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Introduction

Nitrogen (N) is an essential element for all living organisms 
(Laine et al. 2018; Singh 2021; Zhang et al. 2019) and the 
N cycles through various components on the Earth (Dong et 
al. 2020; Galloway et al. 2004). However, climate change 
and human activities have dramatically altered the N cycle, 
which caused substantial environmental problems in the 
past century (Dong et al. 2020; Galloway et al. 2008; Wu et 
al. 2022). For example, drought stimulates N mineralization 
but inhibits nitrification (Stark and Firestone 1995), reducing 
the nitrous oxide (N2O) emissions (Hartmann et al. 2013); 
N loss exacerbated cropland yield, and N2O emissions 
caused climate warming (Bahram et al. 2022); meanwhile, 
the N loading to water bodies has caused eutrophication 
in aquatic ecosystems (Choudhury et al. 2018; Song et al. 
2022). Land use change can cause a massive N loss (Sun et 
al. 2015), significantly affecting the ecosystem functioning 
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Abstract
Natural wetlands are mostly nitrogen-limited ecosystems, while reclamation stimulates the loss of nitrogen (N) in soils 
by shifting the N regime. To investigate the microbial mechanisms of the N regime shift, we first conducted a global 
meta-analysis to quantify the wetland reclamation impacts on soil mineral N pools and then a field campaign to sample 
24 soil cores up to 100 cm depth in a natural wetland and a 23-year cultivated soybean field from the Sanjiang Plain in 
northeastern China. After wetland reclamation, the N regime was shifted to cause a potential risk of massive N loss in 
soils; their microbial mechanisms were revealed through metagenomic data. In cropland, the relative abundance of genes 
involved in nitrification and assimilatory nitrate reduction to ammonia (ANRA) were enriched while those in N fixation, 
mineralization, denitrification, and dissimilatory nitrate reduction to ammonia (DNRA) were diminished. Wetland recla-
mation substantially enhanced the relative abundance of genes involved in nitrification (except for genes for ammonia 
oxidation to NH2OH) and denitrification in surface (0–30 cm) soils but decreased them in subsurface (30–100 cm) soils. 
After wetland reclamation, the relative abundance of genes involved in denitrification and DNRA significantly reduced in 
spring and summer, but such patterns were not found in autumn and winter. This change enhanced potential microbial-
driven N loss in spring and summer. The metagenomic data serve as surrogate data sources for quantifying soil roles on 
soil N cycles under land use change.
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Metagenomic data highlight shifted nitrogen regime induced by 
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(Arora-Williams et al. 2018; Nelson et al. 2015), such as 
ecosystem productivity (Singh and Gupta 2018).

Wetlands play a disproportional role in the N cycle (Fang 
et al. 2019), removing at least 11% of natural reactive N 
inputs worldwide (Finlay 2020; Jordan et al. 2011). How-
ever, due to the enormous demand for food (Reis et al. 2017), 
more than half of the natural wetlands have been artificially 
converted to other ecosystems (Davidson 2014; Pang et al. 
2020). For instance, 90% of natural wetlands have been 
converted to agricultural lands in Brazil, and 50% have been 
converted to agricultural lands in Europe and North Amer-
ica (Borzée et al. 2018). While wetland reclamation yields 
economic benefits (Stagnari et al. 2017), it poses serious 
environmental problems (Li et al. 2014a). The biogeochem-
ical cycling processes were shifted after wetland conversion 
to cropland, accelerating carbon (C) and N losses (Liu et 
al. 2020; Post and Kwon 2000; Yang et al. 2019). A global 
synthesis shows that wetland conversion to upland substan-
tially shifted the N regime, halving NH4

+-N content while 
doubling NO3

–-N content (Fig. 1 and Sect. “Meta-analysis 
of reclamation effects on soil inorganic N”). However, the 
mechanisms determining the soil N dynamics during land 
use change remain elusive.

Land conversion shifts the N cycle by altering a suite of 
soil microbial processes (Hua et al. 2017; Ma et al. 2020; 
Wan et al. 2021). Studies have reported the substantial 
impacts of wetland conversion to croplands on the abun-
dances of functional genes encoding N fixation (Bannert 
et al. 2011), nitrification (Jiang et al. 2013), denitrification 
(Senbayram et al. 2022; Zhang et al. 2019), and mineraliza-
tion (Jiang et al. 2013). However, most studies have focused 
on a single process of the N cycle, risking a potentially 

biased understanding of the overall quantification of the 
N cycle. Soil microbes for N cycles are highly sensitive to 
abiotic and biotic properties in soils that vary over seasons 
(Bolaños et al. 2021; Dickens et al. 2015). The absolute and 
relative abundance of nitrifying genes are more resistant 
to seasonal variation than denitrifying genes (Chen et al. 
2017; Nelson et al. 2020). Generally, studies have focused 
exclusively on the topsoil of 0–30 cm, where the microbial 
biomass, activity, and diversity are the greatest compared 
to other depths (Jiao et al. 2018; Xu et al. 2013). Subsur-
face soils (i.e., deeper soils than 30 cm) may contain greater 
microbial biomass and harbor more diverse microbes than 
top soils (Bu et al. 2020). Castellano-Hinojosa et al. (2018) 
found that the absolute and relative abundance of the nitri-
fiers shrunk along soil profiles, but denitrifier abundance 
enriched with depths. Thus, a comprehensive understand-
ing of the N-cycling microbes along soil profile is urgently 
needed to provide a scientific basis for better managing soil 
N under land use change.

