

RESEARCH ARTICLE

Dominant Edaphic Controls on Particulate Organic Carbon in Global Soils

Ziyu Guo^{1,2,3} | Jianzhao Liu^{1,3} | Liyuan He² | Jorge L. Mazza Rodrigues⁴ | Ning Chen⁵ | Yunjiang Zuo¹ | Nannan Wang¹ | Xinhao Zhu² | Ying Sun¹ | Lihua Zhang⁶ | Yanyu Song¹ | Dengjun Zhang⁷ | Fenghui Yuan¹ | Changchun Song¹ | Xiaofeng Xu²

¹State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China | ²Biology Department, San Diego State University, San Diego, California, USA | ³University of Chinese Academy of Sciences, Beijing, China | ⁴Department of Land, Air, and Water Resources, University of California Davis, Davis, California, USA | ⁵Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China | ⁶College of Life and Environmental Sciences, Minzu University of China, Beijing, China | ⁷UiS School of Business and Law, University of Stavanger, Stavanger, Norway

Correspondence: Fenghui Yuan (fyuan@iga.ac.cn) | Changchun Song (songcc@iga.ac.cn)

Received: 30 August 2024 | **Revised:** 8 November 2024 | **Accepted:** 11 November 2024

Funding: This work was supported by National Natural Science Foundation of China (42220104009; 42293263); Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28020502); U.S. National Science Foundation (2145130), and USDA National Institute of Food and Agriculture, The Agriculture and Food Research Initiative program.

Keywords: edaphic control | global budget | particulate organic carbon | vertical distribution

ABSTRACT

The current soil carbon paradigm puts particulate organic carbon (POC) as one of the major components of soil organic carbon worldwide, highlighting its pivotal role in carbon mitigation. In this study, we compiled a global dataset of 3418 data points of POC concentration in soils and applied empirical modeling and machine learning algorithms to investigate the spatial variation in POC concentration and its controls. The global POC concentration in topsoil (0–30 cm) is estimated as 3.02 g C/kg dry soil, exhibiting a declining trend from polar regions to the equator. Boreal forests contain the highest POC concentration, averaging at 4.58 g C/kg dry soil, whereas savannas exhibit the lowest at 1.41 g C/kg dry soil. We developed a global map of soil POC density in soil profiles of 0–30 cm and 0–100 cm with an empirical model. The global stock of POC is 158.15 Pg C for 0–30 cm and 222.75 Pg C for 0–100 cm soil profiles with a substantial spatial variation. Analysis with a machine learning algorithm concluded the pre-dominant controls of edaphic factors (i.e., bulk density and soil C content) on POC concentration across biomes. However, the secondary controls vary among biomes, with solid climate controls in grassland, pasture, and shrubland, while strong vegetation controls in forests. The biome-level estimates and maps of POC density provide a benchmark for modeling C fractions in soils; the various controls on POC suggest incorporating biological and physiochemical mechanisms in soil C models to assess and forecast the soil POC dynamics in response to global change.

1 | Introduction

Soil particulate organic carbon (POC), the portion of soil organic carbon (SOC) with a size exceeding 53 µm based on the size fractionation scheme (Abiven, Menasseri, and Chenu 2009), makes up to half of soil organic carbon (Lavallee, Soong, and

Cotrufo 2020; Marriott and Wander 2006; Zhao et al. 2021). POC refers to the carbon stored in particulate organic matter, comprising plant-derived and fungal-derived compounds, including phenols, celluloses, and chitin (Baldock and Skjemstad 2000; Christensen 2001; Kögel-Knabner et al. 2008; Sanderman, Maddern, and Baldock 2014; Six et al. 2001), resulting from the

fragmentation and depolymerization of organic materials. POC is estimated to have a soil residence time from weeks to months (Lavallee, Soong, and Cotrufo 2020; Lehmann and Kleber 2015), given its high accessibility to soil microbes (Castellano et al. 2015). Combined with a high C/N ratio, this property is expected to affect the magnitude of SOC sequestration. Therefore, POC has been extensively used as an index of labile SOC status (Cambardella and Elliott 1992; Carter 2002; Christensen 1992; Golchin et al. 1994), and its mineralization and mobilization contribute dramatically to C losses in terrestrial ecosystems (Janzen 2006; Lavallee, Soong, and Cotrufo 2020).

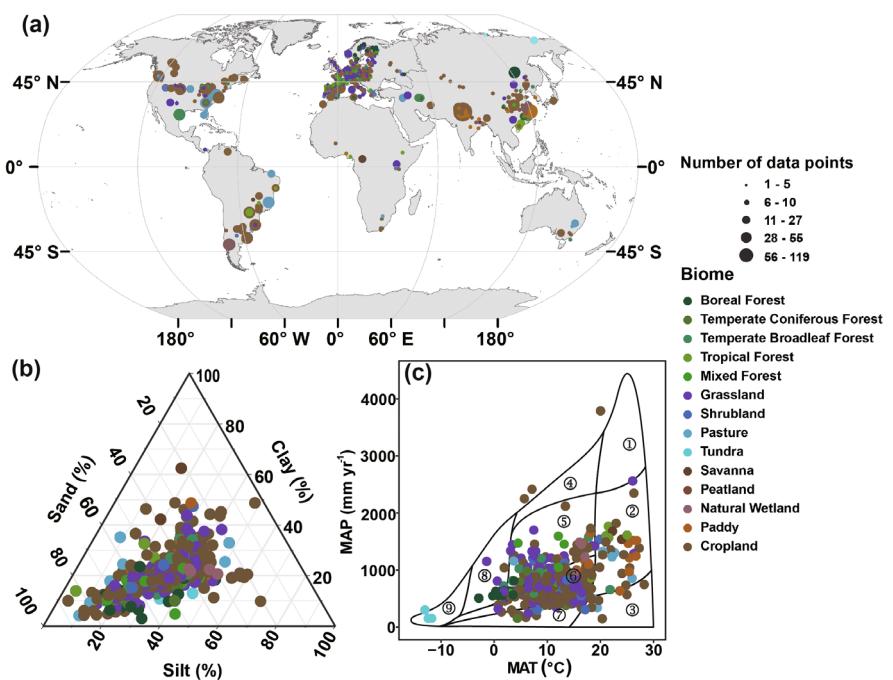
Recent studies have demonstrated that SOC in the topsoil at high latitudes is dominated by the POC fraction, being more vulnerable to climate warming (García-Palacios et al. 2024). Additionally, soil POC affects nitrogen (N) transformation processes, including denitrification and N mineralization rates, as well as the content of heavy metals in sediments (Hill et al. 2000; Lovett et al. 2004; Sanei et al. 2012). Therefore, the dynamics of POC have a profound influence on terrestrial C and nutrient cycling. Hence, estimating the POC budget and elucidating its persistence mechanisms is key to understanding and modeling global change challenges.

Separating soil C stocks into fundamentally different fractions and recognizing global distributions and the controls of these fractions enable better predictions of soil vulnerability to global change because of the unique characteristics of each (Georgiou et al. 2022). The vertical distributions across biomes and the global patterns of other C fractions, including microbial biomass carbon (MBC) and dissolved organic carbon (DOC), have been reported in our previous studies (Guo et al. 2020; Xu, Thornton, and Post 2013). Although the concentrations and spatial variations of POC have been observed in various terrestrial ecosystems, such as tropical forests (Alongi 2014; Lee 2016; Zhang et al. 2009), temperate forests (Chen et al. 2012; Zhang et al. 2023), shrublands (Boix-Fayos et al. 2009; Kooch, Amani, and Abedi 2022), grasslands (Leifeld et al. 2009; Pringle et al. 2014), uplands (Kolka et al. 2001), and croplands (Xiao et al. 2021), these studies were implemented at regional or local scales. The global distribution of POC in terrestrial ecosystems and its controlling factors remain to be explicitly represented in climate models.

In soils, POC generally undergoes only partial processes by soil organisms and has high activation energies (Jilling et al. 2018; Kleber et al. 2015). Additionally, POC has a relatively shorter residence time (<10 years) in soils due to the lack of protective mechanisms (Kleber et al. 2015; Kögel-Knabner et al. 2008). Generally, the mean residence time of POC in soils depends on microbial respiration and enzymatic reaction (DeGryze et al. 2004); thereby, the factors regulating litter formation and decomposition, root growth, and microbial activities potentially affect POC contents in soils. Substantial studies have documented the significant variations in POC concentrations among ecosystems, climate zones, vegetation communities, and soil characteristics across temporal and spatial scales (DeGryze et al. 2004; LiuSui et al. 2019). Moreover, many measurements and experiments have been implemented to reveal the controls on POC concentrations (Abramoff et al. 2018, 2022), including temperature (Benbi, Boparai, and Brar 2014; Wuchter

et al. 2005), moisture (Li et al. 2022; Schlüter et al. 2022), soil pH (Liu et al. 2020; Relexans et al. 1988), soil texture (Huang et al. 2019; Kölbl and Kögel-Knabner 2004), organic matter (Kölbl and Kögel-Knabner 2004), soil N content (Gu 2009), and microbial activities (Denef et al. 2001; Witzgall et al. 2021). However, a mechanistic understanding of climatic and environmental factors on POC distribution across biomes and at the global scale is still unclear.

This study investigated POC concentration in the 0–100 cm soil profile in terrestrial ecosystems at biomes and global scales and its controls by combining a data synthesis with a machine learning approach. We reported the spatial and vertical distributions of POC in different biomes, attributed the POC variation to various factors, and finally quantified the budgets of POC in 0–30 cm and 0–100 cm soil profiles in multiple biomes and at the global scale.


2 | Materials and Methods

2.1 | Data Collection

The data for POC concentrations were collected from publications by searching “soil particulate organic carbon” in *Web of Science* and *Google Scholar*. We derived the data points from tables involving soil POC and/or extracted from figures via the Engauge Digitizer software version 10.7 (<http://digitizer.sourceforge.net/>). A total of 3418 data points were finally collected from the LUCAS database and 244 publications from 1988 to 2020 (Table S1 and Figure 1a). The data are archived at Dryad (Guo et al. 2024). The database was divided into two groups: one group consists of 2507 data points for topsoil (0–30 cm) in 632 sites and 911 data points for soil profile (0–100 cm) in 55 sites. We also retrieved auxiliary information of the sampled sites, including vegetation type, soil texture, soil moisture (SM), sampling dates and depth, latitude (LAT), longitude, mean annual air temperature (MAT), mean annual precipitation (MAP), soil pH, bulk density (BD), total organic carbon (TOC), total nitrogen (TN), DOC, soil dissolved organic nitrogen (DON), soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN) and soil minerals-associated organic C.

We classified the data points into 14 biomes, including boreal forest, temperate coniferous forest, temperate broadleaf forest, tropical forest, mixed forest, grassland, shrubland, pasture, tundra, savanna, peatland, natural wetland, rice paddy, and cropland, according to our database and referencing the classification used in previous studies (Guo et al. 2020; Xu, Thornton, and Post 2013). Moreover, glaciers and deserts were excluded in this study. Cropland, forest, grassland, and pasture account for 49%, 15%, 14%, and 7%, respectively, whereas the remaining biomes account for 15% of the dataset (Table S1). Our dataset spanned diverse climates and soil types: clay content ranging from 3% to 62%, silt content ranging from 3% to 87%, mean annual temperature (range: -5°C to 20°C), and mean annual precipitation (range: 320–1600 mm) across distinct mineral and vegetation types (Figure 1b,c).

Climate, edaphic, and microbial data not mentioned in the papers were extracted from global datasets following our previous studies (Guo et al. 2020; Xu, Thornton, and Post 2013). SOC,

FIGURE 1 | Geographic, edaphic, and climatic information of sites used in this study. (a) Geographic distribution, (b) soil texture, and (c) climate of the data points. Black polygons depict Whittaker's biomes (Whittaker 1975) according to mean annual temperature (MAT; °C) and mean annual precipitation (MAP; mm year⁻¹) values, following: (1) tropical rainforest, (2) tropical seasonal rainforest/savanna, (3) subtropical desert, (4) temperate rainforest, (5) temperate seasonal forest, (6) woodland/shrubland, (7) temperate grassland/desert, (8) boreal forest, and (9) tundra.

TC, and BD were downloaded from the Harmonized World Soil Database (HWSD, https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247) at a $0.05^\circ \times 0.05^\circ$ resolution grid. Soil C, BD, and TN were extracted from the IGBP-DIS dataset (IGBP, <https://daac.ornl.gov/SOILS/guides/igbp-surfaces.html>) at a spatial resolution of $0.5' \times 0.5'$. MAT and MAP were obtained from the WorldClim database version 2 with a spatial resolution of 30s during 1970–2000 (<https://www.worldclim.org/data/worldclim21.html>). The extraction of mean annual and monthly soil moisture (SM) and soil temperature (ST) in the top 10 cm during 1979–2018 was from the National Center for Atmospheric Research/Department of Energy Atmospheric Model Intercomparison Project (NCEP/DOE AMIP-II) Reanalysis (Reanalysis-2) monthly average dataset (<https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html>).

Root C density (C_{den}) data were extracted from a global dataset of a 0.5° resolution based on observation data (Ruesch 2008; Song et al. 2017). We extracted topsoil porosity data from a global dataset produced by Global Land Data Assimilation System (GLDAS, <https://ldas.gsfc.nasa.gov/gldas/>) at a spatial resolution of $0.25^\circ \times 0.25^\circ$. Annual net primary productivity (NPP) for the period of 2000–2015 was obtained from the MODIS gridded dataset with a spatial resolution of 30s (http://files.ntsg.umt.edu/data/NTSG_Products/). Soil microbial biomass C (MBC) and nitrogen (MBN) were retrieved from a compiled global soil microbial biomass C and nitrogen (N) dataset archived at Oak Ridge National Laboratory (Xu et al. 2014; Xu, Thornton, and Post 2013).

The auxiliary datasets included the global land area database and vegetation distribution dataset. The global vegetation distribution dataset was obtained from a spatial map of 11 major biomes:

boreal forest, temperate forest, tropical/subtropical forest, mixed forest, grassland, shrubland, tundra, desert, natural wetlands, cropland, and pasture, which have been used in our previous publications (Guo et al. 2020; He et al. 2020; Xu, Thornton, and Post 2013). The global land area database supplied by surface data map generated by the Community Land Model 4.0 (https://svn-ccsm-models.cgd.ucar.edu/clm2/trunk_tags/clm4_5_1_r085/models/lnd/tools/clm4_5/mksurfdata_map/).

2.2 | Data Standardization

There are multiple procedures for POC fractionation in SOC; the physicochemical method contributes to approximately 76% (Cambardella and Elliott 1992), the size-density fractionation method accounts for 18% (Leifeld and Kögel-Knabner 2005; Lugato et al. 2021; Puget, Chenu, and Balesdent 2008; Six, Elliott, and Paustian 2000; Zimmermann et al. 2007), and the dry sieving method contributes to <1% of all reported methods in POC fractionation. In this study, we combined lighter POC ($> 53 \mu\text{m}$, also lighter than $1.6\text{--}1.85 \text{ g/cm}^3$) and heavy POC ($> 53 \mu\text{m}$ but denser than $1.6\text{--}1.85 \text{ g/cm}^3$) to constitute an overall POC by referring to Lavallee, Soong, and Cotrufo (2020). Furthermore, the database of POC in 0–30 cm soil profile was rejected if the ratio of POC and TOC dataset was greater than 70%.

2.3 | Vertical Distribution of POC Along Soil Profiles

The concentration of POC in soil depends on organic matter input and decomposition driven by microorganisms, and soil

microbial biomass and organic matter input have been demonstrated to decline exponentially along soil profiles relevant to the distribution of vegetation roots (Jackson et al. 1996; Xu, Thornton, and Post 2013). Therefore, in this study, we assumed that soil POC exhibits a similar pattern of vertical distribution as root systems, microbial biomass, and DOC in terrestrial ecosystems due to two reasons: (a) the chief occurrence of plant litter and labile organic matter near the soil surface leads to an exponential decrease of organic matter input (Guo et al. 2020), and (b) root can accelerate the microbial decomposition. The POC vertical distribution among biomes was fitted against soil depth using an asymptotic equation:

$$Y = 1 - \beta^d$$

where Y represents the cumulative fraction of soil POC from the soil surface to the depth of d in cm, and beta is the fitted coefficient. High β means a lower proportion of soil POC concentration near the soil surface, and vice versa.

2.4 | Global Distribution and Budget of POC

Distribution of POC concentration in 0–30 cm and 0–100 cm soil profiles at biome- and global level was estimated by the random forest (RF) model; available variables were chosen like the absolute value of the latitude, MAP, MAT, annual mean ST and SM, soil pH, porosity, texture, SOC, TC, NPP, and C_{den} (Table S7). The database for POC was removed if it was greater than 70% of TOC in the Information System Database (IGBP-DIS), and it was split into training samples (70%), and test samples (30%) with the method of “train_test_split”, hyperparameters used in the RF model were listed in Table S6. We randomly set an ensemble of all parameters in light of different total organic datasets, including TC from IGBP, TC, and SOC from the HWSD dataset. Ultimately, the average of three dataset simulations was used for producing the global map. The global distribution and budget of POC were evaluated for 11 biomes except for paddies and peatlands; the former was aggregated into croplands, and the latter was combined with natural wetlands. Predictions to simulate POC concentrations showed a reasonable trend with a variance of $R^2=0.726$ (Figure S2). The RF model used Scikit-learn packages (version 0.23.2, <https://scikit-learn.org>) for Python (version 3.7.5, <https://www.python.org/>) to predict POC concentration. Based on POC fractions in 0–30 cm soil profiles (Table S2) for each biome, the distribution and concentration of POC were estimated along 0–100 cm soil profiles.

