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ABSTRACT

Wind is a common environmental factor in the behavior of animals,
such as the honey bees (Apis mellifera L.). Volatile pheromones are
one of the main communication signals in honey bees that can be
sensed and further propagated via the scenting behavior, in which
bees release pheromones and fan their wings to direct the signals.
While studies have correlated the effect of wind and the foraging
behavior of bees, we aim to study how wind, interacting with the
pheromone signals, can impact the resulting collective behavior of
the bees in the context of a swarm localizing their queen and aggre-
gating around her. We experimentally show that strong external
wind interferes with the aggregation around the queen by reduc-
ing the number of scenting bees in the communication network
and disrupting the directionality of the scenting signals. To further
understand the behavioral mechanisms that change with different
wind conditions (direction and magnitude), we use an agent-based
model that simulates pheromone flow with the diffusion equation
and simple rules of behaviors for virtual bees. We use the Covari-
ance Matrix Adaptation-Evolutionary Strategy (CMA-ES) algorithm
to search over the behavioral parameter space for the optimal pa-
rameters in different environmental wind conditions. We find that,
turbulent wind flowing in random directions shows minimal effect
on the bees’ collective scenting strategy and aggregation. However,
in high unidirectional wind (e.g., flowing towards the right side of
the arena), the bees must spatially align a shorter scenting network
along the wind’s direction to localize the queen and aggregate.
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1 INTRODUCTION

Social insects must effectively communicate to navigate environ-
ments with challenging variables, such as physical obstacles and
wind. The honey bees have evolved the ability to form robust com-
munication networks using volatile pheromone signals [3, 13]. One
instance of honey bee pheromone communication is the collective
scenting behavior in the context of a swarm localizing the queen
and aggregating around her. The collective scenting behavior con-
sists of bees sensing pheromones above a concentration threshold
in their local environment and in turn releasing pheromones from
the Nasonov gland, directionally fanning these chemical signals
that decay rapidly in time and space to disperse the signals to other
bees farther away [14, 16, 19]. Experimental and modeling works
have shown that physical obstacles that partially block the flow of
pheromones slow down the bees’ localization and aggregation pro-
cess to some extent, but do not entirely eliminate it. Furthermore,
such obstructions can limit the range of behavioral parameters, in-
cluding the bees’ pheromone detection threshold and the magnitude
of their wing-fanning [15, 17].

In this work, we investigate another common environmental or
abiotic factor in the bees’ pheromone communication for coordi-
nating group processes: wind. Wind influences behavior of animals
in general. For example, bald eagles (Haliaeetus leucocephalus) tend
to rest from foraging in high wind conditions [6]. Strong winds
can positively affect shearwaters (Calonectris diomedea) in aiding
their travel to far food sources [4]. On the other hand, as wind
magnitude increases, load size (i.e., size of vegetation collected)
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decreases in leaf-cutting ants, reducing colony fitness and limiting
the geographic distribution of foragers [1]. High wind conditions
have been observed to cause a significant decrease in pollination
activity, including a reduction in flower visiting rate, among honey
bees, which leads to an increase in hesitancy to take off, as well as
an increase in handling time[11, 12, 20, 22].

Although existing research has mostly examined the correlation
between wind and foraging behavior in honey bees, our focus is
on exploring how external wind interacts with pheromones (one
of the primary spatio-temporal communication signals in bees), as
well as with the internal wind generated by wing-fanning during
collective scenting behavior. Specifically, we seek to understand
how these factors impact the group process of searching for the
queen and aggregating around her, which is a common behavior
exhibited during reproductive swarming. To this end, we perform
experiments in which bees search for the queen by following her
pheromones and propagating chemical signals in environments
with and without wind, by building on previous behavioral experi-
mentation and image analysis tools in [16]. Further, we take inspi-
ration from the experiments to build a queen-finding agent-based
model that simulates pheromone diffusion using simple behavioral
rules for individual bee agents [16, 17]. Previous applications of the
model have successfully predicted the optimal ranges of behavioral
parameters for honey bees, including the detection threshold and
wing-fanning magnitude during scenting, in both simple and com-
plex environments that include physical obstacles. In this work, we
employ the Covariance Matrix Adaptation-Evolutionary Strategy
(CMA-ES) algorithm [8] to automatically search for the optimal be-
havioral parameters that will allow the bees to successfully find the
queen and aggregate around her in various wind conditions, such
as unidirectional and turbulent (i.e., flowing in random directions)
wind of various magnitudes. Insights from this work can illuminate
how the bees modify their behavior in response to unpredictable
environmental factors to achieve collective tasks that are important
for colony survival.