Changes in the N regime and losses of soil N level upon 
cultivation have been widely observed (Coskun et al. 2017; 
McIntosh et al. 1997; Raiesi 2006). However, in which 
form, how much, and the microbial mechanisms the N 
released are still unclear (Yin et al. 2022). In this study, we 
aim to develop a complete understanding of wetland recla-
mation-induced N cycle shift and its underlying microbial 
mechanisms. By combining metagenomic data and statisti-
cal tools, we analyzed the effects of wetland reclamation 
on abundance of 59 KOs involved in 7 N-cycling pathways 
and examined their seasonal variations along 100 cm soil 
profiles. We hypothesized that: (1) wetland reclamation 
stimulates N loss, which would be companied with shifting 

Fig. 1 Effects of wetland recla-
mation on soil N and other envi-
ronmental factors. (a) location 
of studies used in meta-analysis. 
Changes of soil NH4

+-N (b) 
and NO3

−-N (c) contents during 
wetland reclamation in meta-
analysis. Changes of total soil 
N (TN) content (d), microbial 
biomass N (MBN) content (e), 
the ratio of C to N (C/N) (f), and 
pH (g) during wetland reclama-
tion from our field experiments. 
Significance levels are denoted 
with *: p < 0.05; **: p < 0.01; and 
***: p < 0.001
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in the relative abundance of corresponding functional gene 
encoding N cycling; (2) the mechanism of microbial-driven 
N loss varied over seasons; and (3) land conversion leads 
to a risk of N loss by N-cycling genes along all soil depth, 
while different between surface and subsurface soils due to 
stronger disturbance in topsoil.

Materials and methods

Study site, soil sampling, and physicochemical 
analysis

This study was carried out at the Sanjiang Mire Wetland 
Experimental Station of the Chinese Academy of Sciences, 
Heilongjiang Province, China (47°35′ N,133°31′ E). San-
jiang Plain was dominated by natural wetlands before the 
1950s (Xu and Tian 2012); however, more than 75% of the 
natural wetlands have been converted to cropland to meet 
the growing food demand (Liu et al. 2014). In our study 
area, the wetland mainly comprises Deyeuxia angustifolia, 
Carex meyeriana, and Carex lasiocarpa. The adjacent farm-
land was reclaimed in 1996 and was planted with soybean 
[Glycine max (L.) Merr.], since then, no fertilizers have 
ever been applied. The region’s mean annual temperature 
(MAT) is 2.5℃, and the mean annual precipitation (MAP) 
varies from 500 to 600 mm. According to the USDA Soil 
Taxonomy system (Kyebogola et al. 2020), the soil texture 
is classified as silty loam.

The experiment was established across four seasons: 
October 2019 (Autumn), January 2020 (Winter), May 2020 
(Spring), and July 2020 (Summer). In each season, three 
sampling sites were randomly selected within both a soybean 
field (47°35′ N,133°31′ E) and a natural wetland (47°35′ 
N,133°31′ E), and three soil cores were extracted from each 
site. Every soil core was 100 cm depth and divided into 
ten soil samples (i.e., 0–10, 10–20, 20–30, 30–40, 40–50, 
50–60, 60–70, 70–80, 80–90, and 90–100 cm). After remov-
ing the stone and rhizome, three soil samples from the same 
layer were evenly mixed and then put into polyethylene bags 
Finally, a total of 240 soil samples were collected. A portion 
of soil samples was immediately stored at -80 °C for DNA 
extraction in less than 7 days. The remaining samples were 
divided into two groups: one was held at 4 °C to determine 
soil microbial biomass and the other was dried naturally for 
measuring the soil physicochemical properties.

All soil profile temperatures were collected in an auto-
matic weather station (AWS) with a CR1000 data logger 
(Campbell Scientific, Inc.) at Sanjiang Mire Wetland Exper-
imental Station (Yu et al. 2013). Soil water content (SWC) 
was determined by the gravimetric method (105 °C, 24 h) 
using fresh soil samples (Mo et al. 2020). Air-dried soil 

samples were used to measure soil pH and total N (TN). Soil 
pH was measured using pHs-25 (Shanghai INESA Scientific 
Instrument CO. Ltd, Shanghai, China) at a ratio of 1:10 for 
soil to water (An et al. 2022b). The soil TN was measured 
using a heating digestion method at 1100 °C with concen-
trated sulfuric acid (Black et al. 1992). The soil microbial 
biomass N (MBN) was estimated using the chloroform-
fumigation extraction method (Witt et al. 2000).

Soil DNA extraction, metagenomic sequencing, and 
bioinformatic analysis

DNA was extracted from fresh soil samples using the 
fastDNA® Spin Kit (MP Biomedicals, Inc., CA, USA). 
The concentration and purity of the extracted DNA were 
determined using the TBS-380 (Turner BioSystems, Inc., 
CA, USA) and NanoDrop2000 (Thermo Fisher Scien-
tific, Inc. MA, US), respectively. Then, the integrity of the 
DNA was verified by 1% agarose gel electrophoresis. DNA 
extract was fragmented to an average size of about 400 bp 
using Covaris M220 (Gene Company Limited, China) for 
paired-end library construction. A Paired-end library was 
constructed using NEXTFLEX Rapid DNA-Seq (Bioo 
Scientific, Austin, TX, USA). Adapters containing the full 
complement of sequencing primer hybridization sites were 
ligated to the blunt end of fragments. Paired-end sequencing 
was performed on Illumina NovaSeq 6000 (Illumina Inc., 
San Diego, CA, USA) at Majorbio Bio-Pharm Technol-
ogy Co., Ltd. (Shanghai, China). Sequence data associated 
with this project have been deposited in the NCBI Sequence 
Read Archive (SRA) repository (NCBI—PRJNA853804).

