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Soil C:N:P stoichiometric signatures of grasslands differ
between tropical and warm temperate climatic zones
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Abstract Climate and land management affect
nutrient cycling in grassland ecosystems. We aimed
to understand whether temperate and tropical grass-
lands differ in terms of soil organic carbon (SOC),
nitrogen (N), and phosphorus (P) concentrations,
and their C:N:P stoichiometric ratios in grazed and
ungrazed natural grasslands and pastures. For this,
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we used a meta-analysis approach (1296 records,
241 papers), and regression models to explain the
observed patterns in terms of mean annual precipita-
tion (MAP), mean annual temperature (MAT), alti-
tude, and latitude. SOC, N, and P concentrations were
higher in temperate regions than in tropical ones, and
they negatively correlated with MAT and MAP. The
grassland type effect was more significant for tropi-
cal regions. In tropical regions, soil C:N ratios were
higher in ungrazed than in grazed pastures, and soil
N:P ratios in ungrazed sites were higher in pastures
than in natural grasslands. Grazing increases soil N
and SOC for natural grasslands in temperate regions.
Our findings suggest that soil stoichiometric C:N:P
stoichiometric signatures in grasslands differed
between tropical and temperate regions on a global
scale. P is a key element in regulation and restriction
on soil C and N cycling in tropical regions but less in
the temperate ones. Our findings suggest the direction
of effects of grazing or grassland type on C:N:P stoi-
chiometric signature. Since imbalances in soil stoichi-
ometric ratios may have implications for ecosystem
functioning, the assessment of these patterns could
serve as a valuable tool for management and conser-
vation of grasslands and pastures in both tropical and
temperate regions.
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Biogeochemistry

Introduction

Carbon (C), nitrogen (N), and phosphorus (P) have
complex global biogeochemical cycles that are
strongly coupled (Agren 2008). N and P synergisti-
cally affect many ecosystem processes as growth-lim-
iting factors for organisms (Sterner and Elser 2002;
Elser et al. 2007). The relationship between plant-
available N and P varies widely among soils depend-
ing on the mineralogy, organic matter forms, climate,
weathering, and other factors (Amundson 2021).
Ratios between elements may provide additional
information to ecosystem functioning related to that
obtained with the individual concentrations of each
element (Binkley and Fisher 2020). These elemental
ratios (stoichiometric ratios) and their quantification
in the environment reflect the impact of living organ-
isms and can be considered a stoichiometric signa-
ture (Redfield 1958; Reiners 1986; Sterner and Elser
2002; Butler et al. 2021; Chang et al. 2021; Kempes
et al. 2021). A chemical signature is defined as a pat-
tern of elemental or molecular composition that has
been employed for characterizing or tracking living
organisms or tissues based on their composition or
biochemical processes (Sterner and Elser 2002), or
as evidence of life forms in astrobiology (Chan et al.
2019). For the purposes of this study, we designate
the stoichiometric signature as a pattern in the ratios
of chemical elements within the soil, with the inten-
tion of tracking the effects of environmental and man-
agement factors on grasslands soil. The importance
of using this approach in living organisms is that
despite the variability between the element concen-
trations, the ratios maintain a lower variation interval
(e.g., Reiners 1986; Sterner and Elser 2008; Arhon-
ditsis et al. 2019). This lower variability has also
been reported for C:N:P ratios in grasslands soil on
a global scale (Cleveland and Liptzin 2007). Stoichi-
ometric signature is based on elemental mass ratios
and depends on cycling elements and ecosystem pro-
cesses (Reiners 1986; Sterner and Elser 2002; But-
ler et al. 2021). Quantifying the C:N:P ratios in soil
can be a powerful tool to understand the influence
of environmental variables and management on soil
nutrients concentration.

Over the last two decades, there have been global
and regional syntheses on the status of C and nutrient
concentrations in grassland soils. Some studies have
explored the effect of management, including grazing,
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mainly in soil C in grasslands at global scale (Conant
et al. 2001, 2017; Pineiro et al. 2009; McSherry and
Ritchie 2013), and some include effects in other
nutrients (Abdalla et al. 2018; Rumpel et al. 2015;
Byrnes et al. 2018; He et al. 2020). Other reviews
have examined the concentrations and ratios of C and
N in grassland soils comparing temperate and tropical
zones (Pirtel et al. 2008), encompassing both natu-
ral grasslands and pastures (Xu et al. 2013), or only
tropical ecosystems (Joergensen 2010). Consequently,
it is well-established that soil nutrient transformation
and cycling in grasslands are contingent upon cli-
mate and other factors, such as grazing (Pirtel et al.
2008). However, most of these studies predominantly
explore the influence of individual factors (grassland
type, grazing, or climate individually) on the concen-
trations of C and nutrients, such as N and P, as well
as their respective ratios. Until now, only a limited
number of studies have comprehensively investigated
the simultaneous impact of multiple factors on C, N,
and P concentrations and ratios, concurrently con-
sidering climatic effects (Partel et al. 2008; Abdalla
et al. 2018). One key objective of this study is to elu-
cidate comprehensive global stoichiometric patterns
of C-N-P in soil, encompassing the contrast between
temperate and tropical climate zones, in addition to
the influences of temperature, precipitation, geo-
graphic location, and the altitude of grassland-associ-
ated ecosystems.

