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ABSTRACT
The current soil carbon paradigm puts particulate organic carbon (POC) as one of the major components of soil organic carbon 
worldwide, highlighting its pivotal role in carbon mitigation. In this study, we compiled a global dataset of 3418 data points of 
POC concentration in soils and applied empirical modeling and machine learning algorithms to investigate the spatial variation 
in POC concentration and its controls. The global POC concentration in topsoil (0–30 cm) is estimated as 3.02 g C/kg dry soil, 
exhibiting a declining trend from polar regions to the equator. Boreal forests contain the highest POC concentration, averaging at 
4.58 g C/kg dry soil, whereas savannas exhibit the lowest at 1.41 g C/kg dry soil. We developed a global map of soil POC density in 
soil profiles of 0- 30 cm and 0–100 cm with an empirical model. The global stock of POC is 158.15 Pg C for 0–30 cm and 222.75 Pg 
C for 0–100 cm soil profiles with a substantial spatial variation. Analysis with a machine learning algorithm concluded the pre-
dominate controls of edaphic factors (i.e., bulk density and soil C content) on POC concentration across biomes. However, the 
secondary controls vary among biomes, with solid climate controls in grassland, pasture, and shrubland, while strong vegetation 
controls in forests. The biome- level estimates and maps of POC density provide a benchmark for modeling C fractions in soils; the 
various controls on POC suggest incorporating biological and physiochemical mechanisms in soil C models to assess and forecast 
the soil POC dynamics in response to global change.

1   |   Introduction

Soil particulate organic carbon (POC), the portion of soil or-
ganic carbon (SOC) with a size exceeding 53 µm based on the 
size fractionation scheme (Abiven, Menasseri, and Chenu 2009), 
makes up to half of soil organic carbon (Lavallee, Soong, and 

Cotrufo 2020; Marriott and Wander 2006; Zhao et al. 2021). POC 
refers to the carbon stored in particulate organic matter, com-
prising plant- derived and fungal- derived compounds, including 
phenols, celluloses, and chitin (Baldock and Skjemstad  2000; 
Christensen  2001; Kögel- Knabner et  al.  2008; Sanderman, 
Maddern, and Baldock 2014; Six et al. 2001), resulting from the 
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fragmentation and depolymerization of organic materials. POC 
is estimated to have a soil residence time from weeks to months 
(Lavallee, Soong, and Cotrufo 2020; Lehmann and Kleber 2015), 
given its high accessibility to soil microbes (Castellano 
et al. 2015). Combined with a high C/N ratio, this property is ex-
pected to affect the magnitude of SOC sequestration. Therefore, 
POC has been extensively used as an index of labile SOC status 
(Cambardella and Elliott 1992; Carter 2002; Christensen 1992; 
Golchin et  al.  1994), and its mineralization and mobilization 
contribute dramatically to C losses in terrestrial ecosystems 
(Janzen 2006; Lavallee, Soong, and Cotrufo 2020).

Recent studies have demonstrated that SOC in the topsoil at 
high latitudes is dominated by the POC fraction, being more 
vulnerable to climate warming (García- Palacios et  al.  2024). 
Additionally, soil POC affects nitrogen (N) transformation pro-
cesses, including denitrification and N mineralization rates, as 
well as the content of heavy metals in sediments (Hill et al. 2000; 
Lovett et al.  2004; Sanei et al.  2012). Therefore, the dynamics 
of POC have a profound influence on terrestrial C and nutrient 
cycling. Hence, estimating the POC budget and elucidating its 
persistence mechanisms is key to understanding and modeling 
global change challenges.

Separating soil C stocks into fundamentally different frac-
tions and recognizing global distributions and the controls of 
these fractions enable better predictions of soil vulnerability 
to global change because of the unique characteristics of each 
(Georgiou et al. 2022). The vertical distributions across biomes 
and the global patterns of other C fractions, including microbial 
biomass carbon (MBC) and dissolved organic carbon (DOC), 
have been reported in our previous studies (Guo et  al.  2020; 
Xu, Thornton, and Post  2013). Although the concentrations 
and spatial variations of POC have been observed in various 
terrestrial ecosystems, such as tropical forests (Alongi  2014; 
Lee 2016; Zhang et al. 2009), temperate forests (Chen et al. 2012; 
Zhang et al. 2023), shrublands (Boix- Fayos et al. 2009; Kooch, 
Amani, and Abedi 2022), grasslands (Leifeld et al. 2009; Pringle 
et  al.  2014), uplands (Kolka et  al.  2001), and croplands (Xiao 
et al. 2021), these studies were implemented at regional or local 
scales. The global distribution of POC in terrestrial ecosystems 
and its controlling factors remain to be explicitly represented in 
climate models.

In soils, POC generally undergoes only partial processes by soil 
organisms and has high activation energies (Jilling et al. 2018; 
Kleber et  al.  2015). Additionally, POC has a relatively shorter 
residence time (< 10 years) in soils due to the lack of protective 
mechanisms (Kleber et  al.  2015; Kögel- Knabner et  al.  2008). 
Generally, the mean residence time of POC in soils depends 
on microbial respiration and enzymatic reaction (DeGryze 
et  al.  2004); thereby, the factors regulating litter formation 
and decomposition, root growth, and microbial activities po-
tentially affect POC contents in soils. Substantial studies have 
documented the significant variations in POC concentrations 
among ecosystems, climate zones, vegetation communities, and 
soil characteristics across temporal and spatial scales (DeGryze 
et al. 2004; LiuSui et al. 2019). Moreover, many measurements 
and experiments have been implemented to reveal the con-
trols on POC concentrations (Abramoff et  al.  2018, 2022), in-
cluding temperature (Benbi, Boparai, and Brar  2014; Wuchter 

et al. 2005), moisture (Li et al. 2022; Schlüter et al. 2022), soil 
pH (Liu et al. 2020; Relexans et al. 1988), soil texture (Huang 
et  al.  2019; Kölbl and Kögel- Knabner  2004), organic matter 
(Kölbl and Kögel- Knabner 2004), soil N content (Gu 2009), and 
microbial activities (Denef et  al.  2001; Witzgall et  al.  2021). 
However, a mechanistic understanding of climatic and envi-
ronmental factors on POC distribution across biomes and at the 
global scale is still unclear.