The quality of the raw sequence data was assessed 
using the fastp (https://github.com/OpenGene/fastp, ver-
sion 0.20.0) (Chen et al. 2018), and high-quality reads were 
extracted by filtering low-quality reads with N bases, read 
quality < Q20, and length < 50 bp. Then, we mapped the 
sequence data to host reads using burrows-wheeler align-
ment tool (BWA; http://bio-bwa.sourceforge.net, version 
0.7.9a), and contaminated reads with high similarity were 
then identified and removed (Li and Durbin 2009). These 
high-quality reads were then assembled into contigs using 
MEGAHIT (https://github.com/voutcn/megahit, version 
1.1.2) (Li et al. 2015). Open reading frames (ORFs) in each 
contig (over 300 bp) were predicted using MetaGene (http://
metagene.cb.k.u-tokyo.ac.jp/) (Noguchi et al. 2006). A non-
redundant gene catalog was constructed with predicted 
ORFs (≥ 100 bp) using CD-HIT (http://www.bioinformat-
ics.org/cd-hit/, version 4.6.1) (Fu et al. 2012) at 90% iden-
tity and 90% coverage. All reads after quality control were 
aligned (95% identity) against the nonredundant gene cata-
log via SOAPaligner (http://soap.genomics.org.cn/, version 
2.21) (Li et al. 2008), and gene abundance in each sample 
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OR leaf* OR leave* OR root* OR nodule*). Publications 
were screened if: (1) the study included both natural wet-
land and adjacent cropland. (2) NH4

+-N or NO3
–-N contents 

were reported for wetland and cropland ecosystems. Finally, 
a total of 150 observations of data from 17 publications 
were included in the present study (Fig. 1 and Table S5).

Statistical analysis

Statistical analysis was performed based on the normalized 
abundance of each gene in R (version 4.1.1). The differences 
in NH4

+-N, NO3
–-N, TN, MBN, C/N, and pH between the 

wetland and cropland were evaluated with a paired t-test. 
The NH4

+-N and NO3
–-N contents were calculated as the 

common logarithm with base 10. The functional group of 
N-cycling genes was calculated by the sum of each gene 
involved in the associated process. The differences in the 
relative abundance of N-cycle-associated genes between 
natural wetlands and cultivated cropland were implemented 
with nonparametric statistics.

According to Hedges et al. (1999), response ratios of 
microbial lineages and relative abundance of genes were 
calculated as follows:

lnRRi = ln

(
Xic

Xiw

)

For each group i, the Xic represents the average proportion 
of microbial lineages or N-cycling gene abundance in the 
cropland, and the Xiw represents the average proportion of 
microbial lineages or N-cycling gene abundance in the wet-
land. The variance (Vi) was estimated by equation (Hedges 
et al. 1999):

Vi =
SD2

ic

nicX2
ic

+
SD2

iw

niwX2
iw

Where nic and niw are the sample sizes of the cropland and 
wetland, respectively, and SDic and SDiw are the standard 
deviations in the cropland and wetland, respectively (Boren-
stein et al. 2021).

A weighted random-effect model was used to determine 
the overall effect of the altered relative abundance of genes 
involved in soil N cycling after wetland reclamation (Wu 
et al. 2022; Yue et al. 2019). The weighted mean effected 
size (lnRR++) was calculated as follows (Kuang et al. 2021; 
Wang et al. 2019):

lnRR++ =

∑n
i=1wilnRRi∑n

i=1wi

was obtained. For statistical analysis, the relative abundance 
of genes was calculated in transcripts per million (TPM) 
(Wagner et al. 2012), with corrections for variations in gene 
length and mapped reads per sample. TPM is calculated as

TPM =
(Ri/Li) *106∑n

1

(
Rj/Lj

)

Where Ri represents the abundance of Gene i in a given 
sample, i.e., the number of reads mapped to Gene i; Li rep-
resents the gene length, i.e., the number of nucleotides in the 
Gene i; 

∑n
1

(
Rj/Lj

)
 represents the total abundance of all 

genes after normalization by gene length (Xie et al. 2021). 
The non-redundant gene catalog was functionally annotated 
against the Kyoto Encyclopedia of Genes and Genomes 
database (KEGG; http://www.genome.jp/keeg/, ver. 94.2). 
The targeted N-cycle associated genes were filtered out 
based on the KEGG Orthology (KO) number (Kanehisa 
et al. 2015; Wang et al. 2021). Information on 59 KOs of 
the selected functional genes was provided in Table S1. All 
the functional genes involved in the N cycle were classi-
fied into 7 pathways, including N fixation, mineralization, 
nitrification, denitrification, assimilatory nitrate reduction 
to ammonium (ANRA), dissimilatory nitrate reduction to 
ammonium (DNRA), and ammonium assimilation (Table 
S1). Changes of functional genes were used to represent the 
potential changes of corresponding processes in this study. 
The taxonomic annotation for the subset of selected genes 
were processed based on the NCBI NR database using the 
blastp with an e-value cutoff of 1e− 5 using Diamond (http://
www.diamondsearch.org/index.php, ver. 0.8.35) (Buchfink 
et al. 2015). To analyze the N cycling genes, the sequences 
that belong to N metabolism catalog against KEGG were 
used for analysis of subsequent taxonomic annotations 
(Wang et al. 2021, 2022).

Meta-analysis

Global data of NH4
+-N and NO3

–-N contents from wetland 
and cropland were obtained from peer-reviewed journal 
articles published between 1990 and June 2022. The publi-
cation databases, Web of Science, Google Scholar, and the 
Chinese National Knowledge Infrastructure (CNKI) were 
searched using the keywords (wetland* OR peatland* OR 
Swamp* OR Marsh* OR soybean* OR legume*) AND 
(nitrogen* OR N OR Dinitrogen OR N2 OR NO3* OR 
nitrate OR NH4* OR ammoni* OR NO2* OR nitrite OR 
N2O* OR “Nitrous Oxide” OR “nitric oxide”) AND (recla-
mation OR reclaim* OR farm* OR tillage* OR cultivate* 
OR land-use* OR conversion* OR transition* OR aban-
don* OR restore*) AND (soil* OR plant* OR vegetation* 
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Chloroflexi (9.68%), and Acidobacteria (8.63%) in the 
wetland. Similarly, Proteobacteria was the most dominant 
phylum (28.82%), followed by Actinobacteria (26.87%), 
Chloroflexi (10.01%), and Acidobacteria (9.42%) in crop-
land (Fig. 2b and Table S2).

