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ABSTRACT

Wind is a common environmental factor in the behavior of animals,

such as the honey bees (Apis mellifera L.). Volatile pheromones are

one of the main communication signals in honey bees that can be

sensed and further propagated via the scenting behavior, in which

bees release pheromones and fan their wings to direct the signals.

While studies have correlated the e�ect of wind and the foraging

behavior of bees, we aim to study how wind, interacting with the

pheromone signals, can impact the resulting collective behavior of

the bees in the context of a swarm localizing their queen and aggre-

gating around her. We experimentally show that strong external

wind interferes with the aggregation around the queen by reduc-

ing the number of scenting bees in the communication network

and disrupting the directionality of the scenting signals. To further

understand the behavioral mechanisms that change with di�erent

wind conditions (direction and magnitude), we use an agent-based

model that simulates pheromone �ow with the di�usion equation

and simple rules of behaviors for virtual bees. We use the Covari-

anceMatrix Adaptation-Evolutionary Strategy (CMA-ES) algorithm

to search over the behavioral parameter space for the optimal pa-

rameters in di�erent environmental wind conditions. We �nd that,

turbulent wind �owing in random directions shows minimal e�ect

on the bees’ collective scenting strategy and aggregation. However,

in high unidirectional wind (e.g., �owing towards the right side of

the arena), the bees must spatially align a shorter scenting network

along the wind’s direction to localize the queen and aggregate.
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1 INTRODUCTION

Social insects must e�ectively communicate to navigate environ-

ments with challenging variables, such as physical obstacles and

wind. The honey bees have evolved the ability to form robust com-

munication networks using volatile pheromone signals [3, 13]. One

instance of honey bee pheromone communication is the collective

scenting behavior in the context of a swarm localizing the queen

and aggregating around her. The collective scenting behavior con-

sists of bees sensing pheromones above a concentration threshold

in their local environment and in turn releasing pheromones from

the Nasonov gland, directionally fanning these chemical signals

that decay rapidly in time and space to disperse the signals to other

bees farther away [14, 16, 19]. Experimental and modeling works

have shown that physical obstacles that partially block the �ow of

pheromones slow down the bees’ localization and aggregation pro-

cess to some extent, but do not entirely eliminate it. Furthermore,

such obstructions can limit the range of behavioral parameters, in-

cluding the bees’ pheromone detection threshold and themagnitude

of their wing-fanning [15, 17].

In this work, we investigate another common environmental or

abiotic factor in the bees’ pheromone communication for coordi-

nating group processes: wind. Wind in�uences behavior of animals

in general. For example, bald eagles (Haliaeetus leucocephalus) tend

to rest from foraging in high wind conditions [6]. Strong winds

can positively a�ect shearwaters (Calonectris diomedea) in aiding

their travel to far food sources [4]. On the other hand, as wind

magnitude increases, load size (i.e., size of vegetation collected)
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decreases in leaf-cutting ants, reducing colony �tness and limiting

the geographic distribution of foragers [1]. High wind conditions

have been observed to cause a signi�cant decrease in pollination

activity, including a reduction in �ower visiting rate, among honey

bees, which leads to an increase in hesitancy to take o�, as well as

an increase in handling time[11, 12, 20, 22].

Although existing research has mostly examined the correlation

between wind and foraging behavior in honey bees, our focus is

on exploring how external wind interacts with pheromones (one

of the primary spatio-temporal communication signals in bees), as

well as with the internal wind generated by wing-fanning during

collective scenting behavior. Speci�cally, we seek to understand

how these factors impact the group process of searching for the

queen and aggregating around her, which is a common behavior

exhibited during reproductive swarming. To this end, we perform

experiments in which bees search for the queen by following her

pheromones and propagating chemical signals in environments

with and without wind, by building on previous behavioral experi-

mentation and image analysis tools in [16]. Further, we take inspi-

ration from the experiments to build a queen-�nding agent-based

model that simulates pheromone di�usion using simple behavioral

rules for individual bee agents [16, 17]. Previous applications of the

model have successfully predicted the optimal ranges of behavioral

parameters for honey bees, including the detection threshold and

wing-fanning magnitude during scenting, in both simple and com-

plex environments that include physical obstacles. In this work, we

employ the Covariance Matrix Adaptation-Evolutionary Strategy

(CMA-ES) algorithm [8] to automatically search for the optimal be-

havioral parameters that will allow the bees to successfully �nd the

queen and aggregate around her in various wind conditions, such

as unidirectional and turbulent (i.e., �owing in random directions)