2.5 | Quantification of the Relative Contributions of Controlling Factors on POC

Multiple regression was used to evaluate the relative contribution of 15 control factors on POC concentration. The result was categorized into three main categories: edaphic factor contains BD, TC, TN, Sand, Clay, Porosity, and pH; ST and SM represented climatic factor; NPP, Cden, MBC, and MBN were merged as biological factors. The relative contribution of other factors was estimated with the following formula:

$$Rel_o = 1 - (Rel_b + Rel_e + Rel_c) \times R^2$$

where the Rel_o is the relative contributions of other factors on POC; Rel_e is the relative contributions of edaphic factor; Rel_c is the relative contributions of climatic factor; Rel_b is the relative contributions of biological factor, and R^2 is the variance of multiple linear regression.

2.6 | Statistical Analysis

POC concentration data were log-transformed to convert for robust statistical analyses. The mean and 95% confidence intervals of POC concentration were converted back to the original values for reporting. The variability of POC concentration among biomes was assessed by analysis of variance (ANOVA). A Mantel test was chosen to investigate the relationship between POC concentration and climate, vegetation, and soil properties by using Pearson's correlation. Structural equation modeling (SEM) was used to identify the multivariate effects (climatic, biological, and edaphic variables) on POC concentration. A ternary diagram was performed to determine the effects of different soil textures on POC concentration. All statistical analyses and graphs were conducted by the RStudio software version 4.0.3 (<http://www.rstudio.com/>) and ORIGIN Pro 2023 (<http://www.originlab.com/>). The global maps were generated by the ArcGIS software (version 10.8, ESRI, Redlands, CA) in Windows 11.

3 | Results

3.1 | Soil POC Concentrations Among Biomes

The global average and median of POC concentrations in top-soil were 3.02 (2.47–3.73) gC/kg dry soil and 3.20 (1.88–5.25) gC/kg dry soil, respectively, and varied across biomes (Table 1; Table S8). Biomes such as boreal forests, shrublands, and natural wetlands had relatively higher POC concentrations, at 4.58 (3.51–5.99), 4.35 (3.82–4.95), and 4.18 (3.52–4.98) gC/kg dry soil, respectively. Compared to savannas and croplands values of 1.41 (0.98–2.03) and 1.9 (1.8–2) gC/kg dry soil, respectively. There were no significant differences in POC concentrations among the remaining biomes (Table 1). In addition, temperate coniferous forests, mixed forests, and tundra showed higher POC concentrations than the global average, at 3.65 (3–4.44), 3.75 (2.96–4.76), and 3.14 (1.93–5.11) gC/kg dry soil, respectively. Meanwhile, temperate broadleaf forests, tropical forests, grasslands, pastures, peatlands, and paddies exhibited lower concentrations than the global average (Table 1).

POC concentrations generated through a random forest algorithm showed a similar pattern across biomes. The global average and median values of POC concentrations were 3.61 (3.58–3.65) and 3.47 (2.93–4.21) gC/kg dry soil, respectively. Boreal forests, natural wetlands, mixed forests, and tundra exhibited higher POC than the global average, with mean values of 4.41 (4.34–4.49), 4.46 (4.43–4.49), 4.27 (4.25–4.30), and 5.07 (5.02–5.13) gC/kg dry soil and the median of 4.38 (2.88–6.01), 4.27 (3.83–4.89), 4.12 (3.51–4.96), and 4.68 (3.77–6.16) gC/kg dry soil, respectively. In addition, upland and pastures showed lower POC concentrations than the global average (Table 2).

TABLE 1 | Soil organic carbon fraction at biome and global scales derived from the compiled data.

Biomes	POC (53–2000 μm , gC/kg dry soil) this study			DOC (gC/kg dry soil) 0.45 μm
	Mean	Median	MBC (gC/kg dry soil)	
Boreal forest	4.58 ^a (3.51–5.99)	4.06 (2.42–9.23)	1.04 ^b (0.71–1.51)	0.13 ^c (0.11–0.14)
Temperate coniferous forest	3.65 ^{abc} (3–4.44)	3.55 (2.59–4.90)	0.51 ^{cd} (0.42–0.61)	0.03 ⁱ (0.02–0.04)
Temperate broadleaf forest	2.98 ^{abcd} (2.65–3.35)	3.06 (1.95–4.49)	0.54 ^{cd} (0.46–0.62)	0.05 ^{ef} (0.05–0.06)
Tropical forest	2.07 ^{cd} (1.56–2.74)	1.81 (1.07–4.17)	0.43 ^{de} (0.37–0.50)	0.04 ^h (0.04–0.04)
Mixed forest	3.75 ^{abc} (2.96–4.76)	3.19 (2.22–7.02)	0.54 ^{cd} (0.49–0.59)	0.05 ^{fg} (0.04–0.05)
Grassland	2.85 ^{bcd} (2.57–3.16)	2.90 (1.50–5.65)	0.52 ^{cd} (0.47–0.58)	0.09 ^d (0.08–0.11)
Shrubland	4.35 ^a (3.82–4.95)	4.51 (3.10–6.00)	0.34 ^e (0.26–0.46)	0.11 ^{cd} (0.10–0.18)
Pasture	2.71 ^{cd} (2.46–2.99)	2.85 (1.67–4.33)	0.66 ^c (0.58–0.76)	0.11 ^d (0.07–0.16)
Tundra	3.14 ^{abcd} (1.93–5.11)	3.93 (1.67–6.26)	4.09 ^a (2.84–5.87)	0.45 ^a (0.33–0.63)
Desert	NA	NA	0.08 ^g (0.06–0.10)	NA
Savanna	1.45 ^d (1–2.11)	1.34 (1.00–2.51)	NA	NA
Peatland	2.43 ^{cd} (1.94–3.04)	3.22 (1.77–4.11)	NA	NA
Natural wetland	4.18 ^{ab} (3.52–4.98)	4.95 (2.98–6.52)	1.34 ^b (1.01–1.76)	0.20 ^b (0.18–0.22)
Paddy	2.29 ^{cd} (1.91–2.74)	3.44 (1.40–4.69)	0.25 ^f (0.24–0.26)	NA
Cropland	1.9 ^d (1.8–2)	2.04 (1.02–3.59)		0.06 ^e (0.05–0.07)
Global	3.02 (2.47–3.74)	3.20 (1.88–5.25)	0.68	0.08

Note: Values are presented as mean with 95% CI, median with 25%, and 75% confidence boundaries in parentheses. Different superscript letters in the same column indicate the difference at a significance level of $p=0.05$, while the same letters indicate no significant difference.

Abbreviations: DOC, dissolved organic carbon, data cited from Guo et al. (2020); MBC, microbial biomass carbon, data cited from Xu, Thornton, and Post (2013); NA, not available.

3.2 | Environmental Control on Soil POC Concentrations

The fluctuations in POC concentrations at the global scale were predominantly controlled by climatic, biological, and edaphic factors (Figure 2a; Tables S2 and S3). Specifically, BD ($r=-0.21$, $p<0.05$), TC ($r=0.29$, $p<0.05$), SM ($r=0.22$, $p<0.05$), MAT ($r=-0.29$, $p<0.05$), ST ($r=-0.24$, $p<0.05$) and porosity ($r=0.3$, $p<0.05$) were the primary factors determining POC concentrations. Moreover, POC concentrations were positively associated with the C/N ratio ($r=0.17$, $p<0.05$) and Cden ($r=0.04$, $p<0.05$), but negatively correlated to pH ($r=-0.1$, $p<0.05$). Additionally, the C/N ratio was dominated by BD ($r=-0.52$, $p<0.05$), TC ($r=0.55$, $p<0.05$), pH ($r=-0.56$, $p<0.05$), porosity ($r=0.54$, $p<0.05$), and soil texture such as sand ($r=0.34$, $p<0.05$) (Figure 2a).

The SEM framework further revealed the indirect and direct influences of soil characteristics on POC concentrations (Figure 2b). Clay and silt contributed to 17.8% and 11.4% of the variation in POC concentrations, respectively (Figure 2b). TC ($r=0.251$, $p<0.05$), SM ($r=0.147$, $p<0.05$) and C_{den} ($r=0.054$, $p<0.05$) had positive impacts, and ST ($r=-0.194$, $p<0.05$) showed a negative influence. Additionally, pH was the primary factor controlling TC ($r=-0.412$, $p<0.05$) to further regulate POC concentrations. Furthermore, the soil ternary diagram suggested that silt clay, sandy clay, clay loam, silt clay loam, and loam had lower POC concentrations, whereas loam sandy, sandy clay loam, and sandy loam showed higher values (Figure S1).

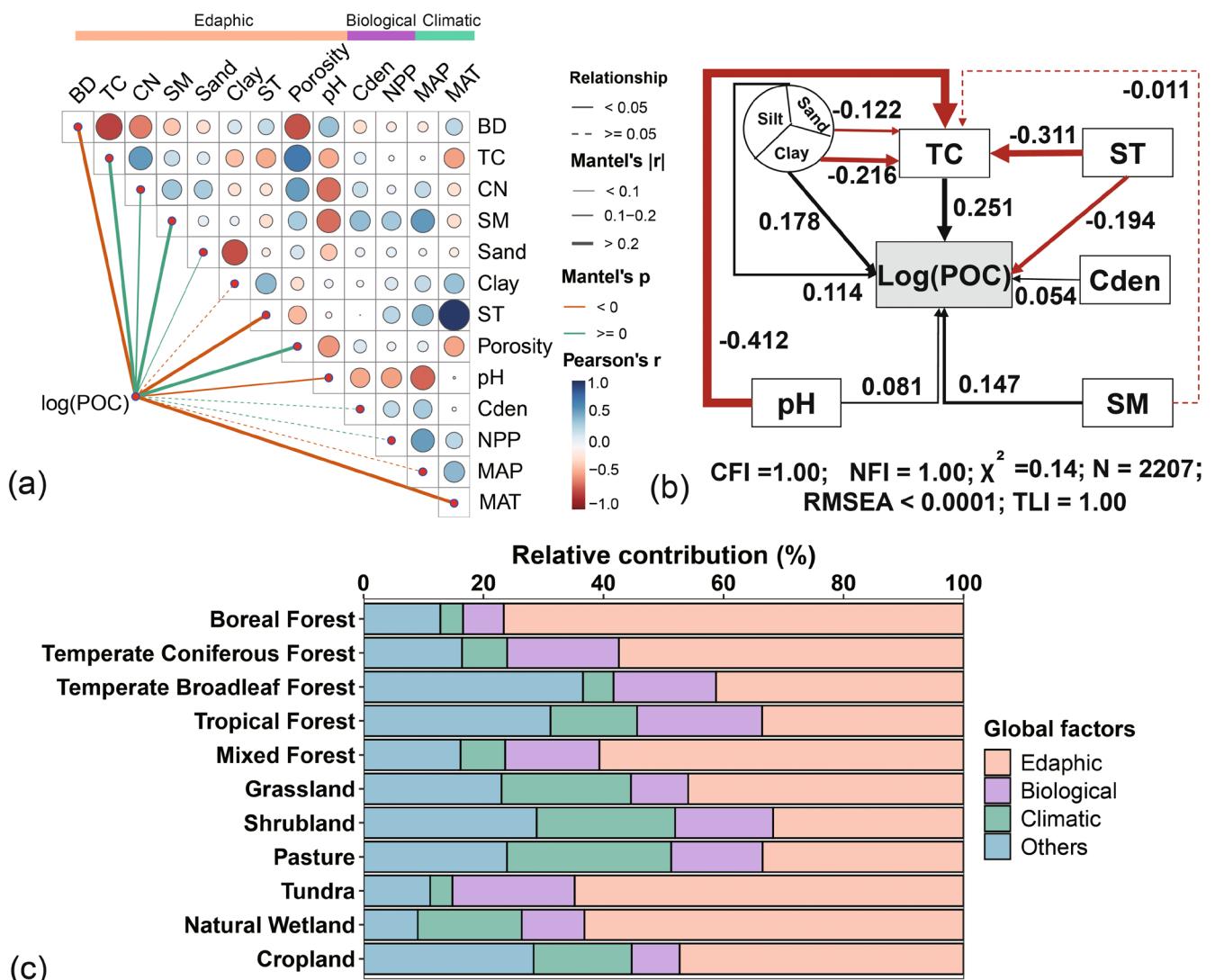
Additionally, edaphic, climatic, and biological factors explained over 50% variation of POC contents in all the biomes except for

TABLE 2 | Machine learning-derived mean, median particulate organic carbon (POC) concentration, and budget in 0–30 cm and 0–100 cm soil profiles at biome and global scales.

Biomes	Predicted POC (gC/kg dry soil)		POC (gC/kg dry soil) LUCAS dataset		Global budget (Pg C)	
	Median	Mean	Median	Mean	0–30 cm	0–100 cm
Boreal forest	4.68 (3.77~6.16)	5.07 (5.02~5.13)	7.99 (4.42~16.60)	8.41 (6.73~10.50)	13.36	15.79
Temperate coniferous forest	3.38 (2.88~4.08)	3.52 (3.47~3.57)			3.79	4.48
Temperate broadleaf forest	2.95 (2.66~3.35)	3.07 (3.04~3.10)			4.70	6.27
Tropical forest	3.26 (2.70~4.03)	3.34 (3.31~3.37)			22.35	29.56
Mixed forest	4.12 (3.51~4.96)	4.27 (4.25~4.30)			19.87	26.49
Grassland	2.62 (2.28~3.15)	2.74 (2.72~2.77)	6.12 (3.44~13.2)	6.50 (5.42~7.80)	14.50	27.01
Shrubland	3.09 (3.04~3.21)	3.35 (3.27~3.43)	5.48 (3.21~6.52)	5.70 (3.58~9.08)	8.42	15.24
Tundra	4.27 (3.83~4.89)	4.46 (4.43~4.49)	na	na	10.08	13.25
Natural wetland	4.38 (2.88~6.01)	4.41 (4.34~4.49)	na	na	10.60	12.99
Cropland	2.82 (2.41~3.41)	2.84 (2.82~2.86)	2.35 (1.72~3.92)	2.60 (2.33~2.89)	18.36	27.94
Pasture	2.57 (2.23~3.11)	2.64 (2.63~2.66)	na	na	32.11	43.73
Globe	3.47 (2.93~4.21)	3.61 (3.58~3.65)			158.15	222.75

Note: Values are presented as mean with 95%, median with 25% and 75% confidence boundaries in parentheses. Different superscript letters in one column indicate the significant difference at a significant level of $p=0.05$, while the same letters indicate no significant difference.

tropical forests (Figure 2c). Globally, compared with climatic and biological factors, edaphic factors exhibited a higher relative contribution to explain variation in POC, ranging from 32% to 77% (Table S4). Furthermore, in natural wetlands, shrublands, pastures, grasslands, and cropland, the relative contribution of climatic factors was higher than biological factors, whereas, in tundra and all types of forests, biological factors had a higher contribution to shaping POC (Figure 2c).


3.3 | Vertical Distribution of Soil POC at the Biome Level

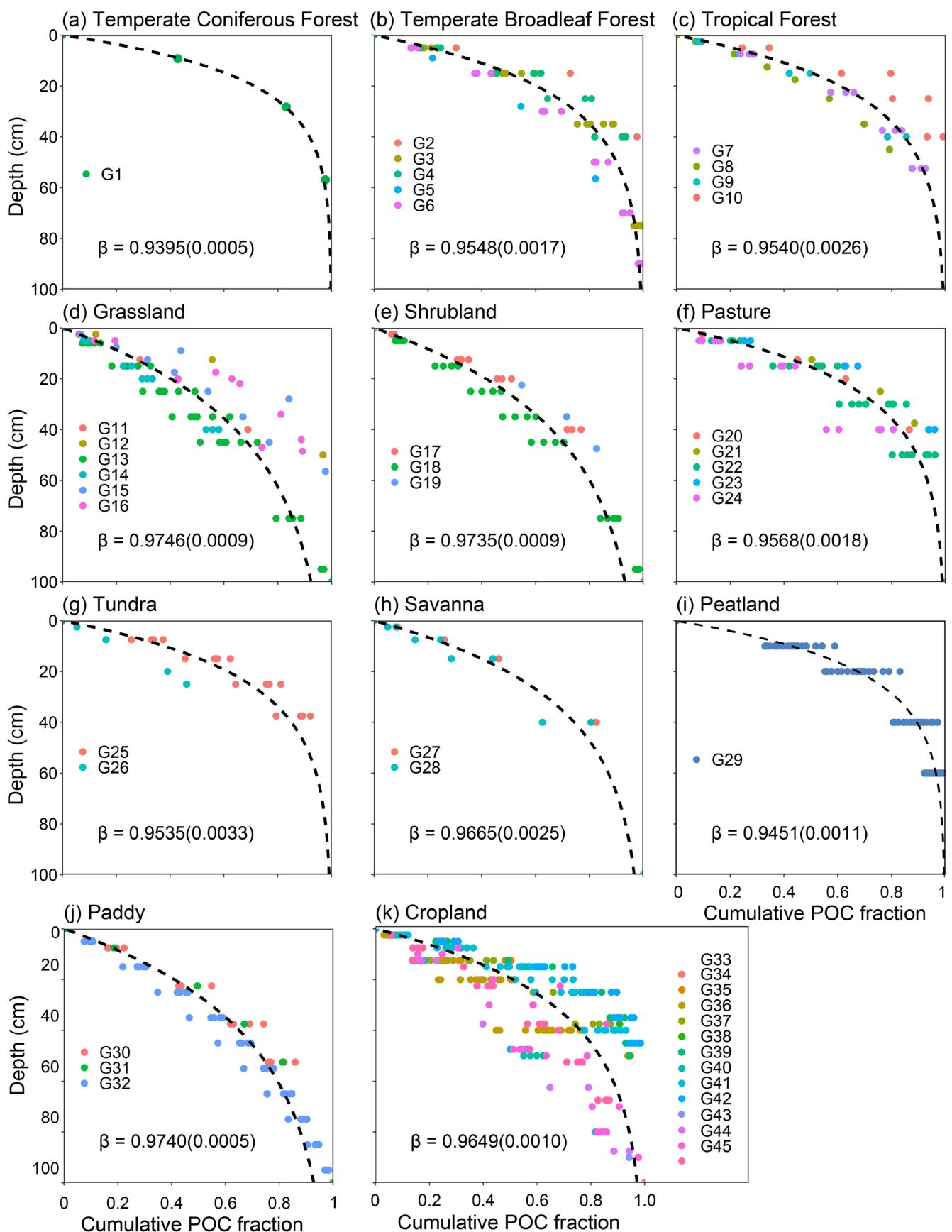
The fitted curves of vertical distribution showed that POC in the topsoil makes up over 50% of its total observed throughout the soil profile (Figure 3), and the β value varies among biomes, ranging from 0.9395 to 0.9746 (Figure 3; Table S5). Forests and peatlands have a higher proportion of POC in topsoil. Among biomes, temperate coniferous forests with the lowest β value had the highest proportion of POC concentrations in topsoil along their soil profiles, followed by peatlands, tundra, tropical

forests, temperate broadleaf forests, peatlands, croplands, savannas, shrublands, and paddies, whereas grasslands stored more POC in deep soils.