Changes in the relative abundance of N-related 
genes in response to wetland reclamation

The relative abundance of N-related genes differed dra-
matically between wetland and cropland (Fig. 4a). Spe-
cifically, 11 genes enriched while 21 genes decreased 
among 53 N-related genes after wetland reclamation 
(Fig. 3b–d). Similarly, wetland reclamation significantly 
influences the weighted effect size of the relative abun-
dance of genes involved in each N-cycling process. For 
example, wetland reclamation significantly augmented 
the relative abundance of functional genes involved in 
nitrification and ANRA by 17.03% and 12.47%, respec-
tively (Fig. 8 and Table S4). On the contrary, those in N 
fixation, denitrification, mineralization, and DNRA sig-
nificantly decreased by 77.39%, 16.94%, 10.47%, and 
28.59%, respectively (Fig. 8 and Table S4).

Wetland conversion to cropland significantly decreased 
the relative abundance of genes involved in N fixation 
(p < 0.001; Fig. 3a). Specifically, the relative abun-
dances of nifH, nifK, and nifD were significantly reduced 
(p < 0.001; Fig. 3b). Notably, anfG, encoding the cata-
lytic component of nitrogenases that have iron in the 
active center, was not detected in cropland. In addition, 
wetland reclamation significantly decreased the relative 
abundance of genes involved in the mineralization pro-
cess (Fig. 3a). For example, the relative abundances of 
cynS encoding cyanate lyase, E3.5.1.49 encoding for-
mamidase, and ureAB, ureA, ureB, and ureC encoding 
urease subunit were significantly decreased (p < 0.001; 
Fig. 3d). However, no significant change was observed 
in the relative abundance of genes involved in CO2 to 
HCO3

– (Fig. 3d).
The functional group of relative abundance of genes 

involved in the nitrification process was not significantly 
changed after wetland reclamation (Fig. 3a). However, 
wetland reclamation increased the relative abundance of 
genes involved in hydroxylamine (NH2OH) oxidation to 
nitrite and further to nitrate (Fig. 6a). Ammonia oxidation 
to NH2OH is the first step of nitrification by using ammo-
nia monooxygenase (AMO). In this step, the relative 
abundances of amoB and amoC have no change (Fig. 6a), 
but amoA significantly increased after wetland reclama-
tion (p < 0.001; Fig. 3b).

The relative abundance of genes involved in denitri-
fication generally decreased by 16.94% after wetland 

where n is the number of groups (season and depth), w is the 
weighting factor of each observation; and wi was calculated 
by taking the inverse of Vi. The weighted mean effected size 
(lnRR++) was transformed as a percentage to express the 
magnitude of variations of gene abundance after reclama-
tion by the following equation (Kuang et al. 2021):

1− 1

e|lnR++|
× 100%

The difference in the relative abundance of microbial lin-
eages and genes between wetland and cropland was ana-
lyzed through the Wilcox test. The seasonal and vertical 
difference in the response ratios of the relative abundance 
of genes was analyzed through the Kruskal-Wallis test. The 
Bonferroni correction for p-values adjustment for multiple 
testing was adopted to test differences between seasons. 
Nonmetric multidimensional scaling (NMDS) based on 
Bray-Curtis distance was performed using the “vegan” pack-
age to display the community patterns. All histograms, heat-
map, and boxplot graphs were created using the “ggplot2” 
package. A structural equation modeling (SEM) analysis 
was performed in Amos software (version 22). A principal 
component analysis (PCA) was carried out to identify the 
major genes contributing to the variations in N processes.

Results

Meta-analysis of reclamation effects on soil 
inorganic N

A global meta-analysis was conducted to quantify the 
response of inorganic N (NH4

+-N and NO3
–-N) in wetlands 

and croplands (Fig. 1a–c, Tables S3, and S5). This global 
meta-analysis showed that wetland reclamation significantly 
altered the soil inorganic N pools (Fig. 1a–c). Wetland rec-
lamation causes a significant decline in NH4

+-N (-58.38%; 
Fig. 1b and Table S3), but a substantial increase in NO3

–-N 
(135.22%; Fig. 1c and Table S3).

Reclamation effects on microbial community 
composition

Wetland reclamation dramatically altered soil microbes 
involving N-cycling at taxonomic levels from kingdom 
to order (Fig. 2). Bacteria were the dominant community 
in wetlands and cropland, followed by archaea and fungi. 
However, the relative abundance of bacteria significantly 
decreased after wetland reclamation (p < 0.001; Fig. 2a). At 
the phylum level, Proteobacteria was the most dominant 
phylum (32.34%), followed by Actinobacteria (21.40%), 
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N2O were significantly decreased (p < 0.001; Fig. 3c). 
Relative abundance of genes involved in nitrate reduc-
tion to nitrite in denitrification was decreased signifi-
cantly (Fig. 6a), especially napA (p < 0.001) and napB 

reclamation (Figs. 3a and 8, and Table S4). However, 
those in nitrite reduction to nitric oxide (NO) enriched 
(Fig. 6a). The relative abundances of norB and norC, 
which encoded enzymes that catalyzed NO reduction to 

