ORIGINAL PAPER

Metagenomic data highlight shifted nitrogen regime induced by wetland reclamation

Kexin Li^{1,2,3} · Nannan Wang^{1,2} · Fenghui Yuan^{1,2} · Xinhao Zhu⁴ · Yunjiang Zuo^{1,2} · Jianzhao Liu^{1,2} · Ziyu Guo^{1,2,3} · Ying Sun^{1,2} · Rui Su⁵ · Lihua Zhang⁵ · Sergei Lupakov⁶ · Yanyu Song^{1,2} · Changchun Song^{1,2} · Xiaofeng Xu⁴

Received: 25 October 2023 / Revised: 28 February 2024 / Accepted: 26 March 2024 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Natural wetlands are mostly nitrogen-limited ecosystems, while reclamation stimulates the loss of nitrogen (N) in soils by shifting the N regime. To investigate the microbial mechanisms of the N regime shift, we first conducted a global meta-analysis to quantify the wetland reclamation impacts on soil mineral N pools and then a field campaign to sample 24 soil cores up to 100 cm depth in a natural wetland and a 23-year cultivated soybean field from the Sanjiang Plain in northeastern China. After wetland reclamation, the N regime was shifted to cause a potential risk of massive N loss in soils; their microbial mechanisms were revealed through metagenomic data. In cropland, the relative abundance of genes involved in nitrification and assimilatory nitrate reduction to ammonia (ANRA) were enriched while those in N fixation, mineralization, denitrification, and dissimilatory nitrate reduction to ammonia (DNRA) were diminished. Wetland reclamation substantially enhanced the relative abundance of genes involved in nitrification (except for genes for ammonia oxidation to NH₂OH) and denitrification in surface (0–30 cm) soils but decreased them in subsurface (30–100 cm) soils. After wetland reclamation, the relative abundance of genes involved in denitrification and DNRA significantly reduced in spring and summer, but such patterns were not found in autumn and winter. This change enhanced potential microbial-driven N loss in spring and summer. The metagenomic data serve as surrogate data sources for quantifying soil roles on soil N cycles under land use change.

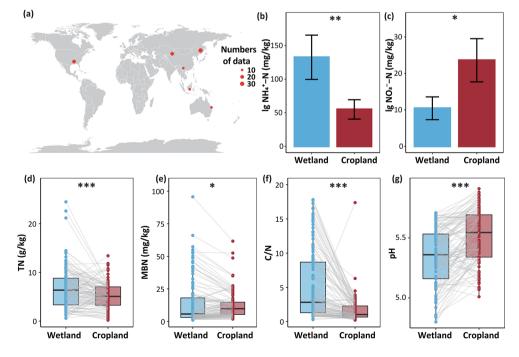
Keywords Nitrogen cycling · Metagenomics · Functional gene · Wetland reclamation

- ⊠ Xiaofeng Xu xxu@sdsu.edu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Biology Department, San Diego State University, San Diego, CA 92182, USA
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- ⁶ Hydrology and climatology laboratory, Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russian Federation

Introduction

Nitrogen (N) is an essential element for all living organisms (Laine et al. 2018; Singh 2021; Zhang et al. 2019) and the N cycles through various components on the Earth (Dong et al. 2020; Galloway et al. 2004). However, climate change and human activities have dramatically altered the N cycle, which caused substantial environmental problems in the past century (Dong et al. 2020; Galloway et al. 2008; Wu et al. 2022). For example, drought stimulates N mineralization but inhibits nitrification (Stark and Firestone 1995), reducing the nitrous oxide (N₂O) emissions (Hartmann et al. 2013); N loss exacerbated cropland yield, and N₂O emissions caused climate warming (Bahram et al. 2022); meanwhile, the N loading to water bodies has caused eutrophication in aquatic ecosystems (Choudhury et al. 2018; Song et al. 2022). Land use change can cause a massive N loss (Sun et al. 2015), significantly affecting the ecosystem functioning

(Arora-Williams et al. 2018; Nelson et al. 2015), such as ecosystem productivity (Singh and Gupta 2018).


Wetlands play a disproportional role in the N cycle (Fang et al. 2019), removing at least 11% of natural reactive N inputs worldwide (Finlay 2020; Jordan et al. 2011). However, due to the enormous demand for food (Reis et al. 2017), more than half of the natural wetlands have been artificially converted to other ecosystems (Davidson 2014; Pang et al. 2020). For instance, 90% of natural wetlands have been converted to agricultural lands in Brazil, and 50% have been converted to agricultural lands in Europe and North America (Borzée et al. 2018). While wetland reclamation yields economic benefits (Stagnari et al. 2017), it poses serious environmental problems (Li et al. 2014a). The biogeochemical cycling processes were shifted after wetland conversion to cropland, accelerating carbon (C) and N losses (Liu et al. 2020; Post and Kwon 2000; Yang et al. 2019). A global synthesis shows that wetland conversion to upland substantially shifted the N regime, halving NH₄⁺-N content while doubling NO₃-N content (Fig. 1 and Sect. "Meta-analysis of reclamation effects on soil inorganic N"). However, the mechanisms determining the soil N dynamics during land use change remain elusive.

Land conversion shifts the N cycle by altering a suite of soil microbial processes (Hua et al. 2017; Ma et al. 2020; Wan et al. 2021). Studies have reported the substantial impacts of wetland conversion to croplands on the abundances of functional genes encoding N fixation (Bannert et al. 2011), nitrification (Jiang et al. 2013), denitrification (Senbayram et al. 2022; Zhang et al. 2019), and mineralization (Jiang et al. 2013). However, most studies have focused on a single process of the N cycle, risking a potentially

Fig. 1 Effects of wetland reclamation on soil N and other environmental factors. (a) location of studies used in meta-analysis. Changes of soil NH₄⁺-N (b) and NO₃⁻-N (c) contents during wetland reclamation in metaanalysis. Changes of total soil N (TN) content (d), microbial biomass N (MBN) content (e), the ratio of C to N (C/N) (f), and pH (g) during wetland reclamation from our field experiments. Significance levels are denoted with *: p < 0.05; **: p < 0.01; and ***: p < 0.001

biased understanding of the overall quantification of the N cycle. Soil microbes for N cycles are highly sensitive to abiotic and biotic properties in soils that vary over seasons (Bolaños et al. 2021; Dickens et al. 2015). The absolute and relative abundance of nitrifying genes are more resistant to seasonal variation than denitrifying genes (Chen et al. 2017; Nelson et al. 2020). Generally, studies have focused exclusively on the topsoil of 0-30 cm, where the microbial biomass, activity, and diversity are the greatest compared to other depths (Jiao et al. 2018; Xu et al. 2013). Subsurface soils (i.e., deeper soils than 30 cm) may contain greater microbial biomass and harbor more diverse microbes than top soils (Bu et al. 2020). Castellano-Hinojosa et al. (2018) found that the absolute and relative abundance of the nitrifiers shrunk along soil profiles, but denitrifier abundance enriched with depths. Thus, a comprehensive understanding of the N-cycling microbes along soil profile is urgently needed to provide a scientific basis for better managing soil N under land use change.

Changes in the N regime and losses of soil N level upon cultivation have been widely observed (Coskun et al. 2017; McIntosh et al. 1997; Raiesi 2006). However, in which form, how much, and the microbial mechanisms the N released are still unclear (Yin et al. 2022). In this study, we aim to develop a complete understanding of wetland reclamation-induced N cycle shift and its underlying microbial mechanisms. By combining metagenomic data and statistical tools, we analyzed the effects of wetland reclamation on abundance of 59 KOs involved in 7 N-cycling pathways and examined their seasonal variations along 100 cm soil profiles. We hypothesized that: (1) wetland reclamation stimulates N loss, which would be companied with shifting

in the relative abundance of corresponding functional gene encoding N cycling; (2) the mechanism of microbial-driven N loss varied over seasons; and (3) land conversion leads to a risk of N loss by N-cycling genes along all soil depth, while different between surface and subsurface soils due to stronger disturbance in topsoil.

Materials and methods

Study site, soil sampling, and physicochemical analysis

This study was carried out at the Sanjiang Mire Wetland Experimental Station of the Chinese Academy of Sciences. Heilongjiang Province, China (47°35′ N,133°31′ E). Sanjiang Plain was dominated by natural wetlands before the 1950s (Xu and Tian 2012); however, more than 75% of the natural wetlands have been converted to cropland to meet the growing food demand (Liu et al. 2014). In our study area, the wetland mainly comprises Deveuxia angustifolia, Carex meyeriana, and Carex lasiocarpa. The adjacent farmland was reclaimed in 1996 and was planted with soybean [Glycine max (L.) Merr.], since then, no fertilizers have ever been applied. The region's mean annual temperature (MAT) is 2.5°C, and the mean annual precipitation (MAP) varies from 500 to 600 mm. According to the USDA Soil Taxonomy system (Kyebogola et al. 2020), the soil texture is classified as silty loam.

The experiment was established across four seasons: October 2019 (Autumn), January 2020 (Winter), May 2020 (Spring), and July 2020 (Summer). In each season, three sampling sites were randomly selected within both a soybean field (47°35' N,133°31' E) and a natural wetland (47°35' N,133°31′E), and three soil cores were extracted from each site. Every soil core was 100 cm depth and divided into ten soil samples (i.e., 0-10, 10-20, 20-30, 30-40, 40-50, 50–60, 60–70, 70–80, 80–90, and 90–100 cm). After removing the stone and rhizome, three soil samples from the same layer were evenly mixed and then put into polyethylene bags Finally, a total of 240 soil samples were collected. A portion of soil samples was immediately stored at -80 °C for DNA extraction in less than 7 days. The remaining samples were divided into two groups: one was held at 4 °C to determine soil microbial biomass and the other was dried naturally for measuring the soil physicochemical properties.

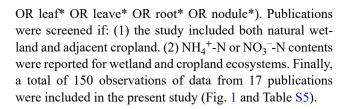
All soil profile temperatures were collected in an automatic weather station (AWS) with a CR1000 data logger (Campbell Scientific, Inc.) at Sanjiang Mire Wetland Experimental Station (Yu et al. 2013). Soil water content (SWC) was determined by the gravimetric method (105 °C, 24 h) using fresh soil samples (Mo et al. 2020). Air-dried soil

samples were used to measure soil pH and total N (TN). Soil pH was measured using pHs-25 (Shanghai INESA Scientific Instrument CO. Ltd, Shanghai, China) at a ratio of 1:10 for soil to water (An et al. 2022b). The soil TN was measured using a heating digestion method at 1100 °C with concentrated sulfuric acid (Black et al. 1992). The soil microbial biomass N (MBN) was estimated using the chloroform-fumigation extraction method (Witt et al. 2000).