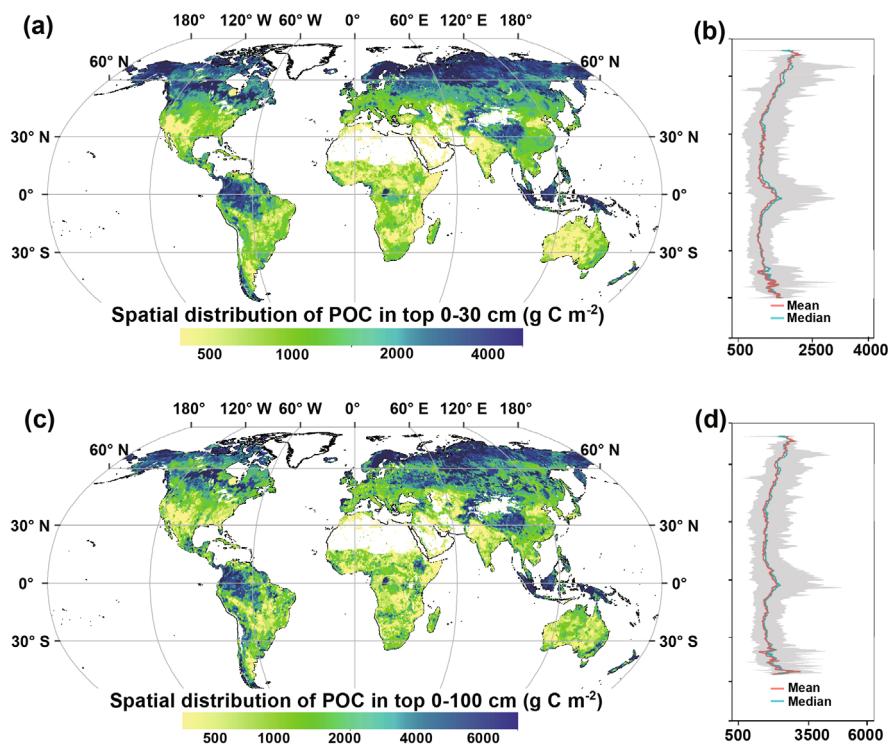
3.4 | Global Budget and Distribution of POC

The global POC budget was estimated as 158.15 Pg C in the 0–30 cm soil profile, which accounts for approximately 40% of the total POC budget in 0–100 cm soil profiles, at 222.75 Pg C (Table 2), and constitutes approximately 10% of TOC (1570 Pg C) derived from IGBP database (Guo et al. 2020). The estimated global budget of POC in 0–100 cm soil profiles contributes about 14% of the TOC, substantially larger than the proportion of soil microbial biomass C (MBC) and soil dissolved organic carbon (DOC) of TOC (Guo et al. 2020; Xu, Thornton, and Post 2013). The POC budgets tremendously differ among biomes in 0–30 cm and 0–100 cm soil profiles, with the largest stock in pastures and the smallest in temperate coniferous forests (Table 2). The POC distribution in both 0–30 cm and 0–100 cm soil profiles suggest substantial spatial variations at the global scale (Figure 4a,b). Specifically, POC

FIGURE 2 | (a) Mantel test showing the relationships between log (POC) and environmental variables. Pairwise comparisons of environmental factors are displayed with a color gradient denoting Pearson's correlation coefficient; orange lines represent positive correlation ($p < 0.05$), green lines represent negative correlation ($p < 0.05$), and gray lines represent non-significant effects ($p > 0.05$). (b) Structural equation model of TC, SM, pH, ST, Clay, Sand, and POC. In the SEM structure, solid black arrows represent positive paths ($p < 0.05$, piecewise SEM), solid red arrows represent negative paths ($p < 0.05$, piecewise s.e.m.), and dotted arrows represent non-significant effects ($p > 0.05$). We report the path coefficients as standardized effect sizes. The overall fit of piecewise s.e.m. was evaluated using comparative fit index (CFI), normed fit index (NFI), Tucker–Lewis index (TLI), and a CFI, NFI, and TLI larger than 0.95 indicate relatively good model-data fit in general. 2207 data points were used in the model: (c) Relative contribution of different control factors on soil particulate organic carbon (POC) at biomes scales. BD: bulk density; Clay: soil clay content; CN: soil total C:N ratio; MAP: mean annual precipitation; MAT: mean annual air temperature; NPP: net ecosystem primary production; Sand: Soil sand content; SM: soil moisture; ST: soil temperature.


budgets are high in northern high-latitude regions (50° – 70°), attributed to the wide distribution of boreal forests and natural peatlands, while the low POC recorded at low latitudes is associated with the occupation by tropical ecosystems (Figure 4c,d).

4 | Discussion


4.1 | Soil POC Variations Among Biomes

Substantial variations in soil POC concentration among biomes were found in this study (Table 1 and Figure 4a,c). High latitudes contained relatively higher POC concentrations,

consistent with DOC and MBC studies (Guo et al. 2020; Xu, Thornton, and Post 2013). The concentration of POC in soils mainly depends on the organic input and microbial decomposition as POC derives from plant materials and is substantially more available to microorganisms than other soil C fractions such as mineral-associated carbon (Lavallee, Soong, and Cotrufo 2020). Although the lightweight fragments derived from vegetation are in minor proportion in high latitude regions owing to the low net primary productivity (NPP), the colder temperature in high latitude regions inhibits microbial consumption of POC, which is susceptible to the change in enzymatic activities (Benbi, Boparai, and Brar 2014). Therefore, biomes located at high latitudes generally exhibit relatively

FIGURE 3 | Vertical distribution of soil particulate organic carbon (POC) in major biomes (a, temperate coniferous forest; b, temperate broadleaf forest; c, tropical forest; d, grassland; e, shrubland; f, pasture; g, tundra; h, savanna; i, peatland; j, paddy; and k, cropland). Different colors represent the subsets of data points, and each subset contains data points from at least three soil depths. The β value with standard error is displayed for each biome.

FIGURE 4 | Global distribution and latitudinal pattern of soil POC concentration (g C m^{-2}) in terrestrial ecosystems in (a, b) 0–30 cm soil profile and (c, d) 0–100 cm soil profile. Map lines delineate study areas and do not necessarily depict accepted national boundaries.

higher POC concentrations. Furthermore, POC contents in cold regions are predominately determined by NPP; thereby, boreal forests show the highest POC concentration across biomes. A recent study focusing on POC in cold regions emphasized substantial POC in high latitudes, whereas the POC concentration is higher than our study (García-Palacios et al. 2024) (Table S9). The data points of POC accounting for over 70% of SOC were excluded in the global simulation (Chan 2001; Jagadamma et al. 2014), potentially leading to lower POC contents via the random forest. Meanwhile, our dataset contains a higher proportion of POC measurements in cold regions; therefore, the estimates of this study might be a little overestimated given the higher POC concentration in cold regions (Table 1).

Wetlands also exhibit high POC concentration, which is associated with soil conditions. The low permeability in wetland soils prevents the transformation of the fragments constituting particulate organic matter to low molecular weight compounds driven by microbial communities, accumulating large amounts of POC (Ganju et al. 2019). In addition, forest biomes and shrublands exhibited more POC than the global average, which can be explained by the high inputs of plant materials and residues of fungi and insects in forests (Abramoff et al. 2018). Grasslands, savannas, and pastures had low POC concentrations because the climate and environmental conditions limit the NPP in these biomes, reducing organic matter input. Livestock trampling and excess fecal input have been confirmed to aggravate fragmentation and microbial depolymerization, leading to POC being highly decomposable and readily utilized by microorganisms. Meanwhile, natural fires in savannas remove a substantial amount of plant biomass, reducing the organic input into the soil. Low POC concentration in paddies and croplands indicated

a non-negligible impact of land use change on POC persistence. The acceleration of anthropogenic perturbations, including agricultural activities, could promote the consumption and transformation of POC (Bouajila and Gallali 2010; Chan 2001; Zhu et al. 2021).

Globally, POC concentration is much higher than the concentrations of DOC and MBC (Table 1), indicating its essential role in the global carbon cycle and maintaining ecosystem stability. As the organic C fraction, POC is highly available to the soil microbiome (Lavallee, Soong, and Cotrufo 2020), which has been demonstrated to dominate the SOC stocks in cold regions as POC without aggregate protection is vulnerable to being impacted by environmental changes and NPP dynamics (García-Palacios et al. 2024). A recent study reported that mineral-associated organic carbon (MAOC) contents were much higher than POC at the global scale (Zhou et al. 2024), whereas the protection mechanisms associated with minerals and aggregates suppress the availability of organic matter for plants and microorganisms in MAOC and thus impede the contribution of MAOC to the global carbon cycle (Lavallee, Soong, and Cotrufo 2020). Therefore, targeting POC variation to address global change challenges potentially has important and consequential significance, considering its higher content and availability in soils.

4.2 | Environmental Control on Soil POC Concentration

Globally, edaphic factors, including TC, BD, pH, sand, and porosity, exhibited significant relationships and the highest contribution to POC concentration (Figure 2a), indicating a primary impact of soil characteristics on POC, which is generally

consistent with previous studies (Eze et al. 2023; Li et al. 2021; Qi et al. 2016). As an active portion of soil TC, the concentration of POC is significantly influenced by C storage (Abramoff et al. 2018). The increase in concentrations of sand and silt is expected to enhance the mineral association of soil C, promoting the decomposition of POC through microbial metabolism (Georgiou et al. 2022; Lavallee, Soong, and Cotrufo 2020). In addition, TC is associated with soil pH and texture (Figure 2b), indicating that these edaphic factors can not only directly alter POC concentration but also indirectly impact POC turnover and retention in soils.

However, the global view found a relatively minor regulation of NPP to POC concentration in our study, consistent with a recent study (Hansen et al. 2024). POC storage and persistence are mainly controlled by microbes, as microorganisms directly participate in POC mineralization, and POC without chemical protection is more accessible to and effectively used by microbes (Lavallee, Soong, and Cotrufo 2020). The same global distribution patterns of DOC with POC also confirmed the essential impacts of microbes on POC storage (Hansen et al. 2024). Microbial activities are significantly impacted by edaphic and climatic characteristics (Guo et al. 2020; Zhu et al. 2021), leading to the fluctuation of the biosynthesis and transformation of soil organic matter. For instance, MAT and pH were confirmed to change the physiological characteristics of microbes, indirectly changing POC degradation, with both lower pH and MAT contributing to lower microbial decomposition and greater POC concentration and storage (Hansen et al. 2024). Our previous studies demonstrated the direct and indirect impacts of soil factors on MBC and DOC (Guo et al. 2020), which indicated an essential influence on the composition of soil organic matter. Therefore, although the generation and decomposition of soil POC were closely associated with vegetation, animals, and microbes, the POC persistence in terrestrial soils was dominated by edaphic and climatic factors.

The variation of the relative contributions of other factors to POC residence in soils indicates multivariate mechanisms of POC retention. For example, in natural wetlands, the anaerobic environment and high C storage maintain the POC concentration elevated; thereby, edaphic and climatic factors have a significant relative contribution to POC (Zhu et al. 2023). In forests, N availability has been widely reported to play an important role in POC persistence (Lavallee, Soong, and Cotrufo 2020) but excluded in this study. In addition, the primary productivity and microbial activities in grassland are limited by phosphorus, regulating POC concentration in soils. The freezing and thawing conditions are essential regulators of POC turnover, as they control microbial activity. Anthropogenic perturbations such as agricultural practices and land management dramatically influence soil properties and N inputs, leading to the POC variation among land use types.

4.3 | Causes of Vertical Distribution of Soil POC Among Biomes

The vertical distribution of soil POC is consistent with the distribution of vegetation root systems and soil microbial biomass in terrestrial ecosystems (Guo et al. 2020; Jackson et al. 1996;

Xu, Thornton, and Post 2013). Soil POC predominantly derives from the leaching of substances from fresh litter and the partial decomposition of organic matter driven by microbes (DeGryze et al. 2004; Lavallee, Soong, and Cotrufo 2020); therefore, the exponential reductions of organic matter inputs from the rhizosphere and microbial biomass along the soil profile cause the vertical distribution pattern of POC concentration. The association of POC with root and MBC distribution confirms that POC generation and persistence in soil depends on C supplies from rhizodeposition and microbial activities, including depolymerization (Abramoff et al. 2022). At the biome level, grasslands have the smallest proportion of soil POC in topsoil. In contrast, forests store relatively more enormous proportions of POC on the surface of their soils (Figure 3). Although grasslands store a large amount of soil C on a global scale (Mannetje 2007), the soil characteristics and relatively more frequent human disturbances such as grazing accelerate the transformation from POC to low molecular weight carbon (Abramoff et al. 2022; Leifeld et al. 2009), especially in surface soils.

4.4 | POC Budget and Implications to Climate Modeling

POC budgets in 0–30 cm and 0–100 cm soil profiles are estimated to be 158.15 and 222.75 Pg C at the global scale, respectively, approximately 21 times the global DOC storage and 10 times the global MBC storage (Guo et al. 2020; Xu, Thornton, and Post 2013) (Table 2), which can be explained by the longer residence time of POC than DOC and MBC (Boddy et al. 2007; Leifeld et al. 2009). Given that environmental changes such as thawing and human disturbances can immediately promote POC decomposition to low molecular compounds (DeGryze et al. 2004), soil POC variations contribute to the temporal and spatial variations in soil microbial respiration, consistent with previous studies (Abramoff et al. 2018, 2022). The variation of budgets for the different soil fractions among biomes is also distinct. In contrast to DOC and MBC concentrations, pastures store the largest amount of POC in 0–30 cm and 0–100 cm soil profiles, probably due to human disturbances, especially grazing, which can stimulate NPP, leading to abundant POC stored in soils (Crow et al. 2009). Consistent with the MBC and DOC budget (Guo et al. 2020; Xu, Thornton, and Post 2013), POC storage in temperate coniferous forests is the lowest in 0–30 cm and 0–100 cm soil profiles. Previous studies have demonstrated that high lignin content reduces the quality of C input and suppresses the microbial decomposition of litter to POC (Crow et al. 2009; Czimczik et al. 2003). Regarding total POC storage, pastures, mixed forests, uplands, and tropical forests contribute approximately 58%, with all other biomes contributing only about 42%, emphasizing the importance of POC sinks in these biomes.

Variations in POC spatial distribution at a global scale are consistent with DOC distribution observed in previous studies (Guo et al. 2020; Langeveld et al. 2019). Compared with temperate regions (30°–60° N), tropical regions (30° N–30° S) store less soil POC in both 0–30 cm and 0–100 cm soil profiles (Figure 4a,c). Given that the spatial distribution of POC is altered by climate, vegetation, and soil conditions, a possible explanation is that warm and wet conditions in tropical ecosystems promote microbial decomposition of organic matter, leading to large amounts

of POC being consumed (Benbi, Boparai, and Brar 2014). The long and cold seasons constrain POC degradation in active layers in temperate regions.

The global distribution, storage, and controlling factors of POC are also illustrated in a recent study (Zhou et al. 2024). Zhou et al. (2024) reported the regions with higher C inputs and lower decomposition have higher POC concentration on a global scale, which is consistent with our study (Figure 4). However, the concentration and global storage of POC in the top meter at Zhou et al. (2024) (330 Pg) are higher than our study (223 Pg). The variation in data resources is the main reason for the difference in the estimation of POC global storage. For example, data measured in cropland with low POC content accounts for 49% of our study. Some variables in our study including SOC, TC, and BD are excluded in Zhou et al. (2024). The NPP data were derived from the MODIS gridded dataset at a spatial resolution of 30s in this study, whereas collected from EARTHDATA in Zhou et al. (2024). The difference in covariate is expected to lead to discrepancies. Meanwhile, paddy and peatland were classified as separate biomes in the present study while lumped into other biomes by Zhou et al. (2024). Additionally, the dominant factors controlling POC are edaphic properties in our study, whereas are climatic factors Zhou et al. (2024). In our research, more edaphic factors closely relevant to POC persistence and turnover were used to quantify the impacts on POC concentration. The discrepancies between the two studies suggest a complicated mechanism underlying the dynamics of soil C fraction under changing environments.

The biogeographical patterns of soil POC and their controls are essential for predicting POC stock fluctuation in changing environments and for management practices facilitating C sequestration to cope with global warming. The data provided by this study can help better understand the mechanisms underlying the complex interconversion between different organic C fractions, which is beneficial for simulating the below-ground biogeochemical processes. Additionally, the database for POC concentrations, budget, and environmental controls can provide critically valuable information for the ongoing development of biological models.