2 METHODS

2.1 Experimental setup & computer vision
image analysis

We followed the experimental methods originally described in [16].
Here, we briefly summarize the methods and describe the inclusion
of wind in the setup. We use a 2-D back-lit arena (50x50x1.5 cm) to
prevent flying for ease of handling and recording, as bees have been
shown to scent while standing [14]. We record the experiments
aerially with a video camera (4k resolution, 30 fps). A caged queen
bee is fixed at the top right corner of the arena. Worker bees are
placed at the bottom left corner. A plexiglass sheet is placed on top
of the arena to enclose it. To generate external wind, we cut the left
and right edges of the arena, cover the edges with thin mesh roles,
and place a fan (B-Air Vent VP-25 Compact, on high speed) on the
left side to impose wind flowing towards the right side of the arena.
To create a smooth and uniform wind flow across the arena, the
output air channels are also covered with a couple of layers of mesh.
For each of the two environmental conditions (i.e., in the presence
and absence of external wind), we perform nine experiments with
varying number of bees. The approximate number of bees for the
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no wind experiments are: 250, 310, 320, 370, 400, 420, 590, and 650
[16]. The approximate number of bees for the wind experiments
are: 220, 230, 280, 300, 360, 370, 430, 490, and 500.

We use the computer vision and deep learning approaches pre-
sented in [16] to automatically detect scenting bees and estimate
their orientations in frames or images extracted from the experi-
mental videos. Individual bees (i.e., x, y centroids) are detected by
applying a combination of the Otsu’s method of adaptive threshold-
ing, morphological transformations, and the connected components
algorithm [2, 5, 18]. To classify a bee as scenting or non-scenting
based on the visual indicators (i.e., wide wing angles of the fan-
ning behavior while scenting), we process the images with the
trained ResNet-18 convolutional neural network (CNN) model that
achieved 95.17% test accuracy on classifying the scenting behavior
in bees, as described in [16]. To obtain the scenting direction, we
use the trained regression CNN model that achieved 96.71% test
accuracy with 15° of error tolerance on estimating bee orientation
[16].

Extracting the position, classification, and orientation data for
individual bees using image analysis enables us to reconstruct at-
tractive surfaces to correlate the scenting events with the spatiotem-
poral density of bees. For each scenting bee i at time ¢, its position
is defined as Sli)t’
Assuming the s’centing bees provide directional information to non-
scenting bees, sf , and s?t are treated as a set of gradients that
define a minimal surface of height f(x,y, t), which corresponds to
the probability that a randomly moving non-scenting bee will end
up at position (x, y) by following the scenting directions of scenting
bees: f(x,y) = Zvvy / Vfdxdy, where Vf = s’zt + sgt. Tikhonov
regularization is used to regularize the least squares solution of
surface reconstruction from its gradient field [9, 10].

Lastly, we obtain several time-series properties of the experi-
ments including the number of scenting bees over time (rolling
mean with window size of 100 frames) which is averaged over the
nine experiments with varying number of bees for each experimen-
tal condition. Similarly, we obtain the average bee distance to the
queen, computed as the the average distance of all black pixels to
the queen’s location, as the bee detection method cannot detect
every single individual bee when they touch or overlap. Since the
queen’s cage is stationary, the remaining black pixels in the arena
can be used as a proxy for the moving bees.

and its direction of scenting as sld ; (unit vector).

2.2 Modeling pheromone advection-diffusion
In a 2-D virtual arena, we treat a single scenting bee as a point
source of localized and instantaneous pheromone emission. The
2-D advection-diffusion equation is used to describe pheromone
concentration, C(x, y, t), at a position and time [16]:

B (x — wpwyt)? + (y - wbwyt)2 B
4Dt

C(x,y,t) = %exp
1)

where C(x,y,t) is the concentration at position [x,y] at time ¢,
Co = 0.0575 is the constant initial concentration, wy and wy are
the x and y components of emission vector respectively, D = 0.6 is
the constant diffusion coefficient, and y = 108 is the decay constant.
The behavioral parameter representing the directional bias, wy, is
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the magnitude of the advection-diffusion of pheromone released
by a bee. To account for external wind, we modify the equation as
such:
2, 2

Cli ) = Pexp (5 - @
where A = x — wpwxt — wyyWyxtand B=y — WpWyt — Wy Wyyl,
wiy is the magnitude of the wind, and w,,x and w,,y are the x
and y components of the wind direction vector. The constant envi-
ronmental parameters of the model are: the size of the 2-D arena
(Xmin = —3 and Xjmax = 3) and the size of a grid cell (6x = 0.01),
the start and final time of the simulation (¢; = 0 and ¢7 = 50) and
the time integration constant (6; = 0.005).