wind of various magnitudes. Insights from this work can illuminate

how the bees modify their behavior in response to unpredictable

environmental factors to achieve collective tasks that are important

for colony survival.

2 METHODS

2.1 Experimental setup & computer vision
image analysis

We followed the experimental methods originally described in [16].

Here, we brie�y summarize the methods and describe the inclusion

of wind in the setup. We use a 2-D back-lit arena (50x50x1.5 cm) to

prevent �ying for ease of handling and recording, as bees have been

shown to scent while standing [14]. We record the experiments

aerially with a video camera (4k resolution, 30 fps). A caged queen

bee is �xed at the top right corner of the arena. Worker bees are

placed at the bottom left corner. A plexiglass sheet is placed on top

of the arena to enclose it. To generate external wind, we cut the left

and right edges of the arena, cover the edges with thin mesh roles,

and place a fan (B-Air Vent VP-25 Compact, on high speed) on the

left side to impose wind �owing towards the right side of the arena.

To create a smooth and uniform wind �ow across the arena, the

output air channels are also covered with a couple of layers of mesh.

For each of the two environmental conditions (i.e., in the presence

and absence of external wind), we perform nine experiments with

varying number of bees. The approximate number of bees for the

no wind experiments are: 250, 310, 320, 370, 400, 420, 590, and 650

[16]. The approximate number of bees for the wind experiments

are: 220, 230, 280, 300, 360, 370, 430, 490, and 500.

We use the computer vision and deep learning approaches pre-

sented in [16] to automatically detect scenting bees and estimate

their orientations in frames or images extracted from the experi-

mental videos. Individual bees (i.e., G,~ centroids) are detected by

applying a combination of the Otsu’s method of adaptive threshold-

ing, morphological transformations, and the connected components

algorithm [2, 5, 18]. To classify a bee as scenting or non-scenting

based on the visual indicators (i.e., wide wing angles of the fan-

ning behavior while scenting), we process the images with the

trained ResNet-18 convolutional neural network (CNN) model that

achieved 95.17% test accuracy on classifying the scenting behavior

in bees, as described in [16]. To obtain the scenting direction, we

use the trained regression CNN model that achieved 96.71% test

accuracy with 15◦ of error tolerance on estimating bee orientation

[16].

Extracting the position, classi�cation, and orientation data for

individual bees using image analysis enables us to reconstruct at-

tractive surfaces to correlate the scenting events with the spatiotem-

poral density of bees. For each scenting bee 8 at time C , its position

is de�ned as s
?
8,C , and its direction of scenting as s38,C (unit vector).

Assuming the scenting bees provide directional information to non-

scenting bees, s
?
8,C and s

3
8,C are treated as a set of gradients that

de�ne a minimal surface of height 5 (G,~, C), which corresponds to

the probability that a randomly moving non-scenting bee will end

up at position (G,~) by following the scenting directions of scenting
bees: 5 (G,~) = ∑

∀∇5

+

∇5 3G3~, where ∇5 = s
?
8,C + s

3
8,C . Tikhonov

regularization is used to regularize the least squares solution of

surface reconstruction from its gradient �eld [9, 10].

Lastly, we obtain several time-series properties of the experi-

ments including the number of scenting bees over time (rolling

mean with window size of 100 frames) which is averaged over the

nine experiments with varying number of bees for each experimen-

tal condition. Similarly, we obtain the average bee distance to the

queen, computed as the the average distance of all black pixels to

the queen’s location, as the bee detection method cannot detect

every single individual bee when they touch or overlap. Since the

queen’s cage is stationary, the remaining black pixels in the arena

can be used as a proxy for the moving bees.

