represent mean ± s.e.m. In 
box-and-whisker plots, box denotes median and 25th–75th percentiles, whiskers 
denote 10th and 90th percentiles and circle indicates mean. Stim., stimulation; 
wash., washout.
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To assess whether repeated closed-loop stimulation could engage 
cerebellar learning mechanisms to produce sensorimotor adaptation, 
optical fibers were implanted in the cerebellar cortex at the interface 
between lobule simplex and lobules 4 and 5 (Extended Data Fig. 6c,d). 
Experiments were structured in a block format, where animals reached 
unperturbed in a baseline block; followed by a stimulation block, where 
closed-loop stimulation of pontocerebellar axons (50-ms train) was 
delivered on every reach when the hand passed a 1-cm threshold in the 
outward direction; and, finally, a washout block, where stimulation 
was removed to assess any aftereffects of learning. Each block was 
roughly 15–30 reaches long, determined by each individual animal’s 
endurance in the task (Fig. 3a; baseline, 23.1 ± 6.24 reaches; stimula-
tion, 22.4 ± 5.77 reaches; washout, 20.56 ± 6.65 reaches; mean ± s.d.; 
N = 5 animals, 104 sessions). Early in the stimulation block, we found 
that stimulation caused acute changes in reach kinematics: in four of 
five animals it caused hypermetric reaches in the outward position, and 
in one animal it caused hypometric reaches (Fig. 3b–c and Extended 
Data Fig. 7a examples 1 and 2). To assess the relative change in hand 
position over the stimulation block, we measured the magnitude of 
the stimulation effect over the block, defining the initial direction of 
the stimulation effect on hand position as positive and the opposing 
direction as negative. We found that the magnitude of the stimulation 
effect decreased over the stimulation block. When the stimulation was 
removed, reaches deviated in the direction opposite the initial stimu-
lation direction early in the washout block, before eventually correct-
ing back to baseline at the end of the washout block in both outward 
position and velocity (Fig. 3d–f; N = 5 animals, 104 sessions; outward 
position, P = 1.7 × 10−3, F = 11.3, RM one-way ANOVA; early stimula-
tion to middle stimulation, P = 8.9 × 10−3, d = 2.0; early stimulation to 
early washout, P = 0.030, d = 1.5; early stimulation to middle washout, 
P = 0.017, d = 1.7; early stimulation to late washout, P = 0.031, d = 1.4; 
early washout to late washout, P = 0.042, d = −1.3; Tukey’s multiple 

comparisons test; outward velocity, P = 4.7 × 10−3, F = 12.1, RM one-way 
ANOVA; early stimulation to middle stimulation, P = 0.024, d = 1.6; early 
stimulation to early washout, P = 0.041, d = 1.3; early stimulation to 
middle washout, P = 3.5 × 10−3, d = 2.6; early stimulation to late washout, 
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Fig. 4 | PCs show electrophysiological correlates of behavioral adaptation 
over the stimulation and washout blocks. a, Mossy fibers were stimulated at 
threshold crossing during outreach while recording PCs with Neuropixel probes. 
b, Mossy fiber stimulation effect during reach of all reach-modulated PCs. The 
difference in simple spike rate during the stimulation window is compared with 
the same epoch during baseline reaches. Significant differences are denoted by 
the color map on the right. n = 159 cells. c, Population summary of activity of PC 
firing rate adaptation over stimulation block for all PCs positively modulated by 
stimulation. Top, mean reach velocity for all sessions. Bottom, average change in 
simple spike rates for the last five baseline reaches (black) and the first five (cyan), 
middle five (light blue), and last five (dark blue) stimulated reaches. Blue shading 
denotes the time of mossy fiber stimulation. n = 17 cells. d, Same as in c, but for 
the population of PCs negatively modulated by stimulation. n = 25 cells. e, Same 
as in c, but measuring the magnitude of stimulation across stimulation increase 
and stimulation decrease cells. Here the effect of stimulation is measured in the 
direction of the initial stimulation effect, thus a positive deflection for stimulation 
increase cells means an increase in firing rate relative to baseline, and a positive 
deflection for stimulation decrease cells means a decrease in firing rate relative to 
baseline. f, Quantification of the data shown in e. P = 7.2 × 10−3, RM one-way ANOVA; 
for end baseline versus first five stimulations, P = 2.6 × 10−3; for end baseline versus 
middle five stimulations, P = 0.037; for end baseline versus last five stimulations, 
P = 0.32; Tukey’s multiple comparisons test. e,f, n = 42 cells. g, Population activity 
across all reach-modulated cells. The first stimulated trial shows a negative 
deflection in net firing rate relative to baseline. Conversely, the first washout 
reach shows a net positive deflection. Gray box indicates the time of stimulation 
or analogous time in the washout block. h, Quantification of simple spike firing 
rates in the stimulation window for the data shown in g and the last five stimulated 
reaches and washout reaches. P = 2.3 × 10−9, RM one-way ANOVA; for end baseline 
versus first stimulation, 0.012; for end baseline versus first washout, P = 0.039; for 
first stim versus last five stimulations, P = 7.4 × 10-4; for first stimulation versus first 
washout, P = 3.0 × 10−6; for first stimulation versus last five washouts, P = 1.9 × 10−7; 
for last five stimulations versus first washout, P = 0.019; for last five stimulations 
versus last five washouts, P = 0.015; Tukey’s multiple comparisons test. g,h, n = 159 
cells. *P < 0.05. All error bars and bands represent mean ± s.e.m.
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P = 0.030, d = 1.5; late stimulation to early washout, P = 0.048, d = 1.3, 
Tukey’s multiple comparisons test). The magnitude of the initial stimu-
lation effect on outward position predicted the magnitude of the initial 
washout aftereffect across animals (Fig. 3g, R2 = 0.820, slope = −0.608 
with 95% confidence interval [−1.13, −0.0853], P = 0.034, F = 13.7); how-
ever, hypometric effects were generally larger than hypermetric effects 
(both during stimulation and washout), possibly due to biomechani-
cal constraints of the limb and reaching apparatus imposing a ceiling 
effect on hypermetric movements. Interestingly, the aftereffect did 
not appear until the time that stimulation would have been delivered 
during outreach (Fig. 3c and Extended Data Fig. 7d). In control experi-
ments using red light (635 nm), we observed no kinematic deviations 
or adaptation profiles as seen with blue-light stimulation (Extended 
Data Fig. 7e). Further, blue-light stimulation at rest produced negligible 
movements (Extended Data Fig. 7f; N = 4 animals, 21 sessions; maximum 
outward velocity during stimulation of 0.26 cm s−1).

To summarize, we have shown that animals adapt to a precisely timed 
internal perturbation of pontocerebellar mossy fibers, and this learning 
is reflected in opposing aftereffects when the perturbation is removed. 
Adaptation was temporally precise, with changes in limb kinematics 
early in the washout block timed to the predicted point of perturbation.