2.3 Modeling behavioral rules

The behavioral rules of virtual bees in a simulated environment
in an agent-based model have been described in detail in [16] and
[17]. We summarize the rules here for brevity. The queen bee is
stationary and frequently releases pheromone isotropically or axi-
symmetrically (i.e, wb = 0). Worker bees follow the rules: (1) A
worker bee randomly walks around the arena. (2) If she detects the
queen’s pheromone above the concentration threshold (T), the bee
adjusts her orientation (wx and wy) towards the direction uphill
the gradient. With probability of 0.5, she will either walk up the
gradient or scent, i.e, stand still to emit and fan her own pheromones
for a given period of time. (3) These secondary signals propagate
pheromones to other bees, which follow the same rules to walk up
the gradient or scent to further propagate the information.

These behavorial rules are formalized as a probabilistic state
machine (PSM) consisting of a set of finite states (shown in Table 1)
that describes bee behavior and a transition matrix that describes
how a bee may change from one state to another [16, 21]. We define
the same state model SM,,,o ke = (S, s0, I, M) for each worker bee:

S = {randomW alk, directedW alk, thresholdMet, emit, fan}

is a set of finite states, where the variable randomW alk or abbre-
viated as rWalk is a random walk when the threshold is not met,
directedWalk or dWalk is the walk up the concentration gradient,
thresholdMet or tMet is when the threshold is met, emit is the
instantaneous release of pheromone, and fan is the wing fanning
at a constant position. s) = randomW alk is the initial state of all
the bees. I = {t;,¢;}, is a set of flags for the input conditions on
state transitions, where for a given bee, t; is a counter for the time
that bee is in the fan state and c; is the concentration at that bee’s
position. The transition matrix M describes the conditions and
probabilities for transitioning from the current state, s, to the next
state, sj.

2.4 CMA-ES Optimization

To search for optimal behavioral parameters (wj, and T) in an envi-
ronment with and without external wind, we employ the CMA-ES
algorithm [8] available in the Python package “cma-es” (version
1.5.0). The algorithm generates sets of values for the two parame-
ters within a search space. The CMA-ES algorithm then evaluates
a cost function for each set of parameters, and updates the covari-
ance matrix to expand in the direction of the optimal value for the
next generation or iteration. The processes is repeated until the
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Table 1: Probabilistic state machine transition matrix for
honey bee behavioral rules to transition from the cur-
rent state, s., to the next state, s,. Variables randomWalk,
thresholdMet, and directedW alk abbreviated as rWalk, tMet,
and dWalk, respectively. P,, and T represent the emission
period made of the emit and the fan state and the threshold
over which a bee can be activated from state randomWalk.
Previously published in [16] and [17].

. cn rWalk tMet emit | fan | dWalk
rWalk ¢ <T ¢ >T 0 0 0
dWalk ¢ <T ¢ >T 0 0 0
tMet 0 0 0.5 0 0.5
emit 0 0 0 1 0
fan ti > Py AN <T | t; > Py ANc; >T 0 ti < Py 0

algorithm converges on a single parameter set with a cost function
below a certain threshold.

For the honey bee aggregation model, we define the cost func-
tion for CMA-ES optimization using three properties previously
used to delineate simulation outcomes into various phases which
include the optimal outcome of aggregation around the queen via
propagation of signals and a less optimal outcome of aggregation
into small clusters [16]. The three properties are: Ngj,szers OF the
final number of clusters, Ngyeen or the final queen’s cluster size,
and Dgectige Or the distance of the farthest active bee (i.e., a bee
whose threshold is met and is either scenting or walking up the
gradient) to the queen to represent how far the signal propagation
reaches. We use the density-based spatial clustering of applica-
tions with noise (DBSCAN) algorithm (¢: 0.25, minimum number
of bees to form a cluster: 5) to cluster bees at every time step [7],
and obtain values for Nijysters and Ngueen- For a simulation to be
considered successful (i.e., aggregation around the queen via signal
propagation or collective scenting), N¢jyszers Should be minimal,
and Ngyeen and Dgctive should be maximal. Thus, the cost function
for CMA-ES optimization to minimize is given by:

Cost =1 — [(1 = Nepusters) X Nqueen X Dactive]

Each simulation of a particular set of parameters wy, and T con-
tains 50 virtual bees and runs for 10,000 time steps, which we have
previously observed to be sufficient for the simulation to reach
a final outcome (e.g., a single cluster around the queen or small
clusters that are perpetually stuck in space). To configure some
problem-specific settings of the CMA-ES algorithm, we constraint
the parameter space, in which wy, is bounded between 0.001 to 1.0
and T is bounded between 0 and 60. These bounds were heuris-
tically discovered in previous simulations of the bee aggregation
phenomenon in a simple environment without external wind [16].
Thus, we use the same values in this algorithm to reduce computa-
tional time. The initial step size is 10, which is observed to be an
appropriate measure between algorithm run time and optimal solu-
tion. The maximum number of generations is set to 50. By default,
the search runs until the maximum number of generations or when
an early termination criteria is met.
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We use CMA-ES to search for the optimal set of behavioral
parameters for the following environmental conditions: (1) Uni-
directional wind flowing towards the right side of the arena. (2)
Turbulent wind in which each scenting bee senses external wind
from a random direction. In both conditions, we test various wind
magnitudes, w,,: 0 (control), 50, 100, 200, and 300.

After finding the optimal simulations for the different conditions,
we obtain various time-series properties: the average distance to
the queen, the average queen’s cluster size, the average number of
scenting bees, and the average distance of the farthest active bee.
Additionally, we characterize potential spatial bias of the scenting
network and aggregation due to directional wind by measuring the
difference between the number of scenting bees on the right and
left side, normalized by the total number of scenting bees at each
time step. This property shows whether there is any spatial bias
towards the right side of the arena, where the wind is flowing in
the uni-directional wind condition.

3 RESULTS

3.1 Experimental Results

We first compare the dynamics of the queen localization and aggre-
gation behavior in bees in the presence and absence of wind. In Fig.
1A, we show snapshots of an example experiment (N=320 bees)
without wind over time [16]. Here, we observe a collective scenting
network forming early on as bees spatially spread out and create
cascades of scenting events. Consequently, by approximately 1800
seconds or 30 minutes, most bees have aggregated at the queen’s
cluster. The average attractive surface over all time frames show
that the collective scenting events correlate to the spatial-temporal
density of the bees (i.e., the region around the queen shows the
highest f values). Similar snapshots are shown for an example ex-
periment (N=360 bees) with wind flowing towards the right of the
arena (Fig. 1B). In general, we observe less scenting bees over time,
and by approximately 30 minutes, only a small fraction of the bees
have clustered around the queen. The average surface is relatively
flat and does not indicate the collective scenting events pointing
towards the queen’s direction.

Quantification of time-series properties further support the qual-
itative observations. On average, there are less scenting bees over
time when wind is present (Fig. 1C). However, the average bee
distance to the queen quickly decreases and then plateaus in the
absence of wind, indicating quick clustering around the queen (Fig.
1D). With wind, the distance begins to decrease later (approximately
500 seconds) and reaches a higher final distance compared to the
distance in experiments without wind.

3.2 Model optimization results

Using the experimental results as an inspiration for modeling, we
use CMA-ES to search for the optimal values for the behavioral
parameters of bee agents in unidirectional and turbulent wind of
varying magnitude as above-mentioned. For unidirectional wind
flowing towards the right of the virtual arena, the optimal parame-
ters are wy, = 22.85 and T = 0.001 for w,, = 0 (control), wy, = 22.13
and T = 0.001 for w,, = 50, wp, = 19.76 and T = 0.002 for w,, = 100,
wp =9.13and T = 0.001 for w,, = 200, and wj, = 7.77 and T = 0.002
for w,, = 300. Snapshots of these simulations show aggregation
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into a single cluster around the queen for all five simulations (Fig.
2). Simulations with w,, = 0 and w,, = 50 show similar signal prop-
agation events in which scenting bees form long percolation chains
homogeneously (Fig. 2A-B). From w,, = 100, the scenting chains
spatially shift to the right side of the arena toward the direction of
the wind (Fig. 2C). Increasing wind magnitude further to w,, = 200
and w,, = 300, results in shorter scenting chains and a more pro-
nounced effect of the wind direction on the spatial arrangement of
the final cluster (Fig. 2D-E). We also quantify several properties of
the simulations over time. The average distance to the queen for all
five simulations shows sharp decrease at the beginning and plateau
afterwards, but these dynamics are slower and plateau at higher dis-
tance with higher wind magnitude (Fig. 4A). The average queen’s
cluster size and number of scenting bees show similar dynamics
of a quick increase and a following plateau, with temporal delays
in higher wind (Fig. 4B-C). The average distance of the farthest
active bee, which is a proxy for how far the signal propagates, show
maximal values early on and sharply decreases to a plateau (Fig. 4D)
as inversely correlating to the number of scenting bees over time.
Lastly, as the unidirectional wind becomes stronger (i.e., higher
wyy), the scenting network is spatially biased towards the right side
of the arena along the wind’s direction (Fig. 5A).