4.5 | Prospectives

Our study compiled a global database of soil POC in terrestrial ecosystems and further estimated soil POC contents and budget at the biome and global levels. However, a few research directions were identified that could be done in future studies. First, the data collected from previous studies are reported using various measurement approaches, which might affect global estimates. Second, the distribution of data points is disproportionate among biomes, with only a few data points in temperate coniferous forests. This may cause biases when establishing the SEM and empirical model for investigating the mechanisms underlying POC distribution at a global scale. Third, all data for POC concentrations and environmental factors represent the annual average; no seasonal information is available. The missing information for the seasonality of POC concentrations may lead to biases in the reported patterns and dynamics of POC storage and content. Further works would help understand the indication mechanisms

of POC patterns: (1) an effectively comparative analysis of different methodologies in terms of reporting POC will be available for a robust budget estimation; (2) the supplements of data points in some biomes such as temperate coniferous forest can improve the identification of dominant factors controlling POC distribution; (3) the collection of seasonal data especially in boreal regions will improve our understanding the seasonality of POC.

5 | Conclusion

By combining a compiled global dataset and statistical models, we estimated the soil POC concentration across biomes and quantified the global budget of POC in terrestrial ecosystems. We found that boreal forests and wetlands exhibit the highest POC concentration, whereas cropland and savannas have low POC content. Edaphic factors, including TC and texture, dominate the spatial variation of POC concentration. As POC derives from plant materials and is processed by microbes, the vertical distribution of POC follows the same patterns of soil microbial biomass, roots, and DOC along the soil profile. The global budget of POC is estimated to be 158.15 Pg C in 0–30 cm and 222.75 Pg C in 0–100 cm soil profiles. Our results show the importance of soils in tropical forests and pastures for storing POC.

The study produced a worthy dataset for soil C fraction in terrestrial ecosystems combined with DOC and MBC studies, which serves as a benchmark for simulating the turnover and transformation between different C fractions in soils. In addition, along with the increasing recognition of biogeography of microbial abundance, diversity, and community composition, the global patterns of soil C fractions deem further investigation. As more and more experimental and modeling research is implemented on soil POC dynamics and its controls, the study serves as a platform for data-model integration to better understand the dynamics of the global C cycle and more accurately simulate and project C dynamics in global soils.

Author Contributions

Ziyu Guo: data curation, formal analysis, investigation, methodology, software, writing – original draft, writing – review and editing. **Jianzhao Liu:** data curation, methodology, software, visualization. **Liyuan He:** formal analysis, methodology, validation, visualization, writing – original draft. **Jorge L. Mazza Rodrigues:** resources, supervision, writing – review and editing. **Ning Chen:** data curation, formal analysis, methodology, writing – original draft. **Yunjiang Zuo:** formal analysis, methodology, software, writing – original draft. **Nannan Wang:** methodology. **Xinhao Zhu:** data curation, methodology, writing – original draft. **Ying Sun:** data curation, methodology, visualization. **Lihua Zhang:** methodology. **Yanyu Song:** data curation, methodology, resources, visualization, writing – original draft. **Dengjun Zhang:** methodology, writing – review and editing. **Fenghui Yuan:** methodology, project administration, resources, writing – review and editing. **Changchun Song:** conceptualization, methodology, project administration, resources, supervision. **Xiaofeng Xu:** conceptualization, funding acquisition, methodology, project administration, resources, software, supervision, writing – original draft, writing – review and editing.

Acknowledgments

This study was partially supported by the National Natural Science Foundation (No. 42220104009; 42293263) of China, the Strategic

Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA28020502), the Young Scientists Innovation Funds of State Key Laboratory of Black Soils Conservation and Utilization (2023HTDGZ-QN-03), Ecology Innovation Team (2020CXTD02) in Minzu University of China, and the Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences. L.H., X.Z., and X.X. are grateful for the financial and facility support from San Diego State University and the U.S. National Science Foundation (2145130). JMR and XX acknowledged the support from a USDA National Institute of Food and Agriculture, The Agriculture and Food Research Initiative program.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are openly available in Dryad at <https://doi.org/10.5061/dryad.sbcc2frhh>. The compiled variables include particulate organic carbon, vegetation type, soil texture, soil moisture, sampling dates, sampling depth, latitude, longitude, mean annual temperature, mean annual precipitation, soil pH, bulk density, total organic carbon, total nitrogen, soil dissolved organic carbon, soil dissolved organic nitrogen, soil microbial biomass carbon, and soil microbial biomass nitrogen. Soil fraction data are available from the LUCAS database at <http://esdac.jrc.ec.europa.eu/content/lucas-2009-topsoil-data>. Soil organic carbon, total carbon, and bulk density data are available from the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) at <https://doi.org/10.3334/ORNLDAAC/1247>. Soil carbon and total nitrogen data were from the ORNL DAAC at <https://doi.org/10.3334/ORNLDAAC/1247>. Mean annual temperature and mean annual precipitation data are available from WorldClim at <https://www.worldclim.org/data/worldclim21.html> (version 2). The mean annual and monthly soil moisture and soil temperature are available from the National Center for Atmospheric Research/Department of Energy Atmospheric Model Intercomparison Project (NCEP/DOE AMIP-II) at <https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html> (Reanalysis-2). Topsoil porosity data are available from the NASA Global Land Data Assimilation System at <https://doi.org/10.5067/342OHQM9AK6Q>. Annual net primary productivity is available from NASA LP DAAC at the USGS EROS Center: <https://doi.org/10.5067/MODIS/MOD17A3.006>. Soil microbial biomass carbon and nitrogen are available from the ORNL DAAC at <https://doi.org/10.3334/ORNLDAAC/1264>.

References

Abiven, S., S. Menasseri, and C. Chenu. 2009. "The Effects of Organic Inputs Over Time on Soil Aggregate Stability-A Literature Analysis." *Soil Biology and Biochemistry* 41: 1–12.

Abramoff, R., X. Xu, M. Hartman, et al. 2018. "The Millennial Model: In Search of Measurable Pools and Transformations for Modeling Soil Carbon in the New Century." *Biogeochemistry* 137: 51–71.

Abramoff, R. Z., B. Guenet, H. Zhang, et al. 2022. "Improved Global-Scale Predictions of Soil Carbon Stocks With Millennial Version 2." *Soil Biology and Biochemistry* 164: 108466.

Alongi, D. M. 2014. "Carbon Cycling and Storage in Mangrove Forests." *Annual Review of Marine Science* 6: 195–219.

Baldock, J. A., and J. O. Skjemstad. 2000. "Role of the Soil Matrix and Minerals in Protecting Natural Organic Materials Against Biological Attack." *Organic Geochemistry* 31: 697–710.

Benbi, D., A. Boparai, and K. Brar. 2014. "Decomposition of Particulate Organic Matter Is More Sensitive to Temperature Than the Mineral Associated Organic Matter." *Soil Biology and Biochemistry* 70: 183–192.

Boddy, E., P. W. Hill, J. Farrar, and D. L. Jones. 2007. "Fast Turnover of Low Molecular Weight Components of the Dissolved Organic Carbon Pool of Temperate Grassland Field Soils." *Soil Biology and Biochemistry* 39: 827–835.

Boix-Fayos, C., J. de Vente, J. Albaladejo, and M. Martínez-Mena. 2009. "Soil Carbon Erosion and Stock as Affected by Land Use Changes at the Catchment Scale in Mediterranean Ecosystems." *Agriculture, Ecosystems & Environment* 133: 75–85.

Bouajila, A., and T. Gallali. 2010. "Land Use Effect on Soil and Particulate Organic Carbon, and Aggregate Stability in Some Soils in Tunisia." *African Journal of Agricultural Research* 5: 764–774.

Cambardella, C. A., and E. Elliott. 1992. "Particulate Soil Organic-Matter Changes Across a Grassland Cultivation Sequence." *Soil Science Society of America Journal* 56: 777–783.

Carter, M. R. 2002. "Soil Quality for Sustainable Land Management: Organic Matter and Aggregation Interactions That Maintain Soil Functions." *Agronomy Journal* 94: 38–47.

Castellano, M. J., K. E. Mueller, D. C. Olk, J. E. Sawyer, and J. Six. 2015. "Integrating Plant Litter Quality, Soil Organic Matter Stabilization, and the Carbon Saturation Concept." *Global Change Biology* 21: 3200–3209.

Chan, K. Y. 2001. "Soil Particulate Organic Carbon Under Different Land Use and Management." *Soil Use and Management* 17: 217–221.

Chen, X., J. Liu, Q. Deng, J. Yan, and D. Zhang. 2012. "Effects of Elevated CO₂ and Nitrogen Addition on Soil Organic Carbon Fractions in a Subtropical Forest." *Plant and Soil* 357: 25–34.

Christensen, B. T. 1992. "Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates." *Advances in Soil Science* 20: 1–90.

Christensen, B. T. 2001. "Physical Fractionation of Soil and Structural and Functional Complexity in Organic Matter Turnover." *European Journal of Soil Science* 52: 345–353.

Crow, S. E., K. Lajtha, R. D. Bowden, et al. 2009. "Increased Coniferous Needle Inputs Accelerate Decomposition of Soil Carbon in an Old-Growth Forest." *Forest Ecology and Management* 258: 2224–2232.

Czimczik, C. I., C. M. Preston, M. W. Schmidt, and E. D. Schulze. 2003. "How Surface Fire in Siberian Scots Pine Forests Affects Soil Organic Carbon in the Forest Floor: Stocks, Molecular Structure, and Conversion to Black Carbon (Charcoal)." *Global Biogeochemical Cycles* 17: 1020.

DeGryze, S., J. Six, K. Paustian, S. J. Morris, E. A. Paul, and R. Merckx. 2004. "Soil Organic Carbon Pool Changes Following Land-Use Conversions." *Global Change Biology* 10: 1120–1132.

Denef, K., J. Six, H. Bossuyt, et al. 2001. "Influence of Dry–Wet Cycles on the Interrelationship Between Aggregate, Particulate Organic Matter, and Microbial Community Dynamics." *Soil Biology and Biochemistry* 33: 1599–1611.

Eze, S., M. Magilton, D. Magnone, et al. 2023. "Meta-Analysis of Global Soil Data Identifies Robust Indicators for Short-Term Changes in Soil Organic Carbon Stock Following Land Use Change." *Science of the Total Environment* 860: 160484.

Ganju, N. K., Z. Defne, T. Elsey-Quirk, and J. M. Moriarty. 2019. "Role of Tidal Wetland Stability in Lateral Fluxes of Particulate Organic Matter and Carbon." *Journal of Geophysical Research: Biogeosciences* 124: 1265–1277.

García-Palacios, P., M. A. Bradford, I. Benavente-Ferraces, et al. 2024. "Dominance of Particulate Organic Carbon in Top Mineral Soils in Cold Regions." *Nature Geoscience* 17: 145–150.

Georgiou, K., R. B. Jackson, O. Vindušková, et al. 2022. "Global Stocks and Capacity of Mineral-Associated Soil Organic Carbon." *Nature Communications* 13: 3797.

Golchin, A., J. Oades, J. Skjemstad, and P. Clarke. 1994. "Soil Structure and Carbon Cycling." *Soil Research* 32: 1043–1068.

Gu, B. 2009. "Variations and Controls of Nitrogen Stable Isotopes in Particulate Organic Matter of Lakes." *Oecologia* 160: 421–431.

Guo, Z., J. Liu, L. He, et al. 2024. "A Global Dataset of Soil Particulate Organic Carbon." <https://doi.org/10.5061/dryad.sbcc2frhh>. Dryad

Guo, Z., Y. Wang, Z. Wan, et al. 2020. "Soil Dissolved Organic Carbon in Terrestrial Ecosystems: Global Budget, Spatial Distribution and Controls." *Global Ecology and Biogeography* 29: 2159–2175.

Hansen, P. M., R. Even, A. E. King, J. Lavallee, M. Schipanski, and M. F. Cotrufo. 2024. "Distinct, Direct and Climate-Mediated Environmental Controls on Global Particulate and Mineral-Associated Organic Carbon Storage." *Global Change Biology* 30: e17080.

He, L., J. L. Mazza Rodrigues, N. A. Soudzilovskaia, et al. 2020. "Global Biogeography of Fungal and Bacterial Biomass Carbon in Topsoil." *Soil Biology and Biochemistry* 151: 108024.

Hill, A. R., K. J. Devito, S. Campagnolo, and K. Sanmugadas. 2000. "Subsurface Denitrification in a Forest Riparianzone: Interactions Between Hydrology and Supplies Ofnitrate and Organic Carbon." *Biogeochemistry* 51: 193–223.

Huang, Y.-N., T.-T. Qian, F. Dang, Y.-G. Yin, M. Li, and D.-M. Zhou. 2019. "Significant Contribution of Metastable Particulate Organic Matter to Natural Formation of Silver Nanoparticles in Soils." *Nature Communications* 10: 3775.

Jackson, R. B., J. Canadell, J. R. Ehleringer, H. Mooney, O. Sala, and E.-D. Schulze. 1996. "A Global Analysis of Root Distributions for Terrestrial Biomes." *Oecologia* 108: 389–411.

Jagadamma, S., J. M. Steinweg, M. A. Mayes, G. Wang, and W. M. Post. 2014. "Decomposition of Added and Native Organic Carbon From Physically Separated Fractions of Diverse Soils." *Biology and Fertility of Soils* 50: 613–621.

Janzen, H. H. 2006. "The Soil Carbon Dilemma: Shall We Hoard It or Use It?" *Soil Biology and Biochemistry* 38: 419–424.

Jilling, A., M. Keiluweit, A. R. Contosta, et al. 2018. "Minerals in the Rhizosphere: Overlooked Mediators of Soil Nitrogen Availability to Plants and Microbes." *Biogeochemistry* 139: 103–122.

Kleber, M., K. Eusterhues, M. Keiluweit, C. Mikutta, R. Mikutta, and P. S. Nico. 2015. "Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments." In *Advances in Agronomy*, edited by D. L. Sparks, 1–140. Newark, USA: Academic Press.

Kögel-Knabner, I., G. Guggenberger, M. Kleber, et al. 2008. "Organomineral Associations in Temperate Soils: Integrating Biology, Mineralogy, and Organic Matter Chemistry." *Journal of Plant Nutrition and Soil Science* 171: 61–82.

Kölbl, A., and I. Kögel-Knabner. 2004. "Content and Composition of Free and Occluded Particulate Organic Matter in a Differently Textured Arable Cambisol as Revealed by Solid-State ^{13}C NMR Spectroscopy." *Journal of Plant Nutrition and Soil Science* 167: 45–53.

Kolka, R., D. Grigal, E. Nater, and E. Verry. 2001. "Hydrologic Cycling of Mercury and Organic Carbon in a Forested Upland–Bog Watershed." *Soil Science Society of America Journal* 65: 897–905.

Kooch, Y., M. Amani, and M. Abedi. 2022. "The Effect of Shrublands Degradation Intensity on Soil Organic Matter-Associated Properties in a Semi-Arid Ecosystem." *Science of the Total Environment* 853: 158664.

Langeveld, J., A. F. Bouwman, W. J. van Hoek, et al. 2019. "Global Database and Model on Dissolved Carbon in Soil Solution." *Biogeosciences Discussions*. <https://doi.org/10.5194/bg-2019-238>.

Lavallee, J. M., J. L. Soong, and M. F. Cotrufo. 2020. "Conceptualizing Soil Organic Matter Into Particulate and Mineral-Associated Forms to Address Global Change in the 21st Century." *Global Change Biology* 26: 261–273.

Lee, M.-H. 2016. *Dynamics of Dissolved and Particulate Organic Carbon and Nitrogen in Forest Ecosystems*. Germany: Universitaet Bayreuth.

Lehmann, J., and M. Kleber. 2015. "The Contentious Nature of Soil Organic Matter." *Nature* 528: 60–68.

Leifeld, J., and I. Kögel-Knabner. 2005. "Soil Organic Matter Fractions as Early Indicators for Carbon Stock Changes Under Different Land-Use?" *Geoderma* 124: 143–155.

Leifeld, J., M. Zimmermann, J. Fuhrer, and F. Conen. 2009. "Storage and Turnover of Carbon in Grassland Soils Along an Elevation Gradient in the Swiss Alps." *Global Change Biology* 15: 668–679.

Li, H., J. Van den Bulcke, P. Kibleur, O. Mendoza, S. De Neve, and S. Sleutel. 2022. "Soil Textural Control on Moisture Distribution at the Microscale and Its Effect on Added Particulate Organic Matter Mineralization." *Soil Biology and Biochemistry* 172: 108777.

Li, Y., Z. Li, S. Cui, G. Liang, and Q. Zhang. 2021. "Microbial-Derived Carbon Components Are Critical for Enhancing Soil Organic Carbon in No-Tillage Croplands: A Global Perspective." *Soil and Tillage Research* 205: 104758.

Liu, X., H. Zhang, Y. Luo, R. Zhu, H. Wang, and B. Huang. 2020. "Sorption of Oxytetracycline in Particulate Organic Matter in Soils and Sediments: Roles of pH, Ionic Strength and Temperature." *Science of the Total Environment* 714: 136628.

LiuSui, Y., X. Zhu, D. Li, et al. 2019. "Soil Aggregate and Intra-Aggregate Carbon Fractions Associated With Vegetation Succession in an Alpine Wetland of Northwest China." *Catena* 181: 104107.

Lovett, G. M., K. C. Weathers, M. A. Arthur, and J. C. Schultz. 2004. "Nitrogen Cycling in a Northern Hardwood Forest: Do Species Matter?" *Biogeochemistry* 67: 289–308.

Lugato, E., J. M. Lavallee, M. L. Haddix, P. Panagos, and M. F. Cotrufo. 2021. "Different Climate Sensitivity of Particulate and Mineral-Associated Soil Organic Matter." *Nature Geoscience* 14: 295–300.

Mannetje, L. T. 2007. "The Role of Grasslands and Forests as Carbon Stores." *Tropical Grasslands* 41: 50–54.