Grasslands are distributed in different climatic
zones of the world (Blair et al. 2014; ILRI et al.
2021). For this study, we classified sites as natural
grasslands (native grasslands, prairies, savannas) and
pastures (cultivated and induced grasslands). Our
analyses distinguished between temperate and tropi-
cal zones for all these classifications. Most pastures
have been established in the equatorial and warm
temperate zones, in regions corresponding to zone
A (i.e., humid tropical) and C (i.e., temperate) in the
Ko&ppen-Geiger classification (Humphreys 1981; Sut-
tie et al. 2005; Ramankutty et al. 2008; Reinermann
et al. 2020). Several distinctions between grasslands
in these two climatic zones can be highlighted. Tem-
perate grasslands are predominantly characterized by
C; plants, while tropical grasslands are dominated
by C, grasses (Partel et al. 2008; Lehmann and Parr
2016). Soil organic matter (SOM) transformation
processes occur more rapidly in tropical regions
(van Keulen 2001; Nortcliff 2010), primarily driven
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by temperature and precipitation (Voroney and Heck
2015; Mitchell et al. 2021). The accelerated SOM
transformation results in higher productivity (Chapin
et al. 2012; Paul 2016), faster recycling rates (Zech
et al. 1997; Saggar et al. 2011), and a greater turno-
ver rate of soil carbon (C) in tropical grasslands com-
pared to temperate grasslands (Horwath 2015; Paul
2016; Six and Jastrow 2017). Phosphorus (P) limi-
tation is a constant factor in tropical biomes due to
climate conditions, as well as historical soil devel-
opment and geological factors (Vitousek et al. 2010;
Sanchez 2019). In tropical regions, pastures are typi-
cally established in areas that were originally cov-
ered by natural forests, leading to the conversion of
a significant portion of forested and wooded areas
(Dias et al. 2016; Lerner et al. 2017; Aryal et al.
2018; Avila-Bello et al. 2018). All these distinctions
between temperate and tropical zones have implica-
tions for soil biogeochemical processes and may
derive in a stoichiometric signature of grassland-asso-
ciated ecosystems.

Grazing also affects soil nutrient concentration
and ratios by affecting the physical properties of the
plant-soil system (Ash et al. 2011; Teague et al. 2013;
Pulido et al. 2016). Vegetation consumption, plant
trampling and soil compaction caused by livestock can
affect nutrient storage and transformation in grasslands
(Greenwood and McKenzie 2001; Taboada et al. 2011).
A reduction in soil porosity, for example, affects the
soil water retention capacity (Cerda et al. 1998; Bartley
et al. 2010; Pulido et al. 2016) and microbial diversity
(Northup et al. 1999; Pan et al. 2018), and these fac-
tors together affect the soil nutrients concentration and
cycling (Semmartin et al. 2008; Schnyder et al. 2010;
Wang et al. 2016). Grazing can alter coupling of C,
N, and inorganic P cycles because it can modify soil
organic matter storage and stimulate belowground bio-
logical activity (Rumpel et al. 2015). Studies on this
topic are inconclusive on whether there is a positive
or negative effect of grazing on soil element concen-
tration (Conant et al. 2001, 2017; Pineiro et al. 2010;
McSherry and Ritchie 2013; Zhou et al. 2017; Abdalla
et al. 2018). However, adverse effects of grazing, par-
ticularly those related to grazing intensities, have been
reported in temperate (Pifieiro et al. 2009; Pineiro et al.
2010; McSherry and Ritchie 2013; Abdalla et al. 2018;
He et al. 2019) and in tropical regions (Ritchie 2014;
Abdalla et al. 2018; Pasricha and Ghosh 2019; Pringle
et al. 2014). The impact of grazing on total P in tropical

soils has yet to be studied despite the limitation of total
P occurring in many tropical soils (Joergensen 2010).
Little is known about how grazing influences all soil C,
N and P concentrations and their ratios in both natural
grasslands and pastures and in tropical vs. temperate
climates with different environmental and geographic
conditions.

This study aimed to compare concentrations and
stoichiometric ratios of soil organic C (SOC) and
nutrients (N and P) of natural grasslands and pastures,
grazed and ungrazed, in two different climatic zones
(i.e., tropical vs. warm temperate). We also explored
the relationship between environmental (mean annual
temperature, MAT, and precipitation, MAP) and geo-
graphical (latitude, altitude) variables in soil elemen-
tal concentrations and ratios. The incorporation of
environmental and geographical factors in the analy-
sis could aid in elucidating stoichiometric patterns in
temperate and tropical grasslands. Furthermore, we
aim to ascertain whether these patterns persist when
incorporating variables such as grassland type and
grazing. We expect to observe differences in grass-
land soils between temperate and tropical zones,
where the stoichiometric signatures will reflect a
higher nutrient concentration in temperate zones (low
C:N and C:P ratios) and a greater P limitation in trop-
ical zones (high C:P and N:P ratios). In this regard,
we expect to gain a deeper understanding of the rela-
tionship between soil nutrient concentrations and
C:N:P stoichiometric signatures with environmental
variables, such as MAT and MAP, and geographical
coordinates, such as latitude and altitude. A higher C
concentration in pasture soils is also expected, regard-
less of the climatic zone, due to accelerated nutrient
(N and P) use in plant growth associated with graz-
ing by livestock. On this point, we predict that graz-
ing would lead to decreasing soil P more rapidly in
tropical grasslands compared to soils from ungrazed
sites. The effect of grazing on C:nutrients stoichiom-
etry can be reflected in a stoichiometric signature of
high soil C:P and N:P ratios.