This study investigated POC concentration in the 0–100 cm soil 
profile in terrestrial ecosystems at biomes and global scales and 
its controls by combining a data synthesis with a machine learn-
ing approach. We reported the spatial and vertical distributions of 
POC in different biomes, attributed the POC variation to various 
factors, and finally quantified the budgets of POC in 0–30 cm and 
0–100 cm soil profiles in multiple biomes and at the global scale.

2   |   Materials and Methods

2.1   |   Data Collection

The data for POC concentrations were collected from publica-
tions by searching “soil particulate organic carbon” in Web of 
Science and Google Scholar. We derived the data points from 
tables involving soil POC and/or extracted from figures vis the 
Engauge Digitizer software version 10.7 (http:// digit izer. sourc 
eforge. net/ ). A total of 3418 data points were finally collected 
from the LUCAS database and 244 publications from 1988 to 
2020 (Table S1 and Figure 1a). The data are archived at Dryad 
(Guo et al. 2024). The database was divided into two groups: one 
group consists of 2507 data points for topsoil (0–30 cm) in 632 
sites and 911 data points for soil profile (0–100 cm) in 55 sites. 
We also retrieved auxiliary information of the sampled sites, 
including vegetation type, soil texture, soil moisture (SM), sam-
pling dates and depth, latitude (LAT), longitude, mean annual 
air temperature (MAT), mean annual precipitation (MAP), soil 
pH, bulk density (BD), total organic carbon (TOC), total nitro-
gen (TN), DOC, soil dissolved organic nitrogen (DON), soil mi-
crobial biomass carbon (MBC), soil microbial biomass nitrogen 
(MBN) and soil minerals- associated organic C.

We classified the data points into 14 biomes, including boreal 
forest, temperate coniferous forest, temperate broadleaf forest, 
tropical forest, mixed forest, grassland, shrubland, pasture, 
tundra, savanna, peatland, natural wetland, rice paddy, and 
cropland, according to our database and referencing the classi-
fication used in previous studies (Guo et al. 2020; Xu, Thornton, 
and Post  2013). Moreover, glaciers and deserts were excluded 
in this study. Cropland, forest, grassland, and pasture account 
for 49%, 15%, 14%, and 7%, respectively, whereas the remaining 
biomes account for 15% of the dataset (Table  S1). Our dataset 
spanned diverse climates and soil types: clay content ranging 
from 3% to 62%, silt content ranging from 3% to 87%, mean 
annual temperature (range: −5°C to 20°C), and mean annual 
precipitation (range: 320–1600 mm) across distinct mineral and 
vegetation types (Figure 1b,c).

Climate, edaphic, and microbial data not mentioned in the pa-
pers were extracted from global datasets following our previous 
studies (Guo et  al.  2020; Xu, Thornton, and Post  2013). SOC, 
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TC, and BD were downloaded from the Harmonized World Soil 
Database (HWSD, https:// daac. ornl. gov/ cgibin/ dsvie wer. pl? 
ds_ id= 1247) at a 0.05° × 0.05° resolution grid. Soil C, BD, and 
TN were extracted from the IGBP- DIS dataset (IGBP, https:// 
daac. ornl. gov/ SOILS/  guides/ igbp-  surfa ces. html) at a spatial 
resolution of 0.5′ × 0.5′. MAT and MAP were obtained from 
the WorldClim database version 2 with a spatial resolution of 
30 s during 1970–2000 (https:// www. world clim. org/ data/ world 
clim21. html). The extraction of mean annual and monthly soil 
moisture (SM) and soil temperature (ST) in the top 10 cm during 
1979–2018 was from the National Center for Atmospheric 
Research/Department of Energy Atmospheric Model 
Intercomparison Project (NCEP/DOE AMIP- II) Reanalysis 
(Reanalysis- 2) monthly average dataset (https:// www. esrl. noaa. 
gov/ psd/ data/ gridd ed/ data. ncep. reana lysis2. gauss ian. html).

Root C density (Cden) data were extracted from a global dataset of 
a 0.5° resolution based on observation data (Ruesch 2008; Song 
et al. 2017). We extracted topsoil porosity data from a global data-
set produced by Global Land Data Assimilation System (GLDAS, 
https:// ldas. gsfc. nasa. gov/ gldas/  ) at a spatial resolution of 
0.25° × 0.25°. Annual net primary productivity (NPP) for the pe-
riod of 2000–2015 was obtained from the MODIS gridded dataset 
with a spatial resolution of 30 s (http:// files. ntsg. umt. edu/ data/ 
NTSG_ Produ cts/ ). Soil microbial biomass C (MBC) and nitrogen 
(MBN) were retrieved from a compiled global soil microbial bio-
mass C and nitrogen (N) dataset archived at Oak Ridge National 
Laboratory (Xu et al. 2014; Xu, Thornton, and Post 2013).

The auxiliary datasets included the global land area database and 
vegetation distribution dataset. The global vegetation distribu-
tion dataset was obtained from a spatial map of 11 major biomes: 

boreal forest, temperate forest, tropical/subtropical forest, mixed 
forest, grassland, shrubland, tundra, desert, natural wetlands, 
cropland, and pasture, which have been used in our previous 
publications (Guo et al. 2020; He et al. 2020; Xu, Thornton, and 
Post  2013). The global land area database supplied by surface 
data map generated by the Community Land Model 4.0 (https:// 
svn-  ccsm-  models. cgd. ucar. edu/ clm2/ trunk_ tags/ clm4_5_ 1_ 
r085/ models/ lnd/ clm/ tools/  clm4_5/ mksur fdata_ map/ ).