Soil DNA extraction, metagenomic sequencing, and bioinformatic analysis

DNA was extracted from fresh soil samples using the fastDNA® Spin Kit (MP Biomedicals, Inc., CA, USA). The concentration and purity of the extracted DNA were determined using the TBS-380 (Turner BioSystems, Inc., CA, USA) and NanoDrop2000 (Thermo Fisher Scientific, Inc. MA, US), respectively. Then, the integrity of the DNA was verified by 1% agarose gel electrophoresis. DNA extract was fragmented to an average size of about 400 bp using Covaris M220 (Gene Company Limited, China) for paired-end library construction. A Paired-end library was constructed using NEXTFLEX Rapid DNA-Seq (Bioo Scientific, Austin, TX, USA). Adapters containing the full complement of sequencing primer hybridization sites were ligated to the blunt end of fragments. Paired-end sequencing was performed on Illumina NovaSeq 6000 (Illumina Inc., San Diego, CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). Sequence data associated with this project have been deposited in the NCBI Sequence Read Archive (SRA) repository (NCBI—PRJNA853804).

The quality of the raw sequence data was assessed using the fastp (https://github.com/OpenGene/fastp, version 0.20.0) (Chen et al. 2018), and high-quality reads were extracted by filtering low-quality reads with N bases, read quality < Q20, and length < 50 bp. Then, we mapped the sequence data to host reads using burrows-wheeler alignment tool (BWA; http://bio-bwa.sourceforge.net, version 0.7.9a), and contaminated reads with high similarity were then identified and removed (Li and Durbin 2009). These high-quality reads were then assembled into contigs using MEGAHIT (https://github.com/voutcn/megahit, version 1.1.2) (Li et al. 2015). Open reading frames (ORFs) in each contig (over 300 bp) were predicted using MetaGene (http:// metagene.cb.k.u-tokyo.ac.jp/) (Noguchi et al. 2006). A nonredundant gene catalog was constructed with predicted ORFs (≥100 bp) using CD-HIT (http://www.bioinformatics.org/cd-hit/, version 4.6.1) (Fu et al. 2012) at 90% identity and 90% coverage. All reads after quality control were aligned (95% identity) against the nonredundant gene catalog via SOAPaligner (http://soap.genomics.org.cn/, version 2.21) (Li et al. 2008), and gene abundance in each sample


was obtained. For statistical analysis, the relative abundance of genes was calculated in transcripts per million (TPM) (Wagner et al. 2012), with corrections for variations in gene length and mapped reads per sample. TPM is calculated as

$$TPM = \frac{(R_i/L_i)*10^6}{\sum_{1}^{n} (R_j/L_i)}$$

Where R_i represents the abundance of Gene i in a given sample, i.e., the number of reads mapped to Gene i; L: represents the gene length, i.e., the number of nucleotides in the Gene i; $\sum_{1}^{n} (R_j/L_i)$ represents the total abundance of all genes after normalization by gene length (Xie et al. 2021). The non-redundant gene catalog was functionally annotated against the Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.genome.jp/keeg/, ver. 94.2). The targeted N-cycle associated genes were filtered out based on the KEGG Orthology (KO) number (Kanehisa et al. 2015; Wang et al. 2021). Information on 59 KOs of the selected functional genes was provided in Table S1. All the functional genes involved in the N cycle were classified into 7 pathways, including N fixation, mineralization, nitrification, denitrification, assimilatory nitrate reduction to ammonium (ANRA), dissimilatory nitrate reduction to ammonium (DNRA), and ammonium assimilation (Table S1). Changes of functional genes were used to represent the potential changes of corresponding processes in this study. The taxonomic annotation for the subset of selected genes were processed based on the NCBI NR database using the blastp with an e-value cutoff of $1e^{-5}$ using Diamond (http:// www.diamondsearch.org/index.php, ver. 0.8.35) (Buchfink et al. 2015). To analyze the N cycling genes, the sequences that belong to N metabolism catalog against KEGG were used for analysis of subsequent taxonomic annotations (Wang et al. 2021, 2022).

Meta-analysis

Global data of NH₄⁺-N and NO₃⁻-N contents from wetland and cropland were obtained from peer-reviewed journal articles published between 1990 and June 2022. The publication databases, Web of Science, Google Scholar, and the Chinese National Knowledge Infrastructure (CNKI) were searched using the keywords (wetland* OR peatland* OR Swamp* OR Marsh* OR soybean* OR legume*) AND (nitrogen* OR N OR Dinitrogen OR N2 OR NO3* OR nitrate OR NH4* OR ammoni* OR NO2* OR nitrite OR N2O* OR "Nitrous Oxide" OR "nitric oxide") AND (reclamation OR reclaim* OR farm* OR tillage* OR cultivate* OR land-use* OR conversion* OR transition* OR abandon* OR restore*) AND (soil* OR plant* OR vegetation*

Statistical analysis

Statistical analysis was performed based on the normalized abundance of each gene in R (version 4.1.1). The differences in NH₄⁺-N, NO₃⁻-N, TN, MBN, C/N, and pH between the wetland and cropland were evaluated with a paired *t-test*. The NH₄⁺-N and NO₃⁻-N contents were calculated as the common logarithm with base 10. The functional group of N-cycling genes was calculated by the sum of each gene involved in the associated process. The differences in the relative abundance of N-cycle-associated genes between natural wetlands and cultivated cropland were implemented with nonparametric statistics.

According to Hedges et al. (1999), response ratios of microbial lineages and relative abundance of genes were calculated as follows:

$$lnRR_i = ln\left(\frac{X_{ic}}{X_{iw}}\right)$$

For each group i, the X_{ic} represents the average proportion of microbial lineages or N-cycling gene abundance in the cropland, and the X_{iw} represents the average proportion of microbial lineages or N-cycling gene abundance in the wetland. The variance (V_i) was estimated by equation (Hedges et al. 1999):

$$V_{i} = \frac{SD_{ic}^{2}}{n_{ic}X_{ic}^{2}} + \frac{SD_{iw}^{2}}{n_{iw}X_{iw}^{2}}$$

Where n_{ic} and n_{iw} are the sample sizes of the cropland and wetland, respectively, and SD_{ic} and SD_{iw} are the standard deviations in the cropland and wetland, respectively (Borenstein et al. 2021).

A weighted random-effect model was used to determine the overall effect of the altered relative abundance of genes involved in soil N cycling after wetland reclamation (Wu et al. 2022; Yue et al. 2019). The weighted mean effected size (lnRR₊₊) was calculated as follows (Kuang et al. 2021; Wang et al. 2019):

$$lnRR_{++} = \frac{\sum_{i=1}^{n} w_i lnRR_i}{\sum_{i=1}^{n} w_i}$$

where n is the number of groups (season and depth), w is the weighting factor of each observation; and w_i was calculated by taking the inverse of V_i . The weighted mean effected size (lnRR $_{++}$) was transformed as a percentage to express the magnitude of variations of gene abundance after reclamation by the following equation (Kuang et al. 2021):

$$1 - \frac{1}{e^{|lnR_{++}|}} \times 100\%$$

The difference in the relative abundance of microbial lineages and genes between wetland and cropland was analyzed through the Wilcox test. The seasonal and vertical difference in the response ratios of the relative abundance of genes was analyzed through the Kruskal-Wallis test. The Bonferroni correction for *p*-values adjustment for multiple testing was adopted to test differences between seasons. Nonmetric multidimensional scaling (NMDS) based on Bray-Curtis distance was performed using the "vegan" package to display the community patterns. All histograms, heatmap, and boxplot graphs were created using the "ggplot2" package. A structural equation modeling (SEM) analysis was performed in Amos software (version 22). A principal component analysis (PCA) was carried out to identify the major genes contributing to the variations in N processes.

Results

Meta-analysis of reclamation effects on soil inorganic N

A global meta-analysis was conducted to quantify the response of inorganic N (NH₄⁺-N and NO₃⁻-N) in wetlands and croplands (Fig. 1a–c, Tables S3, and S5). This global meta-analysis showed that wetland reclamation significantly altered the soil inorganic N pools (Fig. 1a–c). Wetland reclamation causes a significant decline in NH₄⁺-N (-58.38%; Fig. 1b and Table S3), but a substantial increase in NO₃⁻-N (135.22%; Fig. 1c and Table S3).

Reclamation effects on microbial community composition

Wetland reclamation dramatically altered soil microbes involving N-cycling at taxonomic levels from kingdom to order (Fig. 2). Bacteria were the dominant community in wetlands and cropland, followed by archaea and fungi. However, the relative abundance of bacteria significantly decreased after wetland reclamation (p < 0.001; Fig. 2a). At the phylum level, *Proteobacteria* was the most dominant phylum (32.34%), followed by *Actinobacteria* (21.40%),

Chloroflexi (9.68%), and Acidobacteria (8.63%) in the wetland. Similarly, Proteobacteria was the most dominant phylum (28.82%), followed by Actinobacteria (26.87%), Chloroflexi (10.01%), and Acidobacteria (9.42%) in cropland (Fig. 2b and Table S2).

Changes in the relative abundance of N-related genes in response to wetland reclamation

The relative abundance of N-related genes differed dramatically between wetland and cropland (Fig. 4a). Specifically, 11 genes enriched while 21 genes decreased among 53 N-related genes after wetland reclamation (Fig. 3b–d). Similarly, wetland reclamation significantly influences the weighted effect size of the relative abundance of genes involved in each N-cycling process. For example, wetland reclamation significantly augmented the relative abundance of functional genes involved in nitrification and ANRA by 17.03% and 12.47%, respectively (Fig. 8 and Table S4). On the contrary, those in N fixation, denitrification, mineralization, and DNRA significantly decreased by 77.39%, 16.94%, 10.47%, and 28.59%, respectively (Fig. 8 and Table S4).

Wetland conversion to cropland significantly decreased the relative abundance of genes involved in N fixation (p < 0.001; Fig. 3a). Specifically, the relative abundances of nifH, nifK, and nifD were significantly reduced (p < 0.001; Fig. 3b). Notably, anfG, encoding the catalytic component of nitrogenases that have iron in the active center, was not detected in cropland. In addition, wetland reclamation significantly decreased the relative abundance of genes involved in the mineralization process (Fig. 3a). For example, the relative abundances of cynS encoding cyanate lyase, E3.5.1.49 encoding formamidase, and ureAB, ureA, ureB, and ureC encoding urease subunit were significantly decreased (p < 0.001; Fig. 3d). However, no significant change was observed in the relative abundance of genes involved in CO₂ to HCO_3^- (Fig. 3d).