Methods
Data sources and search terms

Using peer-reviewed papers published before April
2023 and with data available online, a database of
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SOC, total N, and total P in grasslands was com-
piled, for two Koppen-Geiger climate zones: equato-
rial or humid tropical (zone A) and warm temperate
or mesothermic (zone C). We compiled the papers
using Scopus, with the following search terms: (soil
carbon / soil organic carbon / nitrogen / phosphorus
/ nutrients) and (grasslands / rangelands / savanna /
grazing lands / pastures / cultivated grasslands / tropi-
cal grasslands) and (grazing). We limited the search
terms to title, keywords, and abstract. Given the lim-
ited coverage of studies in tropical regions and the
southern hemisphere, mainly in Latin America and
Africa, a second, broader search of other databases
(Google Scholar, Scielo, and Redalyc) was made,
including papers in English, Spanish, and Portuguese.

For a more thorough review, we examined the ref-
erence lists of collected papers on the comprehensive
analysis of C and nutrient concentrations in grassland
soils, focusing on previous reviews and meta-analyses
that include effects of grazing (Conant et al. 2001,
2017; Pineiro et al. 2009; McSherry and Ritchie
2013; Rumpel et al. 2015; Abdalla et al. 2018; Byrnes
et al. 2018; He et al. 2020), climate zones (Pirtel
et al. 2008; Joergensen 2010) and grassland types
(Xu et al. 2013). Our compilation has been enriched
notably by a contribution from Xu et al. (2014). This
database compile data about SOC, N, and P, and their
ratios at biome and global scales (Xu et al. 2013). We
extracted information for natural grasslands and pas-
tures soils.

Criteria for selection of published studies

Each site reported in the source papers was con-
sidered an independent sample. When a site was
reported in two different papers with complementary
information, it was considered a single sample (e.g.,
Damian et al. 2020, 2021; Franzluebbers and Stuede-
mann 2005, 2009, references in supplementary infor-
mation). Given that the present study did not aim to
evaluate seasonal variation, and that total soil concen-
trations typically vary relatively little, we obtained a
mean value when papers reported results at different
times of the year for a given site. The following infor-
mation was also obtained for each site: coordinates,
MAT, MAP, soil type according to WRB (2015),
sampling date and depth, grazing condition, grazer
species, and stocking rate, when available. When
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geographical coordinates were unavailable in the
source papers, data were estimated via Google Earth.

Since the relationships between elements in reac-
tions occur on a molar basis (Sterner and Elser 2002),
all data reported in different units were converted into
molar units (mmol kg_'). We omitted sites where
data were presented as mass area”!, unless bulk den-
sity and depth data were included, which allowed a
conversion to mmol kg~'. Only soil surface data
(<30 cm) were obtained. Since we have data at dif-
ferent depths, we do not distinguish between shallow
depths less than 30 cm. We assume that the aver-
age values obtained may have a variation associated
with confounded factors in the depth interval from O
to 30 cm. Most of the data presented (~90%) corre-
sponds to depths from O to 20 cm. Given that not all
papers have information on all three elements (SOC,
N, and P), the number of data points for stoichiometric
ratios (C:N=SOC:nitrogen, C:P=SOC:phosphorus,
and N:P=nitrogen:phosphorus) were different for
each site.

Data classification

The collected information was classified into two cli-
matic zones according to Koppen-Geiger: equatorial
or humid tropical (Koppen-Geiger zone A) and warm
temperate or mesothermic (Koppen-Geiger zone C).
The climatic zone was determined following Kottek
et al. (2006) based on the coordinates and site name
if no data were provided by the respective reference.
We only included grasslands in the A and C climatic
zones since pastures have been established mainly in
these regions (Humphreys 1981; Suttie et al. 2005;
Ramankutty et al. 2008; Reinermann et al. 2020).
Pastures have also been cultivated in hot semi-arid
climate (Bsh) regions, but we did not consider these
sites because they accounted for less than 2.0% of the
retrieved data. Sites were classified as natural grass-
lands or pastures (cultivated or induced grasslands)
and as grazed or ungrazed sites, as reported in the
source papers. Grasslands include savannas, which
are natural grasslands in tropical areas, which repre-
sent 4.1% of data. Induced grasslands (3.5% of the
total data) were included in the pastures group (cul-
tivated grasslands), as they were established in sites
where original vegetation was replaced with grasses
(Suttie et al. 2005; Sanchez 2019; Teutscherova
et al. 2021). When the grazing condition was not
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specified in the original papers, we classified the sites
as ungrazed.

Database summary

We compiled a dataset of 1296 records from 241
papers (Online Resource 1, a list of data sources),
which included samples from 40 countries, mainly
Brazil (n=31, 13.7% of total papers), New Zealand
(n=29 papers, 12.8%), the United States of America
(n=21, 9.3%), Mexico (n=18, 8%), and the United
Kingdom (n=17, 7.5%). Most sites (70.0%) were
located at latitudes outside the tropics, with extreme
latitudes of 57°06° N and 46°24° S. One-third of the
data (35.8%) were North of the Tropic of Cancer and
23.3% South of the Tropic of Capricorn (Fig. 1). Sites
in equatorial or humid tropical regions (zone A) rep-
resent 36.2% of the total data. Pastures account for
59.3% of the entries, and 57.8% of sites were subject
to grazing (Supplementary Appendix 1). Most of the
data (90%) were collected as samples at 0-20 cm
depth. The main soil types for tropical climate
regions were Ferralsols, with 32.3% of data (accord-
ing to the World Reference Base, WRB 2015; Oxi-
sols according to US Soil Taxonomy classification),
26.5% of data were Acrisols and 19.8% Vertisols.
37.7% of data were Cambisols, 11.0% Acrisols and
8.6% Luvisols for sites in warm temperate regions
(Supplementary Appendix 2). The mean clay content
in soils for the climatic zones was 29.2% for the tropi-
cal zone (37.0% in Ferralsols, 21.0% in Acrisols, and
34.0% in Vertisols) and 22.5% for the temperate zone
(27.5% in Cambisols, 20.1% in Acrisols, and 23.4%
in Luvisols).