2.2   |   Data Standardization

There are multiple procedures for POC fractionation in SOC; 
the physicochemical method contributes to approximately 76% 
(Cambardella and Elliott  1992), the size- density fractionation 
method accounts for 18% (Leifeld and KöGel- Knabner  2005; 
Lugato et al. 2021; Puget, Chenu, and Balesdent 2008; Six, Elliott, 
and Paustian 2000; Zimmermann et al. 2007), and the dry siev-
ing method contributes to < 1% of all reported methods in POC 
fractionation. In this study, we combined lighter POC (> 53 µm, 
also lighter than 1.6–1.85 g/cm3) and heavy POC (> 53 µm but 
denser than 1.6–1.85 g/cm3) to constitute an overall POC by re-
ferring to Lavallee, Soong, and Cotrufo  (2020). Furthermore, 
the database of POC in 0–30 cm soil profile was rejected if the 
ratio of POC and TOC dataset was greater than 70%.

2.3   |   Vertical Distribution of POC Along Soil 
Profiles

The concentration of POC in soil depends on organic matter 
input and decomposition driven by microorganisms, and soil 

FIGURE 1    |    Geographic, edaphic, and climatic information of sites used in this study. (a) Geographic distribution, (b) soil texture, and (c) climate 
of the data points. Black polygons depict Whittaker's biomes (Whittaker 1975) according to mean annual temperature (MAT;°C) and mean annual 
precipitation (MAP; mm year−1) values, following: (1) tropical rainforest, (2) tropical seasonal rainforest/savanna, (3) subtropical desert, (4) temperate 
rainforest, (5) temperate seasonal forest, (6) woodland/shrubland, (7) temperate grassland/desert, (8) boreal forest, and (9) tundra.
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microbial biomass and organic matter input have been demon-
strated to decline exponentially along soil profiles relevant to 
the distribution of vegetation roots (Jackson et  al.  1996; Xu, 
Thornton, and Post 2013). Therefore, in this study, we assumed 
that soil POC exhibits a similar pattern of vertical distribution as 
root systems, microbial biomass, and DOC in terrestrial ecosys-
tems due to two reasons: (a) the chief occurrence of plant litter 
and labile organic matter near the soil surface leads to an expo-
nential decrease of organic matter input (Guo et al. 2020), and 
(b) root can accelerate the microbial decomposition. The POC 
vertical distribution among biomes was fitted against soil depth 
using an asymptotic equation:

where Y represents the cumulative fraction of soil POC from the 
soil surface to the depth of d in cm, and beta is the fitted coeffi-
cient. High 𝛽 means a lower proportion of soil POC concentra-
tion near the soil surface, and vice versa.

2.4   |   Global Distribution and Budget of POC

Distribution of POC concentration in 0–30 cm and 0–100 cm soil 
profiles at biome-  and global level was estimated by the random 
forest (RF) model; available variables were chosen like the abso-
lute value of the latitude, MAP, MAT, annual mean ST and SM, 
soil pH, porosity, texture, SOC, TC, NPP, and Cden (Table  S7). 
The database for POC was removed if it was greater than 70% of 
TOC in the Information System Database (IGBP- DIS), and it was 
split into training samples (70%), and test samples (30%) with 
the method of “train_test_split”, hyperparameters used in the 
RF model were listed in Table S6. We randomly set an ensem-
ble of all parameters in light of different total organic datasets, 
including TC from IGBP, TC, and SOC from the HWSD dataset. 
Ultimately, the average of three dataset simulations was used for 
producing the global map. The global distribution and budget of 
POC were evaluated for 11 biomes except for paddies and peat-
lands; the former was aggregated into croplands, and the latter 
was combined with natural wetlands. Predictions to simulate 
POC concentrations showed a reasonable trend with a variance 
of R2 = 0.726 (Figure S2). The RF model used Scikit- learn pack-
ages (version 0.23.2, https:// sciki t-  learn. org) for Python (version 
3.7.5, https:// www. python. org/ ) to predict POC concentration. 
Based on POC fractions in 0–30 cm soil profiles (Table S2) for 
each biome, the distribution and concentration of POC were es-
timated along 0–100 cm soil profiles.

2.5   |   Quantification of the Relative Contributions 
of Controlling Factors on POC

Multiple regression was used to evaluate the relative contribu-
tion of 15 control factors on POC concentration. The result was 
categorized into three main categories: edaphic factor contains 
BD, TC, TN, Sand, Clay, Porosity, and pH; ST and SM repre-
sented climatic factor; NPP, Cden, MBC, and MBN were merged 
as biological factors. The relative contribution of other factors 
was estimated with the following formula:

where the Relo is the relative contributions of other factors on 
POC; Rele is the relative contributions of edaphic factor; Relc is 
the relative contributions of climatic factor; Relb is the relative 
contributions of biological factor, and R2 is the variance of mul-
tiple linear regression.

2.6   |   Statistical Analysis

POC concentration data were log- transformed to convert for 
robust statistical analyses. The mean and 95% confidence in-
tervals of POC concentration were converted back to the orig-
inal values for reporting. The variability of POC concentration 
among biomes was assessed by analysis of variance (ANOVA). 
A Mantel test was chosen to investigate the relationship be-
tween POC concentration and climate, vegetation, and soil 
properties by using Pearson's correlation. Structural equation 
modeling (SEM) was used to identify the multivariate effects 
(climatic, biological, and edaphic variables) on POC concentra-
tion. A ternary diagram was performed to determine the effects 
of different soil textures on POC concentration. All statistical 
analyses and graphs were conducted by the RStudio software 
version 4.0.3 (http:// www. rstud io. com/ ) and ORIGIN Pro 2023 
(http:// www. origi nlab. com/ ). The global maps were generated 
by the ArcGIS software (version 10.8, ESRI, Redlands, CA) in 
Windows 11.