PC adaptation to mossy fiber stimulation
To investigate cellular correlates of learning in PCs during behavioral 
adaptation to this circuit-level perturbation, we performed stimulation 
experiments while recording near the optical fiber with a Neuropixel 
probe (Fig. 4a). To assure that any firing rate changes were not attribut-
able to unstable cell isolation across the experiment, we assessed the 
stability of every PC using two metrics: a correlation of spike template 
waveforms, and the displacement of units along the electrode in the 
baseline and washout blocks (Extended Data Fig. 8; Methods). Of 314 
putative PCs, 203 were stable across the experiment, 159 of which were 
modulated with reach. In the analyses that follow, we analyzed stimulus 
responsivity over the stimulus block in all stimulus-responsive PCs, and 
population-level changes over adaptation of all reach-modulated PCs. 
First, to assess optogenetic stimulus responsivity in these neurons, we 
compared simple spike firing rates between baseline and stimulated 
reaches within the 50-ms stimulation epoch. Consistent with mossy fiber 
stimulation at rest, we observed a diverging effect pattern with stimula-
tion during reach: 17 cells showed significant increases in simple spike 
firing and 25 cells showed decreases (Fig. 4b, P < 0.05, paired t-test). In 
both groups, the efficacy of stimulation dropped over the course of the 
stimulation block, consistent with adaptation (Fig. 4c,d). To statistically 
analyze the progression of the stimulus effect over the stimulation block, 
we defined the direction of the initial response as positive for all cells 
(pooling cells that were inhibited and excited by stimulation) and then 
measured the response magnitude over time. The response magnitude 
dropped across the stimulation block such that, in later trials, firing rates 
were not significantly different from baseline (Fig. 4e,f; N = 5 animals, 42 
stimulation-modulated cells; P = 7.2 × 10−3, F = 5.5, RM one-way ANOVA; for 
end baseline versus first five stimulated trials, P = 2.6 × 10−3, d = −0.56; for  
end baseline versus middle five stimulated trials, P = 0.037, d = −0.41; 
for end baseline versus last five stimulated trials, P = 0.32, d = −0.26; 
Tukey’s multiple comparisons test). Notably, stimulation-affected cells 
did not show consistent aftereffects opposing the direction of the initial 
stimulation effect when the perturbation was removed.

Next, we analyzed how mossy fiber perturbations affected sim-
ple spike firing across the population of all reach-modulated PCs 
(stimulus-responsive and nonresponsive cells). We observed transient 
effects of stimulation and opposing aftereffects that were visible on the 
first trial of the stimulation and washout blocks, respectively (Fig. 4g).  
Across the population, the net effect of the first stimulation was a 
reduction of simple spike firing rate relative to baseline (Fig. 4g,h; N = 6 
animals, 159 reach-modulated cells; for rates during the stimulation 
epoch, P = 2.3 × 10−9, F = 13.8, RM one-way ANOVA; for end baseline versus 

first stimulation, P = 0.012, d = 0.26; for end baseline versus first wash-
out, P = 0.039, d = −0.23; for first stimulation versus last five stimula-
tions, P = 7.4 × 10−4, d = −0.47; for first stimulation versus first washout, 
P = 3.0 × 10−6, d = −0.42; for first stimulation versus last five washouts, 
P = 1.9 × 10−7, d = −0.47; for last five stimulations versus first washout, 
P = 0.019, d = −0.25; for last five stimulations versus last five washouts, 
P = 0.015, d = −0.25; Tukey’s multiple comparisons test). This effect was 
rapidly adapted such that, by the end of the stimulation block, mean 
simple spike firing returned to baseline levels. On the first washout reach, 
there was marked increase in simple spike rates, an aftereffect opposite 
the direction of the initial stimulation effect. This aftereffect was only 
marginally lower by the end of the washout block; however, simple spike 
firing outside of the stimulation window showed a more visible normaliza-
tion to baseline levels (Extended Data Fig. 9a). This pattern of opposing 
rate deviations from baseline between the first stimulation and first 
washout reach were also seen in Cspk-identified PCs (Extended Data  
Fig. 9c,d). The dataset was underpowered to relate Cspk probability to 
these changes but, in the PCs in which Cspks were observed, the mean 
Cspk rate in the 250 ms after stimulation was not significantly different 
across the blocks (Extended Data Fig. 9b; N = 5 animals, n = 13 Cspk-sorted 
cells, P = 0.31, F = 1.2, RM one-way ANOVA). Overall, these data demon-
strate acute neural effects of stimulation that adapt across the stimula-
tion block, and population-level net aftereffects that oppose the initial 
firing rate deflection caused by stimulation, consistent with kinematic 
adaptation to perturbation and opposing aftereffects seen in reaches.

Random perturbations dissociate adaptation and aftereffect
In the experiments above, we showed that adaptation is temporally 
specific (for example, Extended Data Fig. 7b). We hypothesized that 
the temporal specificity of perturbation within the reach produced a 
fixed association between active inputs and error, facilitating adapta-
tion. Therefore, we predicted that, by presenting spatially inconsistent 
stimuli trial to trial, mice would not adapt to stimulation. To test this, we 
repeated block-stimulation experiments but, rather than stimulating 
when the hand passed the 1-cm outward plane, we stimulated at a pseu-
dorandomized position in the outward direction uniformly distributed 
between 0.3 and 1.8 cm (Fig. 5a,b). To assess the effect of stimulation at 
different points in the reach, we aligned reaches to the time of stimula-
tion and measured the difference in position compared with aligned 
baseline block reaches. Baseline subtracted reach profiles showed a 
characteristic change in outward position aligned to the time of stimula-
tion, similar to results in fixed-position stimulation experiments. Sur-
prisingly, even though perturbation positions were distributed across 
the stimulation block, we found that animals still exhibited adaptation to 
the stimulation early in the stimulation block, although this adaptation 
plateaued to intermediate levels between middle and late block epochs 
in outward position and velocity (Fig. 5c,d; N = 5 animals, 60 sessions; for 
outward position, P = 0.016, F = 10.8, RM one-way ANOVA; for baseline to 
early stimulation, P = 3.6 × 10−4, d = −3.9, Tukey’s multiple comparisons 
test; for outward velocity, P = 0.016, F = 7.5, RM one-way ANOVA; for 
baseline to early stimulation, P = 0.040, d = −1.1; for early stimulation to 
late stimulation, P = 0.017, d = 1.4, Tukey’s multiple comparisons test). 
To assess the presence of aftereffects, we analyzed the positional and 
velocity differences between baseline and washout reaches near the 
mean of the distribution of stimulus thresholds (50–100 ms after cross-
ing the 1-cm outward plane). Despite evidence for adaptation to the 
randomized stimulation, there were no consistent aftereffects; instead, 
reaches tended to have a greater distribution of positional differences 
that averaged to roughly zero (Fig. 5e and Extended Data Fig. 10; for 
outward position, P = 0.65, F = 0.40, RM one-way ANOVA; for outward 
velocity, P = 0.76, F = 0.23, RM one-way ANOVA).

Time-based generalization explains adaptation profiles
To better understand the nonintuitive adaptation profile of 
position-randomized stimulation, we modified a simple model of PC 
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firing based on a previously published study51. As an input, the model 
takes parallel fibers and inhibitory interneurons, each active for 15 ms, 
that as a population tile a 400-ms hypothetical movement (Fig. 6a). 
The PC rate mimicked the net firing rate suppression that we see in 
population activity during reach. At equilibrium, the populations of 
parallel fibers and interneurons are perfectly balanced during the move-
ment and cause no deviation in the PC firing rate from trial to trial. 
The model used a learning rule such that any elevation of the PC rate 
from this equilibrium would lead to depressing the weights of parallel 
fibers active at the time of deviation through a Cspk-like error signal, 
as in cerebellar long-term depression. Conversely, parallel fibers with 
depressed weights relax back to baseline levels in the absence of Cspks. 
We titrated the learning rate to match that observed in fixed-position 
stimulation experiments (Methods).