Data analyses

A three-way ANOVA with a Tukey’s post-hoc test
(p<0.05 level) was performed to examine the effect
of the climatic zone (Koppen-Geiger zone A and
zone C), grassland type (natural grassland and pas-
ture), grazing regime (grazed and ungrazed), and
the interactions between these three factors on soil
elemental concentrations (SOC, N, and P) and their
stoichiometric ratios (C:N, C:P, and N:P). We con-
ducted exploratory analyses to test the assumptions of
normal distribution of residuals (Shapiro-Wilks’s test)
and homoscedasticity (Fligner-Killen’s test) (Jones
et al. 2022). Since data were not normally distributed,

log transformation was used for ANOVA models to
reduce the effect of outliers and increase the power of
the statistical tests employed.

We also explored the relationships between ele-
mental concentrations and ratios with environmen-
tal factors (MAP, MAT, altitude, and latitude) using
linear regression models (LepS and Smilauer 2020).
A log-linear transformation was used to ensure data
normality. For correlations between element con-
centrations and their ratios we used a Pearson lin-
ear correlation, and the slope value was tested with
one-sided tests (Zar 2014). All statistical analyses
were performed using the packages “agricolae” 1.3-5
(Mendiburu and Yaseen 2020) and “ggplot2” 3.3.6
(Wickham 2022) in R (R Core Team 2020). The sig-
nificance level was set as a=0.05.

Results

Soil element concentrations and ratios according to
climate, grassland type, and grazing

The SOC, N, and P concentrations were higher in
warm temperate than tropical sites, whether in natu-
ral grasslands or pastures. The SOC and N concen-
trations were higher in pastures than in natural grass-
lands at the global level (Table 1). The C:N ratios
were higher in pastures than in natural grasslands for
ungrazed sites in both climate zones (Table 2). In the
tropical zone, N:P ratios were higher in ungrazed pas-
tures than in grazed or ungrazed natural grasslands
sites (Table 1). Tropical pastures showed higher C:N
ratio for ungrazed than for grazed sites (Table 1).
Concentrations of SOC, N, and C:P ratio differed
when comparing climatic zones and grassland types
(p<0.001; Table 2). Total P differed when compar-
ing climatic zones and C:N and N:P ratios differed
among grassland types. However, these factors
explain less than 10% of the variance in SOC and
N concentrations but more than 25% in P concentra-
tion and C:P and N:P ratios (Table 2). Soil P con-
centration and C:P and N:P ratios did not show sig-
nificant differences when we compared grazed and
ungrazed sites, but the impact of grazing was signif-
icant for soil N concentration. The factors (climate,
grassland type, and grazing) had an interactive
effect on soil N concentration (p=0.02) and N:P
(p=0.03) when considering climate and grassland
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Fig. 1 Global distribution of the compiled information. a Site distribution in the climatic zones, b papers by country

type interaction. Also, an effect was observed
for SOC (p=0.004, Table 2) and C:N (p<0.001,
Table 2) for grassland type and grazing interaction,
and interactive effect of climate zone and grazing
was observed for C:N ratio (p <0.001, Table 2).
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Relationships among soil elemental concentrations,
and environmental and geographical variables

We found that SOC and N concentrations in grassland
soils increased with altitude, latitude, and MAP but
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Table 1 Concentrations

Grazed Ungrazed
(mmol kg soil™!) of SOC,
N, and P and their ratios Natural grassland Pasture Natural grassland Pasture
in natural grasslands
and pastures soils from soc A mean 13449 d 18503 ¢ 1424.8 od 2214.6 be
equatorial or humid tropical se 121.1 71.3 173.9 188.3
(A) and warm temperate (n) (71) (260) (38) (80)
(C) Képpen-Geiger climatic C mean 4060.9 a 351122 3112.0b 39262 a
zones se 3117 160.6 199.9 219.2
(n) (151) (240) (263) (164)
N A mean 87.7¢ 1349 c¢d 87.6¢ 147.8 de
se 6.1 5.1 7.7 16.5
(n) (70) (245) (37) (76)
C mean 222.3 ab 247.0 a 189.6 be 233.1 ab
se 13.0 10.9 7.6 15.1
(n) (111) (223) (236) (122)
P A mean 12.3 be 11.6¢ 17.6 ¢ 172 ¢
se 1.0 0.6 3.2 1.9
(n) (16) (57) (10) (19)
C mean 21.1 ab 28.7b 22.8 ab 26.1 ab
se 1.0 1.0 0.7 1.5
(n) (31) (111) (91) (19)
C:N A mean 13.7¢ 14.8 be 15.4 abc 16.6 a
se 0.6 0.3 1.0 0.4
(n) (67) (228) (37) (72)
Soil elements: SOC = soil C mean 15.0 ab 14.6 ab 13.5¢ 15.9 ab
organic carbon; N =total se 0.4 0.2 0.3 0.4
nitrogen; P =total (n) (111) (213) (236) (118)
phosphorus. Ratios:
C:N= SOC;nitrogen; C:P A mean 185.4 ab 237.1 ab 167.9 ab 2372 a
C:P=S0OC:phosphorus; se 11.7 9.2 16.9 20.3
N:P= nitrogen:phosphorus. (n) (]6) (48) (10) (]5)
Means, standard errors C mean 153.9 ab 170.2 ab 138.6b 227.6 ab
(se), and available data are
shown for each variable se 6.1 >8 4l 124
(n). Different letters in a (n) (31) (107) 91 (19)
data block (data within
lines [mean, se, n] for N:P A mean 102b 154 ab 89b 173a
each element or ratio in se 0.7 0.6 1.0 1.1
both climate zones, A and (n) (16) (57) (10) (15)
S) rfl?fri faﬂfrfffnéi:ﬁ}efw C mean  10.1b 122 ab 10.7 ab 14.1 ab
(pg< 0.05). Letter ‘a’ was se 04 04 0.2 04
associated to higher values (n) (31) (106) (91) (13)