The functional group of relative abundance of genes involved in the nitrification process was not significantly changed after wetland reclamation (Fig. 3a). However, wetland reclamation increased the relative abundance of genes involved in hydroxylamine (NH₂OH) oxidation to nitrite and further to nitrate (Fig. 6a). Ammonia oxidation to NH₂OH is the first step of nitrification by using ammonia monooxygenase (AMO). In this step, the relative abundances of *amoB* and *amoC* have no change (Fig. 6a), but *amoA* significantly increased after wetland reclamation (p < 0.001; Fig. 3b).

The relative abundance of genes involved in denitrification generally decreased by 16.94% after wetland

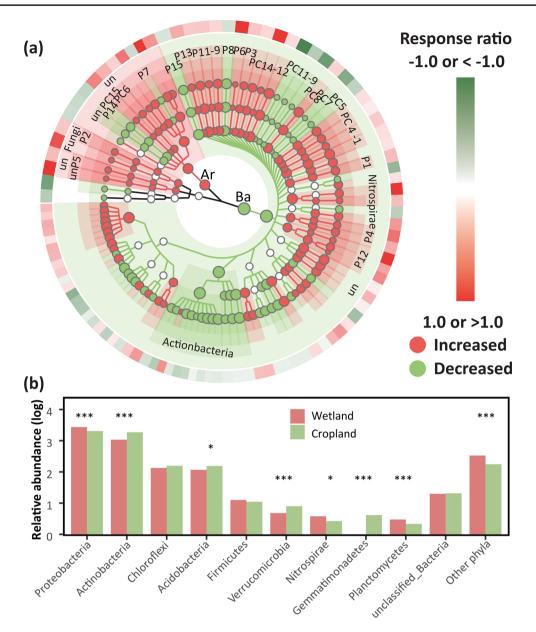


Fig. 2 (a) The response of soil microbial lineages to wetland reclamation. The cladogram depicts kingdom, domain, phylum, class, and order levels from inside to outside. Taxa that significantly increased under wetland reclamation are represented as red, while taxa that significantly decreased are represented as green. The out ring represents the response ratio of each microbial order. The size of each node represents the logarithmically transformed relative abundance of each microbial lineage. Ar: Archaea; Ba: Bacteria; P1: Aquificae; P2: Ascomycota; P3: Chlamydiae; P4: Chlorobi; P5: Chromerida; P6: Elusimicrobia; P7: Euryarchaeota; P8: Gemmatimonadetes; P9: Ignavibacteriae; P10: Latescibacteria; P11: Planctomycetes; P12: Spirochaetes; P13: Synergistetes; P14: Thaumarchaeota; P15: Verrucomicrobia; PC1: Candidate division NC10; PC2: Candi-


reclamation (Figs. 3a and 8, and Table S4). However, those in nitrite reduction to nitric oxide (NO) enriched (Fig. 6a). The relative abundances of *norB* and *norC*, which encoded enzymes that catalyzed NO reduction to

date_division_WOR-3; PC3: Candidate_division_Zixibacteria; PC4: Candidatus_Acetothermia; PC5: Candidatus_Azambacteria; PC6: Candidatus_Bathyarchaeota; PC7: Candidatus_Daviesbacteria; PC8: Candidatus_Omnitrophica; PC9: Candidatus_Parcubacteria; PC10: Candidatus_Peregrinibacteria; PC11: Candidatus_Roizmanbacteria; PC12: Candidatus_Rokubacteria; PC13: Candidatus_Saccharibacteria; PC14: Candidatus_Tectomicrobia; and PC15: Candidatus_Thorachaeota; un: unclassified taxa. (b) Soil microbial composition at phylum level in wetlands (red) and cropland (green). Only the relative abundance of top 10 phyla was shown separately, while others are represented as a sum of their proportions. The effects of the wetland reclamation were analyzed through Wilcox text. Significance levels are denoted with *: p < 0.05; **: p < 0.01; and ***: p < 0.001

 N_2O were significantly decreased (p < 0.001; Fig. 3c). Relative abundance of genes involved in nitrate reduction to nitrite in denitrification was decreased significantly (Fig. 6a), especially napA (p < 0.001) and napB

Fig. 3 Changes of N-cycling gene abundances during wetland reclamation. (a) The relative abundance of genes involved in N fixation, nitrification, ANRA, denitrification, DNRA, and mineralization in wetland and cropland. (b) The relative abundance of each gene involved in N fixation, nitrification, and ANRA; (c) the relative abundance of each gene involved in denitrification and DNRA; (d) the relative abundance of each gene involved in mineralization. The effects of the wetland reclamation were analyzed through Wilcox text. Significance levels are denoted with *: p < 0.05; **: p < 0.01; and ***: *p* < 0.001

(p < 0.001) that encode periplasmic dissimilatory nitrate reductases (Fig. 3c). These genes are also involved in the first step of DNRA. Consistently, the relative abundance of genes involved in the dissimilatory nitrite reduction to ammonium decreased by 28.59% significantly (Figs. 6a and 8, and Table S4), especially nrfA (p < 0.001) and nrfH (p < 0.001) that encode dissimilatory periplasmic cytochrome c nitrite reductase (Fig. 3c). Nevertheless, the relative abundance of genes involved in ANRA was increased after wetland reclamation (Fig. 3a).

There was no significant change in the relative abundance of genes involved in ammonium assimilation after wetland reclamation (Fig. S3a). Genes involved in assimilatory glutamate formation, dissimilatory glutamate formation, and urea synthesis were decreased after wetland reclamation (Fig. S3b). However, genes involved in glutamine formation and further glutamate formation (glutamine to glutamate) increased after wetland reclamation (Fig. S3b).

Seasonal variations of N-related genes in response to wetland reclamation

Wetland reclamation significantly altered the relative abundance of N-cycling genes (Fig. 4a, p < 0.05) and associated microbial taxonomic composition (Fig. 4b) across seasons. In the nitrification process, the variations of relative abundance of genes in NH₂OH oxidation to nitrite and further to nitrate have no significant difference between spring and summer (Fig. 5). Variations in denitrification, DNRA, and ANRA also have no discrepancy between spring and

summer (Fig. 5). Instead, across all seasons, genes involved in N fixation were significantly decreased after wetland reclamation (Fig. 5). Additionally, genes involved in ammonium assimilation were significantly reduced in summer, autumn, and winter after wetland reclamation (Fig. 5).

In the nitrification process, variations of genes involved in ammonia oxidation to NH_2OH and further to nitrite significantly increased in summer (Fig. 5). Conversely, variations of genes involved in nitrate reduction to nitrite, NO reduction to N_2O , and further to N_2 decreased significantly in spring and summer (Fig. 5). In addition, variations of

Fig. 4 (a) The NMDS ordination of N-cycling genes in wetlands and cropland. The differences among four seasons and ten soil layers were quantified using the Wilcoxon rank-sum test. (b) The response ratio of microbial lineages to wetland reclamation over seasons at phylum level; only the relative abundance of top 10 phyla were shown separately, while others are represented as a sum of their proportions. The effects of the wetland reclamation were analyzed through Wilcox text. Significance levels are denoted with *: p < 0.05; **: p < 0.01; and ***: p < 0.001

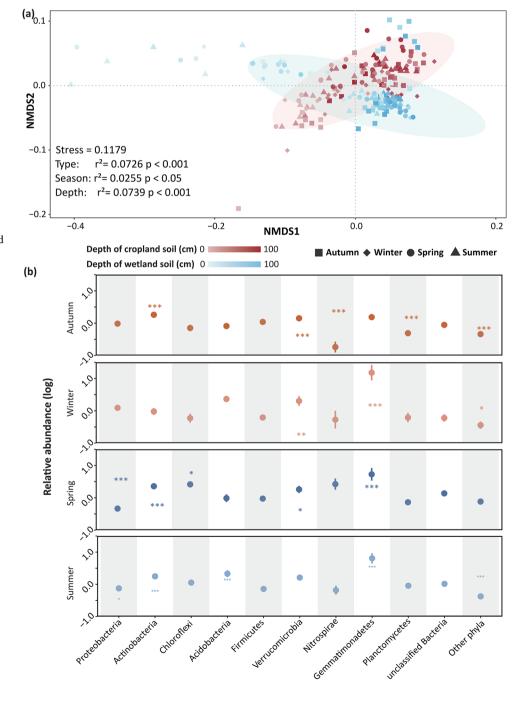
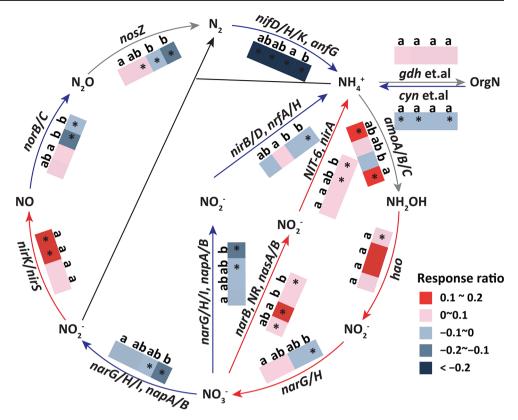



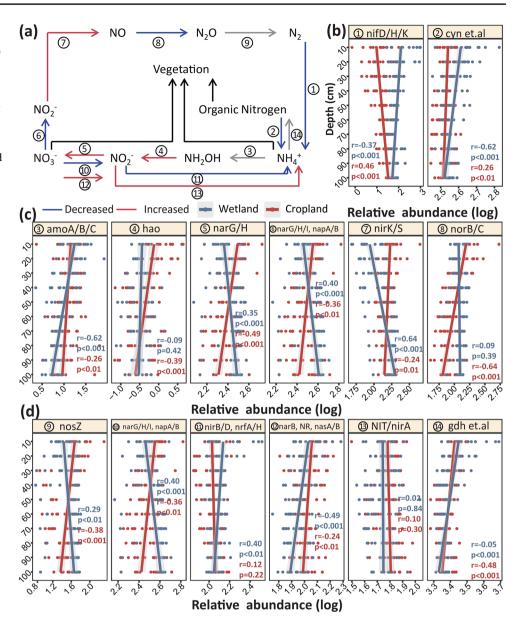
Fig. 5 Summary of the impacts of wetland reclamation on the N-cycling gene abundance across seasons. From left to right, colorful squares are the response ratios in autumn, winter, spring, and summer; the letters above the colorful squares mean the significant difference among seasons. "*" indicates p < 0.05

genes involved in dissimilatory nitrite reduction to ammonium significantly reduced in spring and summer (Fig. 5). On the contrary, variations of genes involved in assimilatory nitrate reduction to nitrite in summer, and assimilatory nitrite reduction to ammonium in spring and summer, significantly increased (Fig. 5).