First, we modeled fixed-position optogenetic perturbation experi-
ments by artificially increasing activity in a random subset of parallel 

fibers and interneurons 50 ms in the middle of the hypothetical move-
ment (Fig. 6a). Differential parallel fiber to interneuron activation ratios 
lead to a net activation of the PC to engage the Cspk-on learning rule 
(Methods). Initially, this modification of PC inputs caused a large devia-
tion in the PC firing rate in the stimulated window, resulting in an error 
and synaptic depression of the concomitantly active parallel fibers 
(Fig. 6b). Over several repeated perturbation trials, this reweighting 
minimized the effect of the perturbation, correcting PC firing rate back 
to baseline. After 20 trials, we removed the perturbation. The model 
output then exhibited opposing aftereffects in PC firing rate at the 
previous time of perturbation, before relaxing back to baseline eventu-
ally. The adaptation profile was similar quantitatively to the empirically 
observed behavior. Importantly, we note that the aftereffect seen in 
the PC firing profile is a consequence of depressed weights in both 
perturbed parallel fibers and other unperturbed parallel fibers that 
were coincidentally active at the time of the perturbation (Fig. 6c,d).  
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Fig. 5 | Dissociation of adaptation and aftereffects with randomized 
stimulation position. a, Stimulation location during outreach was distributed 
pseudorandomly between 0.3 and 1.8 cm in the outward direction during the 
stimulation block. b, Examples of reaches stimulated at five different locations 
during outreach. Each stimulated reach is compared with the last five baseline 
reaches of each session. The horizontal dashed line indicates the threshold 
crossing that triggered stimulation. Blue shading denotes the time of mossy 
fiber stimulation. c, Summary data of relative change in outward position for 
stimulation reaches in the early, middle and late block. d, Quantification of 
stimulation effect on outward position across adaptation block. For each reach, 
the analysis window was the 50–100 ms after stimulation onset aligned to the 
time of threshold crossing for each reach (inset). Quantification of aftereffects 

on outward position during washout block. Here the analysis window is the  
50–100 ms after crossing the 1-cm threshold for each reach—the same as 
the analysis in fixed-position stimulation experiments. P = 0.016, RM one-
way ANOVA; for baseline to early stimulation, P = 3.6 ×10−4, Tukey’s multiple 
comparisons test. e, Same as d, but instead quantifying of outward velocity in the 
stimulus window, and aftereffects in the 50 ms after crossing the 1-cm threshold 
for each reach. P = 0.016, RM one-way ANOVA; for baseline to early stimulation, 
P = 0.040; for early stimulation to late stimulation, P = 0.017; Tukey’s multiple 
comparisons test. N = 5 animals, 60 sessions. *P < 0.05. All error bars and bands 
represent mean ± s.e.m. In box-and-whisker plots, box denotes median and 
25th–75th percentiles, whiskers denote 10th and 90th percentiles and the circle 
indicates mean.
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Thus, the model was unable to distinguish the difference between 
parallel fibers that caused or did not cause a deviation from the target 
PC activity within the perturbation epoch.

Next, we modeled the position-randomized mossy fiber stimu-
lation paradigm (Fig. 6e–g). As with the empirical results, we saw a 
reduction in the magnitude of the perturbation effect, consistent with 
high probabilities of Cspks around the time of a perturbation; that is, 
the perturbed inputs are subject to learning because they are always 
aligned to the error that follows (Fig. 6e). Although the magnitude of 
adaptation was smaller than that observed in the fixed-position model, 
we found that the model learning plateaued late in the perturbation 
block, similar to empirical observations (Fig. 6g). When the perturba-
tion was removed, there were minimal aftereffects, also consistent with 
experimental data. Model weights at the end of the perturbation show 
that this absence of aftereffects is explained by the lack of accumulated 
learning in coincidentally active parallel fibers; that is, when perturba-
tions are distributed across the movement, coincidently active paral-
lel fibers are different from trial to trial and, therefore, subjected to 

transient plasticity only (Fig. 6f). Thus, in randomized stimulation, the 
presence of adaptation illustrated a mechanism by which the cerebel-
lum distinguishes cause and effect using time: adaptation is explained 
by the conserved causal relationship between stimulated PC inputs and 
error, whereas the absence of an aftereffect is the result of unaccumu-
lated trial-over-trial learning in coincidentally active nonstimulated 
inputs. By contrast, aftereffects in the fixed-position paradigm are a 
consequence of the system generalizing attribution of error to fibers 
that were merely coincidently active relative to perturbation but did 
not necessarily drive error.

Discussion
We discovered a net PC population firing rate suppression during 
mouse reaching movements that scaled with the velocity of outreach 
and occurred shortly before the transition to the decelerative phase 
of movement. This suppression is reminiscent of emergent PC popu-
lation kinematic coding in the oculomotor vermis during saccades37. 
We speculate that this suppression is a type of conditioned response: 
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Fig. 6 | A cerebellar model accounts for adaptation and aftereffect 
dissociation. a, Schematic diagram of the temporal cerebellar learning model. 
The model input is a population of 2,000 cells, divided into two balanced 
populations of 1,000 parallel fibers and 1,000 interneurons, activated during 
a brief window during a simulated 400-ms movement. The output of the 
PC module that receives this information is compared with the input in the 
cerebellar nuclei. At equilibrium, the two populations are perfectly balanced 
(parallel fibers cause net activation of the PC, and the interneurons cause a net 
decrease; bottom) and the PC module outputs an activity curve (Gaussian that 
mimics the firing rate suppression observed in empirical data) that spans the 
movement. Positive deviations from this curve (errors) lead to mismatch in 
the nuclei and subsequent activation of the inferior olive, which reduces the 
weights of parallel fibers active shortly before the error. To simulate optogenetic 
perturbation experiments (barcode-like pattern at 200 ms), a step of activity 
was added to a subset of parallel fibers and interneurons for 50 ms in the center 
of the movement (fixed stim.) or randomized across the block (random stim.). 
Note that stimulation can either activate a cell twice (for example, parallel fiber 
1,257 indicated by an asterisk) or overlap with endogenous activity (for example, 
1,490, ind#), and nonstimulated neurons can be active endogenously during 
the stimulus window (for example, 1,561, arrowhead). t, time. b, PC simple spike 

activity during the stimulation block (top, blue) and washout block (bottom, red) 
showing progressively adapting response magnitudes during the adaptation 
block, and progressively decaying aftereffects during washout. c, Parallel fiber 
weight changes at the end of the fixed-position stimulation block. Top, change 
in weights of ‘artificially’ stimulated and nonstimulated parallel fibers plotted 
by time of endogenous activation. Bottom, heat map of parallel fiber weight 
changes on the top and unchanged interneurons on the bottom. Note population 
weight change concentrated at time of stimulation, seen in both artificially 
stimulated and unstimulated fibers during the stimulation epoch. d, Comparison 
of model output to empirical observations for fixed-position stimulus conditions 
(Fig. 3). Model closely matches behavioral adaptation. N = 5 animals, 104 
sessions. e, Same as b, but here the stimulation window is randomized across the 
reach. f, Same as c, but for random-position stimulation experiments.  
Note the absence of clustered weight changes in unstimulated parallel fibers. 
g, Comparison of model output to empirical observations for random-position 
stimulus conditions (Fig. 5) showing that both model and empirical observations 
show adaptation but not directional aftereffects. N = 5 animals, 60 sessions. In 
box-and-whisker plots, box denotes median and 25th–75th percentiles, whiskers 
denote 10th and 90th percentiles and the circle indicates mean. PF, parallel fiber.
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sensorimotor information relayed through mossy fibers becomes a 
learned cue for PCs to scale the decelerative phase of movement via 
disinhibition of the anterior interposed nucleus. We further demonstrate 
kinematic effects of mossy fiber stimulation that decrease over trials, 
akin to sensorimotor adaptation, with concordant changes in PC activity 
that imply cerebellar associative learning. We observed a surprising dis-
sociation of adaptation and aftereffects when randomizing the position 
of stimulation during reach, designed to test the reliance of adaptation 
on perturbation context. A model demonstrated that aftereffects are a 
consequence of misattribution of error to consistently coactive parallel 
fibers. Conversely, the dissociation of adaptation and aftereffects reflects 
a lack of accumulated plasticity at a single point during the movement.