decreased with MAT (Fig. 2, Supplementary Appen-
dix 3 and 4). Soil P concentration was negatively
related to MAT but increased with latitude. Soil P
increased for MAP and altitude in tropical grasslands
(Fig. 2). The C:P and N:P ratios increased with MAT
and MAP but decreased with latitude; C:P and C:N
ratios increased with altitude in warm temperate but

decreased with this variable in tropical grasslands.
The C:N decreased with MAT and increased with
latitude only for tropical natural grasslands (Fig. 2,
Supplementary Appendix 3 and 4). The SOC and N
concentrations had similar trends in grasslands of
tropical and temperate regions. The highest values for
SOC (> 10,000 mmol kg™!) corresponded to montane

@ Springer
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Table 2 Three-way ANOVA of soil element concentrations (mmol kg soil™') and ratios in natural grasslands and pastures from
equatorial or humid tropical (A) and warm temperate (C) Koppen-Geiger climatic zones

Source of variation SOC N P
% Var F % Var F % Var F
Climatic zone 8.5% 120.9 otk 8.1% 100.6 okt 23.5% 109.2 otk
Grassland type 1.7% 24.6 otk 1.7% 21.3 okt 0.6% 2.7
Grazing condition 0.0% 0.3 0.5% 6.4 * 0.6% 2.6
ClimZ x GrTyp 0.2% 3.1 0.5% 5.7 * 0.4% 1.8
ClimZ X GrzC 0.1% 1.7 0.0% 0.1 0.2% 1.0
GrTypx GrzC 0.6% 8.3 ok 0.0% 0.0 0.4% 1.8
ClimZ X GrTyp x GrzC 0.2% 22 0.2% 1.8 0.0% 0.0
Error 88.7% 0.0 89.1% 0.0 74.4% 0.0
Source of variation C:N C:P N:P
% Var F % Var F % Var F
Climatic zone 0.1% 0.9 3.6% 12.7 ok 0.4% 1.3
Grassland type 2.2% 25.3 o 3.6% 12.8 wHE 4.8% 17.4 ok
Grazing condition 0.2% 2.5 0.0% 0.0 1.0% 35
ClimZ X GrTyp 0.0% 0.0 0.0% 0.1 1.4% 4.9 *
ClimZ x GrzC 1.1% 12.9 kok 0.0% 0.2 0.0% 0.1
GrTypx GrzC 0.9% 10.3 ok 0.9% 32 0.4% 1.5
ClimZ X GrTyp x GrzC 0.3% 33 0.1% 0.4 0.3% 1.2
Error 95.1% 91.8% 91.7%

Soil elements: SOC=soil organic carbon; N=total nitrogen, P=total phosphorus. Ratios: C:N=SOC:nitrogen;
C:P=SOC:phosphorus; N:P=nitrogen:phosphorus. % Var=% of explained variance for every variation source in the model.
ClimZ=Climatic zone, GrTyp=Grassland type, GrzC=Grazing condition. Statistical significance: ***<0.001; **<0.01;
*<0.05;.<0.1

grasslands in the Andean region (see, Oliver et al. same thing occurs for correlations between SOC and
2017; Oliveras et al. 2014), and led to some differ- P, and N and P (Figs. 3b and 3c). The correlation
ences between SOC and N trends with latitude and between C:P and N:P was weaker for warm temperate
altitude (Fig. 2). Soil total P concentration and related grasslands (r=0.80) than for tropical sites (r=0.91)
ratios (C:P, N:P) had different trends related to alti- (Fig. 3f). The correlations observed between C:N and
tude and MAP when comparing tropical and warm C:P at a global level (r=0.36, p<0.001) were differ-
temperate grasslands (Fig. 2, Supplementary Appen- ent when comparing both climate zones: significant
dix 4). for warm temperate regions (r=0.66, p<0.0001)

but non-significant for tropical grasslands (r=0.19,
Correlations between SOC, N, and P and their ratios p=0.09) (Fig. 3d, Table 3).