Vertical patterns of the relative abundance of N-cycling genes in response to wetland reclamation

The NMDS analysis indicated that microbial functional profiles of N-cycling in cropland were significantly distinguished from wetland along soil profiles (Fig. 4a, p < 0.001). The relative abundance of N-cycling microbes changed substantially with soil depth in wetland and cropland (Fig. 6). Wetland reclamation caused large discrepancies between soil layers of 0–30 cm and 30–100 cm (Fig. S1). In the shallow soil (0–20 cm), wetland reclamation decreased the relative abundance of genes involved in ammonia oxidation to NH₂OH while increasing those in NH₂OH oxidation to nitrate and denitrification. However, the opposite tendency of these genes was found in the 30–100 cm deep soils (Fig. S1). Along all soil profiles, the relative abundance of genes involved in N fixation and ammonium assimilation reduced considerably after wetland reclamation.

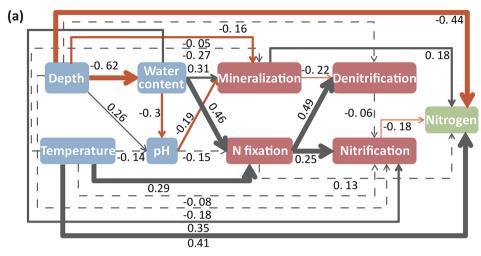
Our study found that soil N was significantly influenced by edaphic factors and N-cycling microbes both in wetlands and cropland (Fig. 7). The soil depth was particularly and negatively relevant to soil N in wetlands and cropland. In addition, the soil depth had a direct or indirect significant negative influence on the microbes of mineralization. In the wetland, the microbes of mineralization, influenced by soil depth, soil water content, and soil pH, were significantly positively correlated with soil N (Fig. 7a). In the cropland, the microbes of mineralization, are also influenced by soil depth, pH, and temperature (Fig. 7b). However, edaphic factors and N-cycling-related microbes had different impacts on soil N between wetlands and cropland. For example, soil water content influences the relative abundance of genes involved in the nitrification of wetlands but not cropland, while pH influences gene abundance in the N fixation of cropland but not wetlands (Fig. 7a, b).


Discussion

Wetland reclamation accelerates soil N loss by shifting microbial N cycling

As soil microbes are identified as the pivotal driver in the terrestrial N cycle at the global scale (Kuypers et al. 2018), wetland reclamation would considerably shift the N cycling by changing microbial functional profiles of N. This is supported by the results from our field experiment and a

Fig. 6 Wetland reclamation impacts on the N-cycling gene abundance among soil depths. (a) The variations of gene abundances in different N cycling processes. Red solid lines indicate that the gene abundances are significantly increased after wetland reclamation; solid blue lines indicate that the gene abundances are significantly decreased after wetland reclamation; grav lines indicate no significant difference between wetland and cropland, and black lines indicate no gene is detected in our experiments. The relative abundance of genes involved in N fixation and mineralization (b), nitrification and denitrification (except nosZ) (c), and denitrification (nosZ), DNRA, ANRA, and ammonium assimilation (d) of each layer in the wetland (blue point and line) and cropland (red point and line)


global meta-analysis, which indicates that wetland reclamation significantly increased soil NO₃⁻N concentrations but decreased the concentrations of soil NH₄⁺-N (Fig. 1 and Table S3), and the relative abundance of genes involved in nitrification also improved after wetland reclamation. Compared to NH₄⁺, NO₃⁻ readily leaches as its overall negative charge and has a higher diffusion coefficient (Luo et al. 2011). Moreover, wetland plants generally have higher uptake capacities for NH₄⁺ than NO₃⁻ (Wang et al. 2020). Such a result confirmed our first hypothesis that land cultivation bears a risk of increasing the extent of N loss by enhancing the NO₃⁻-N produced by nitrification (Fig. 7). This finding is in accordance with the findings of other studies, where N loss increased by enhancing the nitrification

rates (Bakhsh and Kanwar 2007; Helfrich et al. 2020; Laine et al. 2018; Qin et al. 2016).

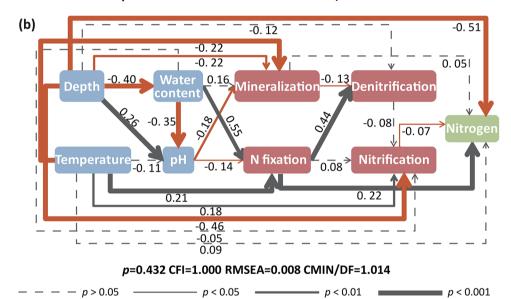

In addition, N loss after wetland reclamation is also supported by other N cycling processes reflected by changes in the relative abundance of corresponding genes including DNRA, N fixation, and nitrite reduction to NO (Fig. 3). Specifically, the inhibitions of the relative abundance of genes in N fixation and DNRA lead to potential N loss by decreasing NH₄⁺ concentration (Zhang et al. 2021). Since nitrate contents in cropland were higher than in wetlands, and nitrate levels inhibited multiple stages in root nodule growth and N fixation (Nishida and Suzaki 2018), this resulted in a decrease in the relative abundance of genes involved in N fixation (Fig. 3). The increase of the relative abundance of genes involved in nitrite reduction to NO led

Fig. 7 Structural equation modeling (SEM) illustrating the direct and indirect effects of physicochemical characteristics and the relative abundance of genes involved in N cycling on soil total N in (a) wetland and (b) cropland. Arrows in gray and red indicate positive and negative effects, respectively. The numbers adjacent to the arrows are standardized path coefficients proportional to the line thickness. Continuous and dashed arrows indicate significant and non-significant correlations, respectively. Arrows indicate the hypothesized direction of causation. CFI: Comparative-offit index; RMSEA: Root mean square error of approximation; CMIN/DF: Chi-square to degrees of freedom ratio

to an increase in NO emission. Overall, the changes in soil inorganic N pools under the wetland reclamation could shift the N regime and accelerate soil potential N loss by affecting N-cycling functional genes and microbial community composition.

The significant decrease in NH₄⁺-N concentrations and increase in NO₃⁻-N concentrations were attributed to the substantial increase in the relative abundance of genes involved in nitrification (Fig. 3a). Previous studies reported similar patterns in the response of N-cycling microbial communities to land-use change (Qin et al. 2016). As revealed by Che et al. (2017), an increase in nitrifier abundance is associated with greater soil N loss. Nitrifiers are mainly aerobic (Li et al. 2014b; Martens-Habbena et al. 2009), and dry croplands provide the aerobic conditions for them. As the phylogenetic marker to detect aerobic ammonia-oxidizing microbes (Jiang et al. 2010; Mohamed et al. 2010),

the amoA/B/C gene significantly increased after the wetland converted to cropland (Fig. 3b). Most of the nitrifier communities belong to *Proteobacteria* (Zhang et al. 2014; Zheng et al. 2013), which is also supported by the decreased Proteobacteria after wetland reclamation (Fig. 2b). Nitrifiers were induced with a low C/N (Tsujino et al. 2021; Wang et al. 2023), and most soil nitrification process is accomplished by autotrophic nitrifiers (Islam et al. 2007; Pedersen et al. 1999; Tortoso and Hutchinson 1990). In this study, the C-to-N ratio (C/N) was lower than 25 in wetlands and lower than 10 in cropland (Fig. 1f). Under lower C/N in cropland, lower N demand of other heterotrophs allows the low competition with nitrifiers (Adair and Schwartz 2008; Lee et al. 2018). Recent studies also suggested the extremely high heterotrophic nitrifiers and nitrifying activities in croplands (Gao et al. 2023b), explaining the increase of relative gene

abundance involved in nitrification (17.03%) shifting N regime after wetland reclamation (Fig. 3).

The relative abundance of genes involved in nitrite reduction to NO significantly increased after wetland reclamation (Fig. 3a), which contributes to high N loss as N₂O emissions (Gao et al. 2023a; Highton et al. 2023). As the first step in soil gas emission in the N cycle, NO diffusion is limited by water conditions of the surface soil (Friedl et al. 2022; Peirce and Aneja 2000; Pilegaard 2013). Therefore, NO emissions from dry well-aerated soils are much more than flooded wetlands (Smith 2005). Alternatively, a recent study demonstrated that mineral N addition can enhance the production of N₂O (Parajuli et al. 2022), which was supported by the increasing NO₃-N under wetland reclamation in our meta-analysis (Fig. 1). Although nirS and nirK genes are functionally similar in nitrite reduction to NO, they mostly belong to different bacterial strains and owe unrelated evolutionary relationships (Sun and Jiang 2022), showing varying responses in different habitats. Previous studies have reported that nirK was more abundant than nirS in soil but lower than nirS in aquatic habitats (Mao et al. 2023; Palacin-Lizarbe et al. 2019). Similarly, we found evidence that the nirK was more abundant than the nirS in wetlands and cropland (Fig. 3b). Additionally, the habitat selectivity of nirK was greater than nirS (Jones and Hallin 2010), confirming the significantly increased nirK under wetland reclamation in our study (Fig. 3b). This pattern was similar to that found in an earlier study of tidal wetlands in which the *nirK* gene increased with rice cultivation time and dominated its functionally redundant counterpart nirS (Bannert et al. 2011).

Consistent with the previous result (Bedard-Haughn et al. 2006), the significant decrease in the relative abundance of microbes involved in (dissimilatory) nitrate reduction to nitrite also contributed to the substantial increase in NO₃ -N concentrations (Fig. 3a). The significant decrease in napA (periplasmic nitrate reductase) and napB (cytochrome c-type protein) can be due to aerobic conditions (Fig. 3a) (Li et al. 2020b; Zaki et al. 2019). While no obvious decreasing trend was shown in narG/H/I and nirB/D, which control the DNRA process under anaerobic conditions (Huang et al. 2020; Zaki et al. 2019). Unlike DNRA, ANRA microbes contribute to N conservation by transforming it into organic N. ANRA is carried out by bacteria to incorporate ammonia for cell growth (Feng and Li 2019), which inferred that microbes prefer to utilize N to maintain their metabolism and growth. This corresponds to our results that microbial biomass weakly increased after wetland reclamation (Fig. 1e).