With turbulent wind, the optimal parameters are wj, = 21.16
and T = 0.001 for w,, = 0 (control), wp, = 21.50 and T = 0.002 for
Wiy = 50, wp = 24.04 and T = 0.001 for w,, = 100, wp = 24.55
and T = 0.001 for wy, = 200, and wp, = 21.21 and T = 0.005
for w,, = 300. Snapshots of these simulations show fairly similar
scenting percolation chains that are spread throughout the arena
and a single cluster of similar shape around the queen by the end of
the simulations (Fig. 3). Likewise, the time-series data of the average
distance to the queen, queen’s cluster size, number of scenting bees,
and farthest active distance for these simulations show closely
similar dynamics, insensitive to w,, (Fig. 4E-H). However, unlike
in unidirectional wind, in turbulent wind, w,, has less of a stark
effect on the spatial bias of the scenting network of bees (Fig. 5B).

Lastly, we show the progression of the CMA-ES algorithm over
iterations of the optimization process for both wind conditions
with various values of w,,. For all conditions, the average cost
decreases over time, and converges to relatively lower costs in
lower w,, conditions. In other words, the algorithm converges in
fewer number of iterations with lower w,,, and progresses all the
way to the user-defined maximum of 50 iterations in w,, = 300.

4 DISCUSSION

In this study, we explore the impact of external wind on the pheromone
communication of honey bees, particularly when searching for and
aggregating around the queen. Our experimental findings indicate
that wind entering the square arena from one side reduces the
number of bees detecting the scent. Our data suggests that wind
introduced from one side of a square arena diminishes the bee’s
ability to detect and follow the local scent gradients. This disruption
in scent directionality can negatively impact group behaviors, such
as swarming, where precise pheromone communication is pivotal.
We take inspiration from the experimental results of a single
wind condition to further explore the impacts of external wind on
the behavioral parameters (detection threshold, T, and magnitude
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Figure 1: Experiments in the presence and absence of external wind. A) Snapshots of an example experiment (N = 320 bees) in
a relatively simple environment without external wind. The queen bee is caged and placed at the top right corner. Worker bees
are placed at the bottom left corner. Over time, the bees form a collective scenting network and aggregate around the queen
after approximately 30 minutes. The average attractive surface correlating scenting events and the density of bees over all
time frames show that the most “attractive” area (high f values) is the area around the queen. B) Snapshots of an example
experiment (N = 360 bees) in an environment with external wind flowing toward the right side of the arena. Only a fraction of
bees aggregate around the queen by the end of our 30-minute experiment. The average surface is relatively flat and does not
indicate a particular area of highest attraction. C) The average number of scenting bees over time for experiments with (orange
curve) and without (blue curve) wind. D) The average distance to the queen over time for experiments with (orange curve) and

without (blue curve) wind.

of biased emission or wing-fanning, wy) and collective mechanism
of localization and aggregation in an agent-based model of honey
bee behavior in a more complex environment with unidirectional
and turbulent wind of various magnitudes. We find that, in unidi-
rectional wind, at lower wind magnitudes (w,, < 100), the bees
employ the normal collective scenting strategy with low T (e.g.,
T ~ 0.001) and intermediate wy, (e.g., wp = 22) values to form a
network of signal receivers and senders, spatially spread through-
out the arena. Similarly, at higher wind magnitudes (w,, > 200),
the optimal parameters maintain low T values, but the bees lower
their wy, or wing-fanning magnitude to achieve aggregation around
the queen into a single cluster. Additionally, at higher unidirec-
tional wind, bees spatially align more along the wind’s direction
(towards the right of the arena) to scent and follow the pheromone
signals. As this necessary alignment limits the arena’s space for
signals to spread and be received by bees, the optimal simulations at
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high wind show less pronounced scenting percolation (i.e., shorter
scenting chains) as bees rely more on approaching the queen and
the right-biased scenting chains via random walk to sense local
pheromone signals. While an environmental factor’s magnitude
may surpass the bees’ ability to adapt and survive, there may be
a range of wind magnitudes in which the insects’ communication
networks remain robust. Our modeling results show that individual
agents with simple rules of behavior can collectively adapt to some
wind conditions. The individual bees’ ability to scent directionally
and thus collectively aligning a scenting network along the wind’s
direction may contribute to the robustness of their communication
network.