At a global level, a strong positive correlation was
found between SOC and N (r=0.9) and between C:P Discussion
and N:P (r=0.89) (Figs. 3a and 3f, Table 3). Cor-

relations between SOC and P (r=0.49), N and P Grasslands are ecosystems distributed worldwide and
(r=0.58), and C:N and C:P (r=0.36) were significant subject to conditions related to climate and manage-
(p<0.0001) (Fig. 3b to 3d, Table 3). When compar- ment that determine the availability of soil C and
ing both warm temperate and tropical climate zones, nutrients (Westoby et al. 1989; Jouany et al. 2011;
the pattern observed for SOC and N was the same as Vendramini et al. 2014). According to our results,
the one observed at a global level (see Table 3). The soils of natural grasslands and pastures in the humid
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Fig. 2 Regression plots of elemental concentrations and ratios
with environmental and geographical factors. Soil elements:

SOC =soil organic carbon (panels “a” to “d”); N =total nitro-

gen (“e” to “h”); P=total phosphorus (“i” to “I”). Ratios:
C:N=SOC:nitrogen (“m” to “p”); C:P=SOC:phosphorus (“q”

to “t”); N:P=nitrogen:phosphorus (“u” to “x”. MAT, mean

tropics have lower SOC concentration and higher
C:P and N:P ratios than those from warm temper-
ate regions on a global scale. However, other fac-
tors lead to different patterns at regional scales. For
example, grazing has a significant effect in increasing
soil N concentration and SOC, especially in temper-
ate climates. For C:P and N:P ratios, the direction
of the effect depends on grassland type and climatic
zone. Soil stoichiometric signatures of grasslands
differ between temperate and tropical climatic zones
at global scales, although patterns at regional scales
change when factors such as grassland type, grazing,

T

0 1000 3000

2000

Elevation

abs(Latitude)

annual temperature; MAP, mean annual precipitation. Red
points, sites in the equatorial or humid tropical climatic zone
(A); green points, sites in the warm temperate climatic zone
(C). Statistical significance: ***<0.001; **<0.01; *<0.05;
ns=non-significant. Complementary information in Supple-
mentary Appendix 3 and 4

temperature, precipitation, latitude, and altitude are
included in the analysis.

SOC, N, and P concentrations were higher in sites in
warm temperate than in tropical zones

Natural grasslands and pastures soils in humid tropi-
cal zones (Koppen-Geiger zone A) tend to have lower
SOC, N, and P concentrations than soils in warm tem-
perate zones (Koppen-Geiger zone C). These results
can be explained by the fact that organic matter trans-
formation processes are faster in the tropics (van Keu-
len 2001; Nortcliff 2010). Soil net primary production
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Fig. 3 Correlations between element concentrations and their
ratios. Red points represent the sites in the equatorial or humid
tropical climatic zone (A) and green triangles correspond to

(Chapin et al. 2012; Paul 2016) and C turnover rate
(Trumbore 1993; Feller and Beare 1997, Santriickova
et al. 2000; Six et al. 2002; Horwath 2015; Paul 2016;
Six and Jastrow 2017) are higher in tropical than in
temperate grasslands. High temperatures promote
faster litter decomposition, nutrient transformation,
recycling rates (Haynes and Williams 1993; Zech
et al. 1997; Saggar et al. 2011), and microbial bio-
mass production (Joergensen 2010). Changes in SOC
are likely to affect soil total N due to a close associa-
tion between SOC and total N in soil organic matter
(Pineiro et al. 2010; Pringle et al. 2014). It has been
reported that a higher microbial decomposition of
SOC is related to increases in MAT and consequently
lower concentrations of SOC and soil total N can be
seen (Amundson 2021). This can be observed in our

@ Springer

sites in the warm temperate climatic zone (C) (models and cor-
relation parameters in Table 3)

results, since SOC and N concentrations were nega-
tively related to MAT and positively related to MAP
(Fig. 2, Supplementary Appendix 3 and 4).

The lower total soil P concentrations in tropi-
cal compared to temperate regions (Fig. 2) could be
explained by factors such as temperature, precipita-
tion, and soil types. Soil total P concentration and C:P
ratio decreased with MAT and MAP (Figs. 2, Sup-
plementary Appendix 3 and 4), but it increased with
SOC and N (Fig. 3). Sites with high total P concen-
trations are mainly located in temperate zones (Hou
et al. 2018), with some exceptions for P-rich soils
(Andosols, Mollisols) in volcanic and fertile tropi-
cal rainy regions (Cleveland et al. 2003; Huth et al.
2012). In temperate regions, high temperatures can
promote soil P transformation from extractable to
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more stable forms (Siebers et al. 2017). Temperature
and soil moisture enhance P-mineralization. Rainfall
can increase inorganic P-fraction leaching (Aren-
berg and Arai 2019), but P organic fraction may be
sequestered geochemically. In highly weathered tropi-
cal soils (Oxisols, Ultisols), these processes lead to
a lower concentration of soil nutrients (Lopes et al.
2004; Pena-Pefia and Irmler 2018; Vitousek and
Sanford 1986; Vitousek et al. 2010) and high C:P
ratios (Tipping et al. 2016), as we observed in our
study. Low relative P-availability in tropical regions
is also associated to sorption by allophanes in young
volcanic soils (e.g. Andosols) and sesquioxide clays
(e.g., Oxisols) (Vitousek and Sanford 1986; Gijsman
et al. 1997; Hou et al. 2018). In this context, P could
be a key element of regulation and restriction on soil
C and N cycling in tropical regions more than in tem-
perate zones.