Collectively, after the wetland reclamation, the increased relative gene abundance in nitrification and ANRA, and the decreased relative gene abundance in N fixation and DNRA accelerate the loss of inorganic N together. The increased relative gene abundance in nitrite reduction to NO accelerates the N loss as gas emission. Therefore, the first hypothesis was supported. The impact of wetland reclamation on the specific process of the N cycle shifted the N regime and accelerated N loss, as shown by the functional genes encoding those processes (Fig. 8).

Different seasonal changes of N-cycling genes after wetland reclamation


Effects of reclamation on N cycling genes are different across seasons, reflected by the significant influence on N cycling genes in spring and summer rather than in autumn and winter, except for nitrite reduction to NO (Fig. 5). This is primarily due to the strong temperature dependence on microbial activities (Zhu et al. 2022). The enhancement of microbial activity by high temperatures in summer is stronger in cropland than in wetlands (Li et al. 2004). Furthermore, the difference of plant species in cropland and wetland in the growing season (spring and summer) might also enhance the effect of reclamation on N cycling. Alternatively, most plants grew in summer (Li et al. 2020a). Changes in plant species can affect the N cycle by regulating the microbial community in summer (Kuzyakov and Xu 2013). Consistently, we observed apparent distinctions in microbial community controls after wetland reclamation across seasons (Fig. 4b). Therefore, microbial responses to wetland reclamation varied in different seasons and the second hypothesis was supported.

The potential risk of N loss under wetland reclamation greatly depends on the transition from winter to spring (Jia et al. 2022; Treusch et al. 2009). Microbial death and proteolysis during the freeze-thaw period generate the highest available N pulse of the year (Jia et al. 2022). Moreover, the wetland has a better capacity for N retention than cropland due to a large amount of inorganic N losses through NO₃ leaching in cropland (Helfrich et al. 2020; Yang et al. 2019), especially in growing seasons (Shafreen et al. 2021). Consistently, we observed the abundance of functional genes involved in nitrification significantly increased under wetland cultivation in summer (Fig. 5). When soil NO₃ supply is insufficient, the denitrification process will be restricted by the limited substrate in growing season (Davidsson et al. 2002; Liu et al. 2023). Similarly, decrease in the relative abundance of genes in DNRA and nitrate reduction to nitrite was more significant in spring and summer than in autumn and winter (Fig. 5), which also resulted in N loss being higher in spring and summer than in autumn and winter.

The above findings were consistent with our second hypothesis. On the basis of these findings, the application of nitrifying inhibitors is a potentially promising management

Fig. 8 Graphic diagram showing the microbial mechanisms of wetland reclamation impacts on soil N cycling. Wetland reclamation significantly altered soil inorganic N and microbial gene abundances in the N cycle. The ellipse shape indicates soil N; the rectangle shape indicates the relative abundance of genes associated with soil N-cycling. Shape with red background color with (+) indicates the positive effect of wetland reclamation, which shows that N content or relative abundance of genes significantly increases after wetland reclamation. Shape with blue background color with (-) indicates the negative effect of wetland reclamation, which shows that N content or relative abundance of genes significantly decreases after wetland reclamation. Shape with a green background color indicates a non-significant impact of wetland reclamation

practice to alleviate the accelerated N loss during land cultivation (Subbarao et al. 2009). To obtain the best ecological benefits and crop production, synthetic nitrification inhibitors in fertilizer is one of the ongoing practices in land cultivation (Hatano et al. 2019), such as dicyandiamide (DCD) and 3,4-dimethylepyrazole phosphate (DMPP). However, synthetic nitrification inhibitors were not advocated due to their high cost and environmental pollution issues (Otaka et al. 2022). Biological nitrification inhibitors (BNI), released from plant roots (Zhang et al. 2022), are a promising strategy to control this high cost and reduce N losses (Ekwunife et al. 2022). In this study, we suggest that the use of BNI in tillage must be considered.

Microbes accelerate N loss in surface rather than sub-surface soils after wetland reclamation

Wetland reclamation bears a risk of N loss along all soil depths (Figs. 6 and 7, and S1). Decreased relative abundance of genes involved in mineralization after wetland reclamation decreases the potential of N loss along all soil profiles (Fig. 6). However, genes involved in N fixation reduced significantly after wetland reclamation along all soil profiles (Fig. S1), which increased the potential of N loss. This can be partly attributed to the diverse microbial communities (Li et al. 2016). Moreover, the relative abundance of genes involved N fixation decreased with soil depth (Fig. 6), confirming previous studies (Bu et al. 2020).

Effects of wetland reclamation accelerates potential N loss in surface rather than sub-surface soils reflected

by significantly shifting the relative abundance of genes involved in denitrification among soil depth (Fig. 6). The relative abundance of genes involved in denitrification decreased at a depth of 30-100 cm after the wetland reclamation (Fig. S1), which is related to more anaerobic conditions of wetland than cropland in deep layers (Hunter and Faulkner 2001). In wetland and cropland, soil depth influences the relative abundance of genes involved in mineralization directly and indirectly (Fig. 7). Available N produced by mineralization is an important source of nitrification (Seitzinger 1994), the decline in mineralization may cause a decrease in denitrification in deep soils (Fig. 6). In contrast, the relative abundance of genes involved in denitrification increased by more than 10% at the depth of 0-30 cm after the wetland reclamation (Fig. S1). This increase, according to our data, contradicts some previously published studies, showing that gene abundance in denitrification decreased at surface soil during land conversion (Bu et al. 2020; Emer et al. 2017). These differences may be caused by the application of mineral N fertilizers (An et al. 2022a). The increase in the relative abundance of genes involved in denitrification in surface soils resulted in the permanent removal of N as gases NO, N₂O, and dinitrogen (N₂) after wetland reclamation (Fig. S1) (Harrison et al. 2011). Therefore, N loss might be partially induced by gas emission in surface soil after wetland reclamation, which is also supported by a recent investigation (Helfrich et al. 2020). Overall, these findings were consistent with our third hypothesis.

Effects of wetland reclamation accelerates potential N loss also reflected by significantly shifting the relative

abundance of genes involved in NH₂OH oxidation to nitrate (Fig. 6). At a 0–30 cm depth, the relative abundance of genes involved in soil NH2OH oxidation to nitrate increased (Fig. S1). Increasing the relative abundance of genes involved in nitrification in surface soils exerts the potential for NO₃ production. It could be explained by the regular input of fresh plant residues in the wetland, and their mineralization favors an increase in soil nitrification (Németh et al. 2014). This finding was also confirmed in our study: the relative abundance of genes involved in soil mineralization was found to significantly decrease after wetland reclamation (Fig. 3). The higher content of nitrifiers is related to the optimal environments as the more aerobic conditions on the surface than deep soil after reclamation (Pett-Ridge et al. 2013). The risk of NO₂⁻ leaching was higher in sub-surface rather than surface soils after wetland reclamation (Wyland et al. 1996), supported by our result that the relative abundance of these genes decreased at the depth of 30-100 cm (Figs. 6 and S1).

Conclusion

This study quantified the effects of wetland conversion to cropland on soil N-cycling genes in northeastern China by analyzing the metagenomic data. The conversion of wetlands to cropland significantly enriched the relative abundance of genes involved in nitrification and ANRA by 17.03% and 12.47%, respectively. The relative abundance of genes involved in N fixation, denitrification, mineralization, and DNRA declined by 77.39%, 16.94%, 10.47%, and 28.59%, respectively. These changes in N-cycling genes would result in higher NO₃ but lower NH₄ content in soils, which would lead to a risk of N loss. It can be further advocated by the global meta-analysis showing a significant decrease in NH₄⁺ and an increase in NO₃⁻. The changes in N-cycling genes in growing seasons were more apparent than in nongrowing seasons. In addition, land use change led to a higher risk of N loss by N-cycling genes in surface soils (0-30 cm) than in deep soils (30-100 cm). Nevertheless, we acknowledge some limitations of our study. First, we only obtained functional genes in the present study, which would only proxy for the potential of N cycling processes. Second, we only presented the abundance of N-cycling genes in a wetland and 23-year cultivated cropland. Further studies should extend the mechanistic understanding of the shifting N-cycling along the chronic sequence. Even with these limitations, our work can be useful for evaluating the N cycle under land use change in perspective of microbial metabolism, and provide mechanistic insights into the impacts of human activity on the soil N cycle.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00374-024-01820-1.

Acknowledgements This study was partially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA28020502), the National Natural Science Foundation of China (42220104009, 42293263, and 42303080), the "Top Notch" program in China, and the Ecology Innovation Team (2020CXTD02) at Minzu University of China. X.Z. and X.X. are grateful for the financial and facility support from San Diego State University and the U.S. National Science Foundation (2145130).