By demonstrating remapping of inputs to outputs of the cerebellar 
cortex, we link concepts developed in delay eyeblink conditioning to 
adaptation of a skilled volitional movement. Specifically, the mossy 
fiber stimulation used here to drive reach perturbations is analogous 
to mossy fiber stimulation used as a conditioned stimulus in eyeblink 
conditioning. We speculate that motor plan or early kinematic infor-
mation acts endogenously as a conditioned stimulus associated with 
reach outcome that, when erroneous, drives cerebellar learning43. We 
note some nuanced differences between paradigms, however. For 
instance, adaptation to pontocerebellar stimulation occurs within 
tens of trials, many fewer than conditioned eyeblink responses, which 
require hundreds of pairings52. However, nonhuman primates and cats 
exhibit rapid adaptation consistent with our results in other sensori-
motor adaptation paradigms24,53. Multiple factors may explain this 
difference, including the richness of granule cell population coding 
during movements versus quiescent associations54, and building on 
pre-existing associations of pontocerebellar inputs to reach kinematics 
versus de novo mapping cues to outcomes in classical conditioning.

Another conspicuous departure from learning seen in eyeblink 
conditioning is that mossy fiber stimulation during reach drives an error. 
Thus, the unconditioned stimulus is not externally imposed but is rather 
the erroneous behavior that results from the perturbed mossy fiber activ-
ity. In this sense, the mossy fiber activity that interferes with cerebellar 
control acts as both a conditioned stimulus and generates a movement 
error that acts as an unconditioned stimulus to drive learning.

Isolating a locus of skilled reach adaptation to the cerebellum 
poses an important conceptual hurdle. Cerebral cortex is a major input 
to the pontine nuclei—the focus of perturbation in this study—thus 
learning in the motor cortex must be accounted for in cerebellar con-
tributions to movement. Likewise, cerebellar outputs relay informa-
tion back to motor cortex indirectly via the thalamus55. Previous work 
demonstrated that reach-associated pontocerebellar stimulation 
drives activity in motor cortex28, meaning each learner in this loop stays 
apprised of the activity in the other. Could plasticity sites outside the 
cerebellum account for our observations? Our data argue for a locus 
of learning in the cerebellum in two major ways. First, we observe 
reduced efficacy of mossy fiber drive onto PCs over many repeated 
trials. A parsimonious explanation is that highly plastic parallel fiber 
synaptic weights are changing during adaptation rather than cortical 
commands overriding these proximal perturbations. Second, if PC fir-
ing rate changes were caused by modulated afferents to the cerebellum, 
it would be difficult to reconcile such a mechanism with adaptation to 
randomized stimulation because these compensatory cerebellar inputs 
could not predict the time of stimulation. Of course, one caveat to these 
findings is the prevalence of putative PCs in our dataset. Although 
there is currently not a known cell type that is easily mistaken for a PC 
based on simple spike firing statistics, future discoveries could prompt 
reinterpretation of these data.

How might multiple connected brain regions, all of which are 
implicated in learning, accomplish learning a task in parallel? In our 
study, mice were expertly trained when we introduced optogenetic 
perturbation of inputs. Thus, stimulating pontocerebellar fibers, we 
corrupted the relationship of action directed by motor cortex and the 

established cerebellar response tuned to that action. Through adap-
tation, the cerebellum learned to assist movements with these newly 
modified inputs as evidenced by the diminishing kinematic effect on 
the limb; when stimulation was removed, the novel mismatch of cortical 
and adapted cerebellar contribution to the movement again manifests 
as movement errors.

Our data unite two threads of cerebellar theory, classical condi-
tioning and motor adaptation under the umbrella of associative learn-
ing, where active inputs to the cerebellum can be reformatted flexibly 
to accomplish a goal more accurately.
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Methods
Animals
All procedures followed National Institutes of Health Guidelines and 
were approved by the Institutional Animal Care and Use Committee at 
the University of Colorado Anschutz Medical Campus. Animals were 
housed in an environmentally controlled room, kept on a 12-h light–
dark cycle and had ad libitum access to food and water, except during 
behavioral training and testing as described below. Adult C57BL/6 
(Charles River Laboratories) mice of either sex (11 females, 8 males) 
were used in all experiments.

Surgical procedures
All surgical procedures were conducted under ketamine–xylazine 
anesthesia. After induction of anesthesia, the surgical site was cleaned 
and injected subcutaneously with bupivacaine (2.5 mg ml−1). Pressure 
injections of approximately 150 nl of AAV2-hSyn-ChR2-mCherry were 
stereotaxically targeted to the left pontine nuclei (−4.0 mm anterior–
posterior, −0.5 mm medial–lateral, −5.4 mm dorsal–ventral, measured 
from bregma) and animals were allowed to recover for a minimum of  
8 weeks to ensure expression in mossy fiber terminals in the cerebellar 
cortex. Custom-made aluminum head plates were affixed to the skull, 
centered on the bregma, using luting (3 M) and dental acrylic (Teets 
Cold Cure). Optical fibers (105 μm core diameter; Thor Labs) attached 
to a ceramic ferrule (1.25 mm; Thor Labs) were implanted into the pri-
mary fissure, between lobules 4 and 5 and the lobule simplex (−6.25 mm 
anterior–posterior, 1.9 mm medial–lateral, measured from bregma), 
at a depth of 1.2 mm (ref. 11). For recording experiments, a craniotomy 
was made medial to the fiber placement and a recording chamber was 
secured with dental acrylic, as previously described56.

Behavioral task
Animals were allowed a minimum of 2 days of recovery after 
head-fixation surgery, and were then food restricted to 80–90% of 
their baseline weight for reach training. Mice were habituated to the 
head-fixed apparatus by presenting food pellets (20 mg; catalog no. 
F0163, BioServ) that could be retrieved with their tongue, and pellets 
were then progressively moved further from the mouth until animals 
began reaching for food. Pellets were positioned to the right of the 
animal to encourage reaching with the right forelimb and moved to a 
consistent position specific to each mouse ~1.2–2.5 cm from the reach 
start. Sessions lasted until animals successfully retrieved 20 pellets or 
until 30 min had elapsed, whichever came first. Mice were trained for a 
minimum of 15 days and were considered fully trained once they could 
successfully retrieve 50% of pellets 3 days in a row.