Marriott, E. E., and M. Wander. 2006. "Qualitative and Quantitative Differences in Particulate Organic Matter Fractions in Organic and Conventional Farming Systems." *Soil Biology and Biochemistry* 38: 1527–1536.

Pringle, M., D. Allen, D. G. Phelps, S. G. Bray, T. Orton, and R. Dalal. 2014. "The Effect of Pasture Utilization Rate on Stocks of Soil Organic Carbon and Total Nitrogen in a Semi-Arid Tropical Grassland." *Agriculture, Ecosystems & Environment* 195: 83–90.

Puget, P., C. Chenu, and J. Balesdent. 2008. "Dynamics of Soil Organic Matter Associated With Particle-Size Fractions of Water-Stable Aggregates." *European Journal of Soil Science* 51: 595–605.

Qi, R., J. Li, Z. Lin, et al. 2016. "Temperature Effects on Soil Organic Carbon, Soil Labile Organic Carbon Fractions, and Soil Enzyme Activities Under Long-Term Fertilization Regimes." *Applied Soil Ecology* 102: 36–45.

Relexans, J.-C., M. Meybeck, G. Billen, M. Bruegaille, H. Etcheber, and M. Somville. 1988. "Algal and Microbial Processes Involved in Particulate Organic Matter Dynamics in the Loire Estuary." *Estuarine, Coastal and Shelf Science* 27: 625–644.

Ruesch, A. 2008. *New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000*. Oak Ridge, USA: Oak Ridge National Laboratory.

Sanderman, J., T. Maddern, and J. Baldock. 2014. "Similar Composition but Differential Stability of Mineral Retained Organic Matter Across Four Classes of Clay Minerals." *Biogeochemistry* 121: 409–424.

Sanei, H., P. Outridge, A. Dallimore, and P. Hamilton. 2012. "Mercury–Organic Matter Relationships in Pre-Pollution Sediments of Thermokarst Lakes From the Mackenzie River Delta, Canada: The Role of Depositional Environment." *Biogeochemistry* 107: 149–164.

Schlüter, S., F. Leuther, L. Albrecht, et al. 2022. "Microscale Carbon Distribution Around Pores and Particulate Organic Matter Varies With Soil Moisture Regime." *Nature Communications* 13: 2098.

Six, J., E. T. Elliott, and K. Paustian. 2000. "Soil Macroaggregate Turnover and Microaggregate Formation: A Mechanism for C Sequestration Under No-Tillage Agriculture." *Soil Biology and Biochemistry* 32: 2099–2103.

Six, J., G. Guggenberger, K. Paustian, L. Haumaier, E. T. Elliott, and W. Zech. 2001. "Sources and Composition of Soil Organic Matter Fractions Between and Within Soil Aggregates." *European Journal of Soil Science* 52: 607–618.

Song, X., F. M. Hoffman, C. M. Iversen, et al. 2017. "Significant Inconsistency of Vegetation Carbon Density in CMIP5 Earth System Models Against Observational Data." *Journal of Geophysical Research: Biogeosciences* 122: 2282–2297.

Whittaker, R. 1975. *Communities and Ecosystems*, 158. New York: MacMillan Publishing Co.

Witzgall, K., A. Vidal, D. I. Schubert, et al. 2021. "Particulate Organic Matter as a Functional Soil Component for Persistent Soil Organic Carbon." *Nature Communications* 12: 4115.

Wuchter, C., S. Schouten, S. G. Wakeham, and J. S. Sinninghe Damsté. 2005. "Temporal and Spatial Variation in Tetraether Membrane Lipids of Marine Crenarchaeota in Particulate Organic Matter: Implications for TEX86 Paleothermometry." *Paleoceanography* 20, no. PA3013: 1–11.

Xiao, L., W. Zhang, P. Hu, et al. 2021. "The Formation of Large Macroaggregates Induces Soil Organic Carbon Sequestration in Short-Term Cropland Restoration in a Typical Karst Area." *Science of the Total Environment* 801: 149588.

Xu, X., J. P. Schimel, P. E. Thornton, X. Song, F. Yuan, and S. Goswami. 2014. "Substrate and Environmental Controls on Microbial Assimilation of Soil Organic Carbon: A Framework for Earth System Models." *Ecology Letters* 17: 547–555.

Xu, X., P. E. Thornton, and W. M. Post. 2013. "A Global Analysis of Soil Microbial Biomass Carbon, Nitrogen and Phosphorus in Terrestrial Ecosystems." *Global Ecology and Biogeography* 22: 737–749.

Zhang, Q., W.-F. Kuang, L.-Y. Liu, et al. 2009. "Trihalomethane, Haloacetonitrile, and Chloral Hydrate Formation Potentials of Organic Carbon Fractions From Sub-Tropical Forest Soils." *Journal of Hazardous Materials* 172: 880–887.

Zhang, Y., Z. Tang, Y. You, et al. 2023. "Differential Effects of Forest-Floor Litter and Roots on Soil Organic Carbon Formation in a Temperate Oak Forest." *Soil Biology and Biochemistry* 180: 109017.

Zhao, Z., Z. Zhao, B. Fu, J. Wang, and W. Tang. 2021. "Characteristics of Soil Organic Carbon Fractions Under Different Land Use Patterns in a Tropical Area." *Journal of Soils and Sediments* 21: 689–697.

Zhou, Z., C. Ren, C. Wang, et al. 2024. "Global Turnover of Soil Mineral-Associated and Particulate Organic Carbon." *Nature Communications* 15: 5329.

Zhu, X., Z. Y. Guo, N. N. Wang, et al. 2023. "Environmental Stress Stimulates Microbial Activities as Indicated by Cyclopropane Fatty Acid Enhancement." *Science of the Total Environment* 873: 162338.

Zhu, X., L. Zhang, Y. Zuo, et al. 2021. "Wetland Reclamation Homogenizes Microbial Properties Along Soil Profiles." *Geoderma* 395: 115075.

Zimmermann, M., J. Leifeld, M. W. I. Schmidt, P. Smith, and J. Fuhrer. 2007. "Measured Soil Organic Matter Fractions Can Be Related to Pools in the RothC Model." *European Journal of Soil Science* 58: 658–667.

Water Extractable, Particulate and Bulk Soil C Composition and Stabilization." *Journal of Plant Nutrition and Soil Science* 181, no. 6: 809–817.

Abrar, M. M., M. Xu, S. A. A. Shah, et al. 2020. "Variations in the Profile Distribution and Protection Mechanisms of Organic Carbon Under Long-Term Fertilization in a Chinese Mollisol." *Science of the Total Environment* 723: 138181.

Adewopo, J., M. Silveira, S. Xu, S. Gerber, L. Sollenberger, and T. Martin. 2014. "Management Intensification Impacts on Soil and Ecosystem Carbon Stocks in Subtropical Grasslands." *Soil Science Society of America Journal* 78, no. 3: 977–986.

Álvaro-Fuentes, J., M. López, C. Cantero-Martínez, and J. L. Arrué. 2008. "Tillage Effects on Soil Organic Carbon Fractions in Mediterranean Dryland Agroecosystems." *Soil Science Society of America Journal* 72, no. 2: 541–547.

Angst, G., C. W. Mueller, Š. Angst, et al. 2018. "Fast Accrual of C and N in Soil Organic Matter Fractions Following Post-Mining Reclamation Across the USA." *Journal of Environmental Management* 209: 216–226.

Ashagrie, Y., W. Zech, G. Guggenberger, and T. Mamo. 2007. "Soil Aggregation, and Total and Particulate Organic Matter Following Conversion of Native Forests to Continuous Cultivation in Ethiopia." *Soil and Tillage Research* 94, no. 1: 101–108.

Aulakh, M. S., A. K. Garg, and S. Kumar. 2013. "Impact of Integrated Nutrient, Crop Residue and Tillage Management on Soil Aggregates and Organic Matter Fractions in Semiarid Subtropical Soil Under Soybean-Wheat Rotation." *American Journal of Plant Sciences* 4, no. 11: 2148–2164.

Awale, R., M. A. Emeson, and S. Machado. 2017. "Soil Organic Carbon Pools as Early Indicators for Soil Organic Matter Stock Changes Under Different Tillage Practices in Inland Pacific Northwest." *Frontiers in Ecology and Evolution* 5: 96.

Aziz, I., T. Mahmood, and K. R. Islam. 2014. "Impact of Long-Term Tillage and Crop Rotation on Concentration of Soil Particulate Organic Matter Associated Carbon and Nitrogen." *Pakistan Journal of Agricultural Sciences* 51, no. 4: 827–834.

Balabane, M., and F. Van Oort. 2002. "Metal Enrichment of Particulate Organic Matter in Arable Soils With Low Metal Contamination." *Soil Biology and Biochemistry* 34, no. 10: 1513–1516.

Bartuška, M., M. Pawlett, and J. Frouz. 2015. "Particulate Organic Carbon at Reclaimed and Unreclaimed Post-Mining Soils and Its Microbial Community Composition." *Catena* 131: 92–98.

Bayer, C., L. Martin-Neto, J. Mielniczuk, C. Pillon, and L. Sangui. 2001. "Changes in Soil Organic Matter Fractions Under Subtropical No-Till Cropping Systems." *Soil Science Society of America Journal* 65, no. 5: 1473–1478.

Bayer, C., J. Mielniczuk, L. Martin-Neto, and P. R. Ernani. 2002. "Stocks and Humification Degree of Organic Matter Fractions as Affected by No-Tillage on a Subtropical Soil." *Plant and Soil* 238: 133–140.

Benoit, P., I. Madrigal, C. Preston, C. Chenu, and E. Barriuso. 2008. "Sorption and Desorption of Non-Ionic Herbicides Onto Particulate Organic Matter From Surface Soils Under Different Land Uses." *European Journal of Soil Science* 59, no. 2: 178–189.

Besnard, E., C. Chenu, J. Balesdent, P. Puget, and D. Arrouays. 1996. "Fate of Particulate Organic Matter in Soil Aggregates During Cultivation." *European Journal of Soil Science* 47, no. 4: 495–503. <https://doi.org/10.1111/j.1365-2389.1996.tb01849.x>.

Bin, Z., and P. Xin-Hua. 2006. "Organic Matter Enrichment and Aggregate Stabilization in a Severely Degraded Ultisol After Reforestation." *Pedosphere* 16, no. 6: 699–706.

Blanco-Moure, N., R. Gracia, A. Bielsa, and M. López. 2013. "Long-Term No-Tillage Effects on Particulate and Mineral-Associated Soil

Data Sources

Abdelrahman, H., D. Hofmann, A. E. Berns, N. Meyer, R. Bol, and N. Borchard. 2018. "Historical Charcoal Additions Alter

Organic Matter Under Rainfed Mediterranean Conditions." *Soil Use and Management* 29, no. 2: 250–259.

Bongiovanni, M. D., and J. C. Lobartini. 2006. "Particulate Organic Matter, Carbohydrate, Humic Acid Contents in Soil Macro-and Microaggregates as Affected by Cultivation." *Geoderma* 136, no. 3–4: 660–665.

Bornemann, L., G. Welp, and W. Amelung. 2010. "Particulate Organic Matter at the Field Scale: Rapid Acquisition Using Mid-Infrared Spectroscopy." *Soil Science Society of America Journal* 74, no. 4: 1147–1156.

Bouajila, A., and T. Gallali. 2008. "Soil Organic Carbon Fractions and Aggregate Stability in Carbonated." *Journal of Agronomy* 7, no. 2: 127–137.

Bouajila, A., and T. Gallali. 2010b. "Land Use Effect on Soil and Particulate Organic Carbon, and Aggregate Stability in Some Soils in Tunisia." *African Journal of Agricultural Research* 5, no. 8: 764–774.

Bowman, R., M. Vigil, D. Nielsen, and R. Anderson. 1999. "Soil Organic Matter Changes in Intensively Cropped Dryland Systems." *Soil Science Society of America Journal* 63, no. 1: 186–191.

Bu, R., J. Lu, T. Ren, B. Liu, X. Li, and R. Cong. 2015. "Particulate Organic Matter Affects Soil Nitrogen Mineralization Under Two Crop Rotation Systems." *PLoS One* 10, no. 12: e0143835.

Cambardella, C. A., and E. Elliott. 1992b. "Particulate Soil Organic-Matter Changes Across a Grassland Cultivation Sequence." *Soil Science Society of America Journal* 56, no. 3: 777–783.

Cao, Z., S. Cheng, H. Fang, et al. 2020. "Responses of Soil Organic Carbon Dynamics and Microbial Community Structure to Organic Nitrogen Fertilization in the Temperate Needle-Broadleaved Mixed Forest." *Acta Pedologica Sinica* 57, no. 4: 963–974.

Cappai, C., A. R. Kemanian, A. Lagomarsino, et al. 2017. "Small-Scale Spatial Variation of Soil Organic Matter Pools Generated by Cork Oak Trees in Mediterranean Agro-Silvo-Pastoral Systems." *Geoderma* 304: 59–67.

Carrington, E. M., P. J. Hernes, R. Y. Dyda, A. F. Plante, and J. Six. 2012. "Biochemical Changes Across a Carbon Saturation Gradient: Lignin, Cutin, and Suberin Decomposition and Stabilization in Fractionated Carbon Pools." *Soil Biology and Biochemistry* 47: 179–190.

Carter, M., D. Angers, E. Gregorich, and M. Bolinder. 2003. "Characterizing Organic Matter Retention for Surface Soils in Eastern Canada Using Density and Particle Size Fractions." *Canadian Journal of Soil Science* 83, no. 1: 11–23.

Cates, A. M., and M. D. Ruark. 2017. "Soil Aggregate and Particulate C and N Under Corn Rotations: Responses to Management and Correlations With Yield." *Plant and Soil* 415: 521–533.

Cates, A. M., M. D. Ruark, J. L. Hettcke, and J. L. Posner. 2016. "Long-Term Tillage, Rotation and Perennialization Effects on Particulate and Aggregate Soil Organic Matter." *Soil and Tillage Research* 155: 371–380.

Chan, K. 1997. "Consequences of Changes in Particulate Organic Carbon in Vertosols Under Pasture and Cropping." *Soil Science Society of America Journal* 61, no. 5: 1376–1382.

Chan, K., D. Heenan, and A. Oates. 2002. "Soil Carbon Fractions and Relationship to Soil Quality Under Different Tillage and Stubble Management." *Soil and Tillage Research* 63, no. 3–4: 133–139.

Chan, K. Y. 2001b. "Soil Particulate Organic Carbon Under Different Land Use and Management." *Soil Use and Management* 17, no. 4: 217–221.

Chen, H., R. Hou, Y. Gong, H. Li, M. Fan, and Y. Kuzyakov. 2009. "Effects of 11 Years of Conservation Tillage on Soil Organic Matter Fractions in Wheat Monoculture in Loess Plateau of China." *Soil and Tillage Research* 106, no. 1: 85–94.

Chen, J., C. Ji, J. Fang, H. He, and B. Zhu. 2020a. "Dynamics of Microbial Residues Control the Responses of Mineral-Associated Soil Organic Carbon to N Addition in Two Temperate Forests." *Science of the Total Environment* 748: 141318.

Chen, J., W. Xiao, C. Zheng, and B. Zhu. 2020b. "Nitrogen Addition Has Contrasting Effects on Particulate and Mineral-Associated Soil Organic Carbon in a Subtropical Forest." *Soil Biology and Biochemistry* 142: 107708.

Chen, X., Y. Li, J. Mo, et al. 2012b. "Effects of Nitrogen Deposition on Soil Organic Carbon Fractions in the Subtropical Forest Ecosystems of S China." *Journal of Plant Nutrition and Soil Science* 175, no. 6: 947–953.

Chen, X., J. Liu, Q. Deng, J. Yan, and D. Zhang. 2012c. "Effects of Elevated CO₂ and Nitrogen Addition on Soil Organic Carbon Fractions in a Subtropical Forest." *Plant and Soil* 357: 25–34.

Chen, Y., X. Liu, Y. Hou, S. Zhou, and B. Zhu. 2021. "Particulate Organic Carbon Is More Vulnerable to Nitrogen Addition Than Mineral-Associated Organic Carbon in Soil of an Alpine Meadow." *Plant and Soil* 458: 93–103.

Chen, Z., R. Luo, Z. Huang, et al. 2015. "Effects of Different Backfill Soils on Artificial Soil Quality for Cut Slope Revegetation: Soil Structure, Soil Erosion, Moisture Retention and Soil C Stock." *Ecological Engineering* 83: 5–12.

Cheng, M., and S. An. 2015. "Responses of Soil Nitrogen, Phosphorous and Organic Matter to Vegetation Succession on the Loess Plateau of China." *Journal of Arid Land* 7: 216–223.

Cheng, S., H. Fang, and G. Yu. 2018. "Threshold Responses of Soil Organic Carbon Concentration and Composition to Multi-Level Nitrogen Addition in a Temperate Needle-Broadleaved Forest." *Biogeochemistry* 137: 219–233.

Conant, R. T., J. Six, and K. Paustian. 2003. "Land Use Effects on Soil Carbon Fractions in the Southeastern United States. I. Management-Intensive Versus Extensive Grazing." *Biology and Fertility of Soils* 38: 386–392.

Conant, R. T., J. Six, and K. Paustian. 2004. "Land Use Effects on Soil Carbon Fractions in the Southeastern United States. II. Changes in Soil Carbon Fractions Along a Forest to Pasture Chronosequence." *Biology and Fertility of Soils* 40, no. 3: 386–392.

Conceição, P. C., J. Dieckow, and C. Bayer. 2013. "Combined Role of No-Tillage and Cropping Systems in Soil Carbon Stocks and Stabilization." *Soil and Tillage Research* 129: 40–47.

Coppin, F., C. Chabroulet, and A. Martin-Garin. 2009. "Selenite Interactions With Some Particulate Organic and Mineral Fractions Isolated From a Natural Grassland Soil." *European Journal of Soil Science* 60, no. 3: 369–376.