2.2 Modeling pheromone advection-di�usion

In a 2-D virtual arena, we treat a single scenting bee as a point

source of localized and instantaneous pheromone emission. The

2-D advection-di�usion equation is used to describe pheromone

concentration, � (G,~, C), at a position and time [16]:

� (G,~, C) = �0√
C
4G?

(

−
(G −F1FG C)2 + (~ −F1F~C)2

4�C
− WC

)

(1)

where � (G,~, C) is the concentration at position [G,~] at time C ,

�0 = 0.0575 is the constant initial concentration, FG and F~ are

the G and ~ components of emission vector respectively, � = 0.6 is

the constant di�usion coe�cient, and W = 108 is the decay constant.

The behavioral parameter representing the directional bias,F1 , is
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the magnitude of the advection–di�usion of pheromone released

by a bee. To account for external wind, we modify the equation as

such:

� (G,~, C) = �0√
C
4G?

(

−�
2 + �2

4�C
− WC

)

(2)

where � = G −F1FG C −FFFFG C and � = ~ −F1F~C −FFFF~C ,

FF is the magnitude of the wind, and FFG and FF~ are the G

and ~ components of the wind direction vector. The constant envi-

ronmental parameters of the model are: the size of the 2–D arena

(-<8= = −3 and -<0G = 3) and the size of a grid cell (X- = 0.01),

the start and �nal time of the simulation (C8 = 0 and C5 = 50) and

the time integration constant (XC = 0.005).

2.3 Modeling behavioral rules

The behavioral rules of virtual bees in a simulated environment

in an agent-based model have been described in detail in [16] and

[17]. We summarize the rules here for brevity. The queen bee is

stationary and frequently releases pheromone isotropically or axi-

symmetrically (i.e, F1 = 0). Worker bees follow the rules: (1) A

worker bee randomly walks around the arena. (2) If she detects the

queen’s pheromone above the concentration threshold () ), the bee

adjusts her orientation (FG and F~ ) towards the direction uphill

the gradient. With probability of 0.5, she will either walk up the

gradient or scent, i.e, stand still to emit and fan her own pheromones

for a given period of time. (3) These secondary signals propagate

pheromones to other bees, which follow the same rules to walk up

the gradient or scent to further propagate the information.

These behavorial rules are formalized as a probabilistic state

machine (PSM) consisting of a set of �nite states (shown in Table 1)

that describes bee behavior and a transition matrix that describes

how a bee may change from one state to another [16, 21]. We de�ne

the same state model ("F>A:4A = ((, B0, � , ") for each worker bee:

( = {A0=3><,0;:, 38A42C43,0;:, CℎA4Bℎ>;3"4C, 4<8C, 5 0=}

is a set of �nite states, where the variable A0=3><,0;: or abbre-

viated as A,0;: is a random walk when the threshold is not met,

38A42C43,0;: or 3,0;: is the walk up the concentration gradient,

CℎA4Bℎ>;3"4C or C"4C is when the threshold is met, 4<8C is the

instantaneous release of pheromone, and 5 0= is the wing fanning

at a constant position. B0 = A0=3><,0;: is the initial state of all

the bees. � = {C8 , 28 }, is a set of �ags for the input conditions on
state transitions, where for a given bee, C8 is a counter for the time

that bee is in the 5 0= state and 28 is the concentration at that bee’s

position. The transition matrix " describes the conditions and

probabilities for transitioning from the current state, B2 , to the next

state, B= .