Kinematic tracking and closed-loop optogenetic stimulation
Hand position was tracked in real time using an infrared-based 
machine-vision, motion-capture system (six Optitrack Slim3U Cam-
eras mounted with LED ring arrays; Motive Software) at 120 frames 
per second as previously described2. Cameras were positioned in front 
and to the right of the animal and focused on the approximately 8 cm3 
spatial volume that covered the reach area of the right forelimb. Ret-
roreflective markers (1 mm diameter) were used for camera calibration 
and affixed to the mouse hand for kinematic tracking. A custom-built 
calibration wand and ground plane were used to set position and ori-
entation of the cameras in Optitrack Motive software. Camera calibra-
tion was refined monthly to account for any drift of the cameras over 
time. Calibrations that reported a mean triangulation error <0.05 mm 
were considered passes. The spatial origin was set to be at the center 
of the bar where mice placed their hand during rest. Spatial blocking 
and camera detection thresholds were adjusted to prevent erroneous 
tracking of minimally infrared-reflective objects.

Real-time hand positions were streamed into MATLAB (2018a) with 
a latency under 1 ms. Custom-written MATLAB code was used to detect 
when the hand passed a positional threshold 1-cm outward from the 

bar where the mice rested their hand and then send a ‘go’ signal to an 
Arduino microcontroller (Uno), which triggered a laser with transistor–
transistor logic pulses. To ensure low-latency closed-loop stimulation 
we used an open-source C++ dynamic link library57 edited to reflect 
the parameters of laser stimulation (50 ms stimulation, 100 Hz, 2 ms 
train). This system has a closed-loop latency of 9.5 ms from the time 
of threshold crossing (camera frame rate of 120 frames per second, 
0.5 ± 0.1 ms (mean ± s.d.) MATLAB–Arduino communication). Hand 
positions and stimulation times were streamed into MATLAB and saved 
for postprocessing.

Kinematic analysis
All kinematic analysis was performed using custom-written MATLAB 
code. First, erroneously tracked objects were removed using a nearest 
neighbor analysis, which assessed the closest markers in subsequent 
frames and removed others, to produce a single positional trajectory 
of the hand marker over time. Any dropped frames where the marker 
was not detected were interpolated over, and then data were filtered 
using a second-order low-pass Butterworth filter (10 Hz)58 using MAT-
LAB’s zero-phase filter function filtfilt. Last, interpolated points were 
removed, such that the filtered marker positional data reflected only 
data captured during the experimental session.

To segment continuous data into reaches, we found instances 
of the marker passing the 1-cm positional threshold in the outward 
direction and clipped 10-s segments centered on this time point. We 
defined outreach as the segment of this data from the time before 
threshold crossing that the hand exceeded 2 cm s−1 in outward and 
upward velocity to the time after threshold crossing where the hand 
stopped moving in the positive outward direction (outward velocity 
<0 cm s−1). Occasionally, the marker would become obscured behind 
the pellet holder during reach or spurious detection of the nose would 
jump the marker position to the nose and be detected as a reach. There-
fore, to prevent against analyzing reaches that had large segments 
of data missing, any threshold crossings where the marker dropped 
greater than 25% of points between the start and end of the outreach 
were not considered for further analysis.

Reach velocity and acceleration were calculated using the numeri-
cal gradient between position time points in each dimension. To pro-
duce aligned reach position curves, we interpolated data at 10 ms, 
centered on the time the hand passed the 1-cm positional threshold, 
crossing in an outward direction. The effect of stimulation was assessed 
by measuring changes in stimulation and washout reaches (early, 
middle and late) relative to the last five baseline reaches in the 50-ms 
interval after the end of stimulation. To assess the unadapted effect of 
stimulation or washout, early reaches were defined as the first reach 
in each block; middle and late reaches were the middle five and last 
five reaches of reach block, respectively. To align random-stimulation 
position reaches, we found the positional threshold of stimulation on 
each reach; aligned stimulation reaches and baseline reaches to the 
time they crossed this boundary during outreach, averaged across 
reaches; and then measured the difference in these curves, yielding the 
stimulation-aligned positional difference between end baseline and 
stimulation reaches. For washout reaches in random-position stimu-
lation experiments, reaches were aligned to the time of the thresh-
old crossing at 1 cm, such that the aftereffect could be compared to 
fixed-position stimulation experiments. To account for varying effects 
of stimulation seen across animals (hypermetric and hypometric move-
ments), the direction of positional change in early stimulation reaches 
relative to baseline for each animal in random- or fixed-position stimu-
lation experiments was defined as the positive direction, and the oppos-
ing direction as negative for that animal in each paradigm, allowing us 
to group data across animals with diverging effects. To assess the time 
course of stimulation effects within individual animals, we measured 
differences in position at each time point between the early stimula-
tion reaches and baseline reaches using a Wilcoxon signed-rank test.
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Electrophysiology recording procedure
Craniotomies were made over the cerebellum, ipsilateral to the reach-
ing arm, in fully trained animals. A custom-made recording cham-
ber was implanted over the craniotomy, the brain was covered with 
triple-antibiotic cream (Globe) and the recording chamber was sealed 
with Kwik-Sil silicone (World Precision Instruments) such that it could 
be preserved for multiple recordings.

Single-electrode recordings
Single-electrode recordings were performed with 3–5-MΩ platinum–
tungsten optrodes (Thomas Recording). Once animals were head fixed, 
the electrode was targeted to −6.25 mm anterior–posterior, 1.9 mm 
medial–lateral (measured from bregma), and then lowered into the 
brain up to a depth of 1.8 mm using a motorized micromanipulator 
(Newport Motion Controller Model 861). Signals were band-pass fil-
tered at 300–5000 Hz, amplified with a MultiClamp 700 A amplifier 
(Axon Instruments) and digitized (CED Power3 1401) and recorded 
using Spike2 software (CED). Once a putative PC was isolated, the 
brain tissue was allowed to relax for 15 min. Cell sorting was performed 
offline using Psort.

Neuropixel recordings
Neuropixels were lowered into the brain using a motorized microman-
ipulator (Sensapex uMp micromanipulator). Once the electrode shank 
spanned the putative PC layer, the tissue was allowed to relax for 15 min. 
Electrophysiology data were acquired using an OpenEphys system 
(https://open-ephys.org/gui). Data were sorted offline in Kilosort2 (ref. 59)  
and manually curated in phy (https://github.com/cortex-lab/phy).

Neural data analysis
After sorting, isolated units were analyzed offline using custom-written 
MATLAB code. In well-isolated, single-electrode units, simple spikes 
and identifiable Cspks were sorted using Psort. To identify Cspks in 
Neuropixel recordings, we crosscorrelated cells with high firing rates 
in the cortex with adjacent low-firing-rate clusters and looked for the 
presence of a Cspk-aligned simple spike pause and characteristic simple 
spike and Cspk waveforms. In many cells, Cspks could not be identified 
across the length of the experiment. In these cases, we identified PCs 
based on cortical location and electrophysiological criteria using the 
firing rate, CV2 and MAD60. Cerebellar cortical cells with a firing rate 
>40 spikes per second, CV2 of >0.20 and MAD of <0.008 were labeled 
as PCs (Extended Data Fig. 2). Using these metrics, we were able to 
positively identify 94.9% of Cspk-identified cells. We visualized these 
metrics in a two-dimensional space using the tSNE function in MATLAB 
(with the parameters distance = ‘euclidean’, exaggeration = 4, perplex-
ity = 30, learning rate = 5,000). Instantaneous firing rates for PCs were 
calculated from the inverse of the interspike intervals, convolving with 
a 20-ms Gaussian and then sampling at 10-ms intervals. We found that 
most PCs with Cspks could be positively identified as such by using fir-
ing rate criteria alone, with a false negative rate of roughly 5.1% (5 of 98).  
Although we do not have a true false positive criterion to identify cells 
mistaken as PCs, as a proxy we note that the two distinct clusters of 
cells in the tSNE analysis corresponded roughly to PCs and non-PCs. By 
analyzing the cells that were identified as PCs in the non-PC cluster, we 
were able to estimate the false positive rate at roughly 3.8% (20 of 527).