3   |   Results

3.1   |   Soil POC Concentrations Among Biomes

The global average and median of POC concentrations in top-
soil were 3.02 (2.47–3.73) gC/kg dry soil and 3.20 (1.88–5.25) 
gC/kg dry soil, respectively, and varied across biomes (Table 1; 
Table S8). Biomes such as boreal forests, shrublands, and natu-
ral wetlands had relatively higher POC concentrations, at 4.58 
(3.51–5.99), 4.35 (3.82–4.95), and 4.18 (3.52–4.98) gC/kg dry 
soil, respectively. Compared to savannas and croplands values 
of 1.41 (0.98–2.03) and 1.9 (1.8–2) gC/kg dry soil, respectively. 
There were no significant differences in POC concentrations 
among the remaining biomes (Table 1). In addition, temperate 
coniferous forests, mixed forests, and tundra showed higher 
POC concentrations than the global average, at 3.65 (3–4.44), 
3.75 (2.96–4.76), and 3.14 (1.93–5.11) gC/kg dry soil, respectively. 
Meanwhile, temperate broadleaf forests, tropical forests, grass-
lands, pastures, peatlands, and paddies exhibited lower concen-
trations than the global average (Table 1).

POC concentrations generated through a random forest al-
gorithm showed a similar pattern across biomes. The global 
average and median values of POC concentrations were 3.61 
(3.58–3.65) and 3.47 (2.93–4.21) gC/kg dry soil, respectively. 
Boreal forests, natural wetlands, mixed forests, and tundra 
 exhibited higher POC than the global average, with mean 
values of 4.41 (4.34–4.49), 4.46 (4.43–4.49), 4.27 (4.25–4.30), 
and 5.07 (5.02–5.13) gC/kg dry soil and the median of 4.38 
(2.88–6.01), 4.27 (3.83–4.89), 4.12 (3.51–4.96), and 4.68 
(3.77–6.16) gC/kg dry soil, respectively. In addition, upland 
and pastures showed lower POC concentrations than the 
global average (Table 2).

Y = 1 − 𝛽d

Relo = 1 −
(

Relb + Rele + Relc
)

× R2
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3.2   |   Environmental Control on Soil POC 
Concentrations

The fluctuations in POC concentrations at the global scale were 
predominantly controlled by climatic, biological, and edaphic 
factors (Figure 2a; Tables S2 and S3). Specifically, BD (r = −0.21, 
p < 0.05), TC (r = 0.29, p < 0.05), SM (r = 0.22, p < 0.05), MAT 
(r = −0.29, p < 0.05), ST (r = −0.24, p < 0.05) and porosity (r = 0.3, 
p < 0.05) were the primary factors determining POC concen-
trations. Moreover, POC concentrations were positively asso-
ciated with the C/N ratio (r = 0.17, p < 0.05) and Cden (r = 0.04, 
p < 0.05), but negatively correlated to pH (r = −0.1, p < 0.05). 
Additionally, the C/N ratio was dominated by BD (r = −0.52, 
p < 0.05), TC (r = 0.55, p < 0.05), pH (r = −0.56, p < 0.05), poros-
ity (r = 0.54, p < 0.05), and soil texture such as sand (r = 0.34, 
p < 0.05) (Figure 2a).

The SEM framework further revealed the indirect and di-
rect influences of soil characteristics on POC concentrations 
(Figure 2b). Clay and silt contributed to 17.8% and 11.4% of the 
variation in POC concentrations, respectively (Figure 2b). TC 
(r = 0.251, p < 0.05), SM (r = 0.147, p < 0.05) and Cden (r = 0.054, 
p < 0.05) had positive impacts, and ST (r = −0.194, p < 0.05) 
showed a negative influence. Additionally, pH was the pri-
mary factor controlling TC (r = −0.412, p < 0.05) to further 
regulate POC concentrations. Furthermore, the soil ternary 
diagram suggested that silt clay, sandy clay, clay loam, silt clay 
loam, and loam had lower POC concentrations, whereas loam 
sandy, sandy clay loam, and sandy loam showed higher values 
(Figure S1).

Additionally, edaphic, climatic, and biological factors explained 
over 50% variation of POC contents in all the biomes except for 

TABLE 1    |    Soil organic carbon fraction at biome and global scales derived from the compiled data.

Biomes

POC (53–2000 µm, gC/
kg dry soil) this study

MBC (gC/kg dry soil)
DOC (gC/kg dry 

soil) 0.45 µmMean Median
Boreal forest 4.58a (3.51–5.99) 4.06 (2.42 ~ 9.23) 1.04b (0.71 ~ 1.51) 0.13c (0.11 ~ 0.14)

Temperate coniferous forest 3.65abc (3–4.44) 3.55 (2.59 ~ 4.90) 0.51cd (0.42 ~ 0.61) 0.03i (0.02 ~ 0.04)

Temperate broadleaf forest 2.98abcd 
(2.65–3.35)

3.06 (1.95 ~ 4.49) 0.54cd (0.46 ~ 0.62) 0.05ef (0.05 ~ 0.06)

Tropical forest 2.07cd 
(1.56–2.74)

1.81 (1.07 ~ 4.17) 0.43de (0.37 ~ 0.50) 0.04h (0.04 ~ 0.04)

Mixed forest 3.75abc 
(2.96–4.76)

3.19 (2.22 ~ 7.02) 0.54cd (0.49 ~ 0.59) 0.05fg (0.04 ~ 0.05)

Grassland 2.85bcd 
(2.57–3.16)

2.90 (1.50 ~ 5.65) 0.52cd (0.47 ~ 0.58) 0.09d (0.08 ~ 0.11)

Shrubland 4.35a (3.82–4.95) 4.51 (3.10 ~ 6.00) 0.34e (0.26 ~ 0.46) 0.11cd (0.10 ~ 0.18)

Pasture 2.71cd 
(2.46–2.99)

2.85 (1.67 ~ 4.33) 0.66c (0.58 ~ 0.76) 0.11d (0.07 ~ 0.16)

Tundra 3.14abcd 
(1.93–5.11)