Courtier-Murias, D., A. J. Simpson, C. Marzadori, et al. 2013. "Unraveling the Long-Term Stabilization Mechanisms of Organic Materials in Soils by Physical Fractionation and NMR Spectroscopy." *Agriculture, Ecosystems & Environment* 171: 9–18.

Crow, S. E., T. R. Filley, M. McCormick, et al. 2009b. "Earthworms, Stand Age, and Species Composition Interact to Influence Particulate Organic Matter Chemistry During Forest Succession." *Biogeochemistry* 92: 61–82.

Cui, S., C. J. Zilverberg, V. G. Allen, et al. 2014. "Carbon and Nitrogen Responses of Three Old World Bluestems to Nitrogen Fertilization or Inclusion of a Legume." *Field Crops Research* 164: 45–53.

Curaqueo, G., E. Acevedo, P. Cornejo, A. Seguel, R. Rubio, and F. Borie. 2010. "Tillage Effect on Soil Organic Matter, Mycorrhizal Hyphae and Aggregates in a Mediterranean Agroecosystem." *Revista de la Ciencia del Suelo y Nutricion Vegetal* 10, no. 1: 12–21.

De Clercq, T., M. Heiling, G. Dercon, et al. 2015. "Predicting Soil Organic Matter Stability in Agricultural Fields Through Carbon and Nitrogen Stable Isotopes." *Soil Biology and Biochemistry* 88: 29–38.

DeGryze, S., J. Six, K. Paustian, S. J. Morris, E. A. Paul, and R. Merckx. 2004b. "Soil Organic Carbon Pool Changes Following Land-Use Conversions." *Global Change Biology* 10, no. 7: 1120–1132.

Denef, K., J. Six, K. Paustian, and R. Merckx. 2001b. "Importance of Macroaggregate Dynamics in Controlling Soil Carbon Stabilization: Short-Term Effects of Physical Disturbance Induced by Dry-Wet Cycles." *Soil Biology and Biochemistry* 33, no. 15: 2145–2153.

Desrochers, J., K. R. Brye, E. Gbur, E. D. Pollock, and M. C. Savin. 2019. "Long-Term Residue and Water Management Practice Effects on Particulate Organic Matter in a Loessial Soil in Eastern Arkansas, USA." *Geoderma* 337: 792–804.

Devine, S., D. Markewitz, P. Hendrix, and D. Coleman. 2014. "Soil Aggregates and Associated Organic Matter Under Conventional Tillage, No-Tillage, and Forest Succession After Three Decades." *PLoS One* 9, no. 1: e84988.

Domínguez, G. F., G. V. García, G. A. Studdert, M. Agostini, S. N. Tourn, and M. N. Domingo. 2016. "Is Anaerobic Mineralizable Nitrogen Suitable as a Soil Quality/Health Indicator?" *Spanish Journal of Soil Science* 6, no. 2: 82–97.

Dorodnikov, M., Y. Kuzyakov, A. Fangmeier, and G. L. Wiesenberg. 2011. "C and N in Soil Organic Matter Density Fractions Under Elevated Atmospheric CO₂: Turnover vs. Stabilization." *Soil Biology and Biochemistry* 43, no. 3: 579–589.

Dos Reis Ferreira, C., E. C. da Silva Neto, M. G. Pereira, J. do Nascimento Guedes, J. S. Rosset, and L. H. C. dos Anjos. 2020. "Dynamics of Soil Aggregation and Organic Carbon Fractions Over 23 Years of No-Till Management." *Soil and Tillage Research* 198: 104533.

Dou, X., P. He, P. Zhu, and W. Zhou. 2016a. "Soil Organic Carbon Dynamics Under Long-Term Fertilization in a Black Soil of China: Evidence From Stable C Isotopes." *Scientific Reports* 6, no. 1: 21488.

Dou, X., X. Xu, X. Shu, Q. Zhang, and X. Cheng. 2016b. "Shifts in Soil Organic Carbon and Nitrogen Dynamics for Afforestation in Central China." *Ecological Engineering* 87: 263–270.

Du, Z., T. Ren, C. Hu, and Q. Zhang. 2015. "Transition From Intensive Tillage to No-Till Enhances Carbon Sequestration in Microaggregates of Surface Soil in the North China Plain." *Soil and Tillage Research* 146: 26–31.

Duan, Y., L. Chen, Y. Li, et al. 2021. "N, P and Straw Return Influence the Accrual of Organic Carbon Fractions and Microbial Traits in a Mollisol." *Geoderma* 403: 115373.

Duval, M. E., J. A. Galantini, J. M. Martínez, and F. Limbozzi. 2018. "Labile Soil Organic Carbon for Assessing Soil Quality: Influence of Management Practices and Edaphic Conditions." *Catena* 171: 316–326.

Dwivedi, S., A. Singh, S. Kumar, U. Shahi, and K. Khilari. 2017. "Tillage and Nitrogen Management on Performance of Wheat (*Triticum aestivum*) Under Subtropical Climatic Condition." *International Journal of Chemical Studies* 5: 317–322.

Enriquez, A. S., and M. V. Cremona. 2018. "Particulate Organic Carbon Is a Sensitive Indicator of Soil Degradation Related to Overgrazing in Patagonian Wet and Mesic Meadows." *Wetlands Ecology and Management* 26, no. 3: 345–357.

Erfanzadeh, R., B. Bahrami, J. Motamedi, G. A. Dianati Tilaki, and M. Abedi. 2016. "Impact of Dominant Shrub Species on Soil Organic Matter Content in Dry Grassland Habitats." *ECOPERSIA* 4, no. 2: 1379–1393.

Eze, S., S. M. Palmer, and P. J. Chapman. 2018. "Soil Organic Carbon Stock and Fractional Distribution in Upland Grasslands." *Geoderma* 314: 175–183.

Fabrizzi, K. P., A. Moron, and F. O. García. 2003. "Soil Carbon and Nitrogen Organic Fractions in Degraded vs. Non-Degraded Mollisols in Argentina." *Soil Science Society of America Journal* 67, no. 6: 1831–1841.

Fang, X.-M., G. G. Wang, Z.-J. Xu, et al. 2021. "Litter Addition and Understory Removal Influenced Soil Organic Carbon Quality and Mineral Nitrogen Supply in a Subtropical Plantation Forest." *Plant and Soil* 460: 527–540.

Fang, X.-M., X.-L. Zhang, F.-S. Chen, et al. 2019. "Phosphorus Addition Alters the Response of Soil Organic Carbon Decomposition to Nitrogen Deposition in a Subtropical Forest." *Soil Biology and Biochemistry* 133: 119–128.

Fernandes, M. F., A. C. Barreto, I. C. Mendes, and R. P. Dick. 2011. "Short-Term Response of Physical and Chemical Aspects of Soil Quality of a Kaolinitic Kandiudalfs to Agricultural Practices and Its Association With Microbiological Variables." *Agriculture, Ecosystems & Environment* 142, no. 3–4: 419–427.

Fiedler, S., B. S. Höll, A. Freibauer, et al. 2008. "Particulate Organic Carbon (POC) in Relation to Other Pore Water Carbon Fractions in Drained and Rewetted Fens in Southern Germany." *Biogeosciences* 5, no. 6: 1615–1623. <https://doi.org/10.5194/bg-5-1615-2008>.

Figueiredo, C. C. d., D. V. S. Resck, and M. A. C. Carneiro. 2010. "Labile and Stable Fractions of Soil Organic Matter Under Management Systems and Native Cerrado." *Revista Brasileira de Ciência Do Solo* 34: 907–916.

Franzluebbers, A., and M. Arshad. 1997. "Particulate Organic Carbon Content and Potential Mineralization as Affected by Tillage and Texture." *Soil Science Society of America Journal* 61, no. 5: 1382–1386.

Franzluebbers, A., G. Langdale, and H. Schomberg. 1999. "Soil Carbon, Nitrogen, and Aggregation in Response to Type and Frequency of Tillage." *Soil Science Society of America Journal* 63, no. 2: 349–355.

Franzluebbers, A., and J. Stuedemann. 2002. "Particulate and Non-Particulate Fractions of Soil Organic Carbon Under Pastures in the Southern Piedmont USA." *Environmental Pollution* 116: S53–S62.

Galantini, J., and R. Rosell. 2006. "Long-Term Fertilization Effects on Soil Organic Matter Quality and Dynamics Under Different Production Systems in Semiarid Pampean Soils." *Soil and Tillage Research* 87, no. 1: 72–79.

Galdos, M., C. C. Cerri, and C. E. P. Cerri. 2009. "Soil Carbon Stocks Under Burned and Unburned Sugarcane in Brazil." *Geoderma* 153, no. 3–4: 347–352.

Garcia, R. A., Y. Li, and C. A. Rosolem. 2013. "Soil Organic Matter and Physical Attributes Affected by Crop Rotation Under No-Till." *Soil Science Society of America Journal* 77, no. 5: 1724–1731.

Garcia-Franco, N., M. Wiesmeier, M. Goberna, M. Martínez-Mena, and J. Albaladejo. 2014. "Carbon Dynamics After Afforestation of Semiarid Shrublands: Implications of Site Preparation Techniques." *Forest Ecology and Management* 319: 107–115.

Gartzia-Bengoetxea, N., A. Gonzalez-Arias, A. Merino, and I. M. de Arano. 2009. "Soil Organic Matter in Soil Physical Fractions in Adjacent Semi-Natural and Cultivated Stands in Temperate Atlantic Forests." *Soil Biology and Biochemistry* 41, no. 8: 1674–1683.

Geng, J., S. Cheng, H. Fang, et al. 2019. "Different Molecular Characterization of Soil Particulate Fractions Under N Deposition in a Subtropical Forest." *Forests* 10, no. 10: 914.

Gentsch, N., R. Mikutta, O. Shibalova, et al. 2015. "Properties and Bioavailability of Particulate and Mineral-Associated Organic Matter in Arctic Permafrost Soils, Lower Kolema Region, Russia." *European Journal of Soil Science* 66, no. 4: 722–734.

Gill, R. A., and I. C. Burke. 1999. "Ecosystem Consequences of Plant Life Form Changes at Three Sites in the Semiarid United States." *Oecologia* 121: 551–563.

Greenberg, I., M. Kaiser, A. Gunina, et al. 2019. "Substitution of Mineral Fertilizers With Biogas Digestate Plus Biochar Increases Physically

Stabilized Soil Carbon but Not Crop Biomass in a Field Trial." *Science of the Total Environment* 680: 181–189.

Gregorich, E., M. Carter, D. Angers, and C. Drury. 2009. "Using a Sequential Density and Particle-Size Fractionation to Evaluate Carbon and Nitrogen Storage in the Profile of Tilled and No-Till Soils in Eastern Canada." *Canadian Journal of Soil Science* 89, no. 3: 255–267.

Grünewald, G., K. Kaiser, R. Jahn, and G. Guggenberger. 2006. "Organic Matter Stabilization in Young Calcareous Soils as Revealed by Density Fractionation and Analysis of Lignin-Derived Constituents." *Organic Geochemistry* 37, no. 11: 1573–1589.

Gu, C., Y. Liu, I. Mohamed, et al. 2016. "Dynamic Changes of Soil Surface Organic Carbon Under Different Mulching Practices in Citrus Orchards on Sloping Land." *PLoS One* 11, no. 12: e0168384.

Guidi, C., J. Magid, M. Rodeghiero, D. Gianelle, and L. Vesterdal. 2014. "Effects of Forest Expansion on Mountain Grassland: Changes Within Soil Organic Carbon Fractions." *Plant and Soil* 385: 373–387.

Guo, X., L. Luo, Y. Ma, and S. Zhang. 2010. "Sorption of Polycyclic Aromatic Hydrocarbons on Particulate Organic Matters." *Journal of Hazardous Materials* 173, no. 1–3: 130–136.

Guo, Z., Z. Zhang, H. Zhou, D. Wang, and X. Peng. 2019. "The Effect of 34-Year Continuous Fertilization on the SOC Physical Fractions and Its Chemical Composition in a Vertisol." *Scientific Reports* 9, no. 1: 2505.

Guretzky, J. A., A. B. Wingeier, W. H. Schacht, T. J. Klopfenstein, and A. Watson. 2014. "Soil Organic Matter and Root and Rhizome Responses to Management Strategies in Smooth Bromegrass Pastures." *Agronomy Journal* 106, no. 5: 1886–1892.

Ha, K. V., P. Marschner, and E. K. Büinemann. 2008. "Dynamics of C, N, P and Microbial Community Composition in Particulate Soil Organic Matter During Residue Decomposition." *Plant and Soil* 303, no. 1: 253–264. <https://doi.org/10.1007/s11104-007-9504-1>.

Haghverdi, K., and Y. Kooch. 2019. "Effects of Diversity of Tree Species on Nutrient Cycling and Soil-Related Processes." *Catena* 178: 335–344.

Haghverdi, K., and Y. Kooch. 2020. "Soil Carbon and Nitrogen Fractions in Response to Land Use/Cover Changes." *Acta Oecologica* 109: 103659.

Hai, L., X. G. Li, F. M. Li, D. R. Suo, and G. Guggenberger. 2010. "Long-Term Fertilization and Manuring Effects on Physically-Separated Soil Organic Matter Pools Under a Wheat–Wheat–Maize Cropping System in an Arid Region of China." *Soil Biology and Biochemistry* 42, no. 2: 253–259. <https://doi.org/10.1016/j.soilbio.2009.10.023>.

Handayani, I., M. S. Coyne, and R. Tokosh. 2010. "Soil Organic Matter Fractions and Aggregate Distribution in Response to Tall Fescue Stands." *International Journal of Soil Science* 5, no. 1: 1–10.

He, X., Y. Huang, Q. Zhang, S. Ye, and S. Wang. 2021. "Distribution of Organic Carbon Fractions in Soil Aggregates in Chinese Fir Plantations With Different Stand Ages." *Ecological Processes* 10: 1–13.

He, Y., W. Zhang, M. Xu, et al. 2015. "Long-Term Combined Chemical and Manure Fertilizations Increase Soil Organic Carbon and Total Nitrogen in Aggregate Fractions at Three Typical Cropland Soils in China." *Science of the Total Environment* 532: 635–644.

Helfrich, M., B. Ludwig, P. Buurman, and H. Flessa. 2006. "Effect of Land Use on the Composition of Soil Organic Matter in Density and Aggregate Fractions as Revealed by Solid-State ^{13}C NMR Spectroscopy." *Geoderma* 136, no. 1–2: 331–341.

Hernandez-Ramirez, G., S. M. Brouder, D. R. Smith, and G. E. Van Scyoc. 2009. "Carbon and Nitrogen Dynamics in an Eastern Corn Belt Soil: Nitrogen Source and Rotation." *Soil Science Society of America Journal* 73, no. 1: 128–137.

Höfle, S., J. Rethemeyer, C. W. Mueller, and S. John. 2013. "Organic Matter Composition and Stabilization in a Polygonal Tundra Soil of the Lena Delta." *Biogeosciences* 10, no. 5: 3145–3158. <https://doi.org/10.5194/bg-10-3145-2013>.

Hook, P. B., and I. C. Burke. 2000. "Biogeochemistry in a Shortgrass Landscape: Control by Topography, Soil Texture, and Microclimate." *Ecology* 81, no. 10: 2686–2703.

Hussain, I., and K. Olson. 2012. "Factor Analysis of Tillage Effects on Soil Properties of Grantsburg Soils in Southern Illinois Under Corn and Soybean." *Pakistan Journal of Botany* 44, no. 2: 795–800.

Ibrahim, M., C.-G. Cao, M. Zhan, C.-F. Li, and J. Iqbal. 2015. "Changes in CO_2 Emission and Labile Organic Carbon Influenced by Rice Straw and Different Water Regimes." *International Journal of Environmental Science and Technology* 12: 263–274.

Joshi, S., R. Bajpai, P. Kumar, et al. 2017. "Soil Organic Carbon Dynamics in a Chhattisgarh Vertisol After Use of a Rice–Wheat System for 16 Years." *Agronomy Journal* 109, no. 6: 2556–2569.

Karhu, K., H. Fritze, M. Tuomi, et al. 2010. "Temperature Sensitivity of Organic Matter Decomposition in Two Boreal Forest Soil Profiles." *Soil Biology and Biochemistry* 42, no. 1: 72–82.

Knowles, M. E., D. S. Ross, and J. H. Görres. 2016. "Effect of the Endogeic Earthworm *Aporrectodea tuberculata* on Aggregation and Carbon Redistribution in Uninvaded Forest Soil Columns." *Soil Biology and Biochemistry* 100: 192–200.

Kölbl, A., and I. Kögel-Knabner. 2004b. "Content and Composition of Free and Occluded Particulate Organic Matter in a Differently Textured Arable Cambisol as Revealed by Solid-State ^{13}C NMR Spectroscopy." *Journal of Plant Nutrition and Soil Science* 167, no. 1: 45–53.

Kölbl, A., M. Steffens, M. Wiesmeier, et al. 2011. "Grazing Changes Topography-Controlled Topsoil Properties and Their Interaction on Different Spatial Scales in a Semi-Arid Grassland of Inner Mongolia, PR China." *Plant and Soil* 340: 35–58.

Kooch, Y., and M. Bayranvand. 2017. "Composition of Tree Species Can Mediate Spatial Variability of C and N Cycles in Mixed Beech Forests." *Forest Ecology and Management* 401: 55–64.

Kooch, Y., and M. Bayranvand. 2019. "Labile Soil Organic Matter Changes Related to Forest Floor Quality of Tree Species Mixtures in Oriental Beech Forests." *Ecological Indicators* 107: 105598.

Kooch, Y., S. Ehsani, and M. Akbarinia. 2019a. "Stoichiometry of Microbial Indicators Shows Clearly More Soil Responses to Land Cover Changes Than Absolute Microbial Activities." *Ecological Engineering* 131: 99–106.