In Neuropixel recording adaptation experiments, we analyzed 
reach-modulated PCs, defined as exhibiting a firing rate change during 
the reach epoch ≥1 s.d. of the mean firing rate of the cell. Cell record-
ings from the baseline (unstimulated) block from cerebellar stimula-
tion experiments during reach were included in the datasets in Figs. 1 
and 2. For analysis of the pooled population firing rate data in Fig. 1, 
we normalized reaches by velocity for each session and binned them 
into velocity quintiles. Thus, each cell was equally represented across 
all velocity quintiles. To find the magnitude of the firing rate decrease 
in grouped population PC data, we found the minimum value of the 

population firing rate traces for each percentile bin within the peri-
reach window (−500 to +500 ms from threshold crossing). We found 
the time of firing rate suppression by measuring the point at which 
each trace decreased firing by 50% from peak to nadir in this perireach 
window. We characterized early Cspks as those that occurred within 
500 ms before reach onset, corresponding to roughly the time of Cspk 
elevation seen across cells (Fig. 2a). Late Cspks were characterized as 
those that occurred during outreach or the 500-ms window after the 
end of outreach.

In pontocerebellar stimulation experiments, to assure that 
observed simple spike adaptation was not the result of changing 
unit isolation across the experiment, we assessed unit stability with 
two metrics: waveform correlation and unit displacement across the 
experiment. To assess waveform correlation, we isolated the template 
waveforms for each unit on the electrode with the greatest spike ampli-
tude and the 32 surrounding electrodes (33 total). We averaged 1,000 
randomly selected spike waveforms for each channel from the baseline 
block and the washout block, concatenated waveform templates across 
the 33 channels and then correlated the concatenated waveforms from 
the baseline and washout blocks (Pearson correlation). As a shuffled 
control, we correlated concatenated templates from neighboring units 
in the baseline and washout block. Neighboring units were defined as 
those whose 32 surrounding electrodes overlapped with the unit of 
interest. PCs whose across experiment waveform correlation did not 
exceed the 99th percentile (0.76) of the across-unit shuffled control 
correlation were excluded from further analysis.

To assess cell displacement across the experiment we calculated 
the position of unit (x, y) using

(x, y) = (
∑N

i=1xia
2
i

∑N

i=1a
2
i

,
∑N

i=1yia
2
i

∑N

i=1a
2
i

)

where N  is the number of electrodes, xi and yi are the lateral and upward 
position of the electrode and ai is the peak-to-peak spike waveform 
amplitude on the ith electrode. Unit displacement was defined as the 
Euclidean distance between unit positions in the baseline and washout 
blocks. As a shuffled control, the displacement between neighboring 
units (as defined above) across the experiment was calculated. PCs 
whose displacement was above the first percentile (2.36 μm) of shuffled 
control were excluded from further analysis.

LASSO regression
To quantify the variance of PC simple spike firing rate that could be 
explained by reach kinematics, we used LASSO regression30. LASSO 
has the advantage of performing both regressor selection and regu-
larization, producing a sparse model of many correlated kinematic 
regressors. A total of 23 kinematic variables were used as regressors, 
including position, velocity and acceleration in the upward, outward 
and lateral directions; speed; and unsigned acceleration, with each 
velocity and acceleration term additionally broken into positive and 
negative components. A full list of regressors is included in Extended 
Data Fig. 3. Data for each reach were clipped into 2-s segments, cen-
tered at the time of a 1-cm threshold crossing in the outward direction. 
Regression was performed using a custom-written MATLAB code using 
the lasso function. All kinematic data were standardized to have a mean 
of zero and a variance of one, and regression was performed with a 
tenfold crossvalidation to avoid overfitting. To find the appropriate 
offset of firing rate and kinematics, instantaneous simple spike firing 
rates for each reach were offset by lags from 0 to −300 ms (firing rate 
leading kinematics) in 10-ms steps. The lag that minimized the mean 
squared error of the regression was selected for each cell. To calculate 
the variance of firing rate explained, the predicted firing rates from 
the best fit regression were calculated from the kinematic data and 
compared to empirical data. R2 was calculated using
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R2 = 1 − SSres
SStot

,

where SSres is the sum of squared residuals and SStot is the total sum 
of squares.

For the spike-shuffled control, spike times on individual trials 
were shuffled in time so that each reach epoch had the same mean fir-
ing rate and then converted to instantaneous firing rates as described 
above. For the reach-shuffled control, reaches were assigned to firing 
rates recorded on different reaches. For both controls, regressions 
were performed at the lag that minimized the mean squared error 
for empirical data and repeated 100 times; R2 values of each shuffled 
control were taken as the average of these 100 regressions. To assess the 
unique contribution of individual kinematic regressors to the fraction 
of variance explained in the empirical data regression, each regressor 
was time shuffled independently and regressions were repeated. The 
change in R2 value between the regressor-shuffled regression com-
pared to the complete empirical data model is the fraction of unique 
contribution to total variance explained for each kinematic variable36.

Cerebellar model
The cerebellar model in the paper was derived from a previously pub-
lished model51 and written using custom code in Python. A major dif-
ference between our paper’s model and the cited one is the assumption 
of a continuous temporal input of parallel fiber activity distributed 
across a hypothetical 400-ms movement, rather than a single parallel 
fiber input trial over trial. The model PC was fed 1,000 parallel fibers 
that positively modulated the PC firing rate and 1,000 molecular layer 
interneurons (MLIs) that negatively modulated the PC firing rate, which 
were each active for 15 ms during a 400-ms interval, mimicking hypoth-
esized temporal basis sets produced by the granule cell layer61–63. In the 
absence of perturbation, these populations were perfectly balanced, 
leading to no changes of PC firing from trial to trial. PC firing at time t 
on the nth trial was calculated as the sum of the weighted contribution 
of all parallel fibers (PF) and MLIs at time t:

PCn (t) = PC0 (t) +
1,000
∑
i

wi
nPF

i
n (t) −

1,000
∑
i

MLIin (t) .

Here, wi
n is the weight of parallel fiber i on the nth trial and PC0 is 

the baseline firing rate of the PC.
Parallel fiber weights were subject to a learning rule based on devia-

tions of the PC firing rate from trial to trial. Weights were adjusted after 
each trial according to two parameters: the probability of a Cspk (CS) 
as a function of trial error βP (CS|En) where β (0.15) dictates the strength 
of synaptic depression in response to a Cspk, and a decay term ɑPF (0.95) 
that relaxes parallel fiber weights back to their initial value wi

0:

wi
n+1 = wi

n − (1 − αPF) (wi
n −wi

0) − βP (CS (t) |En (t)) if PF
i(t) > 0.