3.93 (1.67 ~ 6.26) 4.09a (2.84 ~ 5.87) 0.45a (0.33 ~ 0.63)

Desert NA NA 0.08g (0.06 ~ 0.10) NA

Savanna 1.45d (1–2.11) 1.34 (1.00 ~ 2.51) NA NA

Peatland 2.43cd 
(1.94–3.04)

3.22 (1.77 ~ 4.11) NA NA

Natural wetland 4.18ab 
(3.52–4.98)

4.95 (2.98 ~ 6.52) 1.34b (1.01 ~ 1.76) 0.20b (0.18 ~ 0.22)

Paddy 2.29cd 
(1.91–2.74)

3.44 (1.40 ~ 4.69) 0.25f (0.24 ~ 0.26) NA

Cropland 1.9d (1.8–2) 2.04 (1.02 ~ 3.59) 0.06e (0.05 ~ 0.07)

Global 3.02 (2.47–3.74) 3.20 (1.88 ~ 5.25) 0.68 0.08
Note: Values are presented as mean with 95% CI, median with 25%, and 75% confidence boundaries in parentheses. Different superscript letters in the same column 
indicate the difference at a significance level of p = 0.05, while the same letters indicate no significant difference.
Abbreviations: DOC, dissolved organic carbon, data cited from Guo et al. (2020); MBC, microbial biomass carbon, data cited from Xu, Thornton, and Post (2013); NA, 
not available.
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tropical forests (Figure 2c). Globally, compared with climatic 
and biological factors, edaphic factors exhibited a higher rel-
ative contribution to explain variation in POC, ranging from 
32% to 77% (Table  S4). Furthermore, in natural wetlands, 
shrublands, pastures, grasslands, and cropland, the relative 
contribution of climatic factors was higher than biological 
factors, whereas, in tundra and all types of forests, biological 
factors had a higher contribution to shaping POC (Figure 2c).

3.3   |   Vertical Distribution of Soil POC at 
the Biome Level

The fitted curves of vertical distribution showed that POC in 
the topsoil makes up over 50% of its total observed throughout 
the soil profile (Figure 3), and the β value varies among biomes, 
ranging from 0.9395 to 0.9746 (Figure 3; Table S5). Forests and 
peatlands have a higher proportion of POC in topsoil. Among 
biomes, temperate coniferous forests with the lowest β value 
had the highest proportion of POC concentrations in topsoil 
along their soil profiles, followed by peatlands, tundra, tropical 

forests, temperate broadleaf forests, peatlands, croplands, sa-
vannas, shrublands, and paddies, whereas grasslands stored 
more POC in deep soils.

3.4   |   Global Budget and Distribution of POC

The global POC budget was estimated as 158.15 Pg C in the 
0–30 cm soil profile, which accounts for approximately 40% of the 
total POC budget in 0–100 cm soil profiles, at 222.75 Pg C (Table 2), 
and constitutes approximately 10% of TOC (1570 Pg C) derived 
from IGBP database (Guo et al. 2020). The estimated global budget 
of POC in 0–100 cm soil profiles contributes about 14% of the TOC, 
substantially larger than the proportion of soil microbial biomass 
C (MBC) and soil dissolved organic carbon (DOC) of TOC (Guo 
et al. 2020; Xu, Thornton, and Post 2013). The POC budgets tre-
mendously differ among biomes in 0–30 cm and 0–100 cm soil 
profiles, with the largest stock in pastures and the smallest in 
temperate coniferous forests (Table  2). The POC distribution in 
both 0–30 cm and 0–100 cm soil profiles suggest substantial spa-
tial variations at the global scale (Figure 4a,b). Specifically, POC 

TABLE 2    |    Machine learning- derived mean, median particulate organic carbon (POC) concentration, and budget in 0–30 cm and 0–100 cm soil 
profiles at biome and global scales.

Biomes

Predicted POC (gC/
kg dry soil)

POC (gC/kg dry soil) 
LUCAS dataset Global budget (Pg C)

Median Mean Median Mean 0–30 cm 0–100 cm
Boreal forest 4.68 

(3.77 ~ 6.16)
5.07 (5.02 ~ 5.13) 7.99 

(4.42 ~ 16.60)
8.41 

(6.73 ~ 10.50)
13.36 15.79

Temperate coniferous forest 3.38 
(2.88 ~ 4.08)

3.52 (3.47 ~ 3.57) 3.79 4.48

Temperate broadleaf forest 2.95 
(2.66 ~ 3.35)

3.07 (3.04 ~ 3.10) 4.70 6.27

Tropical forest 3.26 
(2.70 ~ 4.03)

3.34 (3.31 ~ 3.37) 22.35 29.56

Mixed forest 4.12 
(3.51 ~ 4.96)

4.27 (4.25 ~ 4.30) 19.87 26.49

Grassland 2.62 
(2.28 ~ 3.15)

2.74 (2.72 ~ 2.77) 6.12 
(3.44 ~ 13.2)

6.50 
(5.42 ~ 7.80)

14.50 27.01

Shrubland 3.09 
(3.04 ~ 3.21)

3.35 (3.27 ~ 3.43) 5.48 
(3.21 ~ 6.52)

5.70 
(3.58 ~ 9.08)

8.42 15.24

Tundra 4.27 
(3.83 ~ 4.89)

4.46 (4.43 ~ 4.49) na na 10.08 13.25

Natural wetland 4.38 
(2.88 ~ 6.01)

4.41 (4.34 ~ 4.49) na na 10.60 12.99

Cropland 2.82 
(2.41 ~ 3.41)

2.84 (2.82 ~ 2.86) 2.35 
(1.72 ~ 3.92)

2.60 
(2.33 ~ 2.89)

18.36 27.94

Pasture 2.57 
(2.23 ~ 3.11)

2.64 (2.63 ~ 2.66) na na 32.11 43.73

Globe 3.47 
(2.93 ~ 4.21)

3.61 (3.58 ~ 3.65) 158.15 222.75

Note: Values are presented as mean with 95%, median with 25% and 75% confidence boundaries in parentheses. Different superscript letters in one column indicate the 
significant difference at a significant level of p = 0.05, while the same letters indicate no significant difference.
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budgets are high in northern high- latitude regions (50°–70°), at-
tributed to the wide distribution of boreal forests and natural peat-
lands, while the low POC recorded at low latitudes is associated 
with the occupation by tropical ecosystems (Figure 4c,d).