Kooch, Y., M. A. Mehr, and S. M. Hosseini. 2020a. "The Effect of Forest Degradation Intensity on Soil Function Indicators in Northern Iran." *Ecological Indicators* 114: 106324.

Kooch, Y., N. Moghimian, S. Wirth, and N. Noghre. 2020b. "Effects of Grazing Management on Leaf Litter Decomposition and Soil Microbial Activities in Northern Iranian Rangeland." *Geoderma* 361: 114100.

Kooch, Y., and N. Noghre. 2020. "Nutrient Cycling and Soil-Related Processes Under Different Land Covers of Semi-Arid Rangeland Ecosystems in Northern Iran." *Catena* 193: 104621.

Kooch, Y., R. Sanji, and M. Tabari. 2019b. "The Effect of Vegetation Change in C and N Contents in Litter and Soil Organic Fractions of a Northern Iran Temperate Forest." *Catena* 178: 32–39.

Kooch, Y., M. Tavakoli, and M. Akbarinia. 2018. "Microbial/Biochemical Indicators Showing Perceptible Deterioration in the Topsoil due to Deforestation." *Ecological Indicators* 91: 84–91.

Krueger, I., C. Schulz, and W. Borken. 2017. "Stocks and Dynamics of Soil Organic Carbon and Coarse Woody Debris in Three Managed and Unmanaged Temperate Forests." *European Journal of Forest Research* 136: 123–137.

Kumar, A., S. Kumar, D. Sachan, et al. 2018a. "Carbon, Nitrogen Dynamics and Soil Organic Carbon Retention Potential After 18 Years by Different Land Uses and Nitrogen Management in RWCS Under Typic Ustochrept Soil." *International Journal of Current Microbiology and Applied Sciences* 7, no. 12: 3376–3399.

Kumar, S., A. K. Singh, and P. Ghosh. 2018b. "Distribution of Soil Organic Carbon and Glomalin Related Soil Protein in Reclaimed Coal Mine-Land Chronosequence Under Tropical Condition." *Science of the Total Environment* 625: 1341–1350.

Kumar, V., R. Naresh, S. Kumar, et al. 2018c. "Tillage, Crop Residue, and Nitrogen Levels on Dynamics of Soil Labile Organic Carbon Fractions, Productivity and Grain Quality of Wheat Crop in Typic Ustochrept Soil." *Journal of Pharmacognosy and Phytochemistry* 7, no. 1: 598–609.

Lagomarsino, A., S. Grego, and E. Kandeler. 2012. "Soil Organic Carbon Distribution Drives Microbial Activity and Functional Diversity in Particle and Aggregate-Size Fractions." *Pedobiologia* 55, no. 2: 101–110.

Larroulet, M. S., E. N. Hepper, M. P. Á. Redondo, V. Belmonte, and A. M. Urioste. 2016. "The Caldenal Ecosystem: Effects of a Prescribed Burning on Soil Chemical Properties." *Arid Land Research and Management* 30, no. 1: 105–119.

Lawal, H. M. 2013. "Soil Aggregate Fractions and Organic Carbon Pools as Influenced by Tree Diversity in Forest Reserve of Semiarid Nigeria." *Tropical and Subtropical Agroecosystems* 16, no. 3: 515–523.

Li, H., X. Han, F. Wang, Y. Qiao, and B. Xing. 2007. "Impact of Soil Management on Organic Carbon Content and Aggregate Stability." *Communications in Soil Science and Plant Analysis* 38, no. 13–14: 1673–1690.

Li, J., G. H. Ramirez, M. Kiani, et al. 2018a. "Soil Organic Matter Dynamics in Long-Term Temperate Agroecosystems: Rotation and Nutrient Addition Effects." *Canadian Journal of Soil Science* 98, no. 2: 232–245.

Li, J., Y. Wen, X. Li, et al. 2018b. "Soil Labile Organic Carbon Fractions and Soil Organic Carbon Stocks as Affected by Long-Term Organic and Mineral Fertilization Regimes in the North China Plain." *Soil and Tillage Research* 175: 281–290.

Li, Z., D. Li, L. Ma, Y. Yu, B. Zhao, and J. Zhang. 2019. "Effects of Straw Management and Nitrogen Application Rate on Soil Organic Matter Fractions and Microbial Properties in North China Plain." *Journal of Soils and Sediments* 19: 618–628.

Lian, T., G. Wang, Z. Yu, Y. Li, X. Liu, and J. Jin. 2016. "Carbon Input From 13 C-Labelled Soybean Residues in Particulate Organic Carbon Fractions in a Mollisol." *Biology and Fertility of Soils* 52: 331–339.

Liang, C. H., Y. Yan, and C. Qian. 2014. "Dynamics of Soil Organic Carbon Fractions and Aggregates in Vegetable Cropping Systems." *Pedosphere* 24, no. 5: 605–612.

Liang, Q., H. Chen, Y. Gong, et al. 2012. "Effects of 15 Years of Manure and Inorganic Fertilizers on Soil Organic Carbon Fractions in a Wheat-Maize System in the North China Plain." *Nutrient Cycling in Agroecosystems* 92: 21–33.

Liao, J., T. Boutton, and J. Jastrow. 2006a. "Organic Matter Turnover in Soil Physical Fractions Following Woody Plant Invasion of Grassland: Evidence From Natural ¹³C and ¹⁵N." *Soil Biology and Biochemistry* 38, no. 11: 3197–3210.

Liao, J., T. Boutton, and J. Jastrow. 2006b. "Storage and Dynamics of Carbon and Nitrogen in Soil Physical Fractions Following Woody Plant Invasion of Grassland." *Soil Biology and Biochemistry* 38, no. 11: 3184–3196.

Liebig, M. A., D. Tanaka, and B. J. Wienhold. 2004. "Tillage and Cropping Effects on Soil Quality Indicators in the Northern Great Plains." *Soil and Tillage Research* 78, no. 2: 131–141.

Link, S. O., J. L. Smith, J. J. Halvorson, and H. Bolton Jr. 2003. "A Reciprocal Transplant Experiment Within a Climatic Gradient in a Semiarid Shrub-Steppe Ecosystem: Effects on Bunchgrass Growth and Reproduction, Soil Carbon, and Soil Nitrogen." *Global Change Biology* 9, no. 7: 1097–1105.

Liu, F., Y. Zhang, and J. Luo. 2018. "The Effects of Experimental Warming and CO₂ Concentration Doubling on Soil Organic Carbon Fractions of a Montane Coniferous Forest on the Eastern Qinghai-Tibetan Plateau." *European Journal of Forest Research* 137: 211–221.

Loss, A., M. G. Pereira, A. Perin, F. S. Coutinho, and L. H. C. dos Anjos. 2013. "Particulate Organic Matter in Soil Under Different Management Systems in the Brazilian Cerrado." *Soil Research* 50, no. 8: 685–693.

Lu, X., H. Hu, and L. Sun. 2017. "Effect of Fire Disturbance on Active Organic Carbon of *Larix gmelinii* Forest Soil in Northeastern China." *Journal of Forestry Research* 28, no. 4: 763–774.

Luan, J., C. Xiang, S. Liu, Z. Luo, Y. Gong, and X. Zhu. 2010. "Assessments of the Impacts of Chinese Fir Plantation and Natural Regenerated Forest on Soil Organic Matter Quality at Longmen Mountain, Sichuan, China." *Geoderma* 156, no. 3–4: 228–236.

Madhavan, D. B., J. A. Baldock, Z. J. Read, et al. 2017. "Rapid Prediction of Particulate, Humus and Resistant Fractions of Soil Organic Carbon in Reforested Lands Using Infrared Spectroscopy." *Journal of Environmental Management* 193: 290–299.

Mandal, N., B. S. Dwivedi, M. C. Meena, et al. 2013. "Effect of Induced Defoliation in Pigeonpea, Farmyard Manure and Sulphitation Pressmud on Soil Organic Carbon Fractions, Mineral Nitrogen and Crop Yields in a Pigeonpea–Wheat Cropping System." *Field Crops Research* 154: 178–187.

Manna, M. C., A. Swarup, R. Wanjari, B. Mishra, and D. Shahi. 2007. "Long-Term Fertilization, Manure and Liming Effects on Soil Organic Matter and Crop Yields." *Soil and Tillage Research* 94, no. 2: 397–409.

Mao, R., and D.-H. Zeng. 2010. "Changes in Soil Particulate Organic Matter, Microbial Biomass, and Activity Following Afforestation of Marginal Agricultural Lands in a Semi-Arid Area of Northeast China." *Environmental Management* 46: 110–116.

Martins, M. R., D. A. Angers, and J. E. Corá. 2012. "Co-Accumulation of Microbial Residues and Particulate Organic Matter in the Surface Layer of a No-Till Oxisol Under Different Crops." *Soil Biology and Biochemistry* 50: 208–213.

Martinsen, V., J. Mulder, G. Austrheim, and A. Mysterud. 2011. "Carbon Storage in Low-Alpine Grassland Soils: Effects of Different Grazing Intensities of Sheep." *European Journal of Soil Science* 62, no. 6: 822–833.

Mayzelle, M. M., M. L. Krusor, K. Lajtha, R. D. Bowden, and J. Six. 2014. "Effects of Detrital Inputs and Roots on Carbon Saturation Deficit of a Temperate Forest Soil." *Soil Science Society of America Journal* 78, no. S1: S76–S83.

Meyer, S., J. Leifeld, M. Bahn, and J. Fuhrer. 2012. "Free and Protected Soil Organic Carbon Dynamics Respond Differently to Abandonment of Mountain Grassland." *Biogeosciences* 9, no. 2: 853–865.

Mikha, M. M., M. F. Vigil, and J. G. Benjamin. 2013. "Long-Term Tillage Impacts on Soil Aggregation and Carbon Dynamics Under Wheat-Fallow in the Central Great Plains." *Soil Science Society of America Journal* 77, no. 2: 594–605.

Mirsky, S. B., L. E. Lanyon, and B. A. Needelman. 2008. "Evaluating Soil Management Using Particulate and Chemically Labile Soil Organic Matter Fractions." *Soil Science Society of America Journal* 72, no. 1: 180–185.

Mondal, S., T. Das, P. Thomas, et al. 2019. "Effect of Conservation Agriculture on Soil Hydro-Physical Properties, Total and Particulate Organic Carbon and Root Morphology in Wheat (*Triticum aestivum*) Under Rice (*Oryza sativa*)-Wheat System." *Indian Journal of Agricultural Sciences* 89, no. 1: 46–55.

Moran, K. K., and J. D. Jastrow. 2010. "Elevated Carbon Dioxide Does Not Offset Loss of Soil Carbon From a Corn–Soybean Agroecosystem." *Environmental Pollution* 158, no. 4: 1088–1094.

Mrabet, R., N. Saber, A. El-Brahli, S. Lahlou, and F. Bessam. 2001. "Total, Particulate Organic Matter and Structural Stability of a Calcixeroll Soil Under Different Wheat Rotations and Tillage Systems in a Semi-arid Area of Morocco." *Soil and Tillage Research* 57, no. 4: 225–235.

Mueller, C. W., and I. Koegel-Knabner. 2009. "Soil Organic Carbon Stocks, Distribution, and Composition Affected by Historic Land Use Changes on Adjacent Sites." *Biology and Fertility of Soils* 45, no. 4: 347–359.

Mustafa, A., J. Frouz, M. Naveed, et al. 2022. "Stability of Soil Organic Carbon Under Long-Term Fertilization: Results From ¹³C NMR Analysis and Laboratory Incubation." *Environmental Research* 205: 112476.

Naresh, R., R. K. Gupta, M. Jat, et al. 2016. "Tillage, Irrigation Levels and Rice Straw Mulches Effects on Wheat Productivity, Soil Aggregates and Soil Organic Carbon Dynamics After Rice in Sandy Loam Soils of Subtropical Climatic Conditions." *Journal of Pure and Applied Microbiology* 10: 1987–2002.

Naresh, R., A. Kumar, S. Bhaskar, and S. Dhaliwal. 2017. "Organic Matter Fractions and Soil Carbon Sequestration After 15-Years of Integrated Nutrient Management and Tillage Systems in an Annual Double Cropping System in Northern India." *Journal of Pharmacognosy and Phytochemistry* 6, no. 6: 670–683.

Nayak, A., B. Gangwar, A. K. Shukla, et al. 2012. "Long-Term Effect of Different Integrated Nutrient Management on Soil Organic Carbon and Its Fractions and Sustainability of Rice–Wheat System in Indo Gangetic Plains of India." *Field Crops Research* 127: 129–139.

Nciizah, A., and I. Wakindiki. 2012. "Particulate Organic Matter, Soil Texture and Mineralogy Relations in Some Eastern Cape Ecotopes in South Africa." *South African Journal of Plant and Soil* 29, no. 1: 39–46.

Neufeldt, H., D. V. Resck, and M. A. Ayarza. 2002. "Texture and Land-Use Effects on Soil Organic Matter in Cerrado Oxisols, Central Brazil." *Geoderma* 107, no. 3–4: 151–164.

Nyawade, S., N. Karanja, C. Gachene, M. Parker, and E. Schulte-Geldermann. 2018. "Susceptibility of Soil Organic Matter Fractions to Soil Erosion Under Potato-Legume Intercropping Systems in Central Kenya." *Journal of Soil and Water Conservation* 73, no. 5: 567–576.

O'Brien, S. L., and J. D. Jastrow. 2013. "Physical and Chemical Protection in Hierarchical Soil Aggregates Regulates Soil Carbon and Nitrogen Recovery in Restored Perennial Grasslands." *Soil Biology and Biochemistry* 61: 1–13.

Oduor, C., N. Karanja, R. Onwonga, S. M. Mureithi, D. Pelster, and G. Nyberg. 2018. "Enhancing Soil Organic Carbon, Particulate Organic Carbon and Microbial Biomass in Semi-Arid Rangeland Using Pasture Enclosures." *BMC Ecology* 18: 1–9.

Okubo, Y., T. Inoue, and K. Yokota. 2012. "Estimating Bioavailability of Soil Particulate Phosphorus to *Microcystis aeruginosa*." *Journal of Applied Phycology* 24: 1503–1507.

Oladele, S. O., and A. T. Adetunji. 2021. "Agro-Residue Biochar and N Fertilizer Addition Mitigates CO₂-C Emission and Stabilized Soil Organic Carbon Pools in a Rain-Fed Agricultural Cropland." *International Soil and Water Conservation Research* 9, no. 1: 76–86.

Oliveira Filho, J. d. S., J. N. Vieira, E. M. Ribeiro da Silva, J. G. Beserra de Oliveira, M. G. Pereira, and F. G. Brasileiro. 2019. "Assessing the Effects of 17 Years of Grazing Exclusion in Degraded Semi-Arid Soils: Evaluation of Soil Fertility, Nutrients Pools and Stoichiometry." *Journal of Arid Environments* 166: 1–10. <https://doi.org/10.1016/j.jaridenv.2019.03.006>.

Ortiz, C., M. J. Fernández-Alonso, B. Kitzler, et al. 2022. "Variations in Soil Aggregation, Microbial Community Structure and Soil Organic Matter Cycling Associated to Long-Term Afforestation and Woody Encroachment in a Mediterranean Alpine Ecotone." *Geoderma* 405: 115450.

Ouédraogo, E., A. Mando, and L. Stroosnijder. 2006. "Effects of Tillage, Organic Resources and Nitrogen Fertiliser on Soil Carbon Dynamics and Crop Nitrogen Uptake in Semi-Arid West Africa." *Soil and Tillage Research* 91, no. 1–2: 57–67.

Paladino, I. R., A. C. Sokolowski, J. Irigoin, et al. 2018. "Soil Properties Evaluation in Horticultural Farms of Florencio Varela, Buenos Aires, Argentina." *Environmental Earth Sciences* 77: 1–8.

Parsapour, M. K., Y. Kooch, S. M. Hosseini, and S. J. Alavi. 2018a. "C and N Cycle Monitoring Under *Quercus Castaneifolia* Plantation." *Forest Ecology and Management* 427: 26–36.

Parsapour, M. K., Y. Kooch, S. M. Hosseini, and S. J. Alavi. 2018b. "Litter and Topsoil in *Alnus Subcordata* Plantation on Former Degraded Natural Forest Land: A Synthesis of Age-Sequence." *Soil and Tillage Research* 179: 1–10.

Peng, L., W. Liu, C. Su, et al. 2012. "Effects of Different Organic Residues on Rice Yield and Soil Quality." *Journal of Mountain Science* 9: 715–722.

Peregrina, F., C. Larrieta, S. Ibáñez, and E. García-Escudero. 2010. "Labile Organic Matter, Aggregates, and Stratification Ratios in a Semi-arid Vineyard With Cover Crops." *Soil Science Society of America Journal* 74, no. 6: 2120–2130.

Piccolo, G., J. Galantini, and R. Rosell. 2004. "Organic Carbon Fractions in a Yerba Mate Plantation on a Subtropical Kandihumult of Argentina." *Geoderma* 123, no. 3–4: 333–341.

Puissant, J., R. T. Mills, B. J. Robroek, et al. 2017. "Climate Change Effects on the Stability and Chemistry of Soil Organic Carbon Pools in a Subalpine Grassland." *Biogeochemistry* 132: 123–139.

Purakayastha, T., L. Rudrappa, D. Singh, A. Swarup, and S. Bhadraray. 2008. "Long-Term Impact of Fertilizers on Soil Organic Carbon Pools and Sequestration Rates in Maize–Wheat–Cowpea Cropping System." *Geoderma* 144, no. 1–2: 370–378.

Qi, R., J. Li, Z. Lin, et al. 2016b. "Temperature Effects on Soil Organic Carbon, Soil Labile Organic Carbon Fractions, and Soil Enzyme Activities Under Long-Term Fertilization Regimes." *Applied Soil Ecology* 102: 36–45.