Fig. 2 (a) The response of soil microbial lineages to wetland recla-
mation. The cladogram depicts kingdom, domain, phylum, class, and 
order levels from inside to outside. Taxa that significantly increased 
under wetland reclamation are represented as red, while taxa that 
significantly decreased are represented as green. The out ring rep-
resents the response ratio of each microbial order. The size of each 
node represents the logarithmically transformed relative abundance 
of each microbial lineage. Ar: Archaea; Ba: Bacteria; P1: Aquificae; 
P2: Ascomycota; P3: Chlamydiae; P4: Chlorobi; P5: Chromerida; 
P6: Elusimicrobia; P7: Euryarchaeota; P8: Gemmatimonadetes; 
P9: Ignavibacteriae; P10: Latescibacteria; P11: Planctomycetes; 
P12: Spirochaetes; P13: Synergistetes; P14: Thaumarchaeota; P15: 
Verrucomicrobia; PC1: Candidate_division_NC10; PC2: Candi-

date_division_WOR-3; PC3: Candidate_division_Zixibacteria; PC4: 
Candidatus_Acetothermia; PC5: Candidatus_Azambacteria; PC6: 
Candidatus_Bathyarchaeota; PC7: Candidatus_Daviesbacteria; PC8: 
Candidatus_Omnitrophica; PC9: Candidatus_Parcubacteria; PC10: 
Candidatus_Peregrinibacteria; PC11: Candidatus_Roizmanbacteria; 
PC12: Candidatus_Rokubacteria; PC13: Candidatus_Saccharibacte-
ria; PC14: Candidatus_Tectomicrobia; and PC15: Candidatus_Tho-
rarchaeota; un: unclassified taxa. (b) Soil microbial composition at 
phylum level in wetlands (red) and cropland (green). Only the rela-
tive abundance of top 10 phyla was shown separately, while others are 
represented as a sum of their proportions. The effects of the wetland 
reclamation were analyzed through Wilcox text. Significance levels 
are denoted with *: p < 0.05; **: p < 0.01; and ***: p < 0.001
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There was no significant change in the relative abun-
dance of genes involved in ammonium assimilation after 
wetland reclamation (Fig. S3a). Genes involved in assim-
ilatory glutamate formation, dissimilatory glutamate for-
mation, and urea synthesis were decreased after wetland 
reclamation (Fig. S3b). However, genes involved in glu-
tamine formation and further glutamate formation (glu-
tamine to glutamate) increased after wetland reclamation 
(Fig. S3b).

(p < 0.001) that encode periplasmic dissimilatory nitrate 
reductases (Fig. 3c). These genes are also involved in the 
first step of DNRA. Consistently, the relative abundance 
of genes involved in the dissimilatory nitrite reduction to 
ammonium decreased by 28.59% significantly (Figs. 6a 
and 8, and Table S4), especially nrfA (p < 0.001) and 
nrfH (p < 0.001) that encode dissimilatory periplasmic 
cytochrome c nitrite reductase (Fig. 3c). Nevertheless, 
the relative abundance of genes involved in ANRA was 
increased after wetland reclamation (Fig. 3a).

Fig. 3 Changes of N-cycling 
gene abundances during wetland 
reclamation. (a) The relative 
abundance of genes involved in 
N fixation, nitrification, ANRA, 
denitrification, DNRA, and 
mineralization in wetland and 
cropland. (b) The relative abun-
dance of each gene involved in N 
fixation, nitrification, and ANRA; 
(c) the relative abundance of 
each gene involved in denitrifica-
tion and DNRA; (d) the relative 
abundance of each gene involved 
in mineralization. The effects of 
the wetland reclamation were 
analyzed through Wilcox text. 
Significance levels are denoted 
with *: p < 0.05; **: p < 0.01; and 
***: p < 0.001
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summer (Fig. 5). Instead, across all seasons, genes involved 
in N fixation were significantly decreased after wetland rec-
lamation (Fig. 5). Additionally, genes involved in ammo-
nium assimilation were significantly reduced in summer, 
autumn, and winter after wetland reclamation (Fig. 5).

In the nitrification process, variations of genes involved 
in ammonia oxidation to NH2OH and further to nitrite sig-
nificantly increased in summer (Fig. 5). Conversely, varia-
tions of genes involved in nitrate reduction to nitrite, NO 
reduction to N2O, and further to N2 decreased significantly 
in spring and summer (Fig. 5). In addition, variations of 

Seasonal variations of N-related genes in response 
to wetland reclamation

Wetland reclamation significantly altered the relative abun-
dance of N-cycling genes (Fig. 4a, p < 0.05) and associated 
microbial taxonomic composition (Fig. 4b) across seasons. 
In the nitrification process, the variations of relative abun-
dance of genes in NH2OH oxidation to nitrite and further 
to nitrate have no significant difference between spring 
and summer (Fig. 5). Variations in denitrification, DNRA, 
and ANRA also have no discrepancy between spring and 

Fig. 4 (a) The NMDS ordination 
of N-cycling genes in wetlands 
and cropland. The differences 
among four seasons and ten 
soil layers were quantified 
using the Wilcoxon rank-sum 
test. (b) The response ratio of 
microbial lineages to wetland 
reclamation over seasons at 
phylum level; only the rela-
tive abundance of top 10 phyla 
were shown separately, while 
others are represented as a sum 
of their proportions. The effects 
of the wetland reclamation were 
analyzed through Wilcox text. 
Significance levels are denoted 
with *: p < 0.05; **: p < 0.01; and 
***: p < 0.001
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and cropland (Fig. 7). The soil depth was particularly and 
negatively relevant to soil N in wetlands and cropland. In 
addition, the soil depth had a direct or indirect significant 
negative influence on the microbes of mineralization. In the 
wetland, the microbes of mineralization, influenced by soil 
depth, soil water content, and soil pH, were significantly 
positively correlated with soil N (Fig. 7a). In the cropland, 
the microbes of mineralization, are also influenced by soil 
depth, pH, and temperature (Fig. 7b). However, edaphic fac-
tors and N-cycling-related microbes had different impacts 
on soil N between wetlands and cropland. For example, soil 
water content influences the relative abundance of genes 
involved in the nitrification of wetlands but not cropland, 
while pH influences gene abundance in the N fixation of 
cropland but not wetlands (Fig. 7a, b).