2.4 CMA-ES Optimization

To search for optimal behavioral parameters (F1 and ) ) in an envi-

ronment with and without external wind, we employ the CMA-ES

algorithm [8] available in the Python package “cma-es” (version

1.5.0). The algorithm generates sets of values for the two parame-

ters within a search space. The CMA-ES algorithm then evaluates

a cost function for each set of parameters, and updates the covari-

ance matrix to expand in the direction of the optimal value for the

next generation or iteration. The processes is repeated until the

Table 1: Probabilistic state machine transition matrix for

honey bee behavioral rules to transition from the cur-

rent state, B2 , to the next state, B= . Variables A0=3><,0;: ,

CℎA4Bℎ>;3"4C , and 38A42C43,0;: abbreviated as A,0;: , C"4C ,

and 3,0;: , respectively. %F and ) represent the emission

period made of the 4<8C and the 5 0= state and the threshold

over which a bee can be activated from state A0=3><,0;: .

Previously published in [16] and [17].

algorithm converges on a single parameter set with a cost function

below a certain threshold.

For the honey bee aggregation model, we de�ne the cost func-

tion for CMA-ES optimization using three properties previously

used to delineate simulation outcomes into various phases which

include the optimal outcome of aggregation around the queen via

propagation of signals and a less optimal outcome of aggregation

into small clusters [16]. The three properties are: #2;DBC4AB or the

�nal number of clusters, #@D44= or the �nal queen’s cluster size,

and �02C8E4 or the distance of the farthest active bee (i.e., a bee

whose threshold is met and is either scenting or walking up the

gradient) to the queen to represent how far the signal propagation

reaches. We use the density-based spatial clustering of applica-

tions with noise (DBSCAN) algorithm (Y: 0.25, minimum number

of bees to form a cluster: 5) to cluster bees at every time step [7],

and obtain values for #2;DBC4AB and #@D44= . For a simulation to be

considered successful (i.e., aggregation around the queen via signal

propagation or collective scenting), #2;DBC4AB should be minimal,

and #@D44= and �02C8E4 should be maximal. Thus, the cost function

for CMA-ES optimization to minimize is given by:

�>BC = 1 − [(1 − #2;DBC4AB ) × #@D44= × �02C8E4 ]

Each simulation of a particular set of parameters F1 and ) con-

tains 50 virtual bees and runs for 10,000 time steps, which we have

previously observed to be su�cient for the simulation to reach

a �nal outcome (e.g., a single cluster around the queen or small

clusters that are perpetually stuck in space). To con�gure some

problem-speci�c settings of the CMA-ES algorithm, we constraint

the parameter space, in whichF1 is bounded between 0.001 to 1.0

and ) is bounded between 0 and 60. These bounds were heuris-

tically discovered in previous simulations of the bee aggregation

phenomenon in a simple environment without external wind [16].

Thus, we use the same values in this algorithm to reduce computa-

tional time. The initial step size is 10, which is observed to be an

appropriate measure between algorithm run time and optimal solu-

tion. The maximum number of generations is set to 50. By default,

the search runs until the maximum number of generations or when

an early termination criteria is met.
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We use CMA-ES to search for the optimal set of behavioral

parameters for the following environmental conditions: (1) Uni-

directional wind �owing towards the right side of the arena. (2)

Turbulent wind in which each scenting bee senses external wind

from a random direction. In both conditions, we test various wind

magnitudes,FF : 0 (control), 50, 100, 200, and 300.

After �nding the optimal simulations for the di�erent conditions,

we obtain various time-series properties: the average distance to

the queen, the average queen’s cluster size, the average number of

scenting bees, and the average distance of the farthest active bee.

Additionally, we characterize potential spatial bias of the scenting

network and aggregation due to directional wind by measuring the

di�erence between the number of scenting bees on the right and

left side, normalized by the total number of scenting bees at each

time step. This property shows whether there is any spatial bias

towards the right side of the arena, where the wind is �owing in

the uni-directional wind condition.

3 RESULTS

3.1 Experimental Results

We �rst compare the dynamics of the queen localization and aggre-

gation behavior in bees in the presence and absence of wind. In Fig.