Declarations

Competing interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- Adair KL, Schwartz E (2008) Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of Northern Arizona, USA. Microb Ecol 56:420–426. https://doi.org/10.1007/s00248-007-9360-9
- An TT, Wang F, Ren LL, Ma SA, Li SY, Liu LZ, Wang JK (2022a) Ratio of nitrate to ammonium mainly drives soil bacterial dynamics involved in nitrate reduction processes. Appl Soil Ecol 169:104164. https://doi.org/10.1016/j.apsoil.2021.104164
- An Z, Zheng Y, Hou L, Gao D, Chen F, Zhou J, Liu B, Wu L, Qi L, Yin G, Liu M (2022b) Aggravation of nitrous oxide emissions driven by burrowing crab activities in intertidal marsh soils: mechanisms and environmental implications. Soil Biol Biochem 171:108732. https://doi.org/10.1016/j.soilbio.2022.108732
- Arora-Williams K, Olesen SW, Scandella BP, Delwiche K, Spencer SJ, Myers EM, Abraham S, Sooklal A, Preheim SP (2018) Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake. Microbiome 6:165. https://doi.org/10.1186/s40168-018-0556-7
- Bahram M, Espenberg M, Pärn J, Lehtovirta-Morley L, Anslan S, Kasak K, Kõljalg U, Liira J, Maddison M, Moora M, Niinemets Ü, Öpik M, Pärtel M, Soosaar K, Zobel M, Hildebrand F, Tedersoo L, Mander Ü (2022) Structure and function of the soil microbiome underlying N₂O emissions from global wetlands. Nat Commun 13:1430. https://doi.org/10.1038/s41467-022-29161-3
- Bakhsh A, Kanwar RS (2007) Tillage and N application rates affect on corn and soybean yields and NO₃-N leaching losses. Trans ASABE 50:1189–1198. https://doi.org/10.13031/2013.23633
- Bannert A, Kleineidam K, Wissing L, Mueller-Niggemann C, Vogelsang V, Welzl G, Cao Z, Schloter M (2011) Changes in diversity and functional gene abundances of microbial communities involved in nitrogen fixation, nitrification, and denitrification in a tidal wetland versus paddy soils cultivated for different time periods. Appl Environ Microbiol 77:6109–6116. https://doi.org/10.1128/AEM.01751-10
- Bedard-Haughn A, Matson AL, Pennock DJ (2006) Land use effects on gross nitrogen mineralization, nitrification, and N₂O emissions in ephemeral wetlands. Soil Biol Biochem 38:3398–3406. https://doi.org/10.1016/j.soilbio.2006.05.010
- Black CA, Evans DD, White JL, Ensminger LE, Clark FE (1992) Total Nitrogen. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and Microbiological properties. ASA/SSSA Monograph, Madison, WI, p 1569

- Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni S (2021) Seasonality of the microbial community composition in the North Atlantic. Front Mar Sci 8:624164. https://doi.org/10.3389/fmars.2021.624164
- Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2021) Introduction to meta-analysis. Wiley, West susex, UK
- Borzée A, Heo K, Jang Y (2018) Relationship between agro-environmental variables and breeding hylids in rice paddies. Sci Rep 8:8049. https://doi.org/10.1038/s41598-018-26222-w
- Bu L, Peng Z, Tian J, Song F, Wei G, Wang H (2020) Distinct abundance patterns of nitrogen functional microbes in desert soil profiles regulatesoil nitrogen storage potential along a desertification development gradient. CATENA 194:104716. https://doi.org/10.1016/j.catena.2020.104716
- Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176
- Castellano-Hinojosa A, Gonzalez-Lopez J, Bedmar EJ (2018) Distinct effect of nitrogen fertilisation and soil depth on nitrous oxide emissions and nitrifiers and denitrifiers abundance. Biol Fertil Soils 54:829–840. https://doi.org/10.1007/s00374-018-1310-9
- Che R, Wang F, Wang W, Zhang J, Zhao X, Rui Y, Xu Z, Wang Y, Hao Y, Cui X (2017) Increase in ammonia-oxidizing microbe abundance during degradation of alpine meadows may lead to greater soil nitrogen loss. Biogeochemistry 136:341–352. https://doi.org/10.1007/s10533-017-0399-5
- Chen J, Yanxia N, Wang Z, Shen W (2017) Ammonia-oxidizing archaea are more resistant than denitrifiers to seasonal precipitation changes in an acidic subtropical forest soil. Front Microbiol 8:1384. https://doi.org/10.3389/fmicb.2017.01384
- Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560
- Choudhury MI, McKie BG, Hallin S, Ecke F (2018) Mixtures of macrophyte growth forms promote nitrogen cycling in wetlands. Sci Total Environ 635:1436–1443. https://doi.org/10.1016/j.scitotenv.2018.04.193
- Coskun D, Britto DT, Shi W, Kronzucker HJ (2017) Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants 3:17074. https://doi.org/10.1038/nplants.2017.74
- Davidson NC (2014) How much wetland has the world lost? Longterm and recent trends in global wetland area. Mar Freshw Res 65:934–941. https://doi.org/10.1071/MF14173
- Davidsson TE, Trepel M, Schrautzer J (2002) Denitrification in drained and rewetted minerotrophic peat soils in Northern Germany (Pohnsdorfer Stauung). J Plant Nutr Soil Sci 165:199–204. https://doi.org/10.1002/1522-2624(200204)165:2<199::Aidjpln199>3.0.CO;2-I
- Dickens SJM, Allen EB, Santiago LS, Crowley D (2015) Extractable nitrogen and microbial community structure respond to grassland restoration regardless of historical context and soil composition. AoB Plants 7:plu085. https://doi.org/10.1093/aobpla/plu085
- Dong Y, Xu L, Yang Z, Zheng H, Chen L (2020) Aggravation of reactive nitrogen flow driven by human production and consumption in Guangzhou City China. Nat Commun 11:1209. https://doi.org/10.1038/s41467-020-14699-x
- Ekwunife KC, Madramootoo CA, Abbasi NA (2022) Assessing the impacts of tillage, cover crops, nitrification, and urease inhibitors on nitrous oxide emissions over winter and early spring. Biol Fertil Soils 58:195–206. https://doi.org/10.1007/s00374-021-01605-w
- Emer NR, Kostina NV, Golichenkov MV, Netrusov AI (2017) Dynamics of denitrification and ammonification activities in the abandoned and intensely cultivated gray forest soils (Tula oblast). Eurasian Soil Sci 50:438–444. https://doi.org/10.1134/ s1064229317040032

- Fang J, Zhao R, Cao Q, Quan Q, Sun R, Liu J (2019) Effects of emergent aquatic plants on nitrogen transformation processes and related microorganisms in a constructed wetland in northern China. Plant Soil 443:473–492. https://doi.org/10.1007/s11104-019-04249-w
- Feng G, Li Z (2019) Carbon and nitrogen metabolism of sponge microbiome. In: Li Z (ed) Symbiotic Microbiomes of Coral Reefs Sponges and corals. Springer, Dordrecht, the Netherlands, pp 145–169
- Finlay JC (2020) Targeted wetland restoration could greatly reduce nitrogen pollution. Nature 588:592–593. https://doi.org/10.1038/d41586-020-03515-7
- Friedl J, Deltedesco E, Keiblinger KM, Gorfer M, De Rosa D, Scheer C, Grace PR, Rowlings DW (2022) Amplitude and frequency of wetting and drying cycles drive N₂ and N₂O emissions from a subtropical pasture. Biol Fertil Soils 58:593–605. https://doi.org/10.1007/s00374-022-01646-9
- Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. https://doi.org/10.1093/bioinformatics/bts565
- Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, Present, and Future. Biogeochemistry 70:153–226. https://doi.org/10.1007/s10533-004-0370-0
- Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. https://doi.org/10.1126/science.1136674
- Gao N, Zhang F, Bo Q, Tang A, Gao J, Wei X, Yue S, Shen Y, Li S (2023a) Microbial and isotopomer analysis of N₂O production pathways in a calcareous film-mulched farmland. Biol Fertil Soils 59:407–422. https://doi.org/10.1007/s00374-023-01711-x
- Gao W, Fan C, Zhang W, Li N, Liu H, Chen M (2023b) Heterotrophic nitrification of organic nitrogen in soils: process, regulation, and ecological significance. Biol Fertil Soils 59:261–274. https://doi. org/10.1007/s00374-023-01707-7
- Harrison MD, Groffman PM, Mayer PM, Kaushal SS, Newcomer TA (2011) Denitrification in alluvial wetlands in an urban landscape. J Environ Qual 40:634–646. https://doi.org/10.2134/jeq2010.0335
- Hartmann AA, Barnard RL, Marhan S, Niklaus PA (2013) Effects of drought and N-fertilization on N cycling in two grassland soils. Oecologia 171:705–717. https://doi.org/10.1007/ s00442-012-2578-3
- Hatano S, Fujita Y, Nagumo Y, Ohtake N, Sueyoshi K, Takahashi Y, Sato T, Tanabata S, Higuchi K, Saito A, Ohyama T (2019) Effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate on the deep placement of nitrogen fertilizers for soybean cultivation. Int J Agron 2019(9724214). https://doi.org/10.1155/2019/9724214
- Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2 .0.CO;2
- Helfrich M, Nicolay G, Well R, Buchen-Tschiskale C, Dechow R, Fuss R, Gensior A, Paulsen HM, Berendonk C, Flessa H (2020) Effect of chemical and mechanical grassland conversion to cropland on soil mineral N dynamics and N₂O emission. Agric Ecosyst Environ 298:106975. https://doi.org/10.1016/j.agee.2020.106975
- Highton MP, Bakken LR, Dörsch P, Tobias-Hunefeldt S, Molstad L, Morales SE (2023) Soil water extract and bacteriome determine N₂O emission potential in soils. Biol Fertil Soils 59:217–232. https://doi.org/10.1007/s00374-022-01690-5
- Hua J, Feng Y, Jiang Q, Bao X, Yin Y (2017) Shift of bacterial community structure along different coastal reclamation histories in Jiangsu, Eastern China. Sci Rep 7:10096. https://doi.org/10.1038/s41598-017-10608-3