The probability of a Cspk is a function of t, where positive deviations 
in the PC rate from baseline at time t lead to elevation of Cspk rates from 
baseline, leading to long-term depression, and negative deviations of 
PC rate lead to reduction of Cspk rates from baseline levels, leading to 
long-term potentiation. Specifically, the error at time t (En (t)) was used to 
calculate the probability of a Cspk at each time in the movement interval:

P (CS(t)|En(t)) =
a

1 + e−τEn(t)
− a

2 .

To obtain values for the parameters a and τ, we fit a curve to the 
change in position of early, middle and late stimulated reaches in 
fixed-position stimulation experiments and then took the derivative 
of this curve to obtain the error correction (trial-over-trial positional 
change) for a given error magnitude.

We ran the simulations mimicking the experimental block structure 
used for empirical data, including a baseline block with no perturbation, 
an experimental block with a perturbation on every trial and a washout 
block with the perturbation removed. For net positive perturbation 
trials, we added activity to a random subset of 150 parallel fibers and 
50 MLIs at t = 200 ms for 50 ms that, when combined, drove an increase 
of 60 simple spikes per second in PCs at their initial weights (Extended 
Data Fig. 10). For net negative perturbation trials, we added activity 
to a random subset of 50 parallel fibers and 150 MLIs at t = 200 ms for 
50 ms, which drove a net decrease of 60 simple spikes per second in PCs 
(Extended Data Fig. 9). For each simulation, after 20 perturbation trials, 
the perturbation was removed, and the model was run for an additional 
20 washout trials. To simulate random-position perturbation experi-
ments, the time of perturbation was changed on every trial.

Statistics and reproducibility
Data reported in the manuscript reflect statistical summaries from 
each animal across multiple sessions. For electrophysiological data, 
each neuron was treated as an independent sample. All data were 
tested for normality with the Kolmogorov–Smirnov test to choose the 
appropriate statistical analysis. All t-tests mentioned in the manuscript 
were two sided, unless stated otherwise. In box-and-whisker plots, the 
box displays the median and 25th and 75th percentiles and the whisk-
ers extend to the 10th and 90th percentiles of the data, with the mean 
displayed as a dot in the box, unless otherwise stated.

Effect sizes for parametric tests were estimated using Cohen’s d. 
For datasets with fewer than 50 samples, the Cohen’s d value was cor-
rected for small sample size by multiplying by

( N − 3
N − 2.25 ) (√

N − 2
N

) ,

where N is the number of samples. Effect sizes for nonparametric tests 
were estimated by calculating r defined as

( Z

√N
) ,

where Z is the Z statistic and N is the number of samples.
No statistical data were used to predetermine sample sizes, but the 

datasets are on par with similar studies. Randomization and controls 
are described in the main text. Experimenters were not blind to alloca-
tion during experiments and outcomes assessment. Nonparametric 
tests were used when datasets violated normality assumptions.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source data used to make each of the figures are provided with this 
paper. Raw data are available upon reasonable request to the authors.

Code availability
The code for cerebellar model and custom analysis code can be found 
at https://github.com/dycala.
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Extended Data Fig. 1 | Reach tracking and reach performance over sessions. 
a. The right hand was tracked with high-speed cameras as mice reached upwards 
and outwards towards a food pellet. Positional outreach trajectories from a single 
session viewed are shown from a lateral (left) or bottom-up (right) vantage point 
with traces colored by the magnitude of outward velocity. b. Mice were trained 

for a minimum of 15 days on the reaching task. Pellet retrieval success was tracked 
throughout training for each mouse, mean is shown in red. c. Quantification of 
success rate on day 1 of training and day 15. (p-values: (c) 6.4×10-8, paired t-test; 
Sample size: n = 19 animals; * indicates p-value < 0.05).
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Extended Data Fig. 2 | PC identification by firing rate characteristics.  
a. Cerebellar recordings using single electrodes were first anatomically 
targeted to cerebellar cortex. If a recorded cell had visible Cspks they were 
classified as PCs. Otherwise, if cells had a firing rate > 40 Hz, a median absolute 
difference firing rate from the median interspike interval (MAD) < 0.008, and a 
CV2 > 0.2, they were classified as PCs81. b. Neuropixel-recorded single units were 
crosscorrelated with nearby (<200 microns) low firing rate (<5 Hz) single units. 
If this crosscorrelation exhibited the characteristic firing rate pause seen in PC 
simple spikes after a Cspk, these units were classified as the simple spikes and 
Cspks of a single PC. If no pause was seen, cells that exhibited the same firing rate, 

MAD, and CV2 profile described in a were classified as PCs. c. Example simple 
spike pause aligned to the time of a Cspk from a Neuropixel recording.  
d. Embedding MAD, CV2, and FR into a two-dimensional space using tSNE shows 
two distinct clusters, one corresponding largely to cells that were identified 
using the criteria in a and b and the other corresponding to other cells (n = 1268 
sorted cells). e. Three example cells from a single session showing a neuron that 
was classified as a PC due to the presence of complex spikes (red, left), a neuron 
that was classified as a PC using firing rate criteria (blue, middle), and a neuron 
that was classified as other (grey, right). The simple spike raster and averaged 
simple spike firing rate PETH are shown on the bottom and top, respectively.
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Extended Data Fig. 3 | Single cell and population reach encoding 
supplemental information. a. Schematic of LASSO regressions. 23 kinematic 
variables were regressed against firing rate at different lags from 0 to -300 ms. 
The lag that minimized the mean squared error (MSE) of the regressions was 
selected. b. Peak modulation time of all cells across all reaches. c. Optimal lags 
of the LASSO regression for each cell. d. Fraction of the unique contribution to 
total variance explained for each regressor. e. Fraction of regressions with each 
variable selected (mean shown for each regressor). f. Same as in Fig. 1d but only 
analyzing the subset of PCs that had Cspks identified. g. PCs with Cspks show no 
changes in model error across the reach, consistent with the total PC dataset.  
h. PCs with Cspks display kinematic variables with similar relative contributions 
to model variance explained compared to the total PC dataset. i. Variables 

included in the LASSO model in PCs with Cspks are consistent with data in the 
total PC dataset (mean shown for each regressor). j. Same as in Fig. 1h but only 
analyzing PCs with Cspks. The top and bottom 50% of outward reach velocities 
are analyzed. k. Quantification of the simple spike suppression of the data in 
f. l. Time of FR suppression for the data in f. (p-values: (f) empirical vs. reach 
shuffle: 4.4 ×10-11, empirical vs spike shuffle: 2.4 ×10-11, Wilcoxon signed rank 
test (k) 3.7 ×10-2, Wilcoxon signed rank test; Sample size: (b-e) N = 11 animals, 
465 cells (f-k) N = 8 animals, 59 cells; * indicates p-value < 0.05; all error bars and 
bands represent mean ± SEM; in box and whiskers plots box denotes median and 
25th/75th percentiles, whiskers denote 10th and 90th percentiles, circle indicates 
mean).
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Extended Data Fig. 4 | Kinematic and simple spike correlates of early Cspks. 
a. Cspks in the 500 ms before reach onset were not associated with differences in 
target error as assessed with euclidean distance form session median compared 
to non-Cspk trials. b. No difference in peak outward velocity was observed 
between Cspks and non-Cspk trials. c. Simple spike firing rate in trials with early 
Cspk and non-Cspk trials. d. No difference in simple spike rate during outreach 
was seen in early Cspk trials compared with non-Cspk trials. e. No difference in 
simple spike rate per outward velocity was seen in early Cspk trials compared 