Discussion

Wetland reclamation accelerates soil N loss by 
shifting microbial N cycling

As soil microbes are identified as the pivotal driver in the 
terrestrial N cycle at the global scale (Kuypers et al. 2018), 
wetland reclamation would considerably shift the N cycling 
by changing microbial functional profiles of N. This is 
supported by the results from our field experiment and a 

genes involved in dissimilatory nitrite reduction to ammo-
nium significantly reduced in spring and summer (Fig. 5). 
On the contrary, variations of genes involved in assimila-
tory nitrate reduction to nitrite in summer, and assimilatory 
nitrite reduction to ammonium in spring and summer, sig-
nificantly increased (Fig. 5).

Vertical patterns of the relative abundance of 
N-cycling genes in response to wetland reclamation

The NMDS analysis indicated that microbial functional 
profiles of N-cycling in cropland were significantly distin-
guished from wetland along soil profiles (Fig. 4a, p < 0.001). 
The relative abundance of N-cycling microbes changed sub-
stantially with soil depth in wetland and cropland (Fig. 6). 
Wetland reclamation caused large discrepancies between 
soil layers of 0–30 cm and 30–100 cm (Fig. S1). In the 
shallow soil (0–20 cm), wetland reclamation decreased the 
relative abundance of genes involved in ammonia oxidation 
to NH2OH while increasing those in NH2OH oxidation to 
nitrate and denitrification. However, the opposite tendency 
of these genes was found in the 30–100 cm deep soils (Fig. 
S1). Along all soil profiles, the relative abundance of genes 
involved in N fixation and ammonium assimilation reduced 
considerably after wetland reclamation.

Our study found that soil N was significantly influenced 
by edaphic factors and N-cycling microbes both in wetlands 

Fig. 5 Summary of the impacts 
of wetland reclamation on the 
N-cycling gene abundance across 
seasons. From left to right, color-
ful squares are the response ratios 
in autumn, winter, spring, and 
summer; the letters above the col-
orful squares mean the significant 
difference among seasons. “*” 
indicates p < 0.05

 

1 3



Biology and Fertility of Soils

rates (Bakhsh and Kanwar 2007; Helfrich et al. 2020; Laine 
et al. 2018; Qin et al. 2016).

In addition, N loss after wetland reclamation is also sup-
ported by other N cycling processes reflected by changes 
in the relative abundance of corresponding genes includ-
ing DNRA, N fixation, and nitrite reduction to NO (Fig. 3). 
Specifically, the inhibitions of the relative abundance of 
genes in N fixation and DNRA lead to potential N loss by 
decreasing NH4

+ concentration (Zhang et al. 2021). Since 
nitrate contents in cropland were higher than in wetlands, 
and nitrate levels inhibited multiple stages in root nodule 
growth and N fixation (Nishida and Suzaki 2018), this 
resulted in a decrease in the relative abundance of genes 
involved in N fixation (Fig. 3). The increase of the relative 
abundance of genes involved in nitrite reduction to NO led 

global meta-analysis, which indicates that wetland reclama-
tion significantly increased soil NO3

–-N concentrations but 
decreased the concentrations of soil NH4

+-N (Fig. 1 and 
Table S3), and the relative abundance of genes involved in 
nitrification also improved after wetland reclamation. Com-
pared to NH4

+, NO3
– readily leaches as its overall nega-

tive charge and has a higher diffusion coefficient (Luo et 
al. 2011). Moreover, wetland plants generally have higher 
uptake capacities for NH4

+ than NO3
– (Wang et al. 2020). 

Such a result confirmed our first hypothesis that land cul-
tivation bears a risk of increasing the extent of N loss by 
enhancing the NO3

–-N produced by nitrification (Fig. 7). 
This finding is in accordance with the findings of other stud-
ies, where N loss increased by enhancing the nitrification 

Fig. 6 Wetland reclamation 
impacts on the N-cycling gene 
abundance among soil depths. (a) 
The variations of gene abun-
dances in different N cycling 
processes. Red solid lines 
indicate that the gene abundances 
are significantly increased after 
wetland reclamation; solid blue 
lines indicate that the gene abun-
dances are significantly decreased 
after wetland reclamation; gray 
lines indicate no significant 
difference between wetland and 
cropland, and black lines indicate 
no gene is detected in our experi-
ments. The relative abundance of 
genes involved in N fixation and 
mineralization (b), nitrification 
and denitrification (except nosZ) 
(c), and denitrification (nosZ), 
DNRA, ANRA, and ammonium 
assimilation (d) of each layer in 
the wetland (blue point and line) 
and cropland (red point and line)
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the amoA/B/C gene significantly increased after the wet-
land converted to cropland (Fig. 3b). Most of the nitrifier 
communities belong to Proteobacteria (Zhang et al. 2014; 
Zheng et al. 2013), which is also supported by the decreased 
Proteobacteria after wetland reclamation (Fig. 2b). Nitrifi-
ers were induced with a low C/N (Tsujino et al. 2021; Wang 
et al. 2023), and most soil nitrification process is accom-
plished by autotrophic nitrifiers (Islam et al. 2007; Pedersen 
et al. 1999; Tortoso and Hutchinson 1990). In this study, the 
C-to-N ratio (C/N) was lower than 25 in wetlands and lower 
than 10 in cropland (Fig. 1f). Under lower C/N in cropland, 
lower N demand of other heterotrophs allows the low com-
petition with nitrifiers (Adair and Schwartz 2008; Lee et al. 
2018). Recent studies also suggested the extremely high 
heterotrophic nitrifiers and nitrifying activities in croplands 
(Gao et al. 2023b), explaining the increase of relative gene 

to an increase in NO emission. Overall, the changes in soil 
inorganic N pools under the wetland reclamation could shift 
the N regime and accelerate soil potential N loss by affect-
ing N-cycling functional genes and microbial community 
composition.