1A, we show snapshots of an example experiment (#=320 bees)

without wind over time [16]. Here, we observe a collective scenting

network forming early on as bees spatially spread out and create

cascades of scenting events. Consequently, by approximately 1800

seconds or 30 minutes, most bees have aggregated at the queen’s

cluster. The average attractive surface over all time frames show

that the collective scenting events correlate to the spatial-temporal

density of the bees (i.e., the region around the queen shows the

highest 5 values). Similar snapshots are shown for an example ex-

periment (#=360 bees) with wind �owing towards the right of the

arena (Fig. 1B). In general, we observe less scenting bees over time,

and by approximately 30 minutes, only a small fraction of the bees

have clustered around the queen. The average surface is relatively

�at and does not indicate the collective scenting events pointing

towards the queen’s direction.

Quanti�cation of time-series properties further support the qual-

itative observations. On average, there are less scenting bees over

time when wind is present (Fig. 1C). However, the average bee

distance to the queen quickly decreases and then plateaus in the

absence of wind, indicating quick clustering around the queen (Fig.

1D).With wind, the distance begins to decrease later (approximately

500 seconds) and reaches a higher �nal distance compared to the

distance in experiments without wind.

3.2 Model optimization results

Using the experimental results as an inspiration for modeling, we

use CMA-ES to search for the optimal values for the behavioral

parameters of bee agents in unidirectional and turbulent wind of

varying magnitude as above-mentioned. For unidirectional wind

�owing towards the right of the virtual arena, the optimal parame-

ters areF1 = 22.85 and ) = 0.001 forFF = 0 (control),F1 = 22.13

and) = 0.001 forFF = 50,F1 = 19.76 and) = 0.002 forFF = 100,

F1 = 9.13 and) = 0.001 forFF = 200, andF1 = 7.77 and) = 0.002

for FF = 300. Snapshots of these simulations show aggregation

into a single cluster around the queen for all �ve simulations (Fig.

2). Simulations withFF = 0 andFF = 50 show similar signal prop-

agation events in which scenting bees form long percolation chains

homogeneously (Fig. 2A-B). From FF = 100, the scenting chains

spatially shift to the right side of the arena toward the direction of

the wind (Fig. 2C). Increasing wind magnitude further toFF = 200

andFF = 300, results in shorter scenting chains and a more pro-

nounced e�ect of the wind direction on the spatial arrangement of

the �nal cluster (Fig. 2D-E). We also quantify several properties of

the simulations over time. The average distance to the queen for all

�ve simulations shows sharp decrease at the beginning and plateau

afterwards, but these dynamics are slower and plateau at higher dis-

tance with higher wind magnitude (Fig. 4A). The average queen’s

cluster size and number of scenting bees show similar dynamics

of a quick increase and a following plateau, with temporal delays

in higher wind (Fig. 4B-C). The average distance of the farthest

active bee, which is a proxy for how far the signal propagates, show

maximal values early on and sharply decreases to a plateau (Fig. 4D)

as inversely correlating to the number of scenting bees over time.

Lastly, as the unidirectional wind becomes stronger (i.e., higher

FF ), the scenting network is spatially biased towards the right side

of the arena along the wind’s direction (Fig. 5A).

With turbulent wind, the optimal parameters are F1 = 21.16

and ) = 0.001 for FF = 0 (control), F1 = 21.50 and ) = 0.002 for

FF = 50, F1 = 24.04 and ) = 0.001 for FF = 100, F1 = 24.55

and ) = 0.001 for FF = 200, and F1 = 21.21 and ) = 0.005

forFF = 300. Snapshots of these simulations show fairly similar

scenting percolation chains that are spread throughout the arena

and a single cluster of similar shape around the queen by the end of

the simulations (Fig. 3). Likewise, the time-series data of the average

distance to the queen, queen’s cluster size, number of scenting bees,

and farthest active distance for these simulations show closely

similar dynamics, insensitive toFF (Fig. 4E-H). However, unlike

in unidirectional wind, in turbulent wind, FF has less of a stark

e�ect on the spatial bias of the scenting network of bees (Fig. 5B).