with non-Cspk trials. f. Simple spike firing aligned to the time of early Cspks 
compared to similarly aligned trials without early Cspk trials.g. No difference in 
simple spike rate in the 100 ms preceding early Cspks was seen compared to the 
similarly aligned previous or next trial. (p-values: (a) 0.32, Wilcoxon signed rank 
test (b) 0.75, paired t-test (d) 0.37, paired t-test (e) 0.29, Wilcoxon signed rank 
test (g) 0.47, RM one-way ANOVA, previous trial vs cspk trial: 0.97, cspk trial vs 
next trial: 0.42, Tukey’s multiple comparisons test; Sample size: N = 8 animals, 58 
cells; all error bars and bands represent mean ± SEM).
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Extended Data Fig. 5 | Changes in PC firing during optogenetic stimulation 
of mossy fibers. a. Mossy fiber boutons expressing hSyn-ChR2-mCherry in the 
cerebellar cortex. b. Simple spike responses to mossy fiber stimulation. Left: 
examples of single-cell simple spike responses to mossy fiber stimulation. Right: 
quantification of simple spike responses to all recorded cells. Significance of 
differences are indicated by the color and corresponding p-value map. c. Cspk 
responses to mossy fiber stimulation. Left: PSTH of the population of recorded 

cells with Cspks binned at 50 ms. A single trace showing a Cspk after stimulation 
is shown above. Right: Quantification of Cspk probability in the 250 ms after 
stimulation and non-stimulated epochs for each cell. (p-values: (b) paired t-test, 
(c) 5.6 ×10-3, paired t-test Sample size: (a) 1 of 4 mice displayed, (b) N = 4 animals, 
151 cells (c) N = 4 animals, 39 cells; * indicates p-value < 0.05; all error bars and 
bands represent mean ± SEM).
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Extended Data Fig. 6 | Opsin expression for mice in behavioral experiments. 
a. Histological section showing ChR2-mCherry expression at the injection site in 
the left pontine nuclei (Pn: pontine nuclei; RtTg: reticulotegmental nuclei; PnO: 
pontine reticular nuclei, oral part; PnC: pontine reticular nuclei, caudal part; 1 of 
7 mice displayed). b. Contours of ChR2 expression in the pontine nuclei for mice 
used in behavioral experiments. c. Right cerebellum of the animal shown in a. 

Mossy fiber axons (grey arrow) and boutons (white arrow) can be seen expressing 
ChR2 in the cerebellar cortex. The approximate location of the optical fiber 
and recording site path are shown in white (1 of 7 mice displayed). d. Location 
of fiber placement in a representative section for animals used in behavioral 
experiments.
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Extended Data Fig. 7 | Fixed-position stimulation supplemental data.  
a. Two example mice with differing effects of stimulation on early reaches in the 
stimulation block. To account for diverging effects we define the direction of 
deviation with stimulation as positive and the opposing direction as negative. 
b. Summary of the relative change in upward position for the same data shown 
in Fig. 3e. Relative change in upward position was assessed in the 50-ms window 
following the end of stimulation. c. Summary of the relative change in lateral 
position for the same data shown in Fig. 3e. d. Summary of the relative change in 

outward position for in the 50-ms window before stimulation. e. Stimulating  
with 635-nm light did not cause deviations in position or adaptation profiles.  
f. Stimulating while the mouse was awake with its hand at rest on the bar 
produced virtually no movement. (Sample size: (b-d) N = 5 mice; 104 sessions, 
(e) N = 2 mice; 19 sessions, (f) N = 4 animals, 21 sessions; all error bars and bands 
represent mean ± SEM; in box and whiskers plots box denotes median and 
25th/75th percentiles, whiskers denote 10th and 90th percentiles, circle  
indicates mean).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Assessing unit stability across recording sessions and 
population responses during fixed-position stimulation experiments. a. Left: 
Waveforms templates detected on each Neuropixel electrode for a cell during 
baseline and during washout. Right: Histogram of waveform correlation of PCs 
across sessions (red) and of mismatched neighboring cells, across the session 
(shuffled control, grey). PCs with an across-session waveform correlation that fell 
below the 99th percentile of the shuffled control (dashed line) were excluded from 
further analysis. b. Left: Unit displacement for cells across a session. Baseline unit 
position is shown in grey and washout position is shown in red. Right: Histogram 
of unit displacement of PCs across sessions (red) and of mismatched neighboring 
cells, across the session (shuffled control, grey). PCs with an across-session 
displacement that fell below the 1st percentile of the shuffled control (dashed 
line) were excluded from further analysis. c. Same as data shown in Fig. 4g with 

the last 5 stimulated and washout reaches included. The initial stimulation 
and washout effects are reduced across the stimulation and washout blocks, 
respectively. d. Cspks analyzed during fixed-position stimulation experiments 
for the baseline, stimulation, and washout blocks. e. Same as the analysis shown a 
but only including PCs with Cspks. These cells show similar negative deflections 
with stimulation then adaptation upwards over the stimulation block compared 
to the total PC dataset. f. Quantification of simple spike firing rates in the 
stimulation window for the data shown in c. (p-values: (f) 5.1 ×10-5, RM one-way 
ANOVA, end baseline vs. first wash: 0.022, end baseline vs. first 5 wash: 0.047, 
first stim vs. last 5 stim: 0.043, first stim vs. first wash: 6.1 ×10-4, first stim vs. last 5 
wash: 3.8 ×10-3, last 5 stim vs. first wash: 0.034, Tukey’s multiple comparisons test; 
Sample size: (c) n = 159 cells (d-f) n = 13 cells; * indicates p-value < 0.05; all error 
bars and bands represent mean ± SEM).
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Extended Data Fig. 9 | Temporal analysis of early washout effect for 
fixed-position and random-stimulation experiments. a. Analysis of 
fixed-position stimulation experiment early washout reaches in 50-ms time 
windows across the reach. Each window is shifted 10 ms from the adjacent 
time window. Aftereffect emerges around the time stimulation was delivered 
in the stimulation block. b. Same as a but for random-position stimulation 

experiments. Consistent aftereffects relative to baseline reaches do not emerge 
in any of the analyzed windows. (Sample size: (a) N = 5 mice, 104 sessions, (b) 
N = 5 mice, 60 sessions; in box and whiskers plots box denotes median and 
25th/75th percentiles, whiskers denote 10th and 90th percentiles, circle indicates 
mean).
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Extended Data Fig. 10 | Cerebellar model adaptation to a negative-going 
perturbation. a. Model as described in Fig. 6. In this case the number of 
stimulated MLIs is greater than the number of parallel fibers (bottom) leading 
to a net negative stimulation effect. Negative simple spike error lowers the 
probability of Cspks below baseline, leading to LTP (top). b. PC simple spike 
activity during the stimulation block and washout block of fixed-position 
stimulation as described in Fig. 6b. Here the stimulation reduces firing rate. 
c. Same as described in Fig. 6c. Here parallel fiber weight changes increase to 

compensate for the stimulation. Note that while not displayed the quantification 
of the adaptation is identical to the data displayed in Fig. 6d. d. Comparison of 
model output to empirical observations for fixed-position stimulus conditions 
(Fig. 3). Model closely matches behavioral adaptation. e. Same as b. but here 
the stimulation window is randomized across the reach. Note that while not 
displayed the quantification of the adaptation is identical to the data displayed 
in Fig. 6d.
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