The significant decrease in NH4
+-N concentrations 

and increase in NO3
–-N concentrations were attributed to 

the substantial increase in the relative abundance of genes 
involved in nitrification (Fig. 3a). Previous studies reported 
similar patterns in the response of N-cycling microbial com-
munities to land-use change (Qin et al. 2016). As revealed 
by Che et al. (2017), an increase in nitrifier abundance is 
associated with greater soil N loss. Nitrifiers are mainly 
aerobic (Li et al. 2014b; Martens-Habbena et al. 2009), and 
dry croplands provide the aerobic conditions for them. As 
the phylogenetic marker to detect aerobic ammonia-oxi-
dizing microbes (Jiang et al. 2010; Mohamed et al. 2010), 

Fig. 7 Structural equation 
modeling (SEM) illustrating 
the direct and indirect effects of 
physicochemical characteristics 
and the relative abundance of 
genes involved in N cycling on 
soil total N in (a) wetland and 
(b) cropland. Arrows in gray 
and red indicate positive and 
negative effects, respectively. 
The numbers adjacent to the 
arrows are standardized path 
coefficients proportional to the 
line thickness. Continuous and 
dashed arrows indicate significant 
and non-significant correlations, 
respectively. Arrows indicate 
the hypothesized direction of 
causation. CFI: Comparative-of-
fit index; RMSEA: Root mean 
square error of approximation; 
CMIN/DF: Chi-square to degrees 
of freedom ratio
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accelerate the loss of inorganic N together. The increased 
relative gene abundance in nitrite reduction to NO acceler-
ates the N loss as gas emission. Therefore, the first hypoth-
esis was supported. The impact of wetland reclamation on 
the specific process of the N cycle shifted the N regime and 
accelerated N loss, as shown by the functional genes encod-
ing those processes (Fig. 8).

Different seasonal changes of N-cycling genes after 
wetland reclamation

Effects of reclamation on N cycling genes are different 
across seasons, reflected by the significant influence on N 
cycling genes in spring and summer rather than in autumn 
and winter, except for nitrite reduction to NO (Fig. 5). This 
is primarily due to the strong temperature dependence on 
microbial activities (Zhu et al. 2022). The enhancement 
of microbial activity by high temperatures in summer is 
stronger in cropland than in wetlands (Li et al. 2004). Fur-
thermore, the difference of plant species in cropland and 
wetland in the growing season (spring and summer) might 
also enhance the effect of reclamation on N cycling. Alter-
natively, most plants grew in summer (Li et al. 2020a). 
Changes in plant species can affect the N cycle by regu-
lating the microbial community in summer (Kuzyakov and 
Xu 2013). Consistently, we observed apparent distinctions 
in microbial community controls after wetland reclamation 
across seasons (Fig. 4b). Therefore, microbial responses to 
wetland reclamation varied in different seasons and the sec-
ond hypothesis was supported.

The potential risk of N loss under wetland reclamation 
greatly depends on the transition from winter to spring (Jia 
et al. 2022; Treusch et al. 2009). Microbial death and pro-
teolysis during the freeze-thaw period generate the highest 
available N pulse of the year (Jia et al. 2022). Moreover, the 
wetland has a better capacity for N retention than cropland 
due to a large amount of inorganic N losses through NO3

– 
leaching in cropland (Helfrich et al. 2020; Yang et al. 2019), 
especially in growing seasons (Shafreen et al. 2021). Con-
sistently, we observed the abundance of functional genes 
involved in nitrification significantly increased under wet-
land cultivation in summer (Fig. 5). When soil NO3

– supply 
is insufficient, the denitrification process will be restricted 
by the limited substrate in growing season (Davidsson et 
al. 2002; Liu et al. 2023). Similarly, decrease in the relative 
abundance of genes in DNRA and nitrate reduction to nitrite 
was more significant in spring and summer than in autumn 
and winter (Fig. 5), which also resulted in N loss being 
higher in spring and summer than in autumn and winter.

The above findings were consistent with our second 
hypothesis. On the basis of these findings, the application of 
nitrifying inhibitors is a potentially promising management 

abundance involved in nitrification (17.03%) shifting N 
regime after wetland reclamation (Fig. 3).

The relative abundance of genes involved in nitrite 
reduction to NO significantly increased after wetland rec-
lamation (Fig. 3a), which contributes to high N loss as N2O 
emissions (Gao et al. 2023a; Highton et al. 2023). As the 
first step in soil gas emission in the N cycle, NO diffusion is 
limited by water conditions of the surface soil (Friedl et al. 
2022; Peirce and Aneja 2000; Pilegaard 2013). Therefore, 
NO emissions from dry well-aerated soils are much more 
than flooded wetlands (Smith 2005). Alternatively, a recent 
study demonstrated that mineral N addition can enhance the 
production of N2O (Parajuli et al. 2022), which was sup-
ported by the increasing NO3

−-N under wetland reclama-
tion in our meta-analysis (Fig. 1). Although nirS and nirK 
genes are functionally similar in nitrite reduction to NO, 
they mostly belong to different bacterial strains and owe 
unrelated evolutionary relationships (Sun and Jiang 2022), 
showing varying responses in different habitats. Previous 
studies have reported that nirK was more abundant than 
nirS in soil but lower than nirS in aquatic habitats (Mao et 
al. 2023; Palacin-Lizarbe et al. 2019). Similarly, we found 
evidence that the nirK was more abundant than the nirS in 
wetlands and cropland (Fig. 3b). Additionally, the habitat 
selectivity of nirK was greater than nirS (Jones and Hal-
lin 2010), confirming the significantly increased nirK under 
wetland reclamation in our study (Fig. 3b). This pattern was 
similar to that found in an earlier study of tidal wetlands 
in which the nirK gene increased with rice cultivation time 
and dominated its functionally redundant counterpart nirS 
(Bannert et al. 2011).