Lastly, we show the progression of the CMA-ES algorithm over

iterations of the optimization process for both wind conditions

with various values of FF . For all conditions, the average cost

decreases over time, and converges to relatively lower costs in

lowerFF conditions. In other words, the algorithm converges in

fewer number of iterations with lowerFF , and progresses all the

way to the user-de�ned maximum of 50 iterations inFF = 300.

4 DISCUSSION

In this study, we explore the impact of external wind on the pheromone

communication of honey bees, particularly when searching for and

aggregating around the queen. Our experimental �ndings indicate

that wind entering the square arena from one side reduces the

number of bees detecting the scent. Our data suggests that wind

introduced from one side of a square arena diminishes the bee’s

ability to detect and follow the local scent gradients. This disruption

in scent directionality can negatively impact group behaviors, such

as swarming, where precise pheromone communication is pivotal.

We take inspiration from the experimental results of a single

wind condition to further explore the impacts of external wind on

the behavioral parameters (detection threshold, ) , and magnitude
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Figure 1: Experiments in the presence and absence of external wind. A) Snapshots of an example experiment (# = 320 bees) in

a relatively simple environment without external wind. The queen bee is caged and placed at the top right corner. Worker bees

are placed at the bottom left corner. Over time, the bees form a collective scenting network and aggregate around the queen

after approximately 30 minutes. The average attractive surface correlating scenting events and the density of bees over all

time frames show that the most “attractive” area (high 5 values) is the area around the queen. B) Snapshots of an example

experiment (# = 360 bees) in an environment with external wind �owing toward the right side of the arena. Only a fraction of

bees aggregate around the queen by the end of our 30-minute experiment. The average surface is relatively �at and does not

indicate a particular area of highest attraction. C) The average number of scenting bees over time for experiments with (orange

curve) and without (blue curve) wind. D) The average distance to the queen over time for experiments with (orange curve) and

without (blue curve) wind.

of biased emission or wing-fanning,F1 ) and collective mechanism

of localization and aggregation in an agent-based model of honey

bee behavior in a more complex environment with unidirectional

and turbulent wind of various magnitudes. We �nd that, in unidi-

rectional wind, at lower wind magnitudes (FF f 100), the bees

employ the normal collective scenting strategy with low ) (e.g.,

) ≈ 0.001) and intermediate F1 (e.g., F1 ≈ 22) values to form a

network of signal receivers and senders, spatially spread through-

out the arena. Similarly, at higher wind magnitudes (FF g 200),

the optimal parameters maintain low ) values, but the bees lower

theirF1 or wing-fanning magnitude to achieve aggregation around

the queen into a single cluster. Additionally, at higher unidirec-

tional wind, bees spatially align more along the wind’s direction

(towards the right of the arena) to scent and follow the pheromone

signals. As this necessary alignment limits the arena’s space for

signals to spread and be received by bees, the optimal simulations at

high wind show less pronounced scenting percolation (i.e., shorter

scenting chains) as bees rely more on approaching the queen and

the right-biased scenting chains via random walk to sense local

pheromone signals. While an environmental factor’s magnitude

may surpass the bees’ ability to adapt and survive, there may be

a range of wind magnitudes in which the insects’ communication

networks remain robust. Our modeling results show that individual

agents with simple rules of behavior can collectively adapt to some

wind conditions. The individual bees’ ability to scent directionally

and thus collectively aligning a scenting network along the wind’s

direction may contribute to the robustness of their communication

network.

While our model shows that unidirectional wind a�ects the

mechanism of localization and aggregation, turbulent wind �ow-

ing in random directions does not interfere with the directional

scenting signals produced by bees. If the bees were placed in a
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Figure 2: Simulations of the optimal behavioral parameters (bias magnitude,F1 , and concentration threshold,) ) in the presence

of uni-directional wind of various magnitudes (FF ). A) Snapshots of the optimal simulation of parameters F1 = 22.85 and

) = 0.001 for FF = 0 or no wind. B) Snapshots of the optimal simulation of parameters F1 = 22.13 and ) = 0.001 for FF = 50.