4   |   Discussion

4.1   |   Soil POC Variations Among Biomes

Substantial variations in soil POC concentration among bi-
omes were found in this study (Table 1 and Figure 4a,c). High 
latitudes contained relatively higher POC concentrations, 

consistent with DOC and MBC studies (Guo et al. 2020; Xu, 
Thornton, and Post 2013). The concentration of POC in soils 
mainly depends on the organic input and microbial decompo-
sition as POC derives from plant materials and is substantially 
more available to microorganisms than other soil C fractions 
such as mineral- associated carbon (Lavallee, Soong, and 
Cotrufo  2020). Although the lightweight fragments derived 
from vegetation are in minor proportion in high latitude re-
gions owing to the low net primary productivity (NPP), the 
colder temperature in high latitude regions inhibits microbial 
consumption of POC, which is susceptible to the change in en-
zymatic activities (Benbi, Boparai, and Brar 2014). Therefore, 
biomes located at high latitudes generally exhibit relatively 

FIGURE 2    |    (a) Mantel test showing the relationships between log (POC) and environmental variables. Pairwise comparisons of environmental 
factors are displayed with a color gradient denoting Pearson's correlation coefficient; orange lines represent positive correlation (p < 0.05), green lines 
represent negative correlation (p < 0.05), and gray lines represent non- significant effects (p > 0.05). (b) Structural equation model of TC, SM, pH, ST, 
Clay, Sand, and POC. In the SEM structure, solid black arrows represent positive paths (p < 0.05, piecewise SEM), solid red arrows represent negative 
paths (p < 0.05, piecewise s.e.m.), and dotted arrows represent non- significant effects (p > 0.05). We report the path coefficients as standardized effect 
sizes. The overall fit of piecewise s.e.m. was evaluated using comparative fit index (CFI), normed fit index (NFI), Tucker–Lewis index (TLI), and a 
CFI, NFI, and TLI larger than 0.95 indicate relatively good model- data fit in general. 2207 data points were used in the model: (c) Relative contribu-
tion of different control factors on soil particulate organic carbon (POC) at biomes scales. BD, bulk density; Clay: soil clay content; CN, soil total C:N 
ratio; MAP: mean annual precipitation; MAT: mean annual air temperature; NPP: net ecosystem primary production; Sand: Soil sand content; SM: 
soil moisture; ST: soil temperature.
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8 of 21 Global Change Biology, 2024

FIGURE 3    |    Vertical distribution of soil particulate organic carbon (POC) in major biomes (a, temperate coniferous forest; b, temperate broadleaf 
forest; c, tropical forest; d, grassland; e, shrubland; f, pasture; g, tundra; h, savanna; i, peatland; j, paddy; and k, cropland). Different colors represent 
the subsets of data points, and each subset contains data points from at least three soil depths. The β value with standard error is displayed for each 
biome.
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higher POC concentrations. Furthermore, POC contents in 
cold regions are predominately determined by NPP; thereby, 
boreal forests show the highest POC concentration across 
biomes. A recent study focusing on POC in cold regions em-
phasized substantial POC in high latitudes, whereas the 
POC concentration is higher than our study (García- Palacios 
et  al.  2024) (Table  S9). The data points of POC accounting 
for over 70% of SOC were excluded in the global simulation 
(Chan  2001; Jagadamma et  al.  2014), potentially leading to 
lower POC contents via the random forest. Meanwhile, our 
dataset contains a higher proportion of POC measurements 
in cold regions; therefore, the estimates of this study might be 
a little overestimated given the higher POC concentration in 
cold regions (Table 1).

Wetlands also exhibit high POC concentration, which is asso-
ciated with soil conditions. The low permeability in wetland 
soils prevents the transformation of the fragments constituting 
particulate organic matter to low molecular weight compounds 
driven by microbial communities, accumulating large amounts 
of POC (Ganju et al. 2019). In addition, forest biomes and shrub-
lands exhibited more POC than the global average, which can be 
explained by the high inputs of plant materials and residues of 
fungi and insects in forests (Abramoff et al. 2018). Grasslands, 
savannas, and pastures had low POC concentrations because 
the climate and environmental conditions limit the NPP in 
these biomes, reducing organic matter input. Livestock tram-
pling and excess fecal input have been confirmed to aggravate 
fragmentation and microbial depolymerization, leading to POC 
being highly decomposable and readily utilized by microorgan-
isms. Meanwhile, natural fires in savannas remove a substantial 
amount of plant biomass, reducing the organic input into the 
soil. Low POC concentration in paddies and croplands indicated 

a non- negligible impact of land use change on POC persistence. 
The acceleration of anthropogenic perturbations, including ag-
ricultural activities, could promote the consumption and trans-
formation of POC (Bouajila and Gallali 2010; Chan 2001; Zhu 
et al. 2021).

Globally, POC concentration is much higher than the concen-
trations of DOC and MBC (Table 1), indicating its essential role 
in the global carbon cycle and maintaining ecosystem stability. 
As the organic C fraction, POC is highly available to the soil mi-
crobiome (Lavallee, Soong, and Cotrufo 2020), which has been 
demonstrated to dominate the SOC stocks in cold regions as POC 
without aggregate protection is vulnerable to being impacted by 
environmental changes and NPP dynamics (García- Palacios 
et al. 2024). A recent study reported that mineral- associated or-
ganic carbon (MAOC) contents were much higher than POC at 
the global scale (Zhou et al. 2024), whereas the protection mech-
anisms associated with minerals and aggregates suppress the 
availability of organic matter for plants and microorganisms in 
MAOC and thus impede the contribution of MAOC to the global 
carbon cycle (Lavallee, Soong, and Cotrufo  2020). Therefore, 
targeting POC variation to address global change challenges po-
tentially has important and consequential significance, consid-
ering its higher content and availability in soils.