- Huang X, Weisener CG, Ni J, He B, Xie D, Li Z (2020) Nitrate assimilation, dissimilatory nitrate reduction to ammonium, and denitrification coexist in Pseudomonas putida Y-9 under aerobic conditions. Bioresour Technol 312:123597. https://doi. org/10.1016/j.biortech.2020.123597
- Hunter RG, Faulkner SP (2001) Denitrification potentials in restored and natural bottomland hardwood wetlands. Soil Sci Soc Am J 65:1865–1872. https://doi.org/10.2136/sssaj2001.1865
- Islam A, Chen D, White RE (2007) Heterotrophic and autotrophic nitrification in two acid pasture soils. Soil Biol Biochem 39:972– 975. https://doi.org/10.1016/j.soilbio.2006.11.003
- Jia Z, Li P, Wu Y, Chang P, Deng M, Liang L, Yang S, Wang C, Wang B, Yang L, Wang X, Wang Z, Peng Z, Guo L, Ahirwal J, Liu W, Liu L (2022) Deepened snow loosens temporal coupling between plant and microbial N utilization and induces ecosystem N losses. Glob Chang Biol 28:4655–4667. https://doi.org/10.1111/gcb.16234
- Jiang H, Huang Q, Dong H, Wang P, Wang F, Li W, Zhang C (2010) RNA-based investigation of ammonia-oxidizing archaea in Hot Springs of Yunnan Province, China. Appl Environ Microbiol 76:4538–4541. https://doi.org/10.1128/AEM.00143-10
- Jiang X, Liu W, Liu Q, Jia Z, Wright AL, Cao Z (2013) Soil N mineralization, nitrification and dynamic changes in abundance of ammonia-oxidizing bacteria and archaea along a 2000 year chronosequence of rice cultivation. Plant Soil 365:59–68. https://doi.org/10.1007/s11104-012-1377-2
- Jiao S, Chen W, Wang J, Du N, Li Q, Wei G (2018) Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6:146. https://doi.org/10.1186/s40168-018-0526-0
- Jones CM, Hallin S (2010) Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J 4:633–641. https://doi.org/10.1038/ismej.2009.152
- Jordan SJ, Stoffer J, Nestlerode JA (2011) Wetlands as sinks for reactive nitrogen at continental and global scales: a meta-analysis. Ecosystems 14:144–155. https://doi.org/10.1007/s10021-010-9400-z
- Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2015) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. https://doi.org/10.1093/nar/gkv1070
- Kuang W, Gao X, Tenuta M, Zeng F (2021) A global meta-analysis of nitrous oxide emission from drip-irrigated cropping system. Glob Change Biol 27:3244–3256. https://doi.org/10.1111/gcb.15636
- Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276. https://doi.org/10.1038/nrmicro.2018.9
- Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669. https://doi.org/10.1111/nph.12235
- Kyebogola S, Burras LC, Miller BA, Semalulu O, Yost RS, Tenywa MM, Lenssen AW, Kyomuhendo P, Smith C, Luswata CK, Majaliwa MJG, Goettsch L, Colfer CJP, Mazur RE (2020) Comparing Uganda's indigenous soil classification system with World Reference Base and USDA Soil Taxonomy to predict soil productivity. Geoderma Reg 22:e00296. https://doi.org/10.1016/j.geodrs.2020.e00296
- Laine M, Rutting T, Alakukku L, Palojarvi A, Strommer R (2018) Process rates of nitrogen cycle in uppermost topsoil after harvesting in no-tilled and ploughed agricultural clay soil. Nutr Cycl Agroecosyst 110:39–49. https://doi.org/10.1007/s10705-017-9825-2
- Lee KH, Wang YF, Wang Y, Gu JD, Jiao JJ (2018) Abundance and diversity of aerobic/anaerobic ammonia/ammonium-oxidizing microorganisms in an ammonium-rich aquitard in the Pearl River Delta of South China. Microb Ecol 76:81–91. https://doi. org/10.1007/s00248-016-0815-8

- Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324
- Li F-M, Song Q-H, Jjemba PK, Shi Y-C (2004) Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem. Soil Biol Biochem 36:1893–1902. https://doi.org/10.1016/j.soilbio.2004.04.040
- Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714. https://doi. org/10.1093/bioinformatics/btn025
- Li JG, Pu LJ, Zhu M, Zhang J, Li P, Dai XQ, Xu Y, Liu LL (2014a) Evolution of soil properties following reclamation in coastal areas: a review. Geoderma 226:130–139. https://doi.org/10.1016/j.geoderma.2014.02.003
- Li JT, Sun YN, Fang JS, Xie W, Peng XT, Dong L, Wu ZJ, Zhou HY (2014b) Aerobic and anaerobic ammonia-oxidizing microorganisms in low-temperature hydrothermal Fe-Si-rich precipitates of the Southwestern Pacific Ocean. Geomicrobiol J 31:42–52. https://doi.org/10.1080/01490451.2013.802397
- Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph. Bioinformatics 31:1674–1676. https://doi.org/10.1093/bioinformatics/btv033
- Li D, Voigt TB, Kent AD (2016) Plant and soil effects on bacterial communities associated with Miscanthus × giganteus rhizosphere and rhizomes. GCB Bioenergy 8:183–193. https://doi.org/10.1111/gcbb.12252
- Li P, Sayer EJ, Jia Z, Liu W, Wu Y, Yang S, Wang C, Yang L, Chen D, Bai Y, Liu L (2020a) Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. Glob Change Biol 26:3015–3027. https://doi.org/10.1111/gcb.15051
- Li Y, Ling J, Chen P, Chen J, Dai R, Liao J, Yu J, Xu Y (2020b) Pseudomonas mendocina LYX: a novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously. Front Environ Sci Eng 15:57. https://doi.org/10.1007/s11783-020-1349-3
- Liu J, Kuang W, Zhang Z, Xu X, Qin Y, Ning J, Zhou W, Zhang S, Li R, Yan C, Wu S, Shi X, Jiang N, Yu D, Pan X, Chi W (2014) Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J Geog Sci 24:195–210. https://doi.org/10.1007/s11442-014-1082-6
- Liu H, Yi Y, Yue Y, Cui B (2020) Reducing the likelihood of carbon loss from wetlands by improving the spatial connections between high carbon patches. J Clean Prod 267:121819. https://doi. org/10.1016/j.jclepro.2020.121819
- Liu J, Guo Y, Gu H, Liu Z, Hu X, Yu Z, Li Y, Li L, Sui Y, Jin J, Liu X, Adams JM, Wang G (2023) Conversion of steppe to cropland increases spatial heterogeneity of soil functional genes. ISME J 17:1872–1883. https://doi.org/10.1038/s41396-023-01496-9
- Luo LG, Itoh S, Zhang QW, Yang SQ, Zhang QZ, Yang ZL (2011) Leaching behavior of nitrogen in a long-term experiment on rice under different N management systems. Environ Monit Assess 177:141–150. https://doi.org/10.1007/s10661-010-1624-z
- Ma J, Lu Y, Chen F, Li X, Xiao D, Wang H (2020) Molecular ecological network complexity drives stand resilience of soil bacteria to mining disturbances among typical damaged ecosystems in China. Microorganisms 8:433. https://doi.org/10.3390/microorganisms8030433
- Mao C, Song Y, Peng Y, Kang L, Li Z, Zhou W, Liu X, Liu F, Zhu G, Yang Y (2023) Patterns and drivers of anaerobic nitrogen transformations in sediments of thermokarst lakes. Glob Change Biol 29:1–17. https://doi.org/10.1111/gcb.16654
- Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation

- of nitrifying Archaea and Bacteria. Nature 461:976–979. https://doi.org/10.1038/nature08465
- McIntosh PD, Hewitt AE, Giddens K, Taylor MD (1997) Benchmark sites for assessing the chemical impacts of pastoral farming on loessial soils in southern New Zealand. Agric Ecosyst Environ 65:267–280. https://doi.org/10.1016/s0167-8809(97)00071-6
- Mo Y, Qi X-e, Li A, Zhang X, Jia Z (2020) Active methanotrophs in suboxic alpine swamp soils of the Qinghai–Tibetan Plateau. Front Microbiol 11:580866. https://doi.org/10.3389/ fmicb.2020.580866
- Mohamed NM, Saito K, Tal Y, Hill RT (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48. https://doi.org/10.1038/ismej.2009.84
- Nelson MB, Berlemont R, Martiny AC, Martiny JBH (2015) Nitrogen cycling potential of a grassland litter microbial community. Appl Environ Microbiol 81:7012–7022. https://doi.org/10.1128/aem.02222-15
- Nelson W, Graham E, Crump A, Fansler S, Arntzen E, Kennedy D, Stegen J (2020) Distinct temporal diversity profiles for nitrogen cycling genes in a hyporheic microbiome. PLoS ONE 15:e0228165. https://doi.org/10.1371/journal.pone.0228165
- Németh DD, Wagner-Riddle C, Dunfield KE (2014) Abundance and gene expression in nitrifier and denitrifier communities associated with a field scale spring thaw N₂O flux event. Soil Biol Biochem 73:1–9. https://doi.org/10.1016/j.soilbio.2014.02.007
- Nishida H, Suzaki T (2018) Nitrate-mediated control of root nodule symbiosis. Curr Opin Plant Biol 44:129–136. https://doi. org/10.1016/j.pbi.2018.04.006
- Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34:5623–5630. https://doi.org/10.1093/nar/gkl723
- Otaka J, Subbarao GV, Ono H, Yoshihashi T (2022) Biological nitrification inhibition in maize—isolation and identification of hydrophobic inhibitors from root exudates. Biol Fertil Soils 58:251–264. https://doi.org/10.1007/s00374-021-01577-x
- Palacin-Lizarbe C, Camarero L, Hallin S, Jones CM, Cáliz J, Casamayor EO, Catalan J (2019) The DNRA-denitrification dichotomy differentiates nitrogen transformation pathways in Mountain Lake benthic habitats. Front Microbiol 10:1229. https://doi.org/10.3389/fmicb.2019.01229
- Pang CC, Sung YH, Chung YT, Ying HK, Fong HHN, Yu YT (2020) Spatial ecology of little egret (Egretta garzetta) in Hong Kong uncovers preference for commercial fishponds. PeerJ 8:e9893. https://doi.org/10.7717/peerj.9893
- Parajuli B, Ye R, Szogi A (2022) Mineral N suppressed priming effect while increasing microbial C use efficiency and N₂O production in sandy soils under long-term conservation management. Biol Fertil Soils 58:903–915. https://doi.org/10.1007/ s00374-022-01665-6
- Pedersen H, Dunkin KA, Firestone MK (1999) The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by ¹⁵N tracer and pool dilution techniques. Biogeochemistry 44:135–150. https://doi.org/10.1023/A:1006059930960
- Peirce JJ, Aneja VP (2000) Nitric oxide emissions from engineered soil systems. J Environ Eng 126:225–232. https://doi.org/10.1061/ (ASCE)0733-9372(2000)126:3(225)
- Pett-Ridge J, Petersen DG, Nuccio E, Firestone MK (2013) Influence of oxic/anoxic fluctuations on ammonia oxidizers and nitrification potential in a wet tropical soil. FEMS Microbiol Ecol 85:179–194. https://doi.org/10.1111/1574-6941.12111
- Pilegaard K (2013) Processes regulating nitric oxide emissions from soils. Philos Trans R Soc 368:20130126. https://doi.org/10.1098/ rstb.2013.0126

- Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327. https://doi.org/10.1046/j.1365-2486.2000.00308.x
- Qin HL, Zhang ZX, Lu J, Zhu YJ, Webster R, Liu XL, Yuan HZ, Hou HJ, Chen CL, Wei WX (2016) Change from paddy rice to vegetable growing changes nitrogen-cycling microbial communities and their variation with depth in the soil. Eur J Soil Sci 67:650–658. https://doi.org/10.1111/ejss.12365
- Raiesi F (2006) Carbon and N mineralization as affected by soil cultivation and crop residue in a calcareous wetland ecosystem in Central Iran. Agric Ecosyst Environ 112:13–20. https://doi.org/10.1016/j.agee.2005.07.002
- Reis V, Hermoso V, Hamilton SK, Ward D, Fluet-Chouinard E, Lehner B, Linke S (2017) A global assessment of inland wetland conservation status. Bioscience 67:523–533. https://doi.org/10.1093/biosci/bix045
- Seitzinger SP (1994) Linkages between organic matter mineralization and denitrification in eight riparian wetlands. Biogeochemistry 25:19–39. https://doi.org/10.1007/BF00000510
- Senbayram M, Wei Z, Wu D, Shan J, Yan X, Well R (2022) Inhibitory effect of high nitrate on N_2O reduction is offset by long moist spells in heavily N loaded arable soils. Biol Fertil Soils 58:77–90. https://doi.org/10.1007/s00374-021-01612-x
- Shafreen M, Vishwakarma K, Shrivastava N, Kumar N (2021) Physiology and distribution of Nitrogen in Soils. In: Cruz C, Vishwakarma K, Choudhary DK, Varma A (eds) Soil Nitrogen Ecology. Springer International Publishing, Cham, Switzerland, pp 3–31
- Singh M (2021) Fungi and nitrogen cycle: symbiotic relationship, mechanism and significance. In: Cruz C, Vishwakarma K, Choudhary DK, Varma A (eds) Soil Nitrogen Ecology. Springer International Publishing, Cham, Switzerland, pp 391–406
- Singh JS, Gupta VK (2018) Soil microbial biomass: a key soil driver in management of ecosystem functioning. Sci Total Environ 634:497–500. https://doi.org/10.1016/j.scitotenv.2018.03.373
- Smith K (2005) The impact of agriculture and other land uses on emissions of methane and nitrous and nitric oxides. Environ Sci 2:101–108. https://doi.org/10.1080/15693430500370423
- Song W, Liu J, Qin W, Huang J, Yu X, Xu M, Stahl D, Jiao N, Zhou J, Tu Q (2022) Functional traits resolve mechanisms governing the assembly and distribution of nitrogen-cycling microbial communities in the global ocean. mBio 13:e0383221. https://doi.org/10.1128/mbio.03832-21
- Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4:2. https://doi.org/10.1186/s40538-016-0085-1
- Stark JM, Firestone MK (1995) Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61:218–221. https://doi.org/10.1128/aem.61.1.218-221.1995
- Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009) Evidence for biological nitrification inhibition in *Brachiaria* pastures. PNAS 106:17302–17307. https://doi.org/10.1073/pnas.0903694106
- Sun H, Jiang S (2022) A review on *Nirs*-type and *nirk*-type denitrifiers via a scientometric approach coupled with case studies. Environ Sci Processes Impacts 24:221–232. https://doi.org/10.1039/D1EM00518A
- Sun RB, Guo XS, Wang DZ, Chu HY (2015) Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl Soil Ecol 95:171–178. https://doi.org/10.1016/j.apsoil.2015.06.010
- Tortoso AC, Hutchinson GL (1990) Contributions of autotrophic and heterotrophic nitrifiers to soil NO and N₂O emissions. Appl Environ Microbiol 56:1799–1805. https://doi.org/10.1128/aem.56.6.1799-1805.1990

- Treusch AH, Vergin KL, Finlay LA, Donatz MG, Burton RM, Carlson CA, Giovannoni SJ (2009) Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J 3:1148–1163. https://doi.org/10.1038/ismej.2009.60
- Tsujino S, Dohra H, Fujiwara T (2021) Gene expression analysis of Alcaligenes faecalis during induction of heterotrophic nitrification. Sci Rep 11:23105. https://doi.org/10.1038/s41598-021-02579-3
- Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131:281–285. https://doi.org/10.1007/s12064-012-0162-3
- Wan SY, Liao XL, Zhou TT, Wu Y, Hu AY, Yan DZ, Zhang J, Long XE (2021) Shift in archaeal community along a soil profile in coastal wheat-maize rotation fields of different reclamation ages. Land Degrad Dev 32:4162–4173. https://doi.org/10.1002/ldr.4022
- Wang N, Quesada B, Xia L, Butterbach-Bahl K, Goodale CL, Kiese R (2019) Effects of climate warming on carbon fluxes in grasslands— A global meta-analysis. Glob Change Biol 25:1839–1851. https://doi.org/10.1111/gcb.14603
- Wang S, Pi Y, Song Y, Jiang Y, Zhou L, Liu W, Zhu G (2020) Hotspot of dissimilatory nitrate reduction to ammonium (DNRA) process in freshwater sediments of riparian zones. Water Res 173:115539. https://doi.org/10.1016/j.watres.2020.115539
- Wang Q, Han Y, Lan S, Hu C (2021) Metagenomic insight into patterns and mechanism of nitrogen cycle during biocrust succession. Front Microbiol 12:633428. https://doi.org/10.3389/fmicb.2021.633428
- Wang P, Li J-L, Luo X-Q, Ahmad M, Duan L, Yin L-Z, Fang B-Z, Li S-H, Yang Y, Jiang L, Li W-J (2022) Biogeographical distributions of nitrogen-cycling functional genes in a subtropical estuary. Funct Ecol 36:187–201. https://doi.org/10.1111/1365-2435.13949
- Wang J, Huang Q, Li Y, Tu X, Chen Z, Elrys AS, Cheng Y, Ma L (2023) A shift from nitrification to denitrification-dominated N₂O emission in an acidic soil following organic amendment. Biol Fertil Soils 59:117–122. https://doi.org/10.1007/s00374-022-01680-7
- Witt C, Gaunt JL, Galicia CC, Ottow JCG, Neue HU (2000) A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol Fertil Soils 30:510–519. https://doi.org/10.1007/s003740050030
- Wu Q, Yue K, Ma Y, Heděnec P, Cai Y, Chen J, Zhang H, Shao J, Chang SX, Li Y (2022) Contrasting effects of altered precipitation regimes on soil nitrogen cycling at the global scale. Glob Change Biol 28:6679–6695. https://doi.org/10.1111/gcb.16392
- Wyland LJ, Jackson LE, Chaney WE, Klonsky K, Koike ST, Kimple B (1996) Winter cover crops in a vegetable cropping system: impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric Ecosyst Environ 59:1–17. https://doi. org/10.1016/0167-8809(96)01048-1
- Xie F, Jin W, Si H, Yuan Y, Tao Y, Liu J, Wang X, Yang C, Li Q, Yan X, Lin L, Jiang Q, Zhang L, Guo C, Greening C, Heller R, Guan LL, Pope PB, Tan Z, Zhu W, Wang M, Qiu Q, Li Z, Mao S (2021) An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome 9:137. https://doi.org/10.1186/s40168-021-01078-x
- Xu X, Tian H (2012) Methane exchange between marshland and the atmosphere over China during 1949–2008. Global Biogeochem Cycles 26:GB2006. https://doi.org/10.1029/2010GB003946.
- Xu X, Thornton P, Post W (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecol Biogeogr 22:737–749. https://doi.org/10.1111/ geb.12029

- Yang W, Xia L, Zhu Z, Jiang L, Cheng X, An S (2019) Shift in soil organic carbon and nitrogen pools in different reclaimed lands following intensive coastal reclamation on the coasts of eastern China. Sci Rep 9:5921. https://doi.org/10.1038/ s41598-019-42048-6
- Yin T, Feng M, Qiu C, Peng S (2022) Biological nitrogen fixation and nitrogen accumulation in peatlands. Front Earth Sci 10:670867. https://doi.org/10.3389/feart.2022.670867
- Yu L, Wang H, Wang G, Song W, Huang Y, Li S-G, Liang N, Tang Y, He J-S (2013) A comparison of methane emission measurements using eddy covariance and manual and automated chamber-based techniques in tibetan Plateau alpine wetland. Environ Pollut 181:81–90. https://doi.org/10.1016/j.envpol.2013.06.018
- Yue K, Peng Y, Fornara DA, Van Meerbeek K, Vesterdal L, Yang W, Peng C, Tan B, Zhou W, Xu Z, Ni X, Zhang L, Wu F, Svenning J-C (2019) Responses of nitrogen concentrations and pools to multiple environmental change drivers: a meta-analysis across terrestrial ecosystems. Global Ecol Biogeogr 28:690–724. https://doi.org/10.1111/geb.12884
- Zaki SA, Eltarahony MM, Abd-El-Haleem DA (2019) Disinfection of water and wastewater by biosynthesized magnetite and zerovalent iron nanoparticles via NAP-NAR enzymes of Proteus mirabilis 10B. Environ Sci Pollut Res 26:23661–23678. https://doi.org/10.1007/s11356-019-05479-2
- Zhang Y, Xie X, Jiao N, Hsiao SSY, Kao SJ (2014) Diversity and distribution of amoa-type nitrifying and nirs-type denitrifying microbial communities in the Yangtze River Estuary. Biogeosciences 11:2131–2145. https://doi.org/10.5194/bg-11-2131-2014
- Zhang Y, Li Q, Chen YL, Dai QG, Hu J (2019) Mudflat reclamation causes changes of gene abundance in nitrogen cycle under long-term rice cultivation. J Basic Microbiol 59:496–503. https://doi.org/10.1002/jobm.201800660
- Zhang S, Zhang G, Wu M, Wang D, Liu Q (2021) Straw return and low N addition modify the partitioning of dissimilatory nitrate reduction by increasing conversion to ammonium in paddy fields. Soil Biol Biochem 162:108425. https://doi.org/10.1016/j.soilbio.2021.108425
- Zhang M, Zeng H, Afzal MR, Gao X, Li Y, Subbarao GV, Zhu Y (2022) BNI-release mechanisms in plant root systems: current status of understanding. Biol Fertil Soils 58:225–233. https://doi.org/10.1007/s00374-021-01568-y
- Zheng Y, Hou L, Liu M, Lu M, Zhao H, Yin G, Zhou J (2013) Diversity, abundance, and activity of ammonia-oxidizing bacteria and archaea in Chongming eastern intertidal sediments. Appl Microbiol Biotechnol 97:8351–8363. https://doi.org/10.1007/s00253-012-4512-3
- Zhu X, Yuan F, He L, Guo Z, Wang N, Zuo Y, Liu J, Li K, Wang Y, Sun Y, Zhang L, Song C, Song Y, Gong C, Son Y, Guo D, Xu X (2022) Wetland conversion to cropland alters the microbes along soil profiles and over seasons. CATENA 214:106282. https://doi.org/10.1016/j.catena.2022.106282

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