C) Snapshots of the optimal simulation of parameters F1 = 19.76 and ) = 0.002 for FF = 100. D) Snapshots of the optimal

simulation of parameters F1 = 9.13 and ) = 0.001 for FF = 200. E) Snapshots of the optimal simulation of parameters and

F1 = 7.77 and ) = 0.002 forFF = 300.

di�erent initial con�guration, such as densely concentrated at one

corner of the arena with the queen at the opposite corner as in

the experiments, strong turbulent wind may have disrupted the

scenting network produced by the bees as this network would be

more directionally constrained and turbulent wind may lead to ran-

dom signal directions. In our model’s current initial con�guration

with bees homogeneously spread out in the arena and scenting

percolation chains can form in any direction, turbulent wind has a

minimal e�ect. Future modeling work will explore di�erent initial

con�gurations of bee positions.

In our study, we conduct wind experiments with actual bees,

but we were limited to testing only one wind speed and direction.

This is because of both experimental constraints and the fact that

our subject animals are seasonal. Our future experiments should

introduce wind of various magnitudes and directions to compare to

our model results and observe whether the real bees will adjust the

spatial arrangement of their scenting networks in some wind condi-

tions as we observed in the simulations. The iterative comparisons

between experiments and simulations will provide better insight
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Figure 3: Simulations of the optimal behavioral parameters (bias magnitude,F1 , and concentration threshold,) ) in the presence

of turbulent wind of various magnitudes (FF ). A) Snapshots of the optimal simulation of parametersF1 = 21.16 and ) = 0.001

forFF = 0 or no wind. B) Snapshots of the optimal simulation of parametersF1 = 21.50 and ) = 0.002 forFF = 50. C) Snapshots

of the optimal simulation of parameters F1 = 24.04 and ) = 0.001 for FF = 100. D) Snapshots of the optimal simulation of

parameters F1 = 24.55 and ) = 0.001 for FF = 200. E) Snapshots of the optimal simulation of parameters and F1 = 21.21 and

) = 0.005 forFF = 300.

into the natural mechanisms the bees use to overcome such envi-

ronmental challenges. Additionally, in the real world, animals may

encounter multiple environmental perturbations at once. There-

fore, studying the bees in a real or virtual environment with both

wind and physical obstacles would be highly relevant and insightful.

Lastly, the model so far only considers how wind a�ects pheromone

signals. Future iterations of the agent-based model should take into

account howwind, especially in higher magnitudes, can cause phys-

ical displacement of the bees, which may change the dynamics of

the scenting communication network and aggregation around the

queen.
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Figure 4: Time series of simulations of the optimal behavioral parameters. A-D) Unidirectional wind of magnitudes FF =

0, 50, 100, 200, 300. E-H) Turbulent wind of the same magnitudes. A,E) The average distance to the queen over time. B,F) The

average queen’s cluster size. C,G) The average number of scenting bees. D,H) The average distance of the farthest active bee to

the queen.

Any opinion, �ndings, and conclusions or recommendations ex-

pressed in this material are those of the authors(s) and do not re�ect

the views of the NSF.

Figure 5: Spatially biased percolation and aggregation. The

di�erence between the number of scenting bees on the right

side and on the left side of the arena over time. Each data

point at a given time step is normalized by the total number

of scenting bees at that time step. This normalized di�erence

represents the spatial bias of scenting bees towards the right

side of the arena; higher values indicate more bees scent-

ing on the right or along the wind’s direction in the case

of uni-directional wind. A) The normalized right-side bias

in optimal simulations with uni-directional wind �owing

towards the right. B) The bias in optimal simulations with

turbulent wind.

Supplementary Information

Open-source code for the computer vision pipeline and agent-based

model are hosted at the following repositories: https://github.com/

peleg-lab/CollectiveScentingCV and https://github.com/peleg-lab/

CollectiveScentingABM_Wind.
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