4.2   |   Environmental Control on Soil POC 
Concentration

Globally, edaphic factors, including TC, BD, pH, sand, and 
porosity, exhibited significant relationships and the highest 
contribution to POC concentration (Figure 2a), indicating a pri-
mary impact of soil characteristics on POC, which is generally 

FIGURE 4    |    Global distribution and latitudinal pattern of soil POC concentration (g C m−2) in terrestrial ecosystems in (a, b) 0–30 cm soil profile 
and (c, d) 0–100 cm soil profile. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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consistent with previous studies (Eze et al. 2023; Li et al. 2021; 
Qi et al. 2016). As an active portion of soil TC, the concentra-
tion of POC is significantly influenced by C storage (Abramoff 
et  al.  2018). The increase in concentrations of sand and slit is 
expected to enhance the mineral association of soil C, promot-
ing the decomposition of POC through microbial metabolism 
(Georgiou et  al.  2022; Lavallee, Soong, and Cotrufo  2020). In 
addition, TC is associated with soil pH and texture (Figure 2b), 
indicating that these edaphic factors can not only directly alter 
POC concentration but also indirectly impact POC turnover and 
retention in soils.

However, the global view found a relatively minor regulation of 
NPP to POC concentration in our study, consistent with a re-
cent study (Hansen et  al.  2024). POC storage and persistence 
are mainly controlled by microbes, as microorganisms directly 
participate in POC mineralization, and POC without chemical 
protection is more accessible to and effectively used by microbes 
(Lavallee, Soong, and Cotrufo  2020). The same global distri-
bution patterns of DOC with POC also confirmed the essen-
tial impacts of microbes on POC storage (Hansen et al. 2024). 
Microbial activities are significantly impacted by edaphic and 
climatic characteristics (Guo et al. 2020; Zhu et al. 2021), leading 
to the fluctuation of the biosynthesis and transformation of soil 
organic matter. For instance, MAT and pH were confirmed to 
change the physiological characteristics of microbes, indirectly 
changing POC degradation, with both lower pH and MAT con-
tributing to lower microbial decomposition and greater POC 
concentration and storage (Hansen et  al.  2024). Our previous 
studies demonstrated the direct and indirect impacts of soil 
factors on MBC and DOC (Guo et al. 2020), which indicated an 
essential influence on the composition of soil organic matter. 
Therefore, although the generation and decomposition of soil 
POC were closely associated with vegetation, animals, and mi-
crobes, the POC persistence in terrestrial soils was dominated 
by edaphic and climatic factors.

The variation of the relative contributions of other factors to 
POC residence in soils indicates multivariate mechanisms of 
POC retention. For example, in natural wetlands, the anaerobic 
environment and high C storage maintain the POC concentra-
tion elevated; thereby, edaphic and climatic factors have a signif-
icant relative contribution to POC (Zhu et al. 2023). In forests, N 
availability has been widely reported to play an important role 
in POC persistence (Lavallee, Soong, and Cotrufo 2020) but ex-
cluded in this study. In addition, the primary productivity and 
microbial activities in grassland are limited by phosphorus, 
regulating POC concentration in soils. The freezing and thaw-
ing conditions are essential regulators of POC turnover, as they 
control microbial activity. Anthropogenic perturbations such as 
agricultural practices and land management dramatically influ-
ence soil properties and N inputs, leading to the POC variation 
among land use types.

4.3   |   Causes of Vertical Distribution of Soil POC 
Among Biomes

The vertical distribution of soil POC is consistent with the dis-
tribution of vegetation root systems and soil microbial biomass 
in terrestrial ecosystems (Guo et al. 2020; Jackson et al. 1996; 

Xu, Thornton, and Post 2013). Soil POC predominantly derives 
from the leaching of substances from fresh litter and the partial 
decomposition of organic matter driven by microbes (DeGryze 
et al. 2004; Lavallee, Soong, and Cotrufo 2020); therefore, the 
exponential reductions of organic matter inputs from the rhi-
zosphere and microbial biomass along the soil profile cause the 
vertical distribution pattern of POC concentration. The associa-
tion of POC with root and MBC distribution confirms that POC 
generation and persistence in soil depends on C supplies from 
rhizodeposition and microbial activities, including depolymer-
ization (Abramoff et  al.  2022). At the biome level, grasslands 
have the smallest proportion of soil POC in topsoil. In contrast, 
forests store relatively more enormous proportions of POC on 
the surface of their soils (Figure 3). Although grasslands store 
a large amount of soil C on a global scale (Mannetje 2007), the 
soil characteristics and relatively more frequent human distur-
bances such as grazing accelerate the transformation from POC 
to low molecular weight carbon (Abramoff et al. 2022; Leifeld 
et al. 2009), especially in surface soils.

4.4   |   POC Budget and Implications to Climate 
Modeling

POC budgets in 0–30 cm and 0–100 cm soil profiles are esti-
mated to be 158.15 and 222.75 Pg C at the global scale, respec-
tively, approximately 21 times the global DOC storage and 10 
times the global MBC storage (Guo et al. 2020; Xu, Thornton, 
and Post 2013) (Table 2), which can be explained by the longer 
residence time of POC than DOC and MBC (Boddy et al. 2007; 
Leifeld et al. 2009). Given that environmental changes such as 
thawing and human disturbances can immediately promote 
POC decomposition to low molecular compounds (DeGryze 
et al. 2004), soil POC variations contribute to the temporal and 
spatial variations in soil microbial respiration, consistent with 
previous studies (Abramoff et al. 2018, 2022). The variation of 
budgets for the different soil fractions among biomes is also 
distinct. In contrast to DOC and MBC concentrations, pastures 
store the largest amount of POC in 0–30 cm and 0–100 cm soil 
profiles, probably due to human disturbances, especially graz-
ing, which can stimulate NPP, leading to abundant POC stored 
in soils (Crow et al. 2009). Consistent with the MBC and DOC 
budget (Guo et al. 2020; Xu, Thornton, and Post 2013), POC stor-
age in temperate coniferous forests is the lowest in 0–30 cm and 
0–100 cm soil profiles. Previous studies have demonstrated that 
high lignin content reduces the quality of C input and suppresses 
the microbial decomposition of litter to POC (Crow et al. 2009; 
Czimczik et  al.  2003). Regarding total POC storage, pastures, 
mixed forests, uplands, and tropical forests contribute approxi-
mately 58%, with all other biomes contributing only about 42%, 
emphasizing the importance of POC sinks in these biomes.