While our model shows that unidirectional wind affects the
mechanism of localization and aggregation, turbulent wind flow-
ing in random directions does not interfere with the directional
scenting signals produced by bees. If the bees were placed in a
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Figure 2: Simulations of the optimal behavioral parameters (bias magnitude, wy, and concentration threshold, T) in the presence
of uni-directional wind of various magnitudes (w,,). A) Snapshots of the optimal simulation of parameters w; = 22.85 and
T = 0.001 for w,, = 0 or no wind. B) Snapshots of the optimal simulation of parameters w;, = 22.13 and T = 0.001 for w,, = 50.
C) Snapshots of the optimal simulation of parameters w;, = 19.76 and T = 0.002 for w,, = 100. D) Snapshots of the optimal
simulation of parameters wj, = 9.13 and T = 0.001 for w,, = 200. E) Snapshots of the optimal simulation of parameters and

wp =7.77 and T = 0.002 for w,, = 300.

different initial configuration, such as densely concentrated at one
corner of the arena with the queen at the opposite corner as in
the experiments, strong turbulent wind may have disrupted the
scenting network produced by the bees as this network would be
more directionally constrained and turbulent wind may lead to ran-
dom signal directions. In our model’s current initial configuration
with bees homogeneously spread out in the arena and scenting
percolation chains can form in any direction, turbulent wind has a
minimal effect. Future modeling work will explore different initial
configurations of bee positions.

30

In our study, we conduct wind experiments with actual bees,
but we were limited to testing only one wind speed and direction.
This is because of both experimental constraints and the fact that
our subject animals are seasonal. Our future experiments should
introduce wind of various magnitudes and directions to compare to
our model results and observe whether the real bees will adjust the
spatial arrangement of their scenting networks in some wind condi-
tions as we observed in the simulations. The iterative comparisons
between experiments and simulations will provide better insight
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Figure 3: Simulations of the optimal behavioral parameters (bias magnitude, wy, and concentration threshold, T) in the presence
of turbulent wind of various magnitudes (w,). A) Snapshots of the optimal simulation of parameters w;, = 21.16 and T = 0.001
for w,, = 0 or no wind. B) Snapshots of the optimal simulation of parameters w;, = 21.50 and T = 0.002 for w,, = 50. C) Snapshots
of the optimal simulation of parameters w;, = 24.04 and T = 0.001 for w,, = 100. D) Snapshots of the optimal simulation of
parameters wy, = 24.55 and T = 0.001 for w,, = 200. E) Snapshots of the optimal simulation of parameters and w;, = 21.21 and

T = 0.005 for w,, = 300.

into the natural mechanisms the bees use to overcome such envi-
ronmental challenges. Additionally, in the real world, animals may
encounter multiple environmental perturbations at once. There-
fore, studying the bees in a real or virtual environment with both
wind and physical obstacles would be highly relevant and insightful.
Lastly, the model so far only considers how wind affects pheromone
signals. Future iterations of the agent-based model should take into
account how wind, especially in higher magnitudes, can cause phys-
ical displacement of the bees, which may change the dynamics of
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the scenting communication network and aggregation around the
queen.
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Figure 5: Spatially biased percolation and aggregation. The
difference between the number of scenting bees on the right
side and on the left side of the arena over time. Each data
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of scenting bees at that time step. This normalized difference
represents the spatial bias of scenting bees towards the right
side of the arena; higher values indicate more bees scent-
ing on the right or along the wind’s direction in the case
of uni-directional wind. A) The normalized right-side bias
in optimal simulations with uni-directional wind flowing
towards the right. B) The bias in optimal simulations with
turbulent wind.
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Supplementary Information

Open-source code for the computer vision pipeline and agent-based
model are hosted at the following repositories: https://github.com/
peleg-lab/CollectiveScentingCV and https://github.com/peleg-lab/
CollectiveScentingABM_Wind.
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