Stoichiometric signatures differ according to climatic
zones and environmental variables

Although SOC and N showed lower concentrations in
tropical than in temperate grasslands, there were no
significant differences in the C:N ratio for both cli-
matic zones (Table 2). C:N values do not show dif-
ferences between climatic zones (Table 1). Ratios of
14:1 have been previously reported for C:N, based
on total C (Cleveland and Liptzin 2007) and of 13:1
for SOC:N (Xu et al. 2013). The C:N ratio is a litter
decomposition driver and therefore promotes organic
matter formation (Horwath 2015; Amundson 2021).
This stoichiometric signature indicates an increase in
SOC recalcitrance (for natural grasslands or pastures)
or lower total N, leading to higher C:N ratios. There-
fore, it stimulates N-immobilization, reducing its
availability to plants (Robertson and Groffman 2015)
and limiting soil organic matter, SOC formation and
storage (Pineiro et al. 2010). The C:N ratios remained
within intervals of 2 to 36 (>90% of data are between
8 and 22), with higher variation in N:P ratios, which
ranged from 1 to 46 (5 to 22 for 90% of data). Simi-
lar intervals have been reported on a global scale
for the C:N ratio (2 to 30) but wider range for N:P
(1 to 77), reflecting a strong coupling between the C
and N cycles, but a decoupling of the total P from C
and N concentration (Cleveland and Liptzin 2007).
This association between SOC and total N has also
been observed at regional or local scales (Pineiro
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et al. 2010; Tian et al. 2010; Pringle et al. 2014). A
C:P ratio of 230:1 was found for tropical soils and
of 158:1 for temperate sites, regardless of whether
they were pastures or natural grasslands. A C:P ratio
of 166:1 has been previously reported for grasslands
globally (Cleveland and Liptzin 2007). This pattern
has also been reported in forests (McGroddy et al.
2004) and other ecosystems (Yan et al. 2016), where
the N:P ratio increases towards equatorial regions,
following an increase in MAT. In our study, N:P
ratios were 15:1 for grasslands in equatorial zones
and 11:1 for sites in warm temperate regions.

Soil C:N:P stoichiometry among grassland types

Grassland-type (natural grassland or pasture) had
a significant effect on SOC and nutrient concentra-
tions in both climatic regions. We can explain this
partially, due to characteristics of plant communities
established in these ecosystems. Temperate grass-
lands are dominated by C; grasses, while C, grasses
occur predominantly in tropical regions (Woodward
et al. 2004; Lehmann and Parr 2016). As mentioned
before, pastures in tropical regions are generally cul-
tivated in sites whose original vegetation was forest
(predominantly C; plants), and it is replaced mainly
with exotic C, grasses (Oliveras and Malhi 2016).
Grasslands dominated by C, grasses store more SOC
and N than those dominated by C; plants, as has been
reported for both temperate (Tilman and Wedin 1991;
Yang et al. 2019) and tropical regions (Nyameasem
et al. 2020). Tropical C, grasses (e. g. Panicum, Pen-
nisetum) metabolism is more efficient in terms of
photosynthetic activity indicators (e. g. use efficiency
of resources such as light, water, or nutrients) com-
pared to C; grasses from temperate climates (da Silva
et al. 2015; Volenec and Nelson 2020). Given their
higher photosynthetic efficiency, C, grasses use less
water, but also have higher lignin content (Volenec
and Nelson 2020) and produce lower quality litter,
which is more slowly incorporated into soil (Thomas
and Asakawa 1993). The introduction of African
deep-rooted C, grasses into native savannas could
increase soil C storage (Fisher et al. 1994; Fujisaki
et al. 2015) but also higher C:N ratios (Williams and
Baruch 2000), so the combination with N-fixing leg-
umes could increase soil N content. This functional
type of grasses also increases the P stock in their
tissues and makes efficient use of this element, but
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further research is required. This C4/C, grass commu-
nities composition contributes to explain SOC higher
concentrations and nutrients in tropical pastures than
in natural grasslands.

High lignin content in C, grasses may limit the
incorporation of plant matter into soil, a condition
that is also favored by P deficiency (Lopes et al. 2004;
Garcia-Oliva et al. 2006; Vendramini et al. 2014).
This P deficiency is reflected in P lower concentration
and high C:P and N:P ratios in pastures (C:P, 211:1,
N:P, 14:1), usually higher than in natural grasslands
(C:P, 152:1; N:P, 11:1). When considering the cli-
matic zone, the average values for both ratios were
higher in tropical regions than in temperate regions.
On a global scale, higher C:P and N:P ratios have
also been reported for pastures (169:1 and 12:1) com-
pared to natural grasslands (143:1 and 11:1) (Xu et al.
2013). This trend of lower relative P concentration is
also observed in C:P ratios in pastures and has also
been reported in previous studies (Xu et al. 2013).
The lower relative content of nutrients in pasture soils
can limit the SOC use by organisms in the system
(Abbas et al. 2013; Achat et al. 2016).

Grazing impacts on soil C:N:P stoichiometry

The grazing influence on SOC and soil nutrient con-
centrations depended on the type of grassland. In nat-
ural grasslands, the highest concentrations of SOC,
N, and P were found in grazed sites, but higher C:P
and N:P ratios were observed in ungrazed tropical
pastures (Table 1). Grazing can inhibit the growth
of tropical plants with high efficiency characteris-
tics in the acquisition of soil nutrients, while with-
out grazing, these plants can grow, uptake nutrients,
and establish themselves. More research is needed
on this topic. The most used livestock management
method in tropical grasslands is extensive graz-
ing (Dubeux et al. 2007; Teutscherova et al. 2021).
This method promotes selective forage consumption
leading to zonal degradation (Kothmann 2009), and
urine and dung patches unevenly distributed. Two
effects can be expected about this grazing manage-
ment method: (1) an increase in N-recycling and
availability when nutrients remain and storage on
site, or (2) an increase in N-losses through volatiliza-
tion and leaching (Dubeux et al. 2007; Pineiro et al.
2010). In the first case, the plant-soil system can store
more N in part by biomass microbial immobilization.