Consistent with the previous result (Bedard-Haughn et 
al. 2006), the significant decrease in the relative abundance 
of microbes involved in (dissimilatory) nitrate reduction to 
nitrite also contributed to the substantial increase in NO3

–

-N concentrations (Fig. 3a). The significant decrease in 
napA (periplasmic nitrate reductase) and napB (cytochrome 
c-type protein) can be due to aerobic conditions (Fig. 3a) (Li 
et al. 2020b; Zaki et al. 2019). While no obvious decreas-
ing trend was shown in narG/H/I and nirB/D, which control 
the DNRA process under anaerobic conditions (Huang et 
al. 2020; Zaki et al. 2019). Unlike DNRA, ANRA microbes 
contribute to N conservation by transforming it into organic 
N. ANRA is carried out by bacteria to incorporate ammo-
nia for cell growth (Feng and Li 2019), which inferred that 
microbes prefer to utilize N to maintain their metabolism 
and growth. This corresponds to our results that micro-
bial biomass weakly increased after wetland reclamation 
(Fig. 1e).

Collectively, after the wetland reclamation, the increased 
relative gene abundance in nitrification and ANRA, and the 
decreased relative gene abundance in N fixation and DNRA 
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by significantly shifting the relative abundance of genes 
involved in denitrification among soil depth (Fig. 6). The 
relative abundance of genes involved in denitrification 
decreased at a depth of 30–100 cm after the wetland recla-
mation (Fig. S1), which is related to more anaerobic condi-
tions of wetland than cropland in deep layers (Hunter and 
Faulkner 2001). In wetland and cropland, soil depth influ-
ences the relative abundance of genes involved in mineral-
ization directly and indirectly (Fig. 7). Available N produced 
by mineralization is an important source of nitrification 
(Seitzinger 1994), the decline in mineralization may cause a 
decrease in denitrification in deep soils (Fig. 6). In contrast, 
the relative abundance of genes involved in denitrification 
increased by more than 10% at the depth of 0–30 cm after 
the wetland reclamation (Fig. S1). This increase, according 
to our data, contradicts some previously published studies, 
showing that gene abundance in denitrification decreased at 
surface soil during land conversion (Bu et al. 2020; Emer et 
al. 2017). These differences may be caused by the applica-
tion of mineral N fertilizers (An et al. 2022a). The increase 
in the relative abundance of genes involved in denitrifica-
tion in surface soils resulted in the permanent removal of 
N as gases NO, N2O, and dinitrogen (N2) after wetland 
reclamation (Fig. S1) (Harrison et al. 2011). Therefore, N 
loss might be partially induced by gas emission in surface 
soil after wetland reclamation, which is also supported by 
a recent investigation (Helfrich et al. 2020). Overall, these 
findings were consistent with our third hypothesis.

Effects of wetland reclamation accelerates potential 
N loss also reflected by significantly shifting the relative 

practice to alleviate the accelerated N loss during land culti-
vation (Subbarao et al. 2009). To obtain the best ecological 
benefits and crop production, synthetic nitrification inhibi-
tors in fertilizer is one of the ongoing practices in land cul-
tivation (Hatano et al. 2019), such as dicyandiamide (DCD) 
and 3,4-dimethylepyrazole phosphate (DMPP). However, 
synthetic nitrification inhibitors were not advocated due to 
their high cost and environmental pollution issues (Otaka et 
al. 2022). Biological nitrification inhibitors (BNI), released 
from plant roots (Zhang et al. 2022), are a promising strat-
egy to control this high cost and reduce N losses (Ekwunife 
et al. 2022). In this study, we suggest that the use of BNI in 
tillage must be considered.

Microbes accelerate N loss in surface rather than 
sub-surface soils after wetland reclamation

Wetland reclamation bears a risk of N loss along all soil 
depths (Figs. 6 and 7, and S1). Decreased relative abundance 
of genes involved in mineralization after wetland reclama-
tion decreases the potential of N loss along all soil profiles 
(Fig. 6). However, genes involved in N fixation reduced sig-
nificantly after wetland reclamation along all soil profiles 
(Fig. S1), which increased the potential of N loss. This can 
be partly attributed to the diverse microbial communities 
(Li et al. 2016). Moreover, the relative abundance of genes 
involved N fixation decreased with soil depth (Fig. 6), con-
firming previous studies (Bu et al. 2020).

Effects of wetland reclamation accelerates potential 
N loss in surface rather than sub-surface soils reflected 

Fig. 8 Graphic diagram showing 
the microbial mechanisms of 
wetland reclamation impacts on 
soil N cycling. Wetland reclama-
tion significantly altered soil 
inorganic N and microbial gene 
abundances in the N cycle. The 
ellipse shape indicates soil N; 
the rectangle shape indicates the 
relative abundance of genes asso-
ciated with soil N-cycling. Shape 
with red background color with 
(+) indicates the positive effect 
of wetland reclamation, which 
shows that N content or relative 
abundance of genes significantly 
increases after wetland reclama-
tion. Shape with blue back-
ground color with (-) indicates 
the negative effect of wetland 
reclamation, which shows that 
N content or relative abundance 
of genes significantly decreases 
after wetland reclamation. Shape 
with a green background color 
indicates a non-significant impact 
of wetland reclamation
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