Qiu, S., H. Gao, P. Zhu, et al. 2016. "Changes in Soil Carbon and Nitrogen Pools in a Mollisol After Long-Term Fallow or Application of Chemical Fertilizers, Straw or Manures." *Soil and Tillage Research* 163: 255–265.

Qu, X., X. Wang, J. Wu, and P. He. 2021. "Both Carbon Sequestration and Yield Are Related to Particulate Organic Carbon Stability Affected by Organic Amendment Origins in Mollisol." *Journal of Soils and Sediments* 21: 3044–3056.

Quan, G., and J. Yan. 2010. "Organic Carbon Characteristics of the Particulate Organic Carbon and Mineral Associated Organic Carbon in Yancheng Soils in Different Ecological Zones." *Earth and Environment* 2: 214–218.

Rocha Junior, P. d., G. Donagemma, F. Andrade, et al. 2014. "Can Soil Organic Carbon Pools Indicate the Degradation Levels of Pastures in the Atlantic Forest Biome?" *Journal of Agricultural Science* 6, no. 1: 84–95.

Rudrappa, L., T. Purakayastha, D. Singh, and S. Bhadraray. 2006. "Long-Term Manuring and Fertilization Effects on Soil Organic Carbon Pools in a Typic Haplustept of Semi-Arid Sub-Tropical India." *Soil and Tillage Research* 88, no. 192: 180.

Sainepo, B. M., C. K. Gachene, and A. Karuma. 2018. "Assessment of Soil Organic Carbon Fractions and Carbon Management Index Under Different Land Use Types in Olesharo Catchment, Narok County, Kenya." *Carbon Balance and Management* 13: 1–9.

Salas, A., E. Elliott, D. Westfall, C. Cole, and J. Six. 2003. "The Role of Particulate Organic Matter in Phosphorus Cycling." *Soil Science Society of America Journal* 67, no. 1: 181–189.

Salek-Gilani, S., F. Raiesi, P. Tahmasebi, and N. Ghorbani. 2013. "Soil Organic Matter in Restored Rangelands Following Cessation of Rainfed

Cropping in a Mountainous Semi-Arid Landscape." *Nutrient Cycling in Agroecosystems* 96: 215–232.

Samson, M.-E., M. H. Chantigny, A. Vanasse, S. Menasseri-Aubry, I. Royer, and D. A. Angers. 2020. "Management Practices Differently Affect Particulate and Mineral-Associated Organic Matter and Their Precursors in Arable Soils." *Soil Biology and Biochemistry* 148: 107867.

Sánchez-de León, Y., J. Lugo-Pérez, D. H. Wise, J. D. Jastrow, and M. A. González-Meler. 2014. "Aggregate Formation and Carbon Sequestration by Earthworms in Soil From a Temperate Forest Exposed to Elevated Atmospheric CO₂: A Microcosm Experiment." *Soil Biology and Biochemistry* 68: 223–230.

Sayer, E. J., C. Baxendale, A. J. Birkett, et al. 2021. "Altered Litter Inputs Modify Carbon and Nitrogen Storage in Soil Organic Matter in a Lowland Tropical Forest." *Biogeochemistry* 156: 115–130.

Scharenbroch, B., M. Flores-Mangual, B. Lepore, J. Bockheim, and B. Lowery. 2010. "Tree Encroachment Impacts Carbon Dynamics in a Sand Prairie in Wisconsin." *Soil Science Society of America Journal* 74, no. 3: 956–968.

Schwendemann, L., and E. Pendall. 2006. "Effects of Forest Conversion Into Grassland on Soil Aggregate Structure and Carbon Storage in Panama: Evidence From Soil Carbon Fractionation and Stable Isotopes." *Plant and Soil* 288: 217–232.

Sébastia, J., F. VanOort, and I. Lamy. 2008. "Buffer Capacity and Cu Affinity of Soil Particulate Organic Matter (POM) Size Fractions." *European Journal of Soil Science* 59, no. 2: 304–314.

Semenov, V., T. Lebedeva, and N. Pautova. 2019. "Particulate Organic Matter in Noncultivated and Arable Soils." *Eurasian Soil Science* 52: 396–404.

Shahid, M., A. K. Nayak, C. Puree, et al. 2017. "Carbon and Nitrogen Fractions and Stocks Under 41 Years of Chemical and Organic Fertilization in a Sub-Humid Tropical Rice Soil." *Soil and Tillage Research* 170: 136–146.

Shen, D., C. Ye, Z. Hu, et al. 2018. "Increased Chemical Stability but Decreased Physical Protection of Soil Organic Carbon in Response to Nutrient Amendment in a Tibetan Alpine Meadow." *Soil Biology and Biochemistry* 126: 11–21.

Shi, J., Q. Wu, C. Zheng, and J. Yang. 2018. "The Interaction Between Particulate Organic Matter and Copper, Zinc in Paddy Soil." *Environmental Pollution* 243: 1394–1402.

Silveira, M. L., K. Liu, L. E. Sollenberger, R. F. Follett, and J. M. Vendramini. 2013. "Short-Term Effects of Grazing Intensity and Nitrogen Fertilization on Soil Organic Carbon Pools Under Perennial Grass Pastures in the Southeastern USA." *Soil Biology and Biochemistry* 58: 42–49.

Singh, A. K., A. Rai, and N. Singh. 2016. "Effect of Long-Term Land Use Systems on Fractions of Glomalin and Soil Organic Carbon in the Indo-Gangetic Plain." *Geoderma* 277: 41–50.

Six, J., A. Carpentier, C. van Kessel, et al. 2001b. "Impact of Elevated CO₂ on Soil Organic Matter Dynamics as Related to Changes in Aggregate Turnover and Residue Quality." *Plant and Soil* 234: 27–36.

Six, J., E. Elliott, K. Paustian, and J. Doran. 1998. "Aggregation and Soil Organic Matter Accumulation in Cultivated and Native Grassland Soils." *Soil Science Society of America Journal* 62, no. 5: 1367–1377.

Six, J., E. T. Elliott, and K. Paustian. 1999. "Aggregate and Soil Organic Matter Dynamics Under Conventional and no-Tillage Systems." *Soil Science Society of America Journal* 63, no. 5: 1350–1358.

Smith, A., E. Marín-Spiotta, M. De Graaff, and T. Balser. 2014. "Microbial Community Structure Varies Across Soil Organic Matter Aggregate Pools During Tropical Land Cover Change." *Soil Biology and Biochemistry* 77: 292–303.

Srinivasan, V., H. Maheswarappa, and R. Lal. 2012. "Long Term Effects of Topsoil Depth and Amendments on Particulate and Non Particulate Carbon Fractions in a Miamian Soil of Central Ohio." *Soil and Tillage Research* 121: 10–17.

Steffens, M., A. Kölbl, E. Schörk, B. Gschrey, and I. Kögel-Knabner. 2011. "Distribution of Soil Organic Matter Between Fractions and Aggregate Size Classes in Grazed Semiarid Steppe Soil Profiles." *Plant and Soil* 338: 63–81.

Stewart, C. E., R. F. Follett, J. Wallace, and E. G. Pruessner. 2012. "Impact of Biosolids and Tillage on Soil Organic Matter Fractions: Implications of Carbon Saturation for Conservation Management in the Virginia Coastal Plain." *Soil Science Society of America Journal* 76, no. 4: 1257–1267.

Su, Y., Z. He, Y. Yang, et al. 2020. "Linking Soil Microbial Community Dynamics to Straw-Carbon Distribution in Soil Organic Carbon." *Scientific Reports* 10, no. 1: 5526.

Sugihara, S., M. Shibata, A. D. Mvondo-Ze, S. Araki, T. Kosaki, and S. Funakawa. 2017. "Soil Phosphorus of Stable Fraction Differentially Associate With Carbon in the Tropical Forest and Savanna of Eastern Cameroon." *Soil Science and Plant Nutrition* 63, no. 6: 616–627.

Tai, J., Z. Jin, L. Cui, and G. Pan. 2011. "Changes in Soil Organic Varbon Fractions With Land Uses in Soils Reclaimed From Wetlands of Jianghan Plain, Hubei Province." *Journal of Soil and Water Conservation* 25: 6.

Terra, J. A., F. García Précac, L. Salvo, and J. Hernández. 2006. "Soil Use Intensity Impacts on Total and Particulate Soil Organic Matter in No-Till Crop-Pasture Rotations Under Direct Grazing." *Advances in Geocology* 38: 233–241.

Thangavel, R., M. Kanchikermath, A. Sudharsanam, et al. 2018. "Evaluating Organic Carbon Fractions, Temperature Sensitivity and Artificial Neural Network Modeling of CO₂ Efflux in Soils: Impact of Land Use Change in Subtropical India (Meghalaya)." *Ecological Indicators* 93: 129–141.

Tian, J., Y. Lou, Y. Gao, et al. 2017. "Response of Soil Organic Matter Fractions and Composition of Microbial Community to Long-Term Organic and Mineral Fertilization." *Biology and Fertility of Soils* 53: 523–532.

Tian, J., L. McCormack, J. Wang, et al. 2015. "Linkages Between the Soil Organic Matter Fractions and the Microbial Metabolic Functional Diversity Within a Broad-Leaved Korean Pine Forest." *European Journal of Soil Biology* 66: 57–64.

Tian, J., J. Wang, M. Dippold, Y. Gao, E. Blagodatskaya, and Y. Kuzyakov. 2016. "Biochar Affects Soil Organic Matter Cycling and Microbial Functions but Does Not Alter Microbial Community Structure in a Paddy Soil." *Science of the Total Environment* 556: 89–97.

Trigalet, S., M. A. Gabarrón-Galeote, K. Van Oost, and B. van Wesemael. 2016. "Changes in Soil Organic Carbon Pools Along a Chronosequence of Land Abandonment in Southern Spain." *Geoderma* 268: 14–21.

Udom, B., and U. Simon. 2020. "Effect of Land-Use on Particulate Organic Carbon and Carbohydrates Distributions in Dry-and Wet-Sieved Stable Aggregates in an Ultisol." *Nigerian Journal of Soil Sciences* 30, no. 3: 1–8.

Uhlířová, E., H. Šantrůčková, and S. Davidov. 2007. "Quality and Potential Biodegradability of Soil Organic Matter Preserved in Permafrost of Siberian Tussock Tundra." *Soil Biology and Biochemistry* 39, no. 8: 1978–1989.

Wander, M., M. Bidart, and S. Aref. 1998. "Tillage Impacts on Depth Distribution of Total and Particulate Organic Matter in Three Illinois Soils." *Soil Science Society of America Journal* 62, no. 6: 1704–1711.

Wander, M., W. Yun, W. Goldstein, S. Aref, and S. Khan. 2007. "Organic N and Particulate Organic Matter Fractions in Organic and Conventional Farming Systems With a History of Manure Application." *Plant and Soil* 291: 311–321.

Wander, M. M., and G. Bollero. 1999. "Soil Quality Assessment of Tillage Impacts in Illinois." *Soil Science Society of America Journal* 63, no. 4: 961–971.

Wang, Q., P. Zhang, and X. Meng. 2012. "Changes of Surface Soil Organic Carbon Components and Its Quality in the Wetlands With Different Duration of Recovery From Farmlands in Caizi Lake of Anhui Province, East China." *Chinese Journal of Ecology* 31: 2038–2043.

Wasak, K., and M. Drewnik. 2015. "Land Use Effects on Soil Organic Carbon Sequestration in Calcareous Leptosols in Former Pastureland—a Case Study From the Tatra Mountains (Poland)." *Solid Earth* 6, no. 4: 1103–1115.

Wiesmeier, M., P. Schad, M. von Lützow, et al. 2014. "Quantification of Functional Soil Organic Carbon Pools for Major Soil Units and Land Uses in Southeast Germany (Bavaria)." *Agriculture, Ecosystems & Environment* 185: 208–220.

Xiang, H., L. Zhang, and D. Wen. 2015. "Change of Soil Carbon Fractions and Water-Stable Aggregates in a Forest Ecosystem Succession in South China." *Forests* 6, no. 8: 2703–2718.

Xiao, L., W. Zhang, P. Hu, et al. 2021b. "The Formation of Large Macroaggregates Induces Soil Organic Carbon Sequestration in Short-Term Cropland Restoration in a Typical Karst Area." *Science of the Total Environment* 801: 149588.

Xie, H., J. Li, P. Zhu, et al. 2014. "Long-Term Manure Amendments Enhance Neutral Sugar Accumulation in Bulk Soil and Particulate Organic Matter in a Mollisol." *Soil Biology and Biochemistry* 78: 45–53.

Yan, D., D. Wang, and L. Yang. 2007. "Long-Term Effect of Chemical Fertilizer, Straw, and Manure on Labile Organic Matter Fractions in a Paddy Soil." *Biology and Fertility of Soils* 44: 93–101.

Yan, Y., L. Cheng-Hua, and P. Zhong-Jian. 2015. "Effect of Greenhouse Soil Management on Soil Aggregation and Organic Matter in Northeast China." *Catena* 133: 412–419.

Yang, C., L. Yang, and Z. Ouyang. 2005. "Organic Carbon and Its Fractions in Paddy Soil as Affected by Different Nutrient and Water Regimes." *Geoderma* 124, no. 142: 133–142.

Yang, F., J. Tian, H. Fang, et al. 2019. "Functional Soil Organic Matter Fractions, Microbial Community, and Enzyme Activities in a Mollisol Under 35 Years Manure and Mineral Fertilization." *Journal of Soil Science and Plant Nutrition* 19: 430–439.

Yang, F., J. Tian, H. Fang, et al. 2018a. "Spatial Heterogeneity of Microbial Community and Enzyme Activities in a Broad-Leaved Korean Pine Mixed Forest." *European Journal of Soil Biology* 88: 65–72.

Yang, W., H. Zhao, X. Leng, X. Cheng, and S. An. 2017. "Soil Organic Carbon and Nitrogen Dynamics Following *Spartina alterniflora* Invasion in a Coastal Wetland of Eastern China." *Catena* 156: 281–289.

Yang, X., W. Ren, B. Sun, and S. Zhang. 2012a. "Effects of Contrasting Soil Management Regimes on Total and Labile Soil Organic Carbon Fractions in a Loess Soil in China." *Geoderma* 177–178: 49–56. <https://doi.org/10.1016/j.geoderma.2012.01.033>.

Yang, X., H. Xie, C. Drury, W. Reynolds, J. Yang, and X. Zhang. 2012b. "Determination of Organic Carbon and Nitrogen in Particulate Organic Matter and Particle Size Fractions of Brookston Clay Loam Soil Using Infrared Spectroscopy." *European Journal of Soil Science* 63, no. 2: 177–188.

Yang, Y., J. Guo, G. Chen, Y. Yin, R. Gao, and C. Lin. 2009. "Effects of Forest Conversion on Soil Labile Organic Carbon Fractions and Aggregate Stability in Subtropical China." *Plant and Soil* 323: 153–162.

Yang, Y., X. Zhang, C. Zhang, et al. 2018b. "Understory Vegetation Plays a Key Role in Sustaining Soil Microbial Biomass and Extracellular Enzyme Activities." *Biogeosciences* 15, no. 14: 4481–4494.

Ye, C., S. J. Hall, and S. Hu. 2019. "Controls on Mineral-Associated Organic Matter Formation in a Degraded Oxisol." *Geoderma* 338: 383–392.

Yoo, G., H. Kim, J. Chen, and Y. Kim. 2014. "Effects of Biochar Addition on Nitrogen Leaching and Soil Structure Following Fertilizer Application to Rice Paddy Soil." *Soil Science Society of America Journal* 78, no. 3: 852–860.

Yu, M., Y.-P. Wang, J. A. Baldock, et al. 2020. "Divergent Responses of Soil Organic Carbon Accumulation to 14 Years of Nitrogen Addition in Two Typical Subtropical Forests." *Science of the Total Environment* 707: 136104.

Yuan, X., W. Qin, Y. Chen, T. Xu, K. Chen, and B. Zhu. 2021. "Plateau Pika Offsets the Positive Effects of Warming on Soil Organic Carbon in an Alpine Swamp Meadow on the Tibetan Plateau." *Catena* 204: 105417.

Yuan, X., W. Qin, H. Xu, Z. Zhang, H. Zhou, and B. Zhu. 2020. "Sensitivity of Soil Carbon Dynamics to Nitrogen and Phosphorus Enrichment in an Alpine Meadow." *Soil Biology and Biochemistry* 150: 107984.

Zhang, H., Q. Deng, D. Hui, et al. 2019. "Recovery in Soil Carbon Stock but Reduction in Carbon Stabilization After 56-Year Forest Restoration in Degraded Tropical Lands." *Forest Ecology and Management* 441: 1–8.

Zhang, L., X. Yang, C. Drury, et al. 2017. "Infrared Spectroscopy Prediction of Organic Carbon and Total Nitrogen in Soil and Particulate Organic Matter From Diverse Canadian Agricultural Regions." *Canadian Journal of Soil Science* 98, no. 1: 77–90.

Zhang, M., and Z. He. 2004. "Long-Term Changes in Organic Carbon and Nutrients of an Ultisol Under Rice Cropping in Southeast China." *Geoderma* 118, no. 3–4: 167–179.

Zhang, X.-H., L.-Q. Li, and G.-X. Pan. 2007. "Topsoil Organic Carbon Mineralization and CO₂ Evolution of Three Paddy Soils From South China and the Temperature Dependence." *Journal of Environmental Sciences* 19, no. 3: 319–326.

Zhao, F., L. Zhang, C. Ren, et al. 2016. "Effect of Microbial Carbon, Nitrogen, and Phosphorus Stoichiometry on Soil Carbon Fractions Under a Black Locust Forest Within the Central Loess Plateau of China." *Soil Science Society of America Journal* 80, no. 6: 1520–1530.

Supporting Information

Additional supporting information can be found online in the Supporting Information section.