In the second case, if available N exceeds the short-
term requirements of pastures around dung patches,
losses will occur (Haynes and Williams 1993). Even
when these patches can contribute to an increase in
SOC and N, compaction and intense rainfall can pro-
mote nutrient losses by surface runoff and limit soil
N inputs (Greenwood and McKenzie 2001; Taboada
et al. 2011). Increased soil C stocks by improve-
ments in grazing management (i.e., stocking density
management, rotation grazing) have been reported
(Conant et al. 2017). Grazing effects also can depend
on grass composition (C; or C, grasses) and envi-
ronmental conditions (McSherry and Ritchie 2013;
Abdalla et al. 2018; He et al. 2020). The effect of
grazing on SOC concentration also depends on other
specific factors at more local scales, such as environ-
mental conditions (precipitation, temperature), soil
properties, land topography (Pineiro et al. 2009), and
grazing improvements (Conant et al. 2017).

Effect of geographical variables on stoichiometric
signature patterns

Geographical variables (i.e., altitude and Ilatitude)
have consistent effects on SOC and N concentra-
tions, which both increase with altitude and latitude.
The highest (Andean) montane grasslands soil, and
the northernmost (England) and southernmost (New
Zealand) regions are the richest. Decreases in annual
mean temperature (5.5°C) generally have been calcu-
lated for every increase of 1000 m in altitude above
sea level, or for increases of 15° in latitude above 10°
North or South (Humphreys 1981). Following this
pattern, increases in SOC and N concentrations pro-
portional to altitude and latitude would be expected in
grasslands, which is supported by our results. Increas-
ing SOC and total N concentrations with altitude
have also been observed at a local level (Gerschlauer
et al. 2016). The higher concentrations of SOC we
found (up to 24,000 mmol kg~') have been reported
in Andean montane grasslands, over 3000 m.a.s.l.
(Oliver et al. 2017; Oliveras et al. 2014). It is impor-
tant to note that N-mineralization increases with soil
moisture (Singh et al. 1991) but also with elevation
(Gerschlauer et al. 2016), and thus if N is not taken
up or immobilized, then it could be lost by leaching
or runoff. Furthermore, if increasing temperature and
limited water availability lead to a decline in micro-
bial growth, then there is also a decline in C-use
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efficiency (Manzoni et al. 2012). At low P concen-
trations N, fixation is limited and N availability for
plants can be reduced (Sardans and Pefiuelas 2012).
These results are an invitation to study and compare
patterns of nutrient concentration and transformation
in altitudinal gradients in other mountain systems,
such as other grassland areas in the Andes, Kiliman-
jaro, the Himalayas, and mountain regions in Mexico,
Central America, and New Zealand, to name a few
examples.

Limitations and future work

This study investigated soil organic C, N, and P
among warm temperate and tropical grassland, and
the underlying mechanisms. Although meta-analysis
approach allows a synthesis to establish global and
regional patterns that cannot be observed through
individual studies, a few limitations have been identi-
fied and will be addressed in our future work. First,
intrinsic diversity in grassland ecosystems leads to a
high variability in C, N, and P concentrations. This
variability has also been found in other reviews and
is a source of uncertainty. Second, the relative lack
of information about soil P has also been a frequent
issue in previous reviews (Cleveland and Liptzin
2007; Tian et al. 2010). Third, there is a lack of stand-
ardized methodologies for determining elemental
concentrations as a source of heterogeneity in data-
sets. Fourth, the conclusions related to effects of graz-
ing on concentrations and ratios evaluated are lim-
ited by the necessary non-random sample of grazed
vs. ungrazed sites. Despite all these methodological
issues as a source of uncertainty, our findings can
contribute to increase knowledge of factors affecting
the status of elements in grazed and ungrazed grass-
land soils, particularly in pastures of tropical regions.
There remains a clear gap of information in these
tropical ecosystems, as can be seen from the collected
data (Table 1, Supplementary Appendix 1) and from
previous reviews.

Conclusions

Our findings suggest that soil stoichiometric C:N:P
stoichiometric signatures in grasslands differed
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between tropical and temperate regions on a global
scale. Our results can be partly attributed to the effect
of mean annual temperature (MAT) and mean annual
precipitation (MAP) on soil C and nutrient reduc-
tion, resulting in higher C:P and N:P ratios in tropi-
cal pastures. It could be hypothesized that in tropi-
cal regions, in contrast to temperate regions, P is a
key element in regulating and limiting soil C and N
cycling. Changes in soil P concentrations can have
significant effects on soil C and N stoichiometric
ratios, highlighting the importance of understanding
the mechanisms behind soil P reduction in elucidat-
ing the functioning of tropical regions. Imbalances
in soil C:N:P stoichiometric ratios could lead to cas-
cading stoichiometric changes in N and P availability
throughout the ecosystem. As nitrogen (N) and phos-
phorus (P) are elements that regulate the growth rate
of organisms, these changes could affect both living
organisms, such as plants, microorganisms and her-
bivores, and inorganic reservoirs of the ecosystem,
including the atmosphere and water. Such imbalances
can therefore affect ecosystem functioning and pro-
ductivity, and taking these patterns into account can
be a valuable tool for planning management and con-
servation of natural grasslands and pastures.
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