Variations in POC spatial distribution at a global scale are con-
sistent with DOC distribution observed in previous studies (Guo 
et al. 2020; Langeveld et al. 2019). Compared with temperate re-
gions (30°–60° N), tropical regions (30° N–30° S) store less soil 
POC in both 0–30 cm and 0–100 cm soil profiles (Figure 4a,c). 
Given that the spatial distribution of POC is altered by climate, 
vegetation, and soil conditions, a possible explanation is that 
warm and wet conditions in tropical ecosystems promote micro-
bial decomposition of organic matter, leading to large amounts 
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of POC being consumed (Benbi, Boparai, and Brar 2014). The 
long and cold seasons constrain POC degradation in active lay-
ers in temperate regions.

The global distribution, storage, and controlling factors of POC 
are also illustrated in a recent study (Zhou et  al.  2024). Zhou 
et al. (2024) reported the regions with higher C inputs and lower 
decomposition have higher POC concentration on a global scale, 
which is consistent with our study (Figure 4). However, the con-
centration and global storage of POC in the top meter at Zhou 
et  al.  (2024) (330 Pg) are higher than our study (223 Pg). The 
variation in data resources is the main reason for the difference 
in the estimation of POC global storage. For example, data mea-
sured in cropland with low POC content accounts for 49% of our 
study. Some variables in our study including SOC, TC, and BD 
are excluded in Zhou et al. (2024). The NPP data were derived 
from the MODIS gridded dataset at a spatial resolution of 30 s 
in this study, whereas collected from EARTHDATA in Zhou 
et al. (2024). The difference in covariate is expected to lead to 
discrepancies. Meanwhile, paddy and peatland were classified 
as separate biomes in the present study while lumped into other 
biomes by Zhou et al. (2024). Additionally, the dominant factors 
controlling POC are edaphic properties in our study, whereas 
are climatic factors Zhou et  al.  (2024). In our research, more 
edaphic factors closely relevant to POC persistence and turnover 
were used to quantify the impacts on POC concentration. The 
discrepancies between the two studies suggest a complicated 
mechanism underlying the dynamics of soil C fraction under 
changing environments.

The biogeographical patterns of soil POC and their controls 
are essential for predicting POC stock fluctuation in changing 
environments and for management practices facilitating C se-
questration to cope with global warming. The data provided by 
this study can help better understand the mechanisms under-
lying the complex interconversion between different organic C 
fractions, which is beneficial for simulating the below- ground 
biogeochemical processes. Additionally, the database for POC 
concentrations, budget, and environmental controls can provide 
critically valuable information for the ongoing development of 
biological models.

4.5   |   Prospectives

Our study compiled a global database of soil POC in terrestrial 
ecosystems and further estimated soil POC contents and budget 
at the biome and global levels. However, a few research directions 
were identified that could be done in future studies. First, the 
data collected from previous studies are reported using various 
measurement approaches, which might affect global estimates. 
Second, the distribution of data points is disproportionate among 
biomes, with only a few data points in temperate coniferous for-
ests. This may cause biases when establishing the SEM and em-
pirical model for investigating the mechanisms underlying POC 
distribution at a global scale. Third, all data for POC concentra-
tions and environmental factors represent the annual average; 
no seasonal information is available. The missing information 
for the seasonality of POC concentrations may lead to biases in 
the reported patterns and dynamics of POC storage and content. 
Further works would help understand the indication mechanisms 

of POC patterns: (1) an effectively comparative analysis of differ-
ent methodologies in terms of reporting POC will be available for 
a robust budget estimation; (2) the supplements of data points in 
some biomes such as temperate coniferous forest can improve the 
identification of dominant factors controlling POC distribution; 
(3) the collection of seasonal data especially in boreal regions will 
improve our understanding the seasonality of POC.

5   |   Conclusion

By combining a compiled global dataset and statistical models, 
we estimated the soil POC concentration across biomes and 
quantified the global budget of POC in terrestrial ecosystems. 
We found that boreal forests and wetlands exhibit the highest 
POC concentration, whereas cropland and savannas have low 
POC content. Edaphic factors, including TC and texture, domi-
nate the spatial variation of POC concentration. As POC derives 
from plant materials and is processed by microbes, the vertical 
distribution of POC follows the same patterns of soil microbial 
biomass, roots, and DOC along the soil profile. The global budget 
of POC is estimated to be 158.15 Pg C in 0–30 cm and 222.75 Pg 
C in 0–100 cm soil profiles. Our results show the importance of 
soils in tropical forests and pastures for storing POC.

The study produced a worthy dataset for soil C fraction in terres-
trial ecosystems combined with DOC and MBC studies, which 
serves as a benchmark for simulating the turnover and transfor-
mation between different C fractions in soils. In addition, along 
with the increasing recognition of biogeography of microbial 
abundance, diversity, and community composition, the global 
patterns of soil C fractions deem further investigation. As more 
and more experimental and modeling research is implemented 
on soil POC dynamics and its controls, the study serves as a 
platform for data- model integration to better understand the dy-
namics of the global C cycle and more accurately simulate and 
project C dynamics in